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Abstract

Being able to perform large-scale simulations on complex models is among the
most important things in many fields of science, ranging from finance to as-
trophysics. Such simulations are of particular interest to astrophysicists as the
majority of their studies resides in outer space, far from our reaches. Due to
the remoteness of these objects, they can only be observed through data coming
from instruments, like images produced by telescopes. Despite this, most of the
physics and mathematical theory describing the origin and the composition of
these objects are in fact, very mature, after decades of research.

One type of these distant interstellar objects are called reflection nebulae. They
are dense regions of dust in space which reflect light coming from stars within
them. With development of new algorithms and hardware, improvements can
be made on existing methods for added complexity in lower computation times.

In this thesis, I present a method for simulating radiative transfer in reflection
nebulae using volume photon mapping in CUDA and turning the photon map
into a light field by convolving it with a filter using 3D FFT on the GPU. The
light field is then used with my implementation of a GPU-based ray marching
algorithm to give real-time visualizations of the radiative transfer in reflection
nebulae.
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Figure 1: The Orion nebula is a reflection nebula [NASA 2000]
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Chapter 1

Introduction

To explain the appearance of many objects, ranging from the clouds we see in
the sky to nebulae in the distant universe, we need powerful simulation frame-
works that can accurately compute the mathematical and physical models that
describe the appearance of these objects. These frameworks enable researchers
to see accurate renderings of the results of new or existing models and allow
the testing of different parameters into these models to compare with the actual
real objects being modeled. They are an essential tool for any researcher if the
goal is to gain a deeper understanding of e.g. the complex interactions of light
and dust in interstellar space [Magnor et al. 2005]

Accurate physics-based simulations not only have scientific purposes but also in
terms of entertainment. Game- and film-makers often try to make visualizations
and special effects with the aim of maximizing realistic appearance of objects
and natural phenomena. Artistic representations of these objects are constantly
being replaced by very realistic renderings made by sophisticated physics-based
appearance models.

In this thesis I present a method for simulating radiative transfer in reflection
nebulae using volume photon mapping in CUDA and turning the photon map
into a light field by convolving it with a filter using 3D FFT on the GPU. The



2 Introduction

light field is then used with my implementation of a GPU-based ray marching
algorithm to give real-time visualizations of the radiative transfer in reflection
nebulae. A complete application was made for handling input and output data
from the models through a graphical user interface, along with visualization of
the results in real-time on high frame-rates.

This is a significantly different approach to existing methods and extends pre-
vious work made in the field. While radiative transfer theory remains the same,
the algorithms and tools used in accomplishing this task are state of the art,
following the rapid development of algorithms and hardware in recent years.

1.1 Related work

A few publications exist that address scientific visualization of reflection nebulae.
In 2005, Magnor et. al. presented an approach to model and visualize, in
real-time, reflection nebulae in 3D [Magnor et al. 2005]. Their approach was
based on the same physical models that are used in astrophysics research, to
accurately calculate light scattering in procedurally generated dust distributions
surrounding one or more stars. They covered all the aspects of anisotropic
scattering, wavelength dependence, multiple scattering and provided real-time
visualization of the results. Some of their results are shown in figure 1.1

In 2007, Lintu et.al. presented an approach to 3D reconstruction of reflection
nebulae from a single image[Lintu et al. 2007]. Instead of modeling dust den-
sities with noise functions, they reconstructed these densities from an image of
an existing reflection nebula to give an approximation of the structure of the
actual nebula. They then modeled the light transport to give a final result.

Many publications address algorithms used for solving these models. Dr. Henrik
Wann Jensen developed and published a book covering realistic image synthesis
using photon mapping[Jensen 2001]. This method traces photons from light-
sources to accurately simulate natural lighting in complex 3D environments.
Photon mapping has been used to accurately simulate caustics and sub-surface
scattering of light to model e.g. physically realistic looking skin as seen in
motion pictures like ”Lord of the Rings” and ”Avatar”. Some examples of Dr.
Jensen’s work are shown in figure 1.2

In 1938, L.G. Henyey and Jesse L. Greenstein presented a theory describing
the radiative transfer through nebulae to interpret observations of the colors of
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Figure 1.1: Example results from Reflection Nebula Visualization [Magnor et al.
2005]

Figure 1.2: Photon mapping used to simulate caustics (left), general global
illumination (center) and volumetric caustics (right) [Jensen 2000]. Note that
these are all purely computer generated images (CGI).
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reflection nebulae[Henyey and Greenstein 1938]. Their work yielded the well
known Henyey-Greenstein phase function which they presented in a paper two
years later [Henyey and Greenstein 1940]. The Henyey-Greenstein phase func-
tion is generally used in astrophysics ([Gordon 2004], [Andersen 2007]) and com-
bined with the photon mapping thoery, is a fundamental part of the methods
presented in this thesis.

1.2 Parallel computing

Algorithms for calculating the radiative transfer rely heavily on Monte Carlo
simulations and are therefore mostly embarrassingly parallel [Foster 1995]. Em-
barrassingly parallel algorithms can easily seperate their workload into a number
of parallel tasks as there is little or no dependency between those tasks. Monte
Carlo methods rely on repeated random sampling to compute their results to
gradually converge to a solution. They converge much more quickly than nu-
merical methods, require less memory and are easier to program. Their success
and popularity have recently grown fast with the rapidly growing GPU industry
which provides highly affordable hardware for use in general purpose computa-
tions.
To utilize the power of the GPUs a parallel-programming framework is needed.

Figure 1.3: Evolution of theoretical GFLOP/s of CPUs and GPUs.

One such framework is CUDA, it stands for Compute Unified Device Archi-
tecture and was developed by the NVIDIA corporation for the use of graphics
processing units (GPUs) for general purpose computing (GPGPU). GPUs can
be thought of as a collection of small processors and can range anywhere from
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8 to over 512 processors (or cores) but these numbers grow fast by every year.
The computational power of processors or systems of processors is measured in
millions of floating point operations per second or GFLOP/s. As the number
of cores on GPUs increases their theoretical GFLOP/s limits increase and since
the increase of cores per GPU is far greater than that of CPUs, the GPUs have
become far superior as shown in figure 1.3. This only applies to parallelizeable
algorithms as the high number of cores used contribute greatly to how many
GFLOP/s are performed.

The gaming industry has financed the rapid growth and mass production of
these GPUs for more than a decade. This doesn’t come as a surprise considering
the video-game industry has surpassed both the music- and movie-industry in
revenues and growth [Ars Technica 2008] and video-game producers are driving
this development by constantly competing in pushing the extreme limits of
current GPUs to create the next blockbuster.
The gamers of the world are literally paying for the development of affordable
desktop-supercomputers[Computerworld 2008].
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Chapter 2

Theory

2.1 Reflection nebulae

Reflection nebulae consist of either high-density or diffuse dust, usually illumi-
nated by a single or small number of nearby stars[Gordon 2004]. The structure
of these dusty regions is revealed as light scatters and gets absorbed by the dust
particles. The stars inside these regions are usually of low mass and do not
have enough energy to ionize the gas particles in their dusty neighborhood, but
enough so that the reflected light can be observed (see figure 1 on page ii) [Lintu
et al. 2007].

The color, i.e. the visible-light part of the electromagnetic spectrum, is de-
termined by the type of the central star(s) and the scattering properties of
interstellar dust particles. Light scatters differently at different wavelengths.
This is the reason why reflection nebulae tend to be more blue as light at blue
wavelengths scatters much more than light at the red end of the visible spec-
trum.
Interstellar dust is mainly composed of carbons and silicates and stems predom-
inantly from so called AGB1 stars. The particles vary in sizes ranging between

1Asymptotic Giant Branch
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100nm and 1µm[Magnor et al. 2005]. The scattering properties of single dust
particles are well described by the Lorenz-Mie theory which is a complete an-
alytical solution of Maxwell’s equations for the scattering of electromagnetic
radiation by spherical particles [Bohren and Huffman 1983]. The scattering
model of interstellar dust uses two parameters. One is the scattering albedo(α)
and the other is the angular scattering distribution of dust, i.e. a scattering
phase function Φ(θ).

The albedo a ∈ [0, 1] determines the probability of a scattering event to occur
or the average ratio of radiation incident on the dust particle that is being
scattered. If all incident radiation is absorbed, a = 0. On the other hand, if
all incident radiation is scattered, a = 1, in other words, the medium is highly
scattering[Magnor et al. 2005]. From the average absorption coefficient σabs
and scattering coefficient σsct, combined into an extinction coefficient σext, a is
defined

a =
σsct

σabs + σsct
=
σsct
σext

(2.1)

The angular scattering distribution, or the scattering anisotropy, is modeled
using the Henyey-Greenstein phase function:

Φ(θ, g) =
1− g2

(1 + g2 − 2g cos θ)3/2
(2.2)

This Henyey-Greenstein phase function is a good approximation for dust grains,
except possibly in the far-ultraviolet [Gordon 2004]. At visible wavelengths, the
scattering albedo(a) and the scattering anisotropy factor (g) are both approxi-
mately 0.6 [Magnor et al. 2005; Gordon 2004].

2.2 Phase functions

A phase function, defined p(x, ~ω′, ~ω) or p(x, ~ω′ → ~ω) describes the angular dis-
tribution of scattered radiation at a point. Phase functions have been developed
to model e.g. Rayleigh scattering and Mie scattering. The Rayleigh model can
be used to accurately model scattering from particles that are smaller than
the wavelength of light. An example of such particles are the molecules in our
planet’s atmosphere. In other words, the Rayleigh scattering can explain why
the sky is blue and the sunset red[Pharr and Humphreys 2004]. Mie scattering
is based on a more general theory, derived from Maxwell’s equations and can
describe scattering from wider range of particles sizes, e.g. water droplets and
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fog. Again, to put that into a more general context, it can explain how rainbows
work.

The Henyey-Greenstein phase function is widely used in computer graphics and
other fields and was developed by L. Henyey J. Greenstein to explain the scat-
tering by interstellar-dust. It has a single parameter, g, which is referred to as
the asymmetry parameter of the phase function and ranges from -1 for complete
back scattering to 0 for isotropic scattering to 1 for complete forward scattering.
Given an arbitrary phase function, the anisotropy parameter g or the average
cosine of scattered directions, can be computed as

g =

∫
Ω4π

p(x, ~ω′ → ~ω) cos θd~ω′ (2.3)

The phase functions are very useful in stochastic ray tracing since they can
easily be importance sampled, which is an essential part of modeling radiative
transfer in interstellar dust. Figure 2.1 shows randomly sampled directions of
two different values of g:

Figure 2.1: Random directions sampled with the Henyey-Greenstein phase func-
tion with two different asymmetry parameters. If g was set to 0 it would yield
directions randomly sampled in all directions (isotropic).

