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Abstract

This thesis deals with automation of manual annotations for use in the analy-
sis of the interaction pattern between mother and child. The data applied in
the thesis are provided by Babylab at the Institute of Psychology, University
of Copenhagen, and consists of the three recording modalities; sound, motion
capture and video. The focus of this thesis, with respect to the available data,
is the recordings of 21 four-months old children and their mothers.
The aim of the thesis is to automatically, by the use of machine learning, re-
generate labels that have been extracted manually at Babylab. With this, a
much time consuming task would be relieved from their shoulders. Further-
more, the human subjectivity of the labels would be removed with the objective
replacement of a machine.

The re-annotation of labels introduces the area of supervised classi�cation which
is used for the task of speaker identi�cation as well for emotion recognition in
this thesis. A thorough investigation of di�erent classi�cation approaches forms
the basis of the results of the two aforementioned tasks, for the sound data pro-
vided by Babylab. These results have a reliability in the same order as that of
the manual codings, and are therefore considered very promising for the future
work at Babylab.
It is also investigated whether the uniqueness of this particular data set, i.e. that
three recording modalities are available, is bene�cial to the two tasks of speaker
identi�cation and emotion recognition. This is tested by including information
from the motion capture data to the sound data. The results show no e�ect as
well as an actual high rate of deterioration of the classi�er performance for the
two tasks, respectively.
Besides being included in the two classi�cation tasks, the motion capture data
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provides stable annotations on several aspects of the mother-child interaction.
These have therefore been extracted in an automated way in this thesis.
The video modality has also been super�cially investigated, with respect to the
child's facial expressions. This has been considered as a possible support to
the two classi�cation tasks as well as for the direct application in the analy-
ses performed at Babylab of mother-child interaction. This showed interesting
prospects that should de�nitely be pursued by Babylab in the future.



Resumé

Dette speciale omhandler automatisering af manuelle annotationer til brug i
analyse af interaktionsmønstre mellem mor og barn. Data behandlet i dette
studie er udlånt af Babylab, Institut for Psykologi, Københavns universitet, og
består af de tre modaliteter: lyd, video og motion capture. Fokus i dette specia-
le, baseret på det foreliggende datasæt, er optagelserne af 21 4 mdr. gamle børn
og deres mødre.
Formålet med specialet er, ved brug af machine learning metoder, at opnå au-
tomatiske annotationer af de aspekter af mor-barn interaktionen som er blevet
manuelt annoteret af Babylab. Herved vil en utrolig tidskrævende opgave blive
fjernet fra skuldrene af Babylab. Derudover vil den menneskelige subjetivitet
blive udskiftet med computerens objektivitet.
Med den automatiske annotering af labels introduceres supervised klassi�kation
der anvendes til speaker identi�cation og emotion recognition i dette speciale.
En grundig undersøgelse af forskellige klassi�kationsmetoder lægger til grund
for resultaterne af de to førnævnte problemer baseret på lyddata. Reliabiliteten
af disse resultater er i samme størrelsesorden som reliabiliteten af de manuelle
kodninger og er derfor af yderst lovende karakter i forhold til Babylabs fremti-
dige arbejde.

Ydermere undersøges det hvorvidt Babylabs unikke data, der baserer sig på tre
datamodaliteter, kan udnyttes i de to klassi�kationsproblemer speaker identi-
�cation og emotion recognition. Dette testes gennem kombination af lyddata
og motion capture data. Disse tests viser at henholdsvis ingen ændring og en
decideret forværring af resultaterne opnås ved at inkludere motion capture in-
formation.
Udover at kunne bruges i de to klassi�kationsproblemer, bidrager motion capture
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dataen med stabile annotationer af forskellige aspekter af mor-barn interaktio-
nen. Derfor er �ere af de manuelle kodninger blevet genskabt automatisk i dette
speciale.
Mulige annotationer fra videomodaliteten er også blevet berørt i et lille sidelø-
bende studie. Dette med tanken at automatisere annotationer af barnet ansigts-
udtryk, både som support i de føromtalte klassi�kationsproblemer, såvel som
til direkte brug af Babylab i analysen af interaktionen mellem mor og barn.
Resultaterne for dette var lovende og bør bestemt blive undersøgt nærmere af
Babylab i fremtiden.
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Chapter 1

Introduction

Analysis of the interaction pattern between mother and child (also referred to
as a dyad) has been an important topic in the research area of psychology in the
last many decades [9], [28], [29], [45], [64]. This stretches from the interactions
in vocal rhythms between mother and child, to the facial expressions of the
child and to the distinct mother-child movement patterns. In [64] vocalizations,
facial expressions and gazes at the mother's face were investigated during a face-
to-face interaction between a mother and a child. The study provides strong
evidence that the emotional facial expressions of the infant are correlated with
vocalizations and with gazes at their parents faces. In [9] the vocalizations and
turn-taking in vocalizations of the mother and child were investigated. The re-
sults showed that vocalization of one of the dyad members was more likely to
occur when the other member was vocalising.
The types of research mentioned so far are of great interest to psychologists
because the physical relationship between mother and child is of uttermost im-
portance for the child's future well being, [53], [19].

The data processed in this thesis is provided by Babylab, Institute for Psychol-
ogy, University of Copenhagen. Their goal of this research is to investigate the
many aspects of early child development through interaction patterns. The data
provided include the three recording modalities: sound, video and motion cap-
ture. The recording set-up are 10 minutes of talk and play between the mother
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and her child. The details of the recordings will be described in chapter 3.
To be able to analyse the interactions, extraction of relevant information from
the data is necessary. This is obtained at Babylab by manually annotating
several di�erent physical aspects from all three modalities, individually. The
general issue with manual codings is that there can be large di�erences in the
inter-coder agreement of labels. Also the time aspect of the manual codings
should be considered.
The intention of this thesis is to automate this annotation process through the
use of machine learning methods. Likewise, it is of interest to combine the
information extracted from the three modalities for a possible improvement of
the annotation precision. For Babylab this annotation automation would ease
the future workload and reduce the processing time signi�cantly. Of more im-
portance is the complete removal of human errors if the optimized automatic
annotations are implemented. A note here, is that automatic annotation errors
will be the consequence, with the amount depending on the performance of the
automatic method.

The annotations carried out in this thesis are described in details in chapter 2
where also a speci�cation of the problems investigated is outlined. In chapter
3, the data dealt with during this study is described. Due to the fact that three
di�erent data modalities are provided, the aspect of time synchronization is of
great importance before any further data processing can take place. The syn-
chronization of the modalities is described in details in chapter 4.
Chapter 5 covers the topic of speaker identi�cation. In this chapter the speech
signal is described in general, section 5.1, as well as the preprocessing techniques
that is a necessity in dealing with speech signals, section 5.2. Before classi�ca-
tion in the speaker identi�cation problem can be executed, feature extraction
must be carried out. This process is described in section 5.3. Section 5.4 deals
with the di�erent classi�cation methods investigated in the speaker identi�ca-
tion problem. Finally, chapter 5 is rounded o� by section 5.5 that discuss the
methods with which the model can be evaluated.
The classi�cation of the child's emotional state is approached in chapter 6. This
chapter has the same structure as chapter 5, where preprocessing, feature ex-
traction, classi�cation and model evaluation constitute the topics of section 6.1
to 6.4.
Chapter 7 describes the automatic annotations obtained from motion capture,
whereas chapter 8 addresses the possibilities of combining the three modalities.
This is carried out by including the motion capture annotations as features in
the problems of speaker identi�cation and emotion recognition. It is furthermore
discussed in this chapter how the third data modality, video, can be included as
well.
The results obtained during the thesis are presented in chapter 9. This chap-
ter is divided into four sections, where section 9.1 presents the results from
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the speaker identi�cation problem, section 9.2 the results from the emotional
recognition, section 9.3 the results for the annotations in motion capture and
�nally section 9.4 the results when combining the sound and the motion capture
modalities. For the sake of overview of the many obtained results, each result
section is provided with a brief summary of that particular topic.
Chapter 10 rounds of the report with a conclusion as well as a discussion of the
perspectives regarding the future work.
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Chapter 2

Problem Statement

As mentioned in the introduction, the data provided by Babylab include sound,
video and motion capture. The purpose of this thesis is to obtain automatic
annotations of the states or actions occurring between the mother and child
during the recordings. These include annotations obtained by analysing the
modalities separately, but also annotations derived by combining the informa-
tion extracted from two or all three modalities. The approach in this thesis is
to include and apply relevant machine learning methods to achieve applicable
results. The annotations in focus are therefore chosen based on the interests
of the psychologists at Babylab and on the possibility of angling these towards
the intelligent data processing branch of pattern recognition. Especially, it is
of interest to work with those problems that have already been approached by
Babylab, because this provides the advantage of having the ground truth. The
problems then become supervised learning.
An important note regarding the choice of annotations to be included in this
project, is that the manual labels made at Babylab are numerous, meaning that
a selection has been made among these, because of the limited time prospect of
the thesis. Working with an "untouched" data set and trying to comply with all
the expectations from the psychologists at Babylab con�nes the possibility of
developing new methods for the annotation automation. This thesis will there-
fore integrate state-of-the-art methods regarding the two major topics of the
report, speaker identi�cation, chapter 5, and emotion recognition, chapter 6, as
the starting point for the analyses carried out during the study.
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2.1 Problem Speci�cation

The annotations to be automated, and thereby to be the focus of this thesis, are
explained in the following, under the appertaining modality. Furthermore, the
interaction patterns of interest, across and in between the three data modalities,
are described in the last section, 2.1.4. In this section the synchronization issue
when analysing data across modalities is also discussed.