2.3 Radiative transfer equation

The RTE2 itself represents the change of radiance of photons as they interact
with particles in participating media, demonstrated in figure 2.2

2Radiative Transfer Equation
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Figure 2.2: The RTE represents the change of radiance as the photons interact
with particles in a medium they travel through [Gutierrez et al. 2009]

In this thesis, the radiative transfer equation is used to calculate the radiance
received at each voxel in a discretized volume. It captures any event that affects
radiance, namely emission, in-scattering, out-scattering and absorption and is
defined as follows:

(~ω · ∇)L(x→ ~ω) =

Extinction︷ ︸︸ ︷
−σt(x)L(x, ~ω)

+

In−scattering︷ ︸︸ ︷
σs(x)

∫
Ω4π

p(x, ~ω′, ~ω)L(x, ~ω)dω′

+Le(x, ~ω)︸ ︷︷ ︸
Emission

(2.4)

To break the equation down into components; the change in radiance L in the
direction ~ω due to out-scattering is given by:

(~ω · ∇)L(x→ ~ω) = −σt(x)L(x, ~ω) (2.5)

and change due to absorption is:

(~ω · ∇)L(x→ ~ω) = −σa(x)L(x, ~ω) (2.6)

Together, out-scattering and absorption contribute to the loss of radiance and
combined they form the extinction coefficient:

extinction︷ ︸︸ ︷
σt(x) =

absorption︷ ︸︸ ︷
σa(x) +

out−scattering︷ ︸︸ ︷
σs(x) (2.7)
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As a ray travels through a volume it can also accumulate radiance due to in-
scattering of light, which is given by:

(~ω · ∇)L(x→ ~ω) = σs(x)

∫
Ω4π

p(x, ~ω′, ~ω)L(x, ~ω)dω′ (2.8)

where the incident radiance is integrated over all directions on the sphere Ω4π

and the phase function, explained in the previous section, is used for describing
the distribution of the scattered light. There can also be a gain in radiance due
to emission Le from either the medium itself (e.g. ionized gas) or in the case of
the topic here, a glowing star. Le is given by:

(~ω · ∇)L(x→ ~ω) = Le(x, ~ω) (2.9)

To use the RTE to calculate how radiance is distributed throughout participating
media, it needs to be derived into the volume rendering equation by integrating
Eq. 2.4 on both sides for a segment of length s [Jensen 2001]. The volume
rendering equation is derived from the RTE as:

L(x, ~ω) =

∫ s

0

e−τ(x,x′)σa(x′)Le(x
′, ~ω)dx′

+

∫ s

0

e−τ(x,x′)σs(x
′)

∫
Ω4π

p(x′, ~ω′, ~ω)Li(x
′, ~ω′)d~ω′dx′

+e−τ(x,x+s~ω)L(x− s~ω, ~ω)

(2.10)

where the optical depth τ(x, x′) is given by:

τ(x, x′) =

∫ x′

x

σt(t)dt (2.11)

Realistic Image Synthesis Using Photon Mapping by Dr. Henrik Wann Jensen
covers the theory behind the radiative transfer equation and it’s derivatives in
great detail. In the book he presents the Photon mapping method for efficiently
solving the them.

2.4 Photon mapping

Photon mapping is a global illumination algorithm. Global illumination al-
gorithms are physically-based simulations of all light-scattering in a synthetic
model. The goal of photon mapping, along with other similar algorithms, is to
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produce an accurate prediction of the intensity of light at any given point in the
model. The input into such models can be volume definitions, description of
geometry, material properties and light-sources. Calculating how much radia-
tion is received directly at a given point is usually a trivial part of those models.
Indirect lighting, however, is far more complex as it is the result of multiple
scattering. When working with heterogeneous media, the problem grows even
more complex as volume density must be sampled along the light’s path to ac-
count for higher extinction in denser regions, whereas only the total distance
traveled through homogeneous media and an extinction constant directly effects
the extinction along the path.

The goal of photon mapping is to partly solve or speed up the calculation of the
radiative transfer equation (RTE) defined in Eq. 2.4

A photon map is constructed of photons emitted from the light sources and
traced through the model. Each photon traced from the source can go through
multiple scattering-events as it propagates along its way until it is absorbed.
Due to this, the photon map can capture the complex characteristics of light
and it’s interaction with matter in complex models.

Consider Fig. 3.1 on page 26. It demonstrates how a ray is used to sample a
volume at given intervals. Regular algorithms would have to perform expensive
stochastic sampling at every step to estimate radiance from in-scattering. The
photon map eliminates this problem by tracing photons from the light source
into the volume and spatially storing the power of these photons where they
land. When the ray is traced to sample radiance in the volume, a simple photon-
density estimate around each sample is performed to estimate the average total
radiance.
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2.5 Volume Ray marching

A volume here is defined as a cubic grid of texels or in graphics terminology,
a 3D texture. A 3D texture can be explained as an array of 2D images, but
instead of having two dimensional pixels like an image, pixels are defined in
three dimensions. The term pixel is explained in figure 2.3.
Visualization of a volume is possible by using e.g. volume ray marching. The

Figure 2.3: An image of dimensions Width and Height has W ×H pixels

task is to project a 3D volume on to a 2D surface/image, preferably at high
frame-rates. In volume ray marching, where a ray is traced through a scene for
every pixel on the 2D surface to give a value, represented in color(RGB), i.e.
a color each pixel is seeing. This can of course be done in a custom software
ray-tracer, but so called GPU shaders are very well suited for this kind of work.
GPU shaders replace the old fixed-function graphics pipeline in commonly used
graphics API’s3 and are very popular in modern video-games as they can, among
other things, solve complex lighting equations in real-time and are optimized for
vector calculus.

Volume ray marching is easily achieved with GPU shaders as they are very spe-
cialized in handling texture data and performing 3D and 2D projections, fully
utilizing the mathematical power of the GPU.

Fragment shaders, also referred to as pixel shaders, are blocks of code that
handle the calculation of the color of individual pixels in the programmable

3Application Programming Interface
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graphics pipeline. To perform volume ray tracing in a fragment shader, the
volume needs to be uploaded to the GPU memory as a 3D texture. The fragment
shader can then sample positions inside the volume with unit-vectors. Given an
eye position, look-at point, the volume boundary(defined as a unit cube) and a
3D texture holding the actual RGBA values for the volume, enough information
is available for the shaders to execute the volume ray marching algorithm.

Figure 2.4: Volume Ray marching demonstrated, figure inspired by [Levoy 1990]

In an attempt to demonstrate the process described above, I present a diagram
of the volume ray marching process in Fig. 2.4. It shows how a ray is traced
from a pixel into the scene, where it hits a volume. To find the points where
a ray enters a volume and where it exits, a suitable ray-volume intersection
algorithm must be used, see section 2.5.1. Inside the volume, samples are taken
in a number of steps and accumulated along the ray until either the ray exits
the volume boundary or it has accumulated alpha values summing up to 1. The



2.5 Volume Ray marching 15

discretized version of the volume integral function is defined:

Accumulated color: C =

N∑
i=0

CiAi

Accumulated opacity: A =

N∑
i=0

Ai

Final pixel value: Cpixel = C(A) + Cbg(1−A)

(2.12)

Here Cbg is a background color which can be any constant or a function, e.g. a
texture-lookup from a cube-map. Please refer to Algorithm 4 on page 28 for
the specifics on my implementation.

2.5.1 Ray-Volume Intersection

Kay and Kayjia developed an algorithm for speeding up ray-object intersection
calculations that is several times faster than other published algorithms [Kay
and Kajiya 1986] and is widely used in graphics where speed is usually a re-
quirement. The algorithm applies to any object, but in this thesis it is used to
find intersection of a ray with the volume boundary, yielding intervals on the
ray where it enters a boundary and exits it, given as tstart and tend respectively.
Objects are bounded by so called slabs, which can be made to fit convex hulls
arbitrarily tightly. A slab is basically the space between two parallel planes.
The way the algorithm forms these slabs(boundaries) around objects is out of
scope here since we already have a boundary for the volume, a cube. Further
information can be found in the original paper [Kay and Kajiya 1986].
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2.6 Filtering

Convolution is an important step in producing a final result, which removes
high frequency noise generated by the Monte Carlo simulation methods. This
is demonstrated in figure 2.5 where two 2D kernels, a signal and a filter, are
convolved. The convolution of two real-valued functions, or kernels, is defined
as:

(f ∗ g)(x) =

∫
Rd

f(y)g(x− y) dy =

∫
Rd

f(x− y)g(y) dy (2.13)

Figure 2.5: The convolution process of 2D kernels

Solving an integral equation like that computationally within acceptable execu-
tion times is easily done today, thanks to Fourier transforms. The convolution
theorem states that the Fourier transform of a convolution is the point-wise
product of Fourier transforms. Convolution in one domain(e.g. time domain)
equals point-wise multiplication in the other domain (e.g. frequency domain).
Let F(f) denote a Fourier Transform of a function f , ∗ the convolution of two
functions and f · g the point-wise multiplication of f and g respectively, then:

F{f ∗ g} = F{f} · F{g}

f ∗ g = F−1{F{f} · F{g}}
(2.14)

Discrete Fourier Transform is used for doing Fourier transforms of discrete func-
tions/sequences and can be computed efficiently using the Fast Fourier Trans-
form (FFT). FFT algorithms bring the computational complexity of evaluating
Discrete Fourier Transforms from O(N2) to O(N logN). The FFT therefore not
only makes the convolution much simpler in analytical terms (Eq. 2.13 compared
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to Eq. 2.14) but it also speeds up the computations significantly, making it very
suitable for large scale simulations.

Note that the result of a Fourier Transform of a real-valued function is in com-
plex space: F : Rn → Cn so the pointwise product of Fourier transforms is
in fact a point-wise product of complex numbers as defined in the following
equation:

(a+ bi)(c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (bc+ ad)i (2.15)
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2.7 Random number generators (RNGs)

This project relies heavily on random numbers for everything from modeling the
structure of nebulae to solving integrals using Monte-Carlo simulations. Neither
CUDA nor shaders have built-in random number generators. Several types of
random number generators exist:

Pseudo random number generators (PRNGs) also called Deterministic
random bit generator (DRBG)[Barker et al. 2005] are algorithms that
produce a sequence of bits that are uniquely determined from an initial
value called a seed.

True random number generators (TRNGs) use a physical source of ran-
domness to provide truly unpredictable numbers. Most operate by mea-
suring unpredictable natural processes, such as thermal noise, atmospheric
noise or nuclear decay[Jun and Kocher 1999]. TRNGs are mainly used in
cryptography due to their unpredictable nature. They are however too
slow for simulation purposes but are sometimes used in combination with
PRNGs as random seed generators.

Quasi random number generators(QRNGs) aim to construct point sets
which fill out the s-dimensional (s-D) unit cube as uniformly as possible.
Sequences produced by QRNGs are more uniform than pseudo-random
sequences. [Sen and Reese 2006]

PRNGs can give good random sequences and are very fast, which makes them
very suitable to GPU computing. In any parallel processing framework, such
as CUDA, each thread can use it’s own index, or thread ID as a seed into
the RNGs, given that each thread ID is unique in the whole simulation. This
produces a unique uniformly sampled sequence of random numbers for each
thread. Of the many PRNG implementations that exist, one with high enough
period to fit the task at hand must be chosen. Periodicity, or the period of
a RNG, is the maximum length of the random sequence it generates before it
begins to repeat itself. Since PRNGs need to be seeded with initial values, all
experiments are repeatable. Given a specific seed, the PRNG will always give
the same sequence of random numbers, which is often very important to be able
to reproduce results. PRNGs are used in 3 different parts of the project:
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2.7.1 Modeling dust density: 3D Noise

A 3d noise function, defined as f : R3 → [−1, 1], was chosen to give an accept-
able approximation to dust densities in interstellar-space. A noise function is
not a typical random function that tries to produce white noise, rather it gives
repeatable and smooth results on a well-specified range.

For this project, Perlin’s Simplex Noise was chosen as it has lower computational
complexity, O(n) for each dimension n compared to O(2n) of classic Noise,
fewer multiplications, scales to higher dimensions (3 in this case) and has no
directional artifacts [Gustavson 2005]. The last part is particularly important in
this project to be able to produce naturally looking dust density distributions in
3 dimensions. Stefan Gustavson’s implementation of Simplex noise [Gustavson
2005] was used with minor adjustments to make it run on parallel threads in
CUDA.
To get a variety of high- and low-frequency dust density distributions, several
octaves of noise are needed. The turbulence function ([Perlin 1985; Frisvad and
Wyvill 2007]) can be used to achieve this. Although, to avoid discontinuities
and provide smooth noise, the absolute value of the noise function is removed:

turbulencesmooth(x) =

fhigh∑
f=flow

noise(2fx)

2f
(2.16)

where noise is the 3D Simplex noise function. Note that, like the noise function
itself, this function generates noise in the range of [-1, 1] which needs to be taken
care of when used in modeling dust density, see Eq. 3.2 on page 22.