2.1.1 Sound

The identi�cation of the speaker throughout the 10 minute recordings has been
manually executed by Babylab for 21 dyads from sound �le listening.
Speaker identi�cation is also a well-known machine learning problem where im-
provements are continually attained, [24], [27], [33], [42], [55], [57]. This is
therefore chosen as one of the focus areas of this project.
During the recording session, four possible states are observed: the child is
speaking, the mother is speaking, both are speaking or no one is speaking. This
makes the speaker identi�cation a four-class problem which is thoroughly inves-
tigated in chapter 5.
Besides the speaker identi�cation task, Babylab's annotations from the sound
signals cover the emotional state of the child (protest/not protest) and the
mother's vocalization (speech/song). Solving these problems are therefore ad-
ditional machine learning tasks. The emotion recognition problem is examined
in section 6, whereas the vocalization of the mother is left for future work, as
described in chapter 10.

2.1.2 Motion Capture

Of interest to the psychologists is the physical relationship between the mother
and her child. The motion capture data supplies the analysts with information
that can give a comprehension of this. One of the advantages of this recording
modality is that the position of the mother and child in relation to each other
is known.
From the marker coordinates, the changes in distance between the mother and
child can be calculated. Likewise, the physical energy of the child can be ob-
tained by calculating the covered distance of the child. This is interpreted by
the psychologists at Babylab as the movement of the right arm, which is cal-
culated in this thesis through the coordinates of the right wrist marker. This
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information could be a relevant feature in the speaker identi�cation task as well,
because of a possible connection between speech and movement.
Another annotation of interest to the psychologists at Babylab is the child's head
orientation, because of the correlation between sudden movements of the mother
and head aversion of the child as well as distance between the mother and child
and the head orientation of the child. The annotations from the motion capture
modality are studied in chapter 7.

2.1.3 Video

The advantage of video as a signal is that it provides the visual understanding
of the interaction between the mother and her child. This can be used to extract
information of the child's emotional state by identifying the facial characteristics
on a frame-by-frame basis. These features alone can be used in a classi�er, but
they could also support the classi�er mentioned in section 2.1.1 above, where
sound qualities of the child's emotional state are used as features. Furthermore,
identifying facial expressions of the child could possibly support the speaker
identi�cation, also mentioned in section 2.1.1 above.
A great issue with the video data is the poor image resolution. The child is
positioned rather distant from the cameras, making the actual number of pixels
visualizing the child's face limited to around 70 × 70 pixels. The possibility of
detecting face characteristics could therefore be very di�cult. Although not an
actual part of this thesis, the aspect of video annotations is discussed further in
section 8.2.

2.1.4 Interaction Patterns across Data Modalities

Before combining the information extracted from the three modalities, a struc-
turing of the data must be performed. This involves time synchronization of the
data to achieve exact comparability of the modalities. This will be done between
the sound and video, and between sound and motion capture. By solving these
two synchronization problems the third problem, video and motion capture, is
given.
When the goal of automating the annotations already executed at Babylab has
been reached, the actual analysis of the interaction pattern between the mother
and her child can take place. Due to the di�erent research areas of the psycholo-
gists at Babylab, many di�erent aspects of the interaction pattern are important
for them to establish. One of these is the correlation between the vocalizations
of mother and child. Also the correlation between the mother's vocalization and
the child's energy level is of interest. In an overall perspective, the psychologists
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are interested in a clari�cation of which actions of the mother causes actions of
the child and vice versa. This will hopefully show a generalizable pattern across
the dyads.
The challenge in the interaction pattern between mother and child across the
data modalities arises in the temporal aspect. With temporal aspect is meant
that a displacement or delay can occur when comparing the modalities and the
causes of for example a movement. If, for example, the mother begins to speak
and the child responds with a movement of the hands, this movement will prob-
ably be delayed with respect to the vocalization of the mother. When analysing
the interaction pattern, this action/cause-delay is therefore importing to keep
in mind.

2.1.5 Summary

The annotations to be automated in this thesis are summarized in the follow-
ing table, where the respective chapters/sections are indicated for the sake of
overview. The task of synchronization as well as the only super�cially touched
subject on extraction of facial expressions from video are included as well.
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Annotation Modality Description Chapter

Synchronization Sound, motion capture, video Time synchronizing the three recording modal-
ities

4

Speaker identi�cation Sound (motion capture) Classifying the four states: mother speaks,
child speaks, both speak and no one speeks

5

Emotion recognition Sound (motion capture) Classifying the two states of the child: protest
and no protest

6

Head orientation of child Motion capture Determining the angular head orientation from
vector calculus

7

Distance between mother and child Motion capture Calculate the distance between two motion
capture markers representing the heads of the
mother and child

7

Physical energy level of child Motion capture Calculate the covered distance of the right arm
from the wrist marker

7

Facial expressions Video Extraction of the child's facial expressions 8.2, B

Table 2.1: The annotations to be automated in this thesis. The task of synchronization as well as the extraction of
facial expressions from the video modality is mentioned as well.
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Chapter 3

Data

The data used in this thesis are recording sessions of the interaction between a
mother and her child and includes sound, video and motion capture. The dyad
interaction have been recorded at Babylab when the child was at the ages 4
months, 7 months, 10 months and 13 months, respectively. In this study only
the data for the 4 months old children, dyads 001 - 021, will be analysed. Each
session has a duration of 10 minutes. This chapter explains brie�y each modal-
ity and how these have been recorded. Furthermore a section is included that
brie�y introduces the manual annotations provided by Babylab.

3.1 Sound

The sound is recorded externally through microphones. Depending on the spe-
ci�c recording session set-up, either two or three microphones are used. In all
recordings one microphone is placed on the mother's head, reaching her mouth,
and the same is the case for the child. In some recording sessions an extra
microphone is hung from the ceiling. For the purpose of this master thesis,
only the two microphones positioned on the child and mother have been con-
sidered, meaning that two channels are used in the data processing. Channel 1
is the child's microphone and channel 2 the mother's. It is to be noted that the
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mother's utterances are registered in the child's microphone and the other way
around.
The sampling frequency of the audio signals is 48000 Hz which corresponds to
about 28.8 millions samples per channel during the 10 minute session. The au-
dio signals are in the format .wav.

3.2 Motion Capture

Markers are attached to both the mother and child for the purpose of motion
capture recordings. The position of the markers can be seen in �gure 3.1.

Figure 3.1: The position of the markers, to the left the mother, to the right
the child. Figure from [34].

The motion capture data are recorded by the system Qualisys where 8 infra
red cameras collect the 3-D positions of the markers placed on the mother and
child. The sampling frequency is 60 Hz, corresponding to approximately 36000
frames per dyad per session. Despite the 8 cameras collecting the marker po-
sitions, some markers remain unidenti�ed by Qualisys, because they, in one or
more frames, are completely shadowed by either the mother or the child. For
this reason, student assistants from Babylab identify these manually, if possi-
ble, after the recording session. The data recorded in Qualisys can be directly
saved as a .mat-�le and thereafter loaded into Matlab. Figure 3.2 shows the
experimental set-up of the room as viewed from Qualisys.
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Figure 3.2: The experimental set-up of the room with the 8 infra red cameras
as visualised in Qualisys. The markers illustrating the mother are
shown in green and the markers illustrating the child are shown in
yellow. The coordinate system of the room is likewise illustrated,
with the red arrow indicating the x-axis, the turquoise arrow in-
dicating the y-axis and the blue arrow indicating the z-axis. The
point of origin of the coordinate system is located at the exact
same position for all sessions.

3.3 Video

In all of the recording sessions two video cameras are included. These cameras
record the interaction between the mother and child with a sampling frequency
of 25 Hz, corresponding to around 15000 frames per camera per recording ses-
sion. Each video �le is in the format .avi and consists of one video track and
two audio tracks. The position of the video cameras has not been the same for
all sessions, but for all the latest recordings, the two cameras are located with
the focus as shown in �gure 3.3.
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(a) (b)

Figure 3.3: The experimental set-up with the focus of each of the two cameras.
(a) The focus of video camera 1. (b) The focus of video camera 2.

3.4 Annotations

As mentioned in the problem statement, chapter 2, Babylab has di�erent coding
groups that are in charge of making speci�c annotations manually. The number
of dyads for which annotations have been made, di�ers depending on the coding
group. None of the annotations have been made for all dyads. The annotations
already made by Babylab are mentioned in the following under the modality
that is used by Babylab for the speci�c annotation.