2.7.2 Monte Carlo random sampling in CUDA

Stochastic photon tracing is a Monte Carlo simulation technique and therefore
relies heavily on RNGs to generate random samples. The RNGs must have a
high period, since theoretically, depending on input data, very many random
samples may need to be taken at each thread. Another criteria is good statistical
quality, the RNG must be able to produce unique, uncorrelated random streams
on each parallel node. A suitable RNG was found to be a three-component com-
bined Tausworthe(”taus88”) and a 32-bit Linear Congruential Generator(LCG)
as described in [Howes and Thomas 2007, Ch. 37]. Individually these RNGs pro-
vide relatively good statistical quality but combined they give random streams
with statistical defects completely removed. This RNG comprises four 32-bit
values and provides an overall period of around 2121 [Howes and Thomas 2007].
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2.7.3 Random numbers in GPU Shaders

Without random sampling, the results of the volume ray marching algorithm,
described in Chapter 3.3, show visual artifacts in terms of aliasing. To overcome
this problem, the entry-point of each fragment into the volume boundary must
be randomly translated along the incident direction ray. Shaders do not offer
any built in random functions so one needs to be implemented by hand, one that
gives random sequences unique to each fragment(pixel). Only a single random
sample is needed per fragment so any simple pseudo-random function suffices,
such as the following one of unknown origin but widely used in graphics:

rand(x̃,~a, b) = frac(sin(x · a) ∗ b) (2.17)

where x̃ is the normalized 2D coordinate of a pixel, ~a a 2-dimensional random
vector and b is a random constant. The function frac returns the fractional
(non-integer) part of a real number x and is defined as follows:

frac(x) =

{
x− bxc if x ≥ 0

x− dxe if x < 0
(2.18)

As an example, given x̃ as the normalized 2-dimensional coordinate of each pixel
(x̃i = [0, 1]), the following call to this random function would produce a pseudo-
random number between 0 and 1 for each pixel: rand(x̃, [12.9898, 78.233], 43758.5453).



Chapter 3

Implementation

3.1 Overview

The implementation is split into two parts since this is a two-pass algorithm. The
first one being a pre-computation stage where the radiative transfer equation
(RTE) is solved for N3 voxels where N is in the power of 2, e.g. 128, 256, 512,
for sake of old GPU habits and simplification. In terms of memory usage, 2563

voxels require approximately 262MB of memory on the GPU only for storing
the results of the computation:

2563 × 4× sizeof (float)

1024 · 1000
≈ 262MB (3.1)

Since each voxel is a 4-component RGBA1 vector of floating point numbers,
each taking 4 bytes of memory (sizeof(float) = 4bytes).
The total memory required by the algorithm in total is about twice the amount
derived in Eq.3.1 as memory is required for storing photons, FFT kernels and
other things. The pre-computation step is executed nearly solely on the GPU
using CUDA. The results are copied into an OpenGL texture-memory address
made available to the shaders for visualization. The following sections describe

1Red,Green,Blue,Alpha
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the implementations of both the pre-computation and the volume visualization
algorithms in detail.

3.2 Precomputation

The precomputation step discretizes the volume into N3 voxels, forming a 3-
dimensional array of voxels. It allocates memory required by the algorithms and
handles the execution of parallel threads on the GPU through CUDA. Memory
must be allocated specifically on the GPU and the results later copied from
GPU memory to the host memory.

3.2.1 Dust density

Each voxel, indexed by a 3D coordinate ṽ = [x, y, z] · 1

N
is assigned a dust

density value which is calculated in the following way:

density(ṽ) = cubic(|(ṽ − s̃)|, r) +
max(0.0, turbulence(ṽ · t))

(3.2)

where s̃ is the position of a star, t is used to down-scale the output of the
turbulence function and cubic is a cubic-filter function [Frisvad and Wyvill 2007]
defined as:

cubic(d, r) =

{
(1− d2/r2)3 , d2 < r2

0 , d2 ≥ r2
(3.3)

The cubic function serves the purpose of generating density at the star’s location
and tightly around it, where the parameter r is used to control the radius of the
star. The turbulence function is explained in Eq. 2.16 on page 19. Once the
dust densities have been calculated for the whole grid, the values are uploaded
to a GPU texture for quick lookup in the device function that solve the RTE.

3.2.2 Photon tracing

The next step of the algorithm is to trace the actual photons and store them in a
photon array. The photons must be traced separately for each of the three color-
bands, RGB, as scattering properties are different for different wavelengths of
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electromagnetic radiation. To adapt the photon-tracing algorithm to the CUDA
kernel programming-model, each thread is assigned a task to trace N photons. A
total of N3 photons are traced for each channel and the GPU executes a number
of threads in parallel depending on the type of GPU. A card that has 256 CUDA
cores can execute two-dimensional thread-blocks of 162 threads. Each thread is
assigned a 2D thread-ID which combined with an 2D ID of the current thread-
block gives a unique ID for each particular execution.
As argued before, each thread traces N photons from the star’s origin. Every
photon traced from the sun is initialized with a random normalized direction d̃,
sampled isotropically on a sphere. Here I simply randomly sampled from the
Henyey-Greenstein phase function with a g parameter of 0, which gives isotropic
samples on a sphere. The length of this direction-vector, i.e. the exact distance
to the next event of this photon is found by the following equation:

∇t =
− log(ξ)

σt
· wband (3.4)

σt is directly proportional to the dust density at the current position of the
traced photon and ξ is a uniformly sampled random variable. The wband repre-
sents a weight, or an extinction factor, for the current band being traced. These
extinction factors have been found to be R ≈ 0.748, G ≈ 1.0, B ≈ 1.324. In
dense dust clouds the extinction factors become R ≈ 0.8, G ≈ 1.0, B ≈ 1.2
[Magnor et al. 2005]. The position of the next scattering event for a photon is
then defined as:

õi = õi−1 + (d̃ · ∇t) (3.5)

If the dust density at õi−1 is below a given scattering-threshold the photon is
simply traced forward along d̃ until it either reaches a point with dust density
above the threshold or exits the grid and it’s flux (or power) is set to 0. Once a
photon reaches a position where dust is present, a Russian roulette technique is
used to determine whether the photon is scattered forward or absorbed. Russian
roulette is a standard Monte Carlo technique introduced to speed up computa-
tions in particle physics and later applied to graphics [Jensen 2001].
It can be thought of as an importance-sampling technique where the probabil-
ity distribution function is used to eliminate unimportant parts of the domain.
Here the technique is used to determine whether a photon is scattered or ab-
sorbed. Here the scattering-albedo a is introduced which gives the probability
of scattering in a given medium, in this case interstellar-dust. Scattering albedo
of 0 would not give any scattering while an albedo of 1 would yield highly scat-
tering materials. The Russian roulette algorithm that determines if a photon is
scattered or absorbed is shown in Algorithm 1:

In case of scattering, a new direction is simply sampled from the Henyey-
Greenstein phase function with the original photon direction and the constant
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Algorithm 1 Russian roulette determining scattering events

ξ ← random()
if ξ < a then

Scatter photon
else

Absorb photon
end if

g as parameters:

d̃i+1 = sampleHG
(
d̃i, g

)
(3.6)

The energy, or the flux of the photons, emitted by the star into the nebula is a
constant. As discussed in Ch. 6, this approach can be extended to accurately
model the energy output and spectrum and of a star, given parameters like size,
mass, temperature and composition. The photon tracing algorithm is explained
in Algorithm 2

Algorithm 2 Photon tracing

Require: D← Dust density lookup texture
Require: w ← Band weight
~o← ~ostar
~d← sampleHG(g=0)
while stored photons ¡ N do
σt ← D(~o)

∇t← −log(ξ1) · w
σt

~o← ~o+ ~d · ∇t
if ~o is outside volume boundary then
~o← ~ostar
~d← sampleIsotropic()
Store photon at ~oi with 0 flux

else
Store photon at ~oi with flux constant
if ξ2 < a then
~d← sampleHG(~d, g)

else
~o← ~ostar
~d← sampleIsotropic()

end if
end if

end while
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3.2.3 Convolution and gathering

After the photons have been traced into an array, a signal kernel S is filled with
the flux of every photon according to the photon’s position within the unit-grid.
In the start of this chapter it was stated that the volume was discretized into
voxels. Each voxel therefore represents a cubic boundary inside the volume and

has the volume of
1

N3
since the whole volume has been divided into N3 voxels.

If a photon was stored at position [0.5, 0.5, 0.5] and the dimension of the vol-
ume discretized into 1283 voxels, the photon would add to the illumination of
a voxel indexed in by the 3 integers: [0.5·128, 0.5·128, 0.5·128] = [64, 64, 64].

The algorithm for producing a radiative transfer solution for the all three chan-
nels is as follows:

Algorithm 3 Radiative transfer equation solved

Require: w̃← Band weights
Require: F← Cubic filter kernel

Initialize result matrix R
for i = 1 to 3 do

Trace Photons for using weight w̃i

Create signal kernel S and illuminate with photon flux values
S = F−1{F{S} · F{F}}
Ri = S

end for

A simplified version of the ray marching part of the algorithm is explained in
Fig. 3.1, which is a modified version of Fig. 2.4 on page 14.

Since we are limited by a number of photons we can trace within acceptable
time limit, we can’t trace enough photons to represent the total illumination
of the entire volume. A single photon may be the only one close to number of
voxels. Since it transports only a fraction of the light source power, it cannot
say how much light the surrounding region receives. Since every photon only
radiates the exact voxel it hits, a method is needed to perform photon-density
estimation for every voxel to get a radiance estimate based on the surrounding
photons inside a given filter radius.
This is where convolution of the signal, storing the flux of the traced photons,
and a filter kernel, comes into play. The convolution process using FFT is
explained in detail in chapter 2.6.
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Figure 3.1: Simplified demonstration of the summation of samples taken along
the ray, including a background-sample after the ray exits the volume.

3.2.4 Parallelization

Cuda threads are executed in parallel thread blocks that each consists of prefer-
ably the maximum amount of parallel threads the GPU can handle. The com-
bined ID of a thread and it’s parent thread-block gives a unique index into
an array which each thread can safely write it’s results into without risking a
data-race condition with other threads. This is demonstrated in the Fig. 3.2

Figure 3.2: A diagram showing thread-blocks containing threads where each
thread references a specific address of memory to work with.
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Since threads are given specific indices or ranges to work with, there is no need
for implementing mutex-based locking of addresses.

3.3 Real-time visualization

Once the pre-computation of the volume is complete, it is uploaded to the
shaders as a 3D RGBA-texture. Shaders provide fast lookup-functions for tex-
tures, indexed by unit-vector where the textures are unit-boundaries. Addition-
ally, cube-maps that are used for background-color lookup are uploaded to the
shaders.
The implementation is a single-pass rendering algorithm that does not require
any passes to be rendered into a frame-buffer as an input into a second pass. A
single-pass algorithm requires less resources, eliminates the complexity of ren-
dering to a FBO2 and gives higher frame-rates.
The shader is applied to a very large cube which encloses the the camera so it
completely fills the entire rendering canvas at all times. This is a proxy-geometry
which forces the fragment shader to process the entire output image, not just
the ones where the object it is applied to is visible. Since the volume is bounded
by a unit cube, the shader can simply trace a ray for each pixel into the scene
and test it’s intersection with the boundaries of an imaginary unit-cube. If a
ray intersects with the bounding-box then ray-marching is used to compute the
color value of that pixel, otherwise the pixel is set to the value of a background
function.

The theory behind ray marching is explained in chapter 2.5. Some preparations
are needed before the ray marching algorithm can start. A point of origin must
be determined along with the direction of the ray into the scene. The origin
of the ray is the center of the camera and the direction of the ray needs to
be translated by the position of the fragment on the image-plane. To perform
this translation, we need a coordinate-system for the image-plane. We know
the normal of the plane is the vector from the eye(~e) to a given look-at point
~p in front of it. From these vectors, we can derive the other two that form the
coordinate-system V:

Vnormal = |~p− ~e|

Vx = |Vnormal × ~up|

Vy = |Vx ×Vnormal|

(3.7)

2Frame-Buffer Object
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The origin and the direction of the ray are defined

ro = ~e
rd = |Vnormal + Vx · fx + Vy · fy|

(3.8)

where f is the two-dimensional normalized index of a fragment. Given a step-
size ∇t everything is ready for the ray marching algorithm to proceed:

Algorithm 4 Volume ray marching

Require: T← Volume lookup texture
Require: B← Background lookup function

if ray does not intersect with boundary then
return B(rd)

end if
tnear, tfar ← Boundary intersection interval
t = tnear + (ξ · offsetScale)
C← (accumulated color) initialize to 0
A← (accumulated alpha) initialize to 0
for i = 0 to maxSteps do

C← C + T(ro)RGB ·T(ro)A
A← A + T(ro)A
t← t +∇t
ro ← ro + rd · t
if t > tfar or A ≥ 1 then

exit for
end if

end for
return (C ·A) + (B(rd) · (1−A)

As mentioned in Chapter 2.7.3, without randomly adjusting tnear for each pixel,
the volume rendering algorithm suffers from aliasing. Aliasing is demonstrated
on the left image of Fig. 3.3 and compared to an image rendered with the method
described above, which removes or greatly reduces aliasing.
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Figure 3.3: Aliasing demonstrated and removed with per-pixel random offset of
tnear
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3.4 Tools

The application is composed of a GUI3 written in C# .NET, calculation modules
written in C++ and CUDA and Shaders written in the Cg shading language.
The role of the GUI is to acquire model input parameter from the user and
handle realtime rendering of the resulting volume using the shaders. The archi-
tectural design is outlined in Fig. 3.4

Figure 3.4: Nebula application overview shows the composition of different tiers
and libraries.

3Graphical User Interface
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3.4.1 GUI

The GUI is programmed in C# and uses WPF4 which is a graphical subsystem
for rendering next-generation user interfaces on Windows-based applications and
is a part of the .NET framework 3.5. The main reason for using WPF is the
power of it’s data-binding capabilities and the clear separation of user interface
and business logic. Combined with the recently established MVVM5 pattern,
the quality of the code behind the user-interface is greatly increased and all data
communication, termed data binding, between the view and the view-model is
defined in XML.
OpenGL rendering is made possible with the OpenTK library for .NET. Custom
libraries were made for handling OpenGL textures, Cg shaders, scene rendering
and resource management.

Figure 3.5: A part of the UI that controls a few of the model input-parameters.

Figure 3.5 shows one of the panels which handle model-input-parameters through
data-binding. Through this specific panel the user can change the appearance
of the dust region, the scattering albedo(a), the anisotropic-scattering factor (g)
as well as the convolution-filter radius.

4Windows Presentation Foundation
5Model-View-ViewModel
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Figure 3.6: A screenshot of the entire application window.
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3.4.2 Shaders

There are a few shader languages commonly in used in modern graphical ap-
plications, including games and scientific applications. I chose NVIDIA’s Cg
Shader framework for the following reasons:

1. They offer a great flexibility with their FX format which can be used
to include texture definitions and to control the OpenGL state machine
(blending, culling, etc.) using a simple script combined with the shader
source.

2. They are cross-platform in terms of graphics API, in other words, they
work for both OpenGL and Direct3D.

3. In the shader script, it is possible to select from wide variety of shader
profiles, including GLSL. The CgFX format can thus mimic the syntax of
other types of shader-languages.

3.4.3 Core library

The core library is composed of a C++ DLL which manages memory on the
host, serial executions and calling the CUDA kernel functions. The CUDA
kernel functions are defined in separate CUDA source files (.cu) and compiled
with the CUDA compiler and then linked together with the C++ library. See
figure 3.4 for an overview.

3.4.4 Utilities

A few utility programs were implemented to ease the development process. One
was made to randomly sample the Henyey-Greenstein phase function and plot
the outcome in 3D using different values of g and was used to create Fig. 2.1 on
page 9. Another application was made to view the actual photon distribution
as particles in a 3-dimensional bounding box.

3.4.5 Libraries used

The application depends on the following libraries
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CUFFT: CUFFT is a library provided by CUDA and stands for, as the name
suggests, CUDA FFT. It performs FFT and the IFFT6 of any array of 1,2
and 3 dimensions.

OpenTK: Is a low-level OpenGL wrapper for .NET and enables the use of
OpenGL in such applications. See http://www.opentk.com/ for details

SWIG: SWIG stands for Simplified Wrapper and Interface Generator and was
used to make a C# wrapper of the C++ library. With a single command,
using the same scripts, wrappers for other languages can be created with
ease, including Python, Java, R and Matlab/Octave. This means that
the radiative transfer library itself can be used as a library in almost any
programming language.

6Inverse FFT

http://www.opentk.com/
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Results

The results of the implementation can be viewed from two separate angles. One
being performance, or how fast the algorithm calculates the radiative trans-
fer and the other being the actual visual output compared to expected results
according to theory. These are discussed separately in the following sections.

4.1 Execution times

The specifications of the PC used to run the calculations were as follows: Intel
Core i7 CPU, 4GB RAM, NVidia GeForce 250 GTS GPU with 128 CUDA
cores. The volume was made of 1283 voxels and 1283 ≈ 2.1M photons were
traced for each color band for a total of approximately 6.3M photons. The
total pre-computation time, for generating the volume, was ≈ 4013ms of which
it took 3150ms to run the only part of the algorithm that was not parallelized.
Figure 4.1 shows how much time was spent on each part of the radiative transfer
algorithm.

The right-side of the graph in Fig. 4.1 represents the largest part of the al-
gorithm, which is executed in parallel on the GPU. The parallelized part of
the radiative transfer algorithm thus only takes 863ms to compute for approxi-
mately 6.3M photons, including dust density generation, convolution and mem-
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Figure 4.1: Execution times in milliseconds, dominated by the serial-process of
illuminating voxels with the photons

ory transfers. These parts all fall under the embarrassingly parallel criteria as
each individual task assigned to a thread is completely independent of the others.
They therefore scale according to Amdahl’s law of the maximum speed-up(S)
expected by parallelizing portions of a serial program, as defined:

S =
1

(1− P ) + P
N

(4.1)

where P is the fraction of the total serial execution time taken by the portion
of the code that can be parallelized and N is the number of processors, or cores,
over which the parallel portion of the code runs [NVIDIA Corporation 2009].

To demonstrate the power of CUDA compared to alternatives, I implemented
an OpenMP version of the same dust-density generation function. OpenMP,
Open Multi-Processing, or OMP is anAPI which adds multi-core programming
functionality to programming languages like C, C++ and Fortran. It is easy to
configure how many cores should be used for a given parallel execution. Figure
4.2 shows the huge difference in execution speeds between a single CPU core, 8
CPU cores and 128 CUDA cores respectively. Each one was used to calculate
dust densities for 64,128 and 256 cubic-voxels.

As expected, they all show exponential increases in execution-times, following
an exponential increase of the number of voxels. However, the CUDA code
executes performs the execution considerably faster.
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Figure 4.2: Comparison of execution times for generating N3 voxels using a
single cpu, OpenMP(8 CPU-cores) and CUDA(128 GPU-cores)
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4.2 Visual results

In this section the actual visual results as rendered by the shaders are presented.
Their change in appearance is described for different levels of scattering albedo
which clearly shows the result from increased scattering. The scattering albedo
is explained in Chapter 2. These images are actual frames exported from the
real-time visualization framework.

Figure 4.3 show the radiative transfer in homogeneous dust density distribution,
in other words, dust density is equal everywhere in the volume except around
the nearest vicinity of the star. The illumination of the dust increases as the
scattering albedo increases since photons are distributed further into the dust
region. When there is little or no scattering present, it can be seen how blue
light penetrates deeper into the dust away from the star, producing the blue
halo as evident in the figure. When scattering increases, other color bands add
to the total illumination of the dust.
Figures 4.4 and 4.5 show the same effect in modeled nebulae environment of
heterogeneous dust density distributions.
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Figure 4.3: Homogeneous dust distribution
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Figure 4.4: Random nebula environment showing changes in radiative transfer
when the scattering-albedo is changed
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Figure 4.5: Same as in the previous figure, but nebula environment generated
from a different seed
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Chapter 5

Conclusion

I presented a method for calculating and visualizing radiative transfer in re-
flection nebulae, using photon mapping, extending previous implementation by
e.g. [Magnor et al. 2005], using new recently established methods for efficiently
solving radiative transfer in participating media.

Given that the source of radiation and the participating media are static, vol-
ume photon tracing is an efficient and accurate method for solving radiative
transfer in heterogeneous media such as interstellar dust. With the help of
modern GPUs and HPC1 frameworks such as CUDA, millions of photons can
be traced, gathered and filtered into large three-dimensional texel-grids in mat-
ter of seconds. Using photon tracing to solve the radiative transfer equation can
greatly enhance the quality of the final output, compared to other methods, as
it captures multiple scattering events in great detail and depth. The algorithm
is also easily extended to more complex models as discussed in chapter 6.

Pre-calculating the radiative transfer and storing the result in a volume has
many advantages as the volume can be visualized and inspected in real-time on
high frame-rates. The graphical user interface enables the researcher to enter
input parameters into the model, such as star- and dust-properties and almost

1High-performance computing
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instantly see the radiative transfer results for real-time visualization. Although
speed was not a primary goal for this project, the calculation efficiency of GPUs
by far exceeded expectations, compared to it’s CPU counterpart.



Chapter 6

Discussion

In the following sections, limitations and improvements of presented methods
are discussed.

6.1 Performance

As stated before and demonstrated in Fig. 4.1, 78% of the execution-time for
the pre-computation is spent running over an array of photons to illuminate
voxels corresponding to their positions inside the volume. The reasons for not
parallelizing this part are the following:

Not easily parallelized: The position of every traced photon can not be pre-
determined due to the random nature of stochastic processes. Therefore,
there is a high risk of data-race-conditions between parallel threads as
threads can easily trace photons into the same cell at the same time.

Current limitation of CUDA: The GPU used for development did not sup-
port latest CUDA features, floating point atomic functions, which other-
wise would have made the parallelization of this part easy.
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Out of scope: Parallelizing this part was considered a nice extension if time
permitted and doesn’t contribute directly to the goals of this project.

There are 3 approaches I suggest for parallelizing this part.

CUDA or OpenMP: Implement custom parallel algorithms that involve mutex-
based locking of voxel memory-addresses.

CUDA atomic functions: In the latest CUDA drivers, support has been
added for floating-point atomic functions which have a built-in mechanism
to handle locking of memory addresses and support. This will therefore
not add any complexity to the existing algorithms.

KD-Trees: The use of a spatial-partitioning data-structure like a KD-Tree can
partition the volume into smaller boundaries, each containing a number
of photons. Each block can then be executed in parallel. This approach
however, introduces various problems with how edges of boundaries are
handled and has an overhead of building the actual KD-Tree that might
be equal or higher than that of the current implementation.

6.2 Model extensions

The current implementation is very open to extensions. The radiative transfer
model can be extended to account for more complex scenes:

Ionization: model ionization of gas particles to include emission of these par-
ticles.

Particle size distribution: instead of using a fixed size of dust-grains in re-
flection nebulae, more complex models could sample from particle-size
distributions as described in [Andersen 2007; Gordon 2004].

Specifications of a star: the current approach uses a constant flux output
of a given star. This can be extended with detailed models describing
the type of the star and from that calculate the exact power-output and
spectrum.
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Code listings

Following are selected code segments which demonstrate some parts of the al-
gorithm in detail.