Sound

� Speaker identi�cation with the classes

- child speaking

- mother speaking

- both speaking

- silence

� Child's emotional state with the classes

- protest

- no protest (satis�ed)

� Mother vocalising with the classes
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- singing

- speaking

Motion Capture

� Distance between faces

� Child's physical energy level

Video

� Child's head position

� Joint attention

� Child's facial expressions

� Gaze

The sound signal annotations, i.e. speaker identi�cation and emotion recogni-
tion, are executed in the free-ware program Praat, where a basic script indicates
the intervals of mother speaking and child speaking, respectively, from an in-
tensity measure. From this, the coder's job is to listen to the sound �le and
manually move or remove the suggested intervals of speech. For the manual
emotion recognition task, the intervals indicating that the child is speaking, are
divided, by the coder, into protest and no protest. The same is the case for
the mother's vocalizations, i.e. the coder is to determine whether the mother is
speaking or singing.
The distance between the mother's and child's faces is calculated in Excel by
coders at Babylab. For this, the marker coordinates of the heads from Qualisys
are used. Excel is also used to annotate the child's physical energy level where
the right wrist marker is used as indicator.
The video coding group at Babylab annotates the above mentioned physical
interaction patterns. Regarding the child's head orientation, the coders are
to determine how much the child's head position deviates with respect to the
mother from the starting position, that is the child facing the mother. This is
elaborated in chapter 7, where this annotation is automated through the use of
motion capture marker coordinates.
The joint attention, that provides information on the joint focus of both mother
and child on an object in the room, is extracted by Babylab from the video �les.
To automate these it would probably be more correct to apply the head direc-
tion from the motion capture head marker coordinates through vector calculus.
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This is not approached in this thesis, but instead left for future work.
The child's facial expressions are extracted from the video �les, where an im-
portant factor to the psychologists at Babylab is that the sound is o�. The
sound of the child could possibly a�ect the coder in deciding on a di�erent label
than if only the visual information is available. The facial expressions include
the positions of the mouth, cheeks, eyes and forehead. The group at Babylab
that are conducting these annotations follow a particular scheme that can be
seen in appendix A. The facial expression annotations will not be automated in
this thesis, but a small test will be conducted in order to obtain an idea of the
possibilities within this area. This can be seen in section 8.2 and in appendix
B.
The last annotation that have been extracted by Babylab is the gaze of the child.
For this, the video recordings have been applied, which is the only recording
modality that enables detection of eye direction. This annotation is not at-
tempted automated in this thesis due to the poor pixel resolution of the child,
as earlier mentioned.



Chapter 4

Synchronization

To be able to combine the three recording modalities and make use of the
information extracted from one modality in the analysis of another, time syn-
chronization across the modalities is a necessity.
The external sound recording is started manually before each session and this ac-
tion is then directly connected to a trigger, that starts the video and the motion
capture recordings. This, naturally, creates a synchronization problem. After
loading all three measurement modalities into Matlab, but before further data
processing, synchronization is performed. The delay estimations are carried out
between the sound and video and between sound and motion capture. By solv-
ing these two separate synchronization problems the third problem, video and
motion capture, is given.
The psychologists at Babylab are aware of the synchronization issues but have
only been capable of solving the sound to video synchronization problem. Their
approach is to, manually for each recording, mark out three clear sounds during
the 10 minute sessions and �nd the time delay between these sounds in the video
recordings and in the external sound recordings. The average of these three time
delays has been assumed to explain the issue of synchronization between sound
and video respectively. For this, and for much of Babylab's other analyses, the
free-ware program Praat is used.



18 Synchronization

4.1 Sound versus Video

As explained in chapter 3, the external sound �le contains two channels, i.e. the
sound recorded from the child's microphone and the sound recorded from the
mother's microphone. The video �les consist of two audio tracks and a video
track. It is, with good reason, assumed that the three tracks constituting the
video �le are fully synchronized. This assumption makes it possible to identify
the sound-to-video time delay through analysis using the cross-correlation be-
tween of one of the audio tracks in the video �le and one of the channels in the
external sound �le. The set-up of this approach is shown in �gure 4.1.
The applied cross-correlation method is given by equation (4.1).

Figure 4.1: The set-up for the cross-correlation approach. The shown combi-
nation of video and sound signals is the one used in this thesis.

θfg(n) =
∑
m

f(m)g(n+m) (4.1)

The cross-correlation function between two signals is calculated by retaining
the �rst signal at the same position, whilst the second signal is moved on top
of the �rst, one sample n at a time. For each position n of the second signal,
the sum of the multiplication of the two signals at each sample is calculated.
The position of the moving signal that gives the largest correlation value, will
correspond to the time lag where the two signals are most alike. It should be
noticed that the cross-correlation formula given by (4.1) is not normalized. The
segments of the signals being cross-correlated with each other in this study have
the same length and the normalization would therefore not have a high impact.

The audio signal from the video �le and the external sound signal will be very
similar because all recordings take place in a closed room. This causes the
correlation value to have a large peak at the time lag corresponding to the syn-
chronization di�erence. It should be mentioned here, that the audio signal from
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the video �le is delayed in itself with respect to the external sound signals, be-
cause of the position of the cameras compared to the head microphones, recall
�gure 3.3. This delay would in the signal correspond to the sound delay with the
given distance, but because of the small distance and speed of sound measure
being 340.29 m/s, this delay is assumed negligible.

Figure 4.2 shows the cross-correlation result for dyad 011. Here the external
sound signal is held at the same position and the audio signal from the video
�le is moved one sample at a time. This is done for three smaller intervals of
the two signals, i.e. in the beginning, the middle and the end, respectively.
It is possible to calculate the time delay using the entire signal, but some issues
are associated with this approach. The �rst problem is that a computer with
much processing power is needed because of the full signal size (10 minutes with
a sampling frequency of 48000 Hz). Another issue that is possibly present, is
that a further delay or reduction in delay between the two signals during the
10-minute sessions could occur, due to the time settings in the two recording
devices. If the time delay between the two signals is found at several signal in-
tervals, this uncertainty is taken into account. That three intervals are used in
the calculation of the time-delay also re�ects the approach of the psychologists
at Babylab.
A necessity for the cross-correlation method to work is to represent the two
signals with the same sampling frequency. With the sound signal having a sam-
pling frequency of 48000 Hz and the audio track from the video signal having
one of 32000 Hz, the sampling frequency of 16000 Hz is the largest common
sampling frequency obtainable when down-sampling the signals. Both signals
are therefore down-sampled accordingly.
In �gure 4.2 it is observed that the three peaks (although the middle one be-
ing very small) are positioned around the same time lag. The exact time lag
between the two signals and the corresponding delay in seconds for the three
intervals are shown in table 4.1.
The synchronization di�erences in seconds are calculated as in the following ex-

Interval Time lag in samples Delay in seconds

1 38,678 2.4174

2 38,763 2.4227

3 38,846 2.4279

Average 38,762 ± 84 2.4227 ± 0.0053

Table 4.1: The time lag and delay in seconds for dyad 011, for the three inter-
vals. The average of the three are likewise shown.
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Figure 4.2: The three cross-correlations between the external sound signal and
the audio signal from the video �le, dyad 011.

ample: (38,678 samples)/(16000 samples/s) = 2.4174 seconds. Since the time
lag is positive, the external microphone signal is delayed 2.4174 seconds com-
pared to the audio signal in the video �le. The mean of the three time intervals
is 2.4227 ± 0.0053. In the manual annotations from Babylab a result of 2.4355 ±
0.0008 seconds was obtained. Thus, the delay obtained through the automatic
method is extremely close to the manually obtained delay.
To adjust the delay and remove the synchronization di�erence, the �rst 38,762
samples, as being the average of the three intervals, should be removed from
the external audio signal. An action that makes the two �les (video and sound)
start at the same time.

In practice, there are a few issues that have been discussed prior to the ac-
tual calculations. As mentioned in the beginning of this section, each video �le
contains two audio tracks and the external sound �le contains two sound chan-
nels. This means that there are four possible combinations when applying the
cross-correlation method for each video camera. Since the two external sound
channels are synchronized and so are the two audio tracks from the video �les,
only one signal from each recording modality is required to make the above ex-
plained calculations.
It has been chosen to use channel 2 from the external sound �le, representing
the mother. In general, the mother speaks much more often and much louder
than the child, making the speech signal from the mother presumably more
identi�able in the video microphones as they are positioned further away (see
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�gure 3.3, section 3.3). Furthermore the channel 1, representing the child is
quite noisy which would make it hard to identify this channel with the video
microphones.
Regarding the two video �les, the automatic approach used in this thesis takes
its starting point in the work already done by Babylab. Therefore, for the sake
of comparison, the video �le used by Babylab for the synchronization will be
used here as well.

The results for the average time delay of the sound-to-video synchronization are
shown in table 4.2. What is seen in the table is that when taking the standard
deviation into consideration, the results obtained through the cross-correlation
method are extremely close to the results obtained with the manual method.
What is furthermore observed from the table, is that the results for some dyads
are missing. For dyad 005 and dyad 007, no data is provided from Babylab. For
dyad 013, 014, 016, 018, 019, 020 and 021 there is no sound on the video �les,
making it impossible to extract the time-delay through this approach.

4.2 Sound versus Motion Capture

Two approaches to the issue of synchronization between sound and motion cap-
ture have been executed. The �rst is the correlation of distance pro�les. These
represent the mutual movement between mother and child throughout the 10-
minute session and are calculated from the mocap �le and from the external
sound �les, respectively. Several uncertainties regarding this method caused
the results to be incorrect. The details on the calculations and the results are
discussed in appendix C. The reason that this method was implemented in the
�rst case implemented is due to its general applicability, in that the distance
pro�les can be calculated for all dyads.