A.1 CUDA

A.1.1 Density grid generation kernel function

Listing A.1: GenerateDensityGrid Kernel

1 global void generateDensityGrid(float4* data, cudaExtent size, float3 sunPos,
2 float oneOverX, float oneOverY, float oneOverZ,
3 const float3 noiseOffset, float densityScale)
4 {
5 int x = blockIdx.x*blockDim.x + threadIdx.x;
6 int y = blockIdx.y*blockDim.y + threadIdx.y;
7 int idx = 0, base = x*size.width*size.height + y*size.height;
8

9 for(int z=0; z<size.depth; z++)
10 {
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11 idx = base + z;
12 float3 here = make float3(x*oneOverX, y*oneOverY, z*oneOverZ);
13 float sun = cubic( length(here − sunPos), 0.01f);
14 float sct = sun + max(0.0f, turbulence(here + noiseOffset))*densityScale;
15 float mag = sun;
16

17 data[idx] = make float4(mag, mag, mag,
18 clamp(sct,0.0001f,1.0f)); //min/max dust density
19 }
20 }

A.1.2 Filter generation kernel function

Listing A.2: GenerateFilter Kernel

1 global void generateFilter(cufftReal* data, cudaExtent size, float r,
2 float3 center,
3 float oneOverX,float oneOverY,float oneOverZ )
4 {
5 int x = blockIdx.x*blockDim.x + threadIdx.x;
6 int y = blockIdx.y*blockDim.y + threadIdx.y;
7 int idx = 0, base = x*size.width*size.height + y*size.height;
8 for(int z=0; z<size.depth; z++)
9 {

10 idx = base + z;
11 float3 here = make float3(x*oneOverX, y*oneOverY, z*oneOverZ);
12 float d = length(here − center);
13 data[idx] = cubic(d, r)/(4.0/3.0*M PI*r*r*r);
14 }
15

16 }

A.1.3 Band combination kernel function

This function combines individual bands into RGB.

Listing A.3: GenerateDensityGrid Kernel

1 global void combine(float4* data, cufftReal* channelData, cudaExtent size, int band)
2 {
3 int x = blockIdx.x*blockDim.x + threadIdx.x;
4 int y = blockIdx.y*blockDim.y + threadIdx.y;
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5 int idx = 0, base = x*size.width*size.height + y*size.height;
6

7 for(int z=0; z<size.depth; z++)
8 {
9 idx = base + z;

10 switch(band)
11 {
12 case BAND RED:
13 data[idx].x = channelData[idx];
14 break;
15 case BAND GREEN:
16 data[idx].y = channelData[idx];
17 break;
18 case BAND BLUE:
19 data[idx].z = channelData[idx];
20 break;
21

22 }
23 }
24 }

A.1.4 Photon to light-field kernel function

This function illuminates designated voxels with the flux of the photons that
hit them.

Listing A.4: PhotonToLightField Kernel

1 global void computeRT(cufftReal* data, cudaExtent volumeSize, Photon* photons, cudaExtent photonsSize, int band)
2 {
3 const unsigned long psize = photonsSize.width*photonsSize.height*photonsSize.depth;
4 for(unsigned long pid=0; pid<psize; pid++)
5 {
6 Photon* p = &photons[pid];
7

8 unsigned int x = (int)(p−>pos.x * volumeSize.width);
9 unsigned int y = (int)(p−>pos.y * volumeSize.width);

10 unsigned int z = (int)(p−>pos.z * volumeSize.width);
11 unsigned int idx = x*volumeSize.width*volumeSize.height + y*volumeSize.height + z;
12

13 data[idx] = p−>flux;
14 }
15 }
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A.1.5 Stochastic Photon tracer

Listing A.5: DistributePhotons Kernel

1 constant device float band weights[3] = {0.8f, 1.0f, 1.2f};
2 global void distributePhotons(Photon* data, int dimension,
3 float3 sunPos, float sunPhi,
4 float a, float g, int band,
5 float oneOverX, float oneOverY, float oneOverZ)
6 {
7 int x = blockIdx.x*blockDim.x + threadIdx.x;
8 int y = blockIdx.y*blockDim.y + threadIdx.y;
9 int idx = 0, base = x*dimension*dimension + y*dimension;

10

11 //Initialize random per−thread RNG states
12 unsigned z1,z2,z3,z4;
13 z1 = z2 = z3 = z4 = base + band;
14

15 float s = oneOverX; //stepsize
16

17 float3 o = sunPos; //origin
18 float3 d = sampleHG(make float3(0.f, 1.f, 0.f), 0.0f,
19 random(z1,z2,z3,z4), random(z1,z2,z3,z4)); //direction
20

21 float T aim;
22 int depth = 1;
23 while(idx < dimension )
24 {
25 float density = (idx == 0 ) ? 1.0f : tex3D(voxelsTex, o.x, o.y, o.z).w;
26

27 float sigma t = max(0.01f, density ) / s; //extinction coeff.
28 T aim = (−log(random(z1,z2,z3,z4)) / sigma t) * band weights[band];
29

30 o = o + d*T aim;
31 //check for out of bounds
32 if(o.x ≥1 || o.y ≥1 || o.z ≥1 || o.x < 0 || o.y < 0 || o.z < 0)
33 {
34 o = sunPos;
35 d = sampleHG(make float3(0.f, 1.f, 0.f), 0.0f,
36 random(z1,z2,z3,z4), random(z1,z2,z3,z4)); //direction
37 data[base+idx] = Photon(o, 0.0f, depth);
38 idx++;
39 depth=1;
40 continue;
41 }
42
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43 if(density < 0.001f )
44 continue;
45 //store
46 data[base+idx] = Photon(o, sunPhi, depth);
47 idx++;
48

49 //check if it scatters forward
50 if(random(z1,z2,z3,z4) < a && depth < 10)
51 {
52 d = sampleHG(d, g, random(z1,z2,z3,z4), random(z1,z2,z3,z4)); //direction
53 depth++;
54 }
55 else
56 {
57 o = sunPos;
58 d = sampleHG(make float3(0.f, 1.f, 0.f), 0.0f,
59 random(z1,z2,z3,z4), random(z1,z2,z3,z4)); //direction
60 depth=1;
61 }
62

63 }
64

65 }

A.1.6 Cubic function

Listing A.6: Cubic function

1 device float cubic(float d, float r)
2 {
3 float ds = d*d;
4 float rs = r*r;
5 if (ds < rs)
6 {
7 float w = (1.0f − ds/rs);
8 return w*w*w;
9 }

10

11 return 0.0f;
12 }

A.1.7 Element-wise multiplication of two kernel of com-
plex numbers
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Listing A.7: ElementWiseMult

1 global void elementWiseMult3D(cufftComplex* a, cufftComplex* b, cudaExtent size)
2 {
3 int x = blockIdx.x*blockDim.x + threadIdx.x;
4 int y = blockIdx.y*blockDim.y + threadIdx.y;
5 int idx = 0, base = x*size.width*size.height + y*size.height;
6 for(int z=0; z<size.depth; z++)
7 {
8 idx = base + z;
9 a[idx] = complexMul(a[idx], b[idx]);

10 }
11

12 }

A.1.8 Complex number multiplication

Listing A.8: ComplexMul

1 // Complex multiplication
2 static device inline cufftComplex complexMul(const cufftComplex& a, const cufftComplex& b)
3 {
4 cufftComplex c;
5 c.x = a.x * b.x − a.y * b.y;
6 c.y = a.x * b.y + a.y * b.x;
7 return c;
8 }

A.1.9 Sample Henyey-Greenstein

From the book [Pharr and Humphreys 2004]

Listing A.9: SampleHG

1 // HG sample function, PBR page 713
2 //w: normal
3 //g: HGreenstein parameter
4 //u1: random
5 //u2: random
6 device float3 sampleHG(const float3& w, float g, float u1, float u2)
7 {
8 float costheta;
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9 if(fabsf(g) < 1e−3)
10 costheta = 2.f * u1 −1.f;
11 else
12 {
13 float tmp = (1.f − g*g)/(1.f − g + 2.f*g*u1);
14 costheta = −1.f / (2.f * g) * (1.f + g*g − tmp*tmp);
15 }
16

17 float sintheta = sqrtf(fmaxf(0.f, 1.f−costheta*costheta));
18 float phi = 2.f*M PI*u2;
19

20 float3 v1,v2;
21 coordinateSystem(w, v1, v2);
22 return normalize(sphericalDirection(sintheta, costheta, phi, w, v1, v2));
23 }

A.1.10 Compute direction vector given spherical coordi-
nates

From the book [Pharr and Humphreys 2004]

Listing A.10: SphericalDirection

1 //Computes a spherical direction given the parameters and coordinate system
2 //PBR page 246
3 device float3 sphericalDirection(float sintheta, float costheta, float phi,
4 const float3& x, const float3& y, const float3& z)
5 {
6 return sintheta * cosf(phi) * z + sintheta*sinf(phi) * y + costheta*x ;
7 }

A.1.11 Construct a coordinate system for a vector

Corrected version from the book [Pharr and Humphreys 2004]

Listing A.11: CoordinateSystem

1 device void coordinateSystem(const float3& v1, float3& v2, float3& v3)
2 {
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3 if(fabsf(v1.x) > fabsf(v1.y))
4 {
5 float invLen = 1.f / sqrtf(v1.x*v1.x + v1.z*v1.z);
6 v2 = make float3(−v1.z*invLen, 0.f, v1.x*invLen);
7 }
8 else
9 {

10 float invLen = 1.f / sqrtf(v1.y*v1.y + v1.z*v1.z);
11 v2 = make float3(0.f, v1.z*invLen, −v1.y*invLen);
12 }
13

14 v3 = cross(v1,v2);
15 }

A.1.12 Main CUDA host function

This function combines individual bands into RGB.

Listing A.12: Main CUDA host function

1 host void generateVolumeCuda(float4* data, const cudaExtent& volumeSize,
2 Photon* photonArrayHost, const cudaExtent& photons,
3 float3 sunPos, float sunPhi, float a, float g,
4 float3 noiseOffset, float filterRadius,
5 float densityScale )
6 {
7 cufftReal* signal = NULL;
8 cufftComplex* signalC = NULL;
9 cufftReal* filter = NULL;

10 cufftComplex* filterC = NULL;
11 float4* gpuData = NULL;
12 Photon* photonArray = NULL;
13 float oneOverX = 1.0f / volumeSize.width;
14 float oneOverY = 1.0f / volumeSize.height;
15 float oneOverZ = 1.0f / volumeSize.depth;
16

17 int N = volumeSize.width*volumeSize.height*volumeSize.depth;
18 int PN = photons.width*photons.height*photons.depth;
19 sunPhi /= N;
20

21

22 cutilSafeCall(cudaMalloc((void**)&gpuData, N*sizeof(float4)));
23 cutilSafeCall(cudaMalloc((void**)&signal, N*sizeof(cufftReal)));
24 cutilSafeCall(cudaMalloc((void**)&signalC, N*sizeof(cufftComplex)));
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25 cutilSafeCall(cudaMalloc((void**)&filter, N*sizeof(cufftReal)));
26 cutilSafeCall(cudaMalloc((void**)&filterC, N*sizeof(cufftComplex)));
27 cutilSafeCall(cudaMalloc((void**)&photonArray, PN*sizeof(Photon)));
28 cutilCheckMsg(”Memory allocation”);
29

30

31 cudaArray* voxelsArray;
32 cudaChannelFormatDesc desc = cudaCreateChannelDesc<float4>();
33 cutilSafeCall(cudaMalloc3DArray(&voxelsArray, &desc, volumeSize));
34 cutilCheckMsg(”Texturearray allocation”);
35

36

37

38 dim3 block(8,8);
39 dim3 grid(volumeSize.width/block.x,volumeSize.height/block.y);
40