The second method uses the starting information given by the mother, in the
form of a clap. The time of the clap can be extracted from the mocap �les, as
the frame where the distance between the mother's wrist markers is minimized.
Figure 4.3(a) illustrates the distance pro�le of the mother's wrist markers for
the �rst 20 seconds for dyad 011.
From the external sound signal, the time of the clap can be extracted through
the use of the spectrogram. This is done by locating the time where the sum of
the power at each frequency reaches it maximum. Figure 4.3(b) shows the �rst
7 seconds of the spectrogram for dyad 011. Several issues have been considered
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Dyads Video (1 or 2) Cross-corr method Manual method

001 video 2 2.4788 s ± 0.0015 s 2.4811 s ± 0.0008 s

002 video 2 2.4593 s ± 0.0122 s 2.4629 s ± 0.0012 s

003 video 2 2.2569 s ± 0.0079 s 2.2698 s ± 0.0058 s

004 video 2 2.7417 s ± 0.0151 s 2.7514 s ± 0.0002 s

006 video 1 2.7399 s ± 0.0017 s 2.7410 s ± 0.0062 s

008 video 1 2.0270 s ± 0.0025 s 2.0535 s ± 0.0014 s

009 video 2 -0.8516 s ± 0.0120 s -0.8509 s ± 0.0029 s

010 video 1 2.3623 s ± 0.0040 s 2.3629 s ± 0.0016 s

011 video 2 2.4227s ± 0.0053s s 2.4355 s ± 0.0008 s

012 video 1 2.7211 s ± 0.0052 s 2.7354 s ± 0.0007 s

015 video 2 2.1416 s ± 0.0064 s 2.1389 s ± 0.0010 s

017 video 2 2.1615 s ± 0.0101 s 2.1685 s ± 0.0010 s

Table 4.2: The time delay between external sound and video for each dyad.
Both the results from the automatic approach developed in this
thesis and those obtained from the manual method are shown. The
delay shown is the mean of the three time delay for the three time
intervals together with the corresponding standard deviation.

during the practical development of the method. First, sometimes the mother
holds her hands as close or closer to each other than during the clap. This, of
course, will result in a wrong time-of-clap estimation. To avoid this scenario,
only the �rst 20 seconds of the mocap �les will be used in the wrist distance
pro�le, since it is assumed that the mothers perform the clap during this interval.
Regarding the clap-identi�cation using the spectrogram, several sounds holds
the same amount of power (or more) as the clap. This makes it uncertain if the
time instant with the highest power actually corresponds to the time of the clap.
The approach has therefore been to �rst identify the time of the clap from the
wrist distance pro�le, denoted here as Tclap. The interval of Tclap± 4 seconds is
subsequently analysed, spectrogram-wise. The choice of this particular interval
is chosen based on the delays found between the external sound �les and the
video �les, which are assumed to correspond, more or less exactly, to the delays
between the external sound �les and the mocap �les.
Figure 4.3 illustrates a case where the mother only claps once. In several of
the sessions the mother claps twice, inducing another problem. The distance
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(a) (b)

Figure 4.3: Example for dyad 011. (a) Distance pro�le of the mother's wrist
markers of the �rst 20 seconds. The clap can be identi�ed as the
minimum of the curve at around 3.5 seconds. (b) Spectrogram of
the �rst 7 seconds. The clap can be identi�ed at close to 6 seconds
as the darker red column.

between the wrists during the two claps are not necessarily exactly the same,
which makes it uncertain which of the two claps are extracted by the algorithm.
Likewise for the clap in the spectrogram, it is of uncertainty whether the �rst
or the second clap holds most power to it. This is actually a problem for dyad
001 illustrated in �gure 4.4. Here, the �rst minimum of the distance pro�le in
�gure 4.4(a) corresponds to the global minimum of the �rst 20 seconds, whereas
the second clap holds most power to it, which is clear from �gure 4.4(b). The
calculated time delay between the external sound �le and the mocap �le for
dyad 001 is 2.55 seconds, but the true time delay (from second clap in distance
pro�le to second clap in spectrogram) is 2.23 seconds. It should be stated at
this point, that the case of uncertainty about the time instant of the clap only
causes a problem if the process is to be executed totally automatically. If the
�gures of the distance pro�les as well as the spectrograms of the clap are visually
inspected, no doubt is in evidence which time instant of the clap belongs to the
�rst or second clap.
Other problems that have been discovered during the development and use of
this method include the fact that not all mothers perform the clap, and that the
strength of the clap is crucial to the detection of the clap from the spectrogram.
The dyads for which the true delay has been found by the algorithm are listed in
table 4.3. It should be stated that the precision of this method is limited of the
sampling rate of the mocap �les of 60 Hz. This causes a limit of the precision
of the clap of 1/60 = 16.7 ms. Furthermore, if the mother claps very slowly, the
clap would occur over more frames, and the uncertainty about the exact frame
of the clap arises.
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(a) (b)

Figure 4.4: Example with two claps, dyad 011.(a) Distance pro�le of the
mother's wrist markers of the �rst 20 seconds. The clap with
the minimum distance is identi�ed at around 8.6 seconds. (b)
Spectrogram of the interval [4.6 : 12.6] seconds. The clap with the
maximum power can be identi�ed at around 11.2 seconds as the
darker red column.

To brie�y sum up the issues of applying this method, it should be recalled that

Dyads True time delay

011 2.5167 s

015 2.2500 s

021 2.1667 s

Table 4.3: The dyads for which the true time delay between external sound
and mocap has been extracted, through the use of the clap method
and the corresponding true time delay.

the method is dependent on visual inspection of the pro�les considered, as well
as is limited to the rate at which the mocap �les have been recorded.

4.3 Video versus Motion Capture

Since the recording session is started at the starting time of the external sound
recording and because this triggers the video and Qualisys recordings, the ex-
pectation is that there is no di�erence in synchronization between the video and
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the motion capture modalities. With this in mind, it is still of importance to
make the investigation, because a synchronization di�erence, in the worst case,
could deteriorate the results of the multi-modal studies of this thesis.
To extract synchronization information between the video �les and the Qualisys
�les, the synchronization di�erences found in the above mentioned methods for
sound-to-video and sound-to-mocap can be compared. Table 4.4 shows the time
delays found for both problems, where this has been possible.
For dyad 001 the time di�erence between video and mocap has the same mag-

Dyads sound-to-video sound-to-mocap Di�erence

001 2.4788 s 2.2300 s -0.2488

011 2.4227 s 2.5167 s 0.0940

015 2.1416 s 2.2500 s 0.1084

Table 4.4: The dyads for which both the sound-to-video and sound-to-mocap
synchronization di�erence have been extracted and the correspond-
ing time delays. The column di�erence shows the di�erence between
the sound-to-video and the sound-to-mocap.

nitude but opposite sign compared to the other two dyads. This indicates that
the order in which the video and infrared cameras are started is random. When
looking at the column di�erence in table 4.4 it can be seen that the di�erence
between the sound-to-video and sound-to-mocap is very small. When taking
the uncertainty about the individual measurements into account, it could seem
like no delay is in evidence between sound-to-video and sound-to-mocap. The
foundation necessary to make a conclusion on the video-to-mocap time di�er-
ence is very vague, but from the three results in the table the tendency is that
the time delay is so small that it could be thought of as not existing.
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Chapter 5

Speaker Identi�cation

In speaker identi�cation the task is to identify a given voice from a group of
known voices. To be able to do this, it is necessary to extract information from
the speech signal that can reveal the identity of the speaker. Information on
the words spoken are, on the other hand, of lesser importance. In contrast,
in the task of speech recognition, the speaker-carrying qualities of the speech
signal are irrelevant and instead information on the utterances (word or sen-
tences) are to be extracted. Speaker identi�cation can either be text-dependent
or text-independent. If the task is text-independent, the system only relies on
vocal tract characteristics of the speaker, whereas in text-dependent speaker
identi�cation information on the spoken utterances are included as well, [57],
[25]. Text-independence is therefore most often assumed in speaker identi�ca-
tion, since this does not make any assumption about the speech, and therefore
can be more widely used, [12].
Regarding the mother/child interaction, it is of great interest for BabyLab to
obtain automatic annotations of whether the child or the mother is speaking,
if they both are speaking at the same time or if there is silence, see table 5.1.
In this case the speaker identi�cation is a text-independent, 4-class problem.
The amount of data available for the speaker identi�cation task is 15 dyads
each providing 10 minutes of spoken interaction.
In the following section, 5.1, details on speech and speech perception is given.
Speech as a signal and the general preprocessing performed before speaker iden-
ti�cation is possible, is explained in section 5.2. Sections on the extracted fea-
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Class Class de�nition

1 Child speaking

2 Mother speaking

3 Both speaking

4 No speech

Table 5.1: The class de�nitions.

tures, 5.3, and on the performed classi�cations, 5.4, follows subsequently, where
the section on classi�cation includes a detailed explanation on the applied clas-
si�ers. In the last section, 5.5, di�erent approaches for generalizing the model
as well as boosting the performance of the classi�ers are discussed.

5.1 Speech and Speech Perception

This section is not provided to give an exhaustive explanation on the anatomy
of speech production, but instead to outline the nature of speech and of speech
perception, to obtain an understanding of the feature extraction from the sound
signals. The perception of speech takes place in the human auditory system.
A total comprehension of speech perception, would provide the solution to how
the speech signal should be modelled to identify speakers from each other, due
to the fact that speaker identi�cation for the human brain is a rather simple
task. The following description takes basis in [12], [50].
In �gure 5.1(a) the anatomy of the vocal tract system is shown. The production
of speech starts in the lungs, forcing air up through the vocal cords. These, as
seen in �gure 5.1(a), has the ability of vibrating, where the frequency of this
vibration is controlled by the muscles in the larynx. The frequency at which
the vocal cords vibrate are typically higher for female speakers than for male
speakers and the sound is hereby given its so called fundamental frequency. The
mouth, throat and nose all contribute to modifying the sound from the vocal
cords, giving the sound its tone. The ability of pronouncing vowels and con-
sonants, and thereby pronouncing utterances, stems from the movement of the
articulators of speech which is the pharynx, soft plate, lips, jaw and tongue, seen
in �gure 5.1(b). From this, it is clear that the voice of one person is individual
from another.