41 //#. Compute the scattering factors (density map)
42 generateDensityGrid<<<grid, block>>>(gpuData, volumeSize, sunPos,
43 oneOverX, oneOverY, oneOverZ,
44 noiseOffset, densityScale);
45 cutilCheckMsg(”Density grid generation”);
46

47 //#. Copy into a 3D cudaArray and bind to a texture
48 cudaMemcpy3DParms copyParams = {0};
49 copyParams.srcPtr = make cudaPitchedPtr((void*)gpuData,
50 volumeSize.width*sizeof(float4),
51 volumeSize.width, volumeSize.height);
52 copyParams.dstArray = voxelsArray;
53 copyParams.extent = volumeSize;
54 copyParams.kind = cudaMemcpyDeviceToDevice;
55 cutilSafeCall( cudaMemcpy3D(&copyParams) );
56

57 //set texture parameters
58 voxelsTex.normalized = true; // access with normalized texture coordinates
59 voxelsTex.filterMode = cudaFilterModeLinear;
60 voxelsTex.addressMode[0] = cudaAddressModeClamp;
61 voxelsTex.addressMode[1] = cudaAddressModeClamp;
62

63 //bind array to 3D texture
64 cutilSafeCall(cudaBindTextureToArray(voxelsTex, voxelsArray, desc));
65 cutilCheckMsg(”Binding array to texture”);
66

67 //Initialize filter
68 generateFilter<<<grid,block>>>(filter, volumeSize, filterRadius,
69 sunPos, oneOverX, oneOverY, oneOverZ );
70 cutilCheckMsg(”Generating filter”);
71
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72

73 dim3 pblock(8,8);
74 dim3 pgrid(photons.width/pblock.x,photons.height/pblock.y);
75

76 //create FFT plan
77 cufftHandle planR2C;
78 cufftSafeCall(cufftPlan3d(&planR2C, volumeSize.width, volumeSize.height,
79 volumeSize.depth, CUFFT R2C));
80 cutilCheckMsg(”Creating plan R2C”);
81

82 cufftHandle planC2R;
83 cufftSafeCall(cufftPlan3d(&planC2R, volumeSize.width, volumeSize.height,
84 volumeSize.depth, CUFFT C2R));
85 cutilCheckMsg(”Creating plan C2R”);
86

87

88 //perform FFT on filter
89 cufftSafeCall(cufftExecR2C(planR2C, filter, filterC));
90 cutilCheckMsg(”FFT Filter R2C”);
91

92 //#. Distribute photons
93 for(int band=0; band<3; band++)
94 //int band = 0;
95 {
96 //distribute photons
97 distributePhotons<<<pgrid, pblock>>>(photonArray, photons.depth, sunPos, sunPhi,
98 a, g, band, oneOverX, oneOverY, oneOverZ );
99 cutilCheckMsg(”Distributing Photons”);

100 //assign photons to 3d grid (signal)
101 computeRT<<<1, 1>>>(signal, volumeSize, photonArray, photons, band);
102

103 //Perform FFT
104 cufftSafeCall(cufftExecR2C(planR2C, signal, signalC));
105 cutilCheckMsg(”Executing FFT R2C”);
106

107 elementWiseMult3D<<<grid, block>>>(signalC, filterC, volumeSize);
108 cutilCheckMsg(”Multiplying complex elements”);
109

110 //Perform FFT
111 cufftSafeCall(cufftExecC2R(planC2R, signalC, signal ));
112 cutilCheckMsg(”Executing FFT C2R”);
113

114

115 combine<<<grid, block>>>(gpuData, signal, volumeSize, band);
116 cudaMemset(signal, 0, N*sizeof(cufftReal));
117 }
118
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119

120 cutilSafeCall( cudaMemcpy(photonArrayHost, photonArray,
121 photons.width*photons.height*photons.depth*sizeof(Photon),
122 cudaMemcpyDeviceToHost) );
123 cutilCheckMsg(”Copying photons to host memory”);
124

125 //#. Copy results to host memory
126 cutilSafeCall( cudaMemcpy(data, gpuData, N*sizeof(float4), cudaMemcpyDeviceToHost) );
127 cutilCheckMsg(”Copying voxels to host memory”);
128

129

130 //#. Clean up
131 cufftDestroy(planR2C);
132 cufftDestroy(planC2R);
133 cudaFree(gpuData);
134 cudaFree(signal);
135 cudaFree(signalC);
136 cudaFree(filter);
137 cudaFree(filterC);
138 cudaFree(photonArray);
139 cudaFreeArray(voxelsArray);
140

141

142 //cudaThreadExit(); //just in case
143 }

A.2 Simplex implementation

This is an implementation of Simplex noise [Gustavson 2005] by Jeppe Revall
Frisvad [Frisvad and Wyvill 2007] with minor changes to run on CUDA

Listing A.13: Main CUDA host function

1 /*******************************************************
2 *

3 * This is a C++ version of Stefan Gustavson's implementation
4 * of improved Perlin noise and Perlin's simplex noise.
5 * See: http://webstaff.itn.liu.se/¬stegu/simplexnoise/
6 *

7 * Code written by Jeppe Revall Frisvad
8 * Copyright (c) DTU Informatics, 2009
9 *

10 *******************************************************/
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11

12 #include <cmath>
13 using namespace std;
14

15 namespace SimplexCUDA // Simplex noise in 2D, 3D and 4D
16 {
17 device int grad3[12][3] = {{1,1,0},{−1,1,0},{1,−1,0},{−1,−1,0},
18 {1,0,1},{−1,0,1},{1,0,−1},{−1,0,−1},
19 {0,1,1},{0,−1,1},{0,1,−1},{0,−1,−1}};
20 device int grad4[32][4]= {{0,1,1,1}, {0,1,1,−1}, {0,1,−1,1}, {0,1,−1,−1},
21 {0,−1,1,1}, {0,−1,1,−1}, {0,−1,−1,1}, {0,−1,−1,−1},
22 {1,0,1,1}, {1,0,1,−1}, {1,0,−1,1}, {1,0,−1,−1},
23 {−1,0,1,1}, {−1,0,1,−1}, {−1,0,−1,1}, {−1,0,−1,−1},
24 {1,1,0,1}, {1,1,0,−1}, {1,−1,0,1}, {1,−1,0,−1},
25 {−1,1,0,1}, {−1,1,0,−1}, {−1,−1,0,1}, {−1,−1,0,−1},
26 {1,1,1,0}, {1,1,−1,0}, {1,−1,1,0}, {1,−1,−1,0},
27 {−1,1,1,0}, {−1,1,−1,0}, {−1,−1,1,0}, {−1,−1,−1,0}};
28 device int perm[512] = {151,160,137,91,90,15,
29 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
30 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
31 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
32 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
33 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
34 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
35 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
36 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
37 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
38 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
39 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
40 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
41 151,160,137,91,90,15,
42 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
43 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
44 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
45 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
46 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
47 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
48 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
49 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
50 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
51 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
52 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
53 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};

54

55 // A lookup table to traverse the simplex around a given point in 4D.
56 // Details can be found where this table is used, in the 4D noise method.



A.2 Simplex implementation 59

57 device int simplex[64][4] = {
58 {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
59 {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
60 {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
61 {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
62 {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
63 {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
64 {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
65 {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
66

67 // This method is a *lot* faster than using (int)Math.floor(x)
68 device int fastfloor(float x) {
69 return x>0 ? (int)x : (int)x−1;
70 }
71

72 device float dot(int g[], float x, float y) {
73 return g[0]*x + g[1]*y;
74 }
75

76 device float dot(int g[], float x, float y, float z) {
77 return g[0]*x + g[1]*y + g[2]*z;
78 }
79

80 device float dot(int g[], float x, float y, float z, float w) {
81 return g[0]*x + g[1]*y + g[2]*z + g[3]*w;
82 }
83

84 // 2D simplex noise
85 device float noise(float xin, float yin)
86 {
87 float n0, n1, n2; // Noise contributions from the three corners
88 // Skew the input space to determine which simplex cell we're in
89 const float F2 = 0.5*(sqrt(3.0)−1.0);
90 float s = (xin+yin)*F2; // Hairy factor for 2D
91 int i = fastfloor(xin+s);
92 int j = fastfloor(yin+s);
93 const float G2 = (3.0−sqrt(3.0))/6.0;
94 float t = (i+j)*G2;
95 float X0 = i−t; // Unskew the cell origin back to (x,y) space
96 float Y0 = j−t;
97 float x0 = xin−X0; // The x,y distances from the cell origin
98 float y0 = yin−Y0;
99 // For the 2D case, the simplex shape is an equilateral triangle.

100 // Determine which simplex we are in.
101 int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
102 if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)−>(1,0)−>(1,1)
103 else {i1=0; j1=1;} // upper triangle, YX order: (0,0)−>(0,1)−>(1,1)
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104 // A step of (1,0) in (i,j) means a step of (1−c,−c) in (x,y), and
105 // a step of (0,1) in (i,j) means a step of (−c,1−c) in (x,y), where
106 // c = (3−sqrt(3))/6
107 float x1 = x0 − i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
108 float y1 = y0 − j1 + G2;
109 float x2 = x0 − 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
110 float y2 = y0 − 1.0 + 2.0 * G2;
111 // Work out the hashed gradient indices of the three simplex corners
112 int ii = i & 255;
113 int jj = j & 255;
114 int gi0 = perm[ii+perm[jj]] % 12;
115 int gi1 = perm[ii+i1+perm[jj+j1]] % 12;
116 int gi2 = perm[ii+1+perm[jj+1]] % 12;
117 // Calculate the contribution from the three corners
118 float t0 = 0.5 − x0*x0−y0*y0;
119 if(t0<0) n0 = 0.0;
120 else {
121 t0 *= t0;
122 n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
123 }
124 float t1 = 0.5 − x1*x1−y1*y1;
125 if(t1<0) n1 = 0.0;
126 else {
127 t1 *= t1;
128 n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
129 }
130 float t2 = 0.5 − x2*x2−y2*y2;
131 if(t2<0) n2 = 0.0;
132 else {
133 t2 *= t2;
134 n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
135 }
136 // Add contributions from each corner to get the final noise value.
137 // The result is scaled to return values in the interval [−1,1].
138 return 70.0 * (n0 + n1 + n2);
139 }
140

141

142 // 3D simplex noise
143 device float noise(float xin, float yin, float zin)
144 {
145 float n0, n1, n2, n3; // Noise contributions from the four corners
146 // Skew the input space to determine which simplex cell we're in
147 const float F3 = 1.0/3.0;
148 float s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
149 int i = fastfloor(xin+s);
150 int j = fastfloor(yin+s);
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151 int k = fastfloor(zin+s);
152 const float G3 = 1.0/6.0; // Very nice and simple unskew factor, too
153 float t = (i+j+k)*G3;
154 float X0 = i−t; // Unskew the cell origin back to (x,y,z) space
155 float Y0 = j−t;
156 float Z0 = k−t;
157 float x0 = xin−X0; // The x,y,z distances from the cell origin
158 float y0 = yin−Y0;
159 float z0 = zin−Z0;
160 // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
161 // Determine which simplex we are in.
162 int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
163 int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
164 if(x0≥y0) {
165 if(y0≥z0)
166 { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
167 else if(x0≥z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
168 else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
169 }
170 else { // x0<y0
171 if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
172 else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
173 else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
174 }
175 // A step of (1,0,0) in (i,j,k) means a step of (1−c,−c,−c) in (x,y,z),
176 // a step of (0,1,0) in (i,j,k) means a step of (−c,1−c,−c) in (x,y,z), and
177 // a step of (0,0,1) in (i,j,k) means a step of (−c,−c,1−c) in (x,y,z), where
178 // c = 1/6.
179 float x1 = x0 − i1 + G3; // Offsets for second corner in (x,y,z) coords
180 float y1 = y0 − j1 + G3;
181 float z1 = z0 − k1 + G3;
182 float x2 = x0 − i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
183 float y2 = y0 − j2 + 2.0*G3;
184 float z2 = z0 − k2 + 2.0*G3;
185 float x3 = x0 − 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
186 float y3 = y0 − 1.0 + 3.0*G3;
187 float z3 = z0 − 1.0 + 3.0*G3;
188 // Work out the hashed gradient indices of the four simplex corners
189 int ii = i & 255;
190 int jj = j & 255;
191 int kk = k & 255;
192 int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
193 int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
194 int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
195 int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
196 // Calculate the contribution from the four corners
197 float t0 = 0.6 − x0*x0 − y0*y0 − z0*z0;
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198 if(t0<0) n0 = 0.0;
199 else {
200 t0 *= t0;
201 n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
202 }
203 float t1 = 0.6 − x1*x1 − y1*y1 − z1*z1;
204 if(t1<0) n1 = 0.0;
205 else {
206 t1 *= t1;
207 n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
208 }
209 float t2 = 0.6 − x2*x2 − y2*y2 − z2*z2;
210 if(t2<0) n2 = 0.0;
211 else {
212 t2 *= t2;
213 n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
214 }
215 float t3 = 0.6 − x3*x3 − y3*y3 − z3*z3;
216 if(t3<0) n3 = 0.0;
217 else {
218 t3 *= t3;
219 n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
220 }
221 // Add contributions from each corner to get the final noise value.
222 // The result is scaled to stay just inside [−1,1]
223 return 32.0*(n0 + n1 + n2 + n3);
224 }
225