Concerning speech perception, the human ear has the ability of separating a
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(a) (b)

Figure 5.1: Figure showing (a) the anatomy of the vocal tract, �gure from [1].
(b) the articulators of speech, �gure from [2].

sound into its frequency components, an ability called frequency selectivity.
Frequency selectivity takes place on the basilar membrane of the ear. Each
position along the membrane is more sensitive to one particular frequency than
to all other frequencies, see �gure 5.2(a). Thus, the spectral composition of
a sound can be extracted by the human auditory system. Mathematically, the
basilar membrane can be represented by a bank of overlapping band-pass �lters,
which can be visualized as �gure 5.2(b). It can be seen in the �gure that the
spacing of the �lters is not linear but logarithmic which explains why the �lters
are more closely spaced at the lower frequencies than the higher ones. The

(a) (b)

Figure 5.2: The concept of frequency selectivity where (a) shows the frequency
selectivity of the basilar membrane, �gure from [3]. (b) The basilar
membrane represented as a �lter bank of band-pass �lters, �gure
from [4].
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impressive function of the ear regarding frequency selectivity encourages the use
of mathematical models to extract the same information from a speech signal as
the ear is capable of. This is approached in section 5.3 on feature extraction.

5.2 Preprocessing

Before analysing a signal, stationarity must be established since this is an as-
sumption in most signal processing methods. A stationary signal is de�ned as
a signal whose statistical parameters, such as mean and variance as well as fre-
quency content, do not change over time, [12]. Figure 5.3 presents the signal
from the mothers microphone extracted from 35 seconds to 40 seconds. When
inspecting the �gure, it is clearly seen that the frequency varies over time which
means that the signal should be interpreted as a non-stationary signal.
A way to obtain stationarity is to divide the non-stationary signal into quasi-

Figure 5.3: The signal from channel 2 shown from 35-40 seconds. It is noticed
that the speech signal is a non-stationary signal.

stationary segments, where each of these segments are analysed separately. This
means that the signal is divided into windows of a given sample size in which
it is assumed that the characteristics of the signal do not change signi�cantly,
[54]. The window sizes dealt with in this thesis are 10 ms, 50 ms, 100 ms, 150
ms, 200 ms and 250 ms. With a signal sampling frequency of 48000 Hz this
corresponds to window sizes of (480, 2400, 4800, 7200, 9600, 12000) samples.
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The choice of the window sizes is �rst of all due to the stationary concept al-
ready mentioned. Second, the research project at Babylab was started with
inspiration from [29] where the windows are chosen to be 250 ms. Third, the
lower boundary at 10 ms stems from the accuracy of the manual annotations
made in Praat by Babylab. Forth and last, windows of size from 5 ms to 100
ms are used in the literature regarding speaker identi�cation, [57], [24], where
in [24] it is also pointed out that the concept of stationarity holds for segment
up to about 200 ms in size.
Depending on the window size, the amount of observations available varies. In
table 5.2 the number of observations in each class is shown for the 14 dyads
constituting the training set for the 6 di�erent window sizes.
The manual annotations made at Babylab are, as mentioned, carried out in the

Class 10 ms 50 ms 100 ms 150 ms 200 ms 250 ms

Child 88172 17644 8913 5849 4434 3504

Mother 281861 56389 28468 18788 14275 11258

Both 115872 23175 11473 7735 5753 4617

No one 404881 80938 40212 27004 20064 16239

Table 5.2: The number of observations belonging to each class for the data
set consisting of 14 dyads at 4 months, for each of the six di�erent
window sizes.

programme Praat with an accuracy of 10 ms, i.e. one class label exists for every
10 ms. These annotations are used as the ground truth to the speaker identi-
�cation classi�ers in this study. This implies that when increasing the signal's
window size as input to the classi�er, the true class vector must be changed
accordingly. Majority voting is used to obtain the new class label vectors. For
instance, if the window size is 50 ms, the class label of this window is determined
by the majority of the 5 annotations from the 10 ms class vector. Hereby the
number of class labels from Babylab matches the number of segments in the
windowed sound signal.

As mentioned in section 5.1 the frequency with which the vocal cords vibrate
varies, depending on the word or utterance being pronounced as well as the
person pronouncing it. The spectral content of the four respective classes is
therefore expected to vary. In �gure 5.4 four spectrograms are shown, each
representing one of the four respective classes. By using the true class labels,
450 ms of each class in channel 1 has been pointed out. The spectrograms show
the frequencies up to 7000 Hz since the main part of the frequency content lies
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in this area. Looking at the spectrograms in �gure 5.4, it is observed that the

Figure 5.4: Spectrograms of the four respective classes with a duration of 450
ms showing the frequencies up to 7000 Hz.

spectral content of the four respective classes deviates from each other visually.
Comparing the spectrograms representing the mother speaking and the child
speaking it is seen that they have very di�erent spectral content. The spectro-
gram of the child's speech seems to have no dominant frequency, but instead a
frequency content that covers all the illustrated frequencies in the �rst part of
the shown interval. The opposite is valid for the mother's spectrogram. Here,
by far most of the frequency content is centred around 2000 Hz in the last part
of the time interval, implying speech in this part of the signal. The spectrogram
of both speaking is observed to have smaller time intervals of frequency content
similar to both the mother's and the child's spectrograms. The last spectrogram
represents the class where no one is speaking. No signal should be detected due
to the labelled silence, which means that the frequency components represented
is because of noise in the recordings.
To sum up, based on the di�erence in the spectral content of each of the classes,
it appears that spectral features are useful in distinguishing between the four
classes.
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5.3 Feature Extraction

Feature extraction is performed to obtain a �nite representation of each signal
segment. To obtain the best possible classi�er, the features extracted should
represent those qualities of the sound signal that maximize the di�erences be-
tween the four classes and at the same time minimize or eliminate those of
irrelevance for the classi�cation. Features of unimportance could deteriorate
the performance of the classi�er which of course is undesirable. The curse of
dimensionality is most often an issue with practical data sets, which is why only
the features with the greatest impact on the classi�cation should be included in
the �nal model constellation. As indicated by it's name, curse of dimensionality
occurs when the number of features is to large compared to the number of ob-
servations, in which case modelling of the data becomes more or less impossible.
For a more thorough explanation of the curse of dimensionality see section 5.3.3.
The features to be used as input to the classi�er are divided into two types: the
time-domain features and the frequency-domain features. This section holds a
detailed explanation of each of the involved features, where the time-domain
features are approached �rst, section 5.3.1, after which the frequency-domain
features are explained, section 5.3.2.

5.3.1 Time-domain Features

In the time-domain, a feature that carry speaker-dependent information, and
therefore could assist in the classi�cation of the mother and child speech se-
quences, is the cross-correlation between the two channels. For a detailed ex-
planation of the cross-correlation see chapter 4. The approach for calculating
the cross-correlation in discrete time is shown in (5.1). This equation corre-
sponds to equation (4.1).

θfg(n) =
∑
m

f(m)g(n+m) (5.1)

In equation (5.1), f and g represent the two audio channels, with f being the
mother's signal and g being the child's signal. In this case, if the peak of the
cross-correlation is at a positive lag, the mother's signal is delayed compared
to the child's, which therefore clearly indicates that the child is making an
utterance. The opposite is for the same reason assumed valid for a peak at
a negative lag. Furthermore, through testing, it was observed that the cross-
correlation in many windows did not have a clear peak, suggesting that either
no one or both are speaking. Based on these factors, the cross-correlation could
be a relevant feature in the classi�cation. It should be noticed that the cross-
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correlation formula given by (5.1) is not normalized. The segments of the signals
being cross-correlated with each other in this study have the same length and
the normalization would therefore not have a high impact.
Another feature that has been used frequently in the literature is the zero-
crossing rate (zcr) of the speech signal, [18]. For each time window, the number
of times that the speech signal crosses the time axis, corresponding to a change
of sign of the signal, is a simple representation of the frequency content at that
speci�c part of the speech signal, [52]. Equation (5.2) displays the mathematical
approach for calculating the zcr.

zcr =
1

2N

N∑
n=1

|sgn(x(n))− sgn(x(n− 1))| (5.2)

In equation (5.2), N is the total number of samples in the speci�c time window
and x represents the windowed sound signal. All changes in the sign of x will be
summed (if no change in sign occurs, the expression |sgn(x(n))− sgn(x(n−1))|
is equal to zero), but because of the nature of the sgn function (sgn(x) > 0 = 1,
sgn(x) < 0 = −1), the aforementioned expression will give the value 2 if a
change in sign is observed. This is taken into account by dividing by two out-
side the sum. To obtain the rate of the zero-crossings, the output from the sum
is divided by the number of samples in the time window.
A high zcr corresponds to a frequency content consisting primarily of high fre-
quencies and vice versa for a low zcr. In general, most of the energy of voiced
speech (movement of the vocal cords) is found below 3 kHz, whereas for unvoiced
speech (speech produced only by air and the mouth movement) the energy ma-
jority falls in the higher frequencies, [52]. A di�erence in zcr could therefore
possibly be found in the speech of the mother and of the child. Furthermore it
is imaginable that the zcr for no speech (corresponding to noise) would di�er
from that of speech.
A third feature that is commonly used in speaker identi�cation tasks is the
energy of the windowed signal. This is given as the sum of squares of the ampli-
tudes within a segment [18]. The equation for calculating the energy is shown
in (5.3).

energy =

∞∑
−∞

|x(n)|2 (5.3)