226 // 4D simplex noise
227 device float noise(float x, float y, float z, float w)
228 {
229 // The skewing and unskewing factors are hairy again for the 4D case
230 const float F4 = (sqrt(5.0)−1.0)/4.0;
231 const float G4 = (5.0−sqrt(5.0))/20.0;
232

233 float n0, n1, n2, n3, n4; // Noise contributions from the five corners
234

235 // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
236 float s = (x + y + z + w) * F4; // Factor for 4D skewing
237 int i = fastfloor(x + s);
238 int j = fastfloor(y + s);
239 int k = fastfloor(z + s);
240 int l = fastfloor(w + s);
241

242 float t = (i + j + k + l) * G4; // Factor for 4D unskewing
243

244 float X0 = i − t; // Unskew the cell origin back to (x,y,z,w) space
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245 float Y0 = j − t;
246 float Z0 = k − t;
247 float W0 = l − t;
248

249 float x0 = x − X0; // The x,y,z,w distances from the cell origin
250 float y0 = y − Y0;
251 float z0 = z − Z0;
252 float w0 = w − W0;
253

254 // For the 4D case, the simplex is a 4D shape I won't even try to describe.
255 // To find out which of the 24 possible simplices we're in, we need to
256 // determine the magnitude ordering of x0, y0, z0 and w0.
257 // The method below is a good way of finding the ordering of x,y,z,w and
258 // then find the correct traversal order for the simplex we...
259 // First, six pair−wise comparisons are performed between each possible pair
260 // of the four coordinates, and the results are used to add up binary bits
261 // for an integer index.
262 int c1 = (x0 > y0) ? 32 : 0;
263 int c2 = (x0 > z0) ? 16 : 0;
264 int c3 = (y0 > z0) ? 8 : 0;
265 int c4 = (x0 > w0) ? 4 : 0;
266 int c5 = (y0 > w0) ? 2 : 0;
267 int c6 = (z0 > w0) ? 1 : 0;
268 int c = c1 + c2 + c3 + c4 + c5 + c6;
269

270 int i1, j1, k1, l1; // The integer offsets for the second simplex corner
271 int i2, j2, k2, l2; // The integer offsets for the third simplex corner
272 int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
273

274 // simplex[c] is a 4−vector with the numbers 0, 1, 2 and 3 in some order.
275 // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
276 // impossible. Only the 24 indices which have non−zero entries make any sense.
277 // We use a thresholding to set the coordinates in turn from the largest magnitude.
278

279 // The number 3 in the ”simplex” array is at the position of the largest coordinate.
280 i1 = simplex[c][0]≥3 ? 1 : 0;
281 j1 = simplex[c][1]≥3 ? 1 : 0;
282 k1 = simplex[c][2]≥3 ? 1 : 0;
283 l1 = simplex[c][3]≥3 ? 1 : 0;
284

285 // The number 2 in the ”simplex” array is at the second largest coordinate.
286 i2 = simplex[c][0]≥2 ? 1 : 0;
287 j2 = simplex[c][1]≥2 ? 1 : 0;
288 k2 = simplex[c][2]≥2 ? 1 : 0;
289 l2 = simplex[c][3]≥2 ? 1 : 0;
290

291 // The number 1 in the ”simplex” array is at the second smallest coordinate.
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292 i3 = simplex[c][0]≥1 ? 1 : 0;
293 j3 = simplex[c][1]≥1 ? 1 : 0;
294 k3 = simplex[c][2]≥1 ? 1 : 0;
295 l3 = simplex[c][3]≥1 ? 1 : 0;
296

297 // The fifth corner has all coordinate offsets = 1, so no need to look that up.
298 float x1 = x0 − i1 + G4; // Offsets for second corner in (x,y,z,w) coords
299 float y1 = y0 − j1 + G4;
300 float z1 = z0 − k1 + G4;
301 float w1 = w0 − l1 + G4;
302 float x2 = x0 − i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
303 float y2 = y0 − j2 + 2.0*G4;
304 float z2 = z0 − k2 + 2.0*G4;
305 float w2 = w0 − l2 + 2.0*G4;
306 float x3 = x0 − i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
307 float y3 = y0 − j3 + 3.0*G4;
308 float z3 = z0 − k3 + 3.0*G4;
309 float w3 = w0 − l3 + 3.0*G4;
310 float x4 = x0 − 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
311 float y4 = y0 − 1.0 + 4.0*G4;
312 float z4 = z0 − 1.0 + 4.0*G4;
313 float w4 = w0 − 1.0 + 4.0*G4;
314

315 // Work out the hashed gradient indices of the five simplex corners
316 int ii = i & 255;
317 int jj = j & 255;
318 int kk = k & 255;
319 int ll = l & 255;
320 int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
321 int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
322 int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
323 int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
324 int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
325

326 // Calculate the contribution from the five corners
327 float t0 = 0.6 − x0*x0 − y0*y0 − z0*z0 − w0*w0;
328 if(t0<0) n0 = 0.0;
329 else {
330 t0 *= t0;
331 n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
332 }
333 float t1 = 0.6 − x1*x1 − y1*y1 − z1*z1 − w1*w1;
334 if(t1<0) n1 = 0.0;
335 else {
336 t1 *= t1;
337 n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
338 }
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339 float t2 = 0.6 − x2*x2 − y2*y2 − z2*z2 − w2*w2;
340 if(t2<0) n2 = 0.0;
341 else {
342 t2 *= t2;
343 n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
344 }
345 float t3 = 0.6 − x3*x3 − y3*y3 − z3*z3 − w3*w3;
346 if(t3<0) n3 = 0.0;
347 else {
348 t3 *= t3;
349 n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
350 }
351 float t4 = 0.6 − x4*x4 − y4*y4 − z4*z4 − w4*w4;
352 if(t4<0) n4 = 0.0;
353 else {
354 t4 *= t4;
355 n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
356 }
357 // Sum up and scale the result to cover the range [−1,1]
358 return 27.0 * (n0 + n1 + n2 + n3 + n4);
359 }
360 }

A.2.1 Turbulence function

Listing A.14: Turbulence

1 #define FSIZE 7
2 constant device float turb frequencies[FSIZE] = {0.05f, 2.0f, 4.0f, 6.0f, 12.0f, 8.0f};
3

4 device float turbulence(float3 v)
5 {
6 float sum = 0.0f;
7 for(int i=0; i<FSIZE; i++)
8 {
9 float f = powf(2.0, turb frequencies[i]);

10 sum += (SimplexCUDA::noise(v.x*f,v.y*f,v.z*f, (float)i)) / f ;
11 }
12

13 return sum;
14 }
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A.3 OpenMP

A.3.1 OpenMP implementations

Listing A.15: Dust density generation function (OMP)

1 void generateVolumeOMP(float4* data, int xsize, int ysize, int zsize)
2 {
3 float oneOverX = 1.0f / xsize;
4 float oneOverY = 1.0f / ysize;
5 float oneOverZ = 1.0f / zsize;
6 int x =0, y=0, z=0;
7 const float scale = 1000.0f;
8 const float3 sunPos = make float3(0.5f);
9 const float3 noiseOffset = make float3(0.5f);

10 const float scale2 = 2.0f;
11 int idx;
12 #pragma omp parallel for default(none), \
13 private(x,y,z,idx), \
14 shared(xsize,ysize,zsize,data,oneOverX,oneOverY,oneOverZ)
15 for (x = 0; x < xsize; x++ )
16 for (y = 0; y < ysize; y++ )
17 for(int z=0; z<zsize; z++)
18 {
19 idx = x*xsize*ysize + y*ysize + z;
20 float3 here = make float3(x*oneOverX, y*oneOverY, z*oneOverZ);
21 float sun = cubic( length(here − sunPos), 0.01f);
22 float sct = sun + max(0.0f, Simplex::turbulence(here + noiseOffset))*0.15f;
23 float mag = sun;
24

25 data[idx] = make float4(mag, mag, mag,clamp(sct,0.0001f,1.0f));
26 }
27 }

A.4 C# .NET

A.4.1 Example datatemplate showing databinding

1 <Expander Header=”Sun” Foreground=”{StaticResource FontColor}” IsExpanded=”True”>
2 <StackPanel>
3 <StackPanel Orientation=”Horizontal”>
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4 <TextBlock Style=”{StaticResource TextBlockTitle}”>Sun Phi (exp):</TextBlock>
5 <TextBlock Text=”{Binding SunPhi, Mode=OneWay, StringFormat=N2}” />
6 </StackPanel>
7 <Slider Minimum=”−10.0” Maximum=”10.0” Value=”{Binding SunPhi, Mode=TwoWay}”/>
8 <StackPanel Orientation=”Horizontal”>
9 <TextBlock Style=”{StaticResource TextBlockTitle}”>Sun X:</TextBlock>

10 <TextBlock Text=”{Binding SunX, Mode=OneWay, StringFormat=N2}” />
11 </StackPanel>
12 <Slider Minimum=”0.0” Maximum=”1.0” Value=”{Binding SunX, Mode=TwoWay}” />
13

14 <StackPanel Orientation=”Horizontal”>
15 <TextBlock Style=”{StaticResource TextBlockTitle}”>Sun Y:</TextBlock>
16 <TextBlock Text=”{Binding SunY, Mode=OneWay, StringFormat=N2}” />
17 </StackPanel>
18 <Slider Minimum=”0.0” Maximum=”1.0” Value=”{Binding SunY, Mode=TwoWay}”/>
19

20 <StackPanel Orientation=”Horizontal”>
21 <TextBlock Style=”{StaticResource TextBlockTitle}”>Sun Z:</TextBlock>
22 <TextBlock Text=”{Binding SunZ, Mode=OneWay, StringFormat=N2}” />
23 </StackPanel>
24 <Slider Minimum=”0.0” Maximum=”1.0” Value=”{Binding SunZ, Mode=TwoWay}”/>
25 </StackPanel>
26 </Expander>

A.4.2 Procedural Nebula Texture

The following code segment is a class that is bound to xml as seen in the previous
code listing. This class calls the nebula core C++ DLL and handles binding the
results to OpenGL textures.