The x in equation (5.3), represents the windowed audio signal. The amount of
energy directly relates to whether or not speech is present in each frame, with
a high energy level indicating a speech-�lled window and vice versa for a low
energy level. The energy is for that reason assumed to be a valuable feature in
the separation of the windows of no speech from the remaining windows.
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5.3.2 Frequency-domain Features

Regarding the frequency-domain features, especially the mel-frequency cepstral
coe�cients (MFCC's) have been applied in more recent studies on speaker iden-
ti�cation, [24], [55], [46]. These coe�cients are based on the Mel scale which
explains the subjective relationship between the pitch of a sound and its acous-
tic frequency. Since the Mel scale represents a mathematical interpretation of
the human ability to perceive tones, it is one of the most realistic approaches to
sound perception in the area of speaker and speech identi�cation. See section
5.1 for a more thorough description of the human perception.
The Mel scale has been interpreted in several di�erent ways throughout the last
decades, but the implementation used in this study is the Isound toolbox, [30],
as represented by M. Slaney in the Auditory toolbox [61]. The survey conducted
in this thesis on MFCC as can be read in the following, takes its basis in the
two books [21], [12].
The MFCC interpretation by [61] consists of a �lter bank of 40 overlapping,
equal-area, triangular �lters. Of the 40 �lters, the �rst 13 have linearly-spaced
center frequencies (fc) with a distance of 66,7 Hz between each, whereas the
last 27 have log-spaced fc's separated by a factor of 1.0711703 in frequency. The
center frequencies for the 40 �lters are expressed in equation (5.4).

fci =

 133.33333 + 66.66667 · i , i = 1, 2, ..., Nlin

fNlinF
i−Nlin
log , i = Nlin + 1, Nlin + 2, ..., Nlin +Nlog

(5.4)

To avoid confusion, i here indicates the �lter index and is therefore unrelated
to the complex i. In equation (5.4), fci is the i'th center frequency of the �lter
bank, Nlin is the number of linear �lters and Nlog the number of log-spaced
�lters. fNlin

is therefore the center frequency of the last linear �lter (fc13).
Flog = exp(ln(fc40/1000)/Nlog), where fc40 is the center frequency of the last
�lter in the �lter bank. Therefore Flog = 1.0711703 as mentioned above.
The entire �lter bank cover the frequency range [133.3:6855] Hz where each �lter
is de�ned as in equation (5.5).

Hi(k) =



0 for k < fbi−1

2(k − fbi−1)

(fbi − fbi−1)(fbi+1 − fbi−1)
for fbi−1 ≤ k ≤ fbi

, i = 1,2,...,M

2(fbi+1 − k)

(fbi+1 − fbi)(fbi+1 − fbi−1)
for fbi ≤ k ≤ fbi+1

0 for fbi+1 > k

(5.5)

In equation (5.5), i = 1, 2, ...,M is the i'th �lter of the M-sized �lter bank,
k = 1, 2, ..., N is the k'th coe�cient of the N-point DFT and fbi−1 and fbi+1 are
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the lower and the higher boundary point, respectively. fbi , which is equal to
the center frequency of the i'th �lter (fci), corresponds to the point of the �lter
where most of the original frequency content is passed through.
Figure 5.5 illustrates the equal-area �lter bank. In theory, the �rst 13 �lters

Figure 5.5: The 40 equal-area �lter bank as introduced by [61]. In theory, the
�rst 13 �lters should have equal height due to the linear spacing
between them, but due to round-o�'s in the spacing in Matlab,
small variations can be observed. Every �lter has a shape of a
triangle and is represented by di�erent colours.

should have equal height due to the linear spacing between them, but due to
round-o� errors in the spacing, small variations can be observed in the �gure.
The approach to express the sound signal on the Mel scale is to take the Fourier
transform of the windowed signal, to obtain the frequency spectrum of each
segment. The window function used in this thesis for the MFCC extraction
is a Hamming window. The frequency spectrum of each segment is then con-
verted to the Mel scale by multiplying the magnitude of the spectrum with the
aforementioned �lter bank. The logarithm of the converted spectrum is taken,
expressing the output of each �lter in dB to obtain a more precise representa-
tion of the manner in which humans perceive sound. This step can be seen in
equation (5.6).

Si = log10

(
N−1∑
k=0

|S(k)|Hi(k)

)
, i = 1, 2, ...,M (5.6)

In equation (5.6), the |S(k)| is magnitude of the DFT-obtained frequency spec-
trum and Hi is the Mel frequency �lter for the ith �lter.
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By using the Discrete Cosine Transformation (DCT), the Mel Frequency Cep-
stral Coe�cients can be extracted, as expressed in equation (5.7). It is to be
noted that since the DCT is a fourier-related transform, see [5], using the DCT
on the Mel frequency spectrum converts it to the Mel frequency cepstrum, with
cepstrum being the spectrum of a spectrum.

MFCC(r) =

√
2

M

M−1∑
i=0

Si+1 cos

(
(i+ 0.5)πr

M

)
, r = 0, 1, ..., R− 1 (5.7)

In equation (5.7), the Si+1 is the �lter bank output from equation (5.6) where
i = 1, 2, ...,M with M being the number of �lter banks. Since the sum index
starts at i = 0, the �lter bank output has the index i+ 1. Equation (5.7) gives
R unique MFCC's, where R ≤M . If R is chosen larger than M, these MFCC's
mirrors those of the �rst M coe�cients, [21].
Figure 5.6 illustrates the MFCC-extraction from the raw speech signal to the
�nal Mel frequency cepstal coe�cients are extracted.
As used in [27], the delta-MFCC's and delta-delta-MFCC's are likewise applied

Figure 5.6: The approach to extract Mel frequency cepstral coe�cients.

as features in this thesis. These features could give a more accurate represen-
tation of the speech signal because they represent the temporal changes of the
MFCC's. The delta-MFCC's are the �rst-order derivatives of the MFCC's corre-
sponding to the changes in MFCC value between two consecutive time windows.
The delta-delta-MFCC's are the second-order derivatives of the MFCC's and
they represent the changes between two consecutive time windows of the delta-
MFCC, i.e. the acceleration between two consecutive windows of the MFCC's.

5.3.3 Feature Composition

In total, for each time window, 20 MFCC's are extracted. The 20 MFCC's are
chosen based on the use of MFCC in the literature, [24], [47], [41]. The �rst
MFCC (c0) is removed since it only carries information about the mean value of
the input signal and therefore have little speaker-dependent importance, [24].
19 delta-MFCC's and 19 delta-delta-MFCC's are also extracted. Furthermore
the zcr and the energy for each time window are extracted and so is the cross-
correlation between the two channels of the mother and the child. With respect
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to the cross-correlation, the maximum value is pointed out together with the
corresponding lag. The cross-correlation as a feature therefore consists of two
values.
A total of 61 features are consequently constituting the feature vector. Each
feature is listed in table 5.3 and supported by a short explanation. Whether

Features Representation of each time window

MFCC's Representation of speci�c qualities of the sound sig-
nal extracted from the Mel frequency spectrum

delta-MFCC's Di�erence in MFFC between two consecutive win-
dows

delta-delta-MFCC's Di�erence of the di�erence of MFFC between two
consecutive windows

Zero-Crossing Rate The rate of the times the sound signal crosses the
x-axis

Energy The total energy

Cross-correlation Correlation between the two signals

Table 5.3: Selected features for the speaker identi�cation followed by a short
description.

the features should be normalized or not, depend on the data set and on the
classi�er. Typically, in the area of speaker identi�cation, feature normalization
has been performed, [56], to even out the feature di�erences of several channels,
which is often used with multiple speakers. In this thesis the recordings of the 15
dyads represent 15 channels and normalization is therefore likewise performed
here.

As mentioned in the introduction to this section, the curse of dimensionality
plays an important role in the decision of the number of features, and thereby
dimensions, representing the data set. Bishop, [13], describes the concept from
�gure 5.7. As seen in the �gure, the volume of the feature space increases more
rapidly than the number of dimensions increase. In fact, the volume increases
exponentially with the dimensionality of the space. The number of observations
in a high-dimensional space is therefore often sparse due to the much larger
volume in which the same amount of observations is represented in.
The number of observations in class 1 for each of the six respective window sizes
in table 5.2 is observed to be lower than 10,000 for window sizes larger than 100
ms. If all features in table 5.3 are used in the classi�cation task, the dimension
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Figure 5.7: The concept of curse of dimensionality here shown for the �rst
three dimensions. The volume of the space grows exponentially
with the number of dimensions D of the space. Figure taken from
[13].

of the feature space is 61. The data will therefore be sparsely represented in the
61-dimensional feature space and it will become more di�cult to detect groups
of similarities among the observations.