Listing A.16: CodeExample

1 namespace Nebula.Rendering.Textures
2 {
3 public class ProceduralNebulaTexture : Texture
4 {
5 #region Fields
6 private float sunX;
7 private float sunY;
8 private float sunZ;
9 private ICommand generateCommand;

10 private float a;
11 private float g;
12 private float noiseOffsetX;
13 private float noiseOffsetY;
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14 private float noiseOffsetZ;
15 private string message;
16 private float filterRadius;
17 private float sunPhi;
18 private float densityScale;
19

20 #endregion
21

22 #region CTors
23

24 public ProceduralNebulaTexture()
25 {
26 A = 0.6f;
27 G = 0.6f;
28 FilterRadius = 0.9f;
29 SunX = 0.5f;
30 SunY = 0.5f;
31 SunZ = 0.5f;
32 DensityScale = 0.015f;
33 }
34

35 #endregion
36

37 #region Properties
38

39 public float DensityScale
40 {
41 get { return densityScale; }
42 set { densityScale = value; OnPropertyChanged(”DensityScale”); }
43

44 }
45

46

47 public float FilterRadius
48 {
49 get { return filterRadius; }
50 set { filterRadius = value; OnPropertyChanged(”FilterRadius”); }
51

52 }
53

54

55 public float SunPhi
56 {
57 get { return sunPhi; }
58 set
59 {
60 if (value == sunPhi)



A.4 C# .NET 69

61 return;
62

63 sunPhi = value; OnPropertyChanged(”SunPhi”);
64 }
65 }
66

67 public float SunX
68 {
69 get { return sunX; }
70 set
71 {
72 if (value == sunX)
73 return;
74

75 sunX = value;OnPropertyChanged(”SunX”);
76 }
77 }
78

79 public float SunY
80 {
81 get { return sunY; }
82 set
83 {
84 if (value == sunY)
85 return;
86

87 sunY = value; OnPropertyChanged(”SunY”);
88 }
89 }
90

91

92 public float SunZ
93 {
94 get { return sunZ; }
95 set
96 {
97 if (value == sunZ)
98 return;
99

100 sunZ = value; OnPropertyChanged(”SunZ”);
101 }
102 }
103

104 public string Message
105 {
106 get { return message; }
107 set { message = value; OnPropertyChanged(”Message”); }
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108 }
109

110 public float NoiseOffsetZ
111 {
112 get { return noiseOffsetZ; }
113 set { noiseOffsetZ = value; OnPropertyChanged(”NoiseOffsetZ”);}
114 }
115

116 public float NoiseOffsetY
117 {
118 get { return noiseOffsetY; }
119 set{ noiseOffsetY = value; OnPropertyChanged(”NoiseOffsetY”); }
120 }
121

122 public float NoiseOffsetX
123 {
124 get { return noiseOffsetX; }
125 set { noiseOffsetX = value; OnPropertyChanged(”NoiseOffsetX”); }
126 }
127

128 public float G
129 {
130 get { return g; }
131 set { g = value; OnPropertyChanged(”G”); }
132 }
133

134 public float A
135 {
136 get { return a; }
137 set { a = value; OnPropertyChanged(”A”); }
138 }
139

140

141 public ICommand GenerateCommand
142 {
143 get
144 {
145 if ( generateCommand == null)
146 generateCommand = new DelegateCommand(n => Generate(),
147 n => CanGenerate());
148 return generateCommand;
149 }
150 }
151

152 #endregion
153

154



A.4 C# .NET 71

155 #region Functions
156 protected override System.Drawing.Bitmap GeneratePreview()
157 {
158 return null;
159 }
160

161 public override void Initialize()
162 {
163 textureID = GL.GenTexture();
164 }
165

166 public bool CanGenerate()
167 {
168 return ! backgroundWorker.IsBusy;
169 }
170

171 public void Generate()
172 {
173 GL.Enable(EnableCap.Texture3DExt);
174 GL.PixelStore(PixelStoreParameter.UnpackAlignment, 1);
175 GL.BindTexture(TextureTarget.Texture3D, textureID);
176

177 Mouse.SetCursor(Cursors.Wait);
178 Stopwatch t = new Stopwatch();
179 t.Start();
180 NebulaCore.generateVolume(SunX, SunY, SunZ, (float) Math.Exp(SunPhi),
181 A, G, NoiseOffsetX,
182 NoiseOffsetY, NoiseOffsetZ, FilterRadius,
183 DensityScale);
184 t.Stop();
185 Message = string.Format(”Computed in {0} msec.”, t.ElapsedMilliseconds);
186 Mouse.SetCursor(Cursors.Arrow);
187 }
188

189 #region Implementation of Texture
190

191 public override void Enable()
192 {
193 if (TextureID == 0)
194 throw new Exception(”Texture has not been initialized!”);
195 GL.Enable(EnableCap.Texture3DExt);
196 GL.BindTexture(TextureTarget.Texture3D, TextureID);
197 }
198

199 public override void Disable()
200 {
201 GL.Disable(EnableCap.Texture3DExt);
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202 }
203

204 #endregion
205

206 #endregion
207 }
208 }

A.4.3 Texture base-class

Listing A.17: Texture base

1 namespace Nebula.Lib.Graphics.OpenGL
2 {
3 public abstract class Texture : INotifyPropertyChanged
4 {
5

6 protected int textureID;
7 private string name;
8 protected Bitmap preview;
9

10 public virtual int TextureID
11 {
12 get
13 {
14 if ( textureID == 0)
15 Initialize();
16 return textureID;
17 }
18 }
19

20 public string Name
21 {
22 get { return name; }
23 set { name = value; OnPropertyChanged(”Name”); }
24 }
25

26 public abstract void Enable();
27 public abstract void Disable();
28

29 public abstract void Initialize();
30

31

32 public Bitmap PreviewImage
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33 {
34 get
35 {
36 if ( preview == null)
37 {
38 preview = GeneratePreview();
39 OnPropertyChanged(”PreviewImage”);
40 }
41

42 return preview;
43 }
44 }
45

46 protected abstract Bitmap GeneratePreview();
47

48 #region INotifyPropertyChanged
49 public event PropertyChangedEventHandler PropertyChanged;
50 public void OnPropertyChanged(string name)
51 {
52 if (PropertyChanged != null)
53 PropertyChanged(this, new PropertyChangedEventArgs(name));
54

55 }
56 #endregion
57 }
58 }

A.5 Shaders

A.5.1 CG Shader for volume ray marching

1 struct VSData
2 {
3 float4 Position : POSITION;
4 float4 Normal : NORMAL;
5 float4 Color : COLOR0;
6 float4 TexCoord : TEXCOORD0;
7 };
8

9 struct FSData
10 {
11 float4 Position : POSITION;
12 float4 Color : COLOR0;
13 float4 TexCoord : TEXCOORD0;
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14 float4 PosMVP : TEXCOORD5;
15 float4 FragCoord : WPOS;
16 float3 Eye : TEXCOORD4;
17

18 };
19

20

21

22 sampler2D BackfaceTexture;
23

24

25 sampler3D VolumeTexture = sampler state {
26 MinFilter = Linear;
27 MagFilter = Linear;
28 WrapS = Clamp;
29 WrapT = Clamp;
30 WrapR = Clamp;
31 };
32

33 samplerCube SkyboxTexture = sampler state {
34 MinFilter = Linear;
35 MagFilter = Linear;
36 WrapS = ClampToEdge;
37 WrapT = ClampToEdge;
38 WrapR = ClampToEdge;
39 };
40

41

42 float3 Eye;
43 float3 LookAt;
44 float3 Up;
45

46 float Threshold;
47 int Steps;
48 bool AlphaOnly;
49 bool EmptyBackground;
50 int OutputType;
51

52

53 // http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm
54 int intersectBox(float4 r o, float4 r d, float4 boxmin, float4 boxmax,
55 out float tnear, out float tfar)
56 {
57 // compute intersection of ray with all six bbox planes
58 float4 invR = float4(1.0) / r d;
59 float4 tbot = invR * (boxmin − r o);
60 float4 ttop = invR * (boxmax − r o);
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61

62 // re−order intersections to find smallest and largest on each axis
63 float4 tmin = min(ttop, tbot);
64 float4 tmax = max(ttop, tbot);
65

66 // find the largest tmin and the smallest tmax
67 float largest tmin = max(max(tmin.x, tmin.y), max(tmin.x, tmin.z));
68 float smallest tmax = min(min(tmax.x, tmax.y), min(tmax.x, tmax.z));
69

70 tnear = largest tmin;
71 tfar = smallest tmax;
72

73 return smallest tmax > largest tmin;
74 }
75

76

77 float random(float2 co)
78 {
79 return fract(sin(dot(co.xy ,float2(12.9898,78.233))) * 43758.5453);
80 }
81

82 FSData mainVS(VSData IN)
83 {
84 FSData OUT;
85 OUT.Position = mul(glstate.matrix.mvp, IN.Position);
86 OUT.PosMVP = OUT.Position;
87

88 OUT.TexCoord = IN.TexCoord;
89 OUT.Color = IN.Color;
90 OUT.Eye = Eye;
91 return OUT;
92 }
93

94 float4 mainFS(FSData IN) : COLOR
95 {
96 float2 fragCoord = (IN.PosMVP.xy / IN.PosMVP.w);
97 float rnd = random(fragCoord);
98

99

100 //calculate camera vectors
101 float3 vp normal = normalize(LookAt−Eye);
102 float3 vp axisX = normalize(cross(vp normal, Up));
103 float3 vp axisY = normalize(cross(vp axisX, vp normal));
104

105 float3 r dir = normalize(vp normal + vp axisX*fragCoord.x + vp axisY*fragCoord.y);
106 float3 r orig = Eye;
107 const float4 boxMin = float4(−1.0f, −1.0f, −1.0f,0.0f);
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108 const float4 boxMax = float4( 1.0f, 1.0f, 1.0f, 0.0f);
109

110 float4 background = EmptyBackground ? float4(0.0f, 0.0f, 0.0f, 1.0f)
111 : float4(texCUBE(SkyboxTexture, r dir).rgb, 1.0f);
112

113 float tnear=0.0;
114 float tfar=0.0;
115

116 //This is only false when tnear 6=tfar as this shader only applies to the box geometry
117 if(intersectBox(float4(r orig,1.0f), float4(r dir,1.0f),
118 boxMin, boxMax, tnear, tfar) ≤0)
119 return background;
120

121 //if we are inside the volume, tnear is 0 so starting point will be the eye
122 tnear = max(0.0f, tnear);
123 tnear += 0.1f * rnd * Threshold;
124 float3 col acc = float3(0.0f);
125 float alpha acc = 0.0f;
126 float4 color sample;
127 float alpha sample;
128

129

130

131 // march along ray from back to front, accumulating color
132 float t = tnear;
133 float tstep = 0.01f;
134 const int maxSteps = 250;
135 for(uint i=0; i<maxSteps; i++)
136 {
137 float3 pos = r orig + r dir*t;
138 pos = pos*0.5 + 0.5; // map position to [0, 1] coordinates
139

140 color sample = (tex3D(VolumeTexture,pos));
141 alpha sample = color sample.a;
142

143 //col acc = lerp(col acc, color sample,alpha sample);
144 col acc += color sample.xyz * color sample.a;
145 alpha acc += alpha sample;
146 t += tstep;
147 if(t > tfar || alpha acc ≥1.0)
148 break;
149

150 }
151

152 if(OutputType == 1)
153 return float4((r orig + r dir*tnear)*0.5 + 0.5 , 1.0);
154 if(OutputType == 2)
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155 return float4((r orig + r dir*tfar)*0.5 + 0.5, 1.0);
156

157 return alpha acc ≥1.0f ?
158 float4(col acc.xyz, 1.0) :
159 lerp(float4(col acc.xyz, 1.0), background, 1.0f − alpha acc);
160 }
161

162

163

164 technique technique0
165 {
166 pass pre
167 {
168 CullFaceEnable = true;
169 FrontFace = CW;
170 VertexProgram = compile vp40 mainVS();
171 FragmentProgram = compile fp40 mainFS();
172 }
173

174 }
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