5.4 Classi�cation

To obtain an expression of which of the four states are occurring at each time
segment in the sound signal, a classi�er is to be used. Di�erent approaches have
been proposed in the literature where the Gaussian Mixture Model (GMM) is
the one appearing most often [57], [31], [33]. With this classi�er, each state in
the classi�cation problem is to be modelled with a GMM. The belief is that the
acoustic features representing vocal tract con�guration, and thereby re�ecting a
speakers voice, can be modelled by the components in the GMM. Furthermore
one of the advantages of the GMM is that it is capable of �nding a complex non-
linear structure of a given class. In section 5.4.1 the Gaussian Mixture model is
described more thoroughly.
The speaker identi�cation problems considered in the literature often includes
analysis of a speech database, where a given number of speakers is to be iden-
ti�ed. The sound signal considered in this thesis consists of a lot of noise as
well as the fact that one of the speakers that is to be identi�ed is a child of
4 months. Besides this, three other classes are to be identi�ed, including the
mother speaking, no one is speaking and both are speaking. Thus the four states
that need to be classi�ed in this problem are not directly comparable with the
classes found in the literature.
With this in mind, it is in this thesis also investigated how four other classi�ca-
tion methods behave in the problem of speaker identi�cation, since the GMM
might not be the best choice in this particular case.
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Among the classi�ers tested is theK-nearest neighbour algorithm (KNN), which
simply assigns a new observation to the class determined through a majority vot-
ing of the K-nearest neighbours. Depending on the number of K, the algorithm
is capable of �nding complex structure in the feature space. The K-nearest
neighbour algorithm is described in section 5.4.2.
The second algorithm investigated, besides the GMM, is the decision tree algo-
rithm, also referred to as TREE in this thesis. A decision tree includes a number
of conditions and maps these into equivalent classes, where the decisions are
made based on the conditions, and where the classes are the consequences of
the decisions. By constructing a TREE of the speaker identi�cation problem,
the identi�cation of the speaker becomes hierarchical. In section 5.4.3 the the-
oretical part of decision trees is covered.
Furthermore the classi�cation method multinomial logistic regression (MNR) is
investigated. This has it's basis in the generalized linear model and is used only
for classi�cation of multiple groups. It applies the one-against-the-rest strat-
egy through a softmax transformation of the linear functions from �xed basis
functions. The advantage of MNR is that, compared to non-linear models, it
is a relatively simple model to apply, [13]. The details on MNR can be read in
section 5.4.4.
The last classi�er applied in this study is the arti�cial neural network (ANN).
ANN uses an adaptive approach by adjusting the parameters of the basis func-
tions, in comparison to MNR that have �xed basis functions. Additionally, the
ANN consists of multiple layers, where only the input and the output layer are
actually known. The middle layers, called hidden layers, can be thought of as a
black box, making this method much less transparent than the other methods
used in this thesis. Section 5.4.5 explains the mathematical aspect of the model.

5.4.1 Gaussian Mixture Models

The following description of Gaussian Mixture Models is inspired by [13]. A
Gaussian mixture model is a model consisting of a linear superposition of a
speci�ed number of components. Each component is Gaussian distributed. For
K components the Gaussian mixture model is formulated as in equation (5.8).

p(x|w) =

K∑
k=1

πkN (x|µk,Σk) (5.8)

In equation (5.8), x is the data vector consisting of D features, N (x|µk,Σk)
is the D-variate Gaussian distribution with µk and Σk being the mean vector
and the covariance matrix of the K component respectively. Finally πk is the
weight coe�cients of each Gaussian mixture. For the sake of simplicity these
parameters are collectively called w, where w = {πk, µk,Σk} for k = 1, ...,K.
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Each D-variate Gaussian density is given by (5.9).

N (x|µk,Σk) =
1

(2π)D/2|Σk|1/2
exp(−1

2
(x− µk)

′
Σ−1
k (x− µk)) (5.9)

To obtain the total Gaussian mixture, the parameters πk, µk and Σk for each
component are to be estimated. As mentioned these are collectively called w.
The parameters are estimated by applying the maximum likelihood with the aim
of �nding the parameters that maximize the likelihood of the Gaussian mixture,
given a training set. If a training set consisting of N observations are given,
this data set can be represented by a N × D matrix X where each row in X
corresponds to one observation with a number of D features. Using (5.8), the
likelihood function is given by (5.10).

ln p(X|π, µ,Σ) =

N∑
n=1

ln

K∑
k=1

πkN (xn|µk,Σk) (5.10)

As can be seen from equation (5.10), the summation over k takes place inside the
logarithmic function. A consequence of this is that the derivative of the likeli-
hood put to zero, will have no closed form solution and a numerical approach to
the solution of the parameters is not obtainable. An iterative approach is there-
fore necessary and the most common method is the expectation-maximization-
algorithm or just EM-algorithm.
The �rst step in the EM-algorithm is to choose some initial values for the pa-
rameters πk, µk and Σk followed by the E and the M step. In the E step the
initial values (in the �rst iteration) or current values (in the following itera-
tions) of the parameters are used to evaluate the posterior probabilities for each
of the observed components, once the observation x is observed. This is given
by equation (5.11).

p(k|xn,w) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(5.11)

The posterior probabilities are then applied to the M step where the parameters
πk, µk and Σk are updated with the formulas in equation (5.12), (5.13), (5.14)
ensuring increase in the log likelihood function.

µk =
1

Nk

N∑
n=1

p(k|xn,w)xn (5.12)

Σk =
1

Nk

N∑
n=1

p(k|xn,w)(xn − µk)(xn − µk)T (5.13)

πk =
Nk
N

(5.14)

Where Nk is de�ned as in (5.15).

Nk =

N∑
n=1

p(k|xn,w) (5.15)
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This iterative approach continues until the change in the log likelihood func-
tion is below a given threshold or until the maximum number of iterations has
been reached. As mentioned, initial values of the parameters are needed. If no
prior information is given, these values are usually drawn randomly. Another
opportunity is to initialize the values by selecting random seed points among
the training points.

The number of components K in the Gaussian mixture is not known in advance
and depends on the data to be modelled. One approach to determine K is to
use cross-validation, where the negative log likelihood function is summed for
each fold for a speci�ed range of K, for example K = [1 : 20]. The K that gives
the minimum of the negative log likelihood function, is the optimal K for that
speci�c case.
Another approach for determining the number of components is to use the in-
formation criteria Akaike information criterion (AIC) or Bayesian information
criterion (BIC). In these approaches a penalty term of the model complexity is
added so that the model complexity is taken into account when analysing the
log likelihood function with respect to the best K. In this way the number of
components only increases if the increase in model complexity do not overcome
the increase in the likelihood of the model. The method hereby prevents over-
�tting. The AIC and BIC are given by (5.16) and (5.17) where k is the total
number of estimated parameters, N is the number of observations and L is the
likelihood for the model. The model with the lowest AIC or BIC is to be chosen
since this is a representation of the best trade-o� between how well the model
�ts the data and how complex the given model is.

AIC = −2 lnL+ 2k (5.16)

BIC = −2 lnL+ k ln(N) (5.17)

The term −2 lnL in equations (5.16) and (5.17) represents how well the data
is modelled because of the inclusion of the log likelihood function, whereas the
terms k ln(N) and 2k, respectively, represent the penalty term of the model
complexity for the two criteria. It is clearly seen that for a given size of the data
N , the BIC penalizes the model complexity the most and the tendency for this
criterion is to choose a lower number of components than AIC.
At this point, the density estimation of a given data set has described using
Gaussian mixtures models. For a classi�cation problem, as speaker identi�ca-
tion, each class is modelled with a Gaussian mixture, which supplies a density
estimate for each class. It is therefore a necessity that the number of classes is
known in advance. The Gaussian mixture for each class, Ci where i = 1, 2, ..., C
with C being the total number of classes, is then from (5.8), given by equation
(5.18).

p(x|w, Ci) =

K∑
k=1

πkN (x|µk,Σk, Ci) (5.18)
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As indicated in equation (5.18) the parameters w for the Gaussian mixtures are
given. When the distributions for all classes have been estimated, as expressed
in (5.18), Bayes' theorem can be applied to provide the posterior probability of
a given observation from the test set x belonging to class i, see equation (5.19).

p(Ci|x) =
p(x|w, Ci)p(Ci)

p(x)
(5.19)

In equation (5.19) p(x|Ci) is the probability density function as given in equation
(5.18) and p(Ci) is the prior probability of obtaining Ci. p(x) in the denominator
normalizes the posterior probability, since it represents the sum of the likelihood
function times the prior for all the involved classes. For the four class problem
in the speaker identi�cation task in this thesis, the posterior probability of
assigning an observation x to class C1 is given by equation (5.20).

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2) + p(x|C3)p(C3) + p(x|C4)p(C4)
(5.20)

For each observation, the posterior probability of the observation belonging to
each class is calculated and the observation is assigned to the class with the
highest posterior probability.

5.4.2 K-Nearest Neighbour

The K-nearest neighbour algorithm can be used in classi�cation problems as
well as regression problems and is among the simplest of the machine learning
algorithms for classi�cation. As indicated by its name, the algorithm simply
assigns an observation to the class that the K-nearest neighbours belong to,
through a majority voting.
This can be expressed more formally by introducing a dataset with a total of N
observations. If the number of observations in each class is Nk this means that∑
kNk = N . If a new observation x is to be classi�ed, the distance between

x and each of the N points in the data set is calculated. These distances are
sorted in ascending order and the K-nearest neighbours are analysed through
a majority voting of their class membership. This also means that the bigger
the ratio Nk

N in equation (5.21), the higher the probability of assigning the

observation x to class k. Thus, the fraction Nk

N is the so-called prior probability
of the classes.

p(Ck) =
Nk
N

(5.21)

The posterior probability of the classi�cation is p(Ck|x), which represents the
probability of assigning the observation x to the class Ck. To �nd this, Bayes'
theorem is applied as given by (5.22).

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(5.22)
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The conditional probability p(x|Ck) is expressed in (5.23), where Kk is the
number of the K-nearest neighbour belonging to class k. The unconditional
density of x is expressed in equation (5.24).

p(x|Ck) =
Kk

Nk
(5.23)

p(x) =
K

N
(5.24)

To obtain the posterior probability in (5.22), equation (5.21), (5.23) and (5.24)
can be combined to equation (5.25).

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=
Kk

K
(5.25)

The result indicates that if the observation x is to be classi�ed as the class hav-
ing the highest posterior probability, it should be assigned to the class having
the largest number of representatives among the K-nearest neighbours.
It should be noted here that no particular training phase is needed for the
K-nearest neighbour algorithm, since the K-nearest neighbour represent ob-
servations in the training data where the true classes are known. But as a
consequence of this, the algorithm is computationally expensive for large data
sets because it needs to store the entire data set to calculate the distance from
one observation to all other observations, for every observation x that is to be
classi�ed. To overcome this problem, di�erent nearest neighbour search algo-
rithms have been proposed which seek to reduce the calculations needed to �nd
the nearest neighbours.
The number K is, as mentioned, the number of neighbours that are to decide
which class an observation should be assigned to. If K is set to one, only the
closest neighbour decides the class assigning of the observation. The logically
interpretation of K would be that small values of K would result in relatively
small regions of classes, and a large value of K would give fewer larger areas
of classes, since K could be thought of as some kind of smoothing parameter.
The optimal number of K is not known in advance and varies with the type of
data. It can therefore be tested by trial and error where di�erent values of K
are chosen. The test and training error rates are found for each of these. The
K with the lowest error rate should be chosen as the �xed K. The description
of the K-nearest neighbour algorithm above has been inspired by [13].
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5.4.3 Decision Tree

A decision tree can, as the K-nearest neighbour method, be used for both clas-
si�cation and regression. The purpose of the model is to predict a target value
from a given number of inputs. In a classi�cation problem, the target value to
be predicted corresponds to the class label that each observation belongs to.
The approach of a decision tree to obtain its class labels, is to ask a series of
question until a conclusion is reached. The following detailed explanation on
decision trees is inspired by [63].
The decision tree can, as indicated by its name, be visualized as a tree where the
root contains all the observations of the training set. Climbing up the tree, nodes
will be represented where questions are asked and branches from the nodes will
identify the possible answers to the question, i.e. a split is made. If a question
results in a split where all observations in one branch belongs to the same class,
a leaf node is created and the node is said to be pure. This procedure continues
until all observations has been assigned to a class. The principle of splitting
until each node is pure, is referred to as Hunts algorithm.
Figure 5.8 shows an example of a decision tree. The Q's in the �gure represents
the questions that is to be asked at the nodes and the D's represents the deci-
sions.
The challenge of decision trees is to choose the best split, which is where the

Figure 5.8: An example of a TREE where Q1 refers to question 1, Q2 to
question 2 ans so on. Figure from [6].

result of splitting has the consequence of a leaf node. A measure of how good
a split is, is the measure of impurity. Among the impurity measures are the
Entropy and the Gini impurity, given by equation (5.26) and (5.27).

Entropy(t) = −
c∑
i=1

p(i|t) log2 p(i|t) (5.26)

Gini(t) = 1−
c∑
i=1

(p(i|t))2 (5.27)
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In equation (5.26) and (5.27) i = {1, 2, ..., c} where c is the number of classes
and p(i|t) is the fraction of objects belonging to class i. For a possible number
of splits for a given node, the measure of impurity should be calculated for each
of the splits. Considering a node and a proposed split the impurity should be
calculated for the node, and each of the two branches. After this, the weighted
average impurity should be calculated. The split with the lowest weighted av-
erage impurity should be chosen. The weighted impurity gain can be seen in
(5.28).

∆impurity = I(node)−
k∑
j=1

N(vj)

N
I(vj) (5.28)

In (5.28), I(node) is the impurity measure of the node, I(vj) the impurity mea-
sure for the branch vj , N(vj) the number of observation falling in vj and N the
total number of observations in the node. The created decision tree, based on
the training set, is a description of the data and this tree can therefore be used
as an input for decision making.
As mentioned, the Hunts algorithm continues splitting until each node is pure.
This has the disadvantage of creating very complex models and sometimes this
further results in an over-�tted model. To avoid over-�tting, pruning can be ap-
plied. Pruning is a technique where smaller parts of the tree can be removed if
these parts only contribute minimally in the �nal outcome of the classi�er. The
complexity of the tree is thereby reduced and the predictability of the model
should have increased, due to the removal of the over-�tted part. Another
method to avoid over-�tting and thereby very complex trees is by controlling
the number of observations in each node as a stop criteria for splitting. By
doing this, no split is proposed if the number of observations in a node is lower
than the given number.

5.4.4 Multinomial Regression

The multinomial logistic regression is an expansion of the binomial logistic re-
gression model and is used for classi�cation problems with more than two pos-
sible outcomes (classes). It has its basis in the generalized linear model and is
thereby the only linear classi�er out of the �ve tested in the problem of speaker
identi�cation. The following description of MNR is inspired by [13].
In general, for a two-class classi�cation problem the posterior probabilities are
given by Bayes theorem, as seen in the following equation, (5.29).

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1

1 + exp(−a)
(5.29)

C refers here to the class (1 or 2) and x is the data set. The last expression in
(5.29) corresponds to the logistic sigmoid function, where a is de�ned in (5.30).
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a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(5.30)

Expansion to a multi-class problem is a generalization of Bayes theorem, as seen
in (5.31).

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(5.31)

Here Ck corresponds to class k. The quantities ak are de�ned as in (5.32).

ak = ln(p(x|Ck)p(Ck)) (5.32)

The last expression in (5.31) is called the normalized exponential or the softmax
function.
For logistic regression, the logistic sigmoid shown in (5.29) is applied in the two-
class case to obtain the posterior probabilities, whereas the softmax function
from (5.31) provides the posterior probabilities in the multi-class case. The
logistic sigmoid and the softmax function are also referred to as the activation
functions of the models. The activations ak are then the input to the activation
function and is in the two-class case of logistic regression given by (5.33) and in
the multi-class case as (5.34).

a = wTΦ (5.33)

ak = wT
k Φ (5.34)

Here wk is the parameter vector, that is to be determined and Φ = Φ(x) is
the feature vector, where Φ(·) is a vector of �xed basis functions making a non-
linear transformation of the data set x. In both cases, (5.33) and (5.34), the
activations are therefore linear functions of the feature vector, but non-linear in
the original data space.
By applying the activation functions on the above-mentioned activations, the
posterior probabilities of each observation belonging to each of the K classes
is obtained. The multinomial logistic regression approach is known as the one-
against-the-rest strategy because the methods evaluates K classi�ers that each
estimates the probability of a speci�c data point belonging to class k against
the other K − 1 classes.
Before the posterior probabilities of the test set can be determined, the param-
eter vector wk of the model is to be estimated, which is done by minimizing the
negative log likelihood or also referred to as the error function of the classi�ca-
tion problem, given by (5.35).

E(w1, ...,wK) = −
N∑
n=1

K∑
k=1

tnk ln ynk (5.35)

In (5.35) wk refers to the model parameters for model k where k = 1, 2, ...,K
as already mentioned is the classes in the problem. tnk is the target vector
expressing if the observation xn belongs to class k by addressing it the value 1 if
it belongs to the particular class and 0 if not. The term ynk = yk(φn) represents
the softmax transformation of the activations for observation xn, because the
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posterior probability from (5.31) is expressed as (5.36) when it is a function of
the �xed basis functions φ.

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(5.36)

Minimizing the error function and thereby estimating the parameters w of theK
models, corresponds to taking the gradient of the error function with respect to
the parameters. Due to the non-linearity of the softmax function, an analytical
solution to this is not obtainable, [13]. Thus, iterative optimization must be
applied. Many di�erent algorithms have been proposed to solve the problem
where most of them applies a scheme as in (5.37).

wτ+1 = wτ + ∆wτ (5.37)

The new parameter wτ+1 is calculated by a sum of the old parameter wτ and
a weight step term ∆wτ , where τ represents the iteration step. To start the
iterative approach in order to �nd the parameter w that minimizes the error
function in (5.35), an initial value w0 should be chosen. This initial value is
then moved in a direction determined by the term ∆wτ . The result of this
becomes the new value of the parameter wτ+1 and the process continues until
some given number of iterations is reached or until no further reduction in the
error function is obtained.
Many iterative algorithms integrates the gradient information of the error func-
tion into the method, including the one used in the MNR problem applied in
this thesis. This method is referred to as the IRLS method.

5.4.5 Arti�cial Neural Network

An arti�cial neural network consists of di�erent layers of arti�cial neurons, where
the communication in the network takes place through these neurons. An ex-
ample of a neural network with one hidden layer is given in �gure 5.9. From the
�gure it can be seen that the neural network consists of inputs, represented by
x's, hidden units represented by z's and outputs represented by y's. The input
units send information to the hidden units and the information is then send to
the output units. The network shown is said to have one hidden layer and a
total of two layers which is due to the weights between the input and hidden
layer and between the hidden layer and the output. The weights are represented
by w's in the �gure.
Mathematically, a neural network is build up of a �xed number of basis func-
tions where the basis functions are adaptive in the case of their parameters. To
build a neural network corresponding to the one in �gure 5.9, M linear combi-
nations of the inputs, x = (x1, ...xD)T are to be constructed, see equation (5.38)
.

aj =

D∑
i=0

w
(1)
ji xi, x0 ≡ 1 (5.38)
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Figure 5.9: Neural network with one hidden layer, �gure from [13].

In (5.38) j = 1, ...M and represents the M linear combinations of the inputs
whereas the i represents the i'th dimension of the input data x. The wj0 acts
as a bias of the weights, and the wji are the weights of each of the inputs and
the subscript (1) refers to the layer where the weight are present, here layer 1.
To obtain the j'th output of the hidden units, a non-linear activation function
is applied which is represented as g(·) in (5.40).

zj = g(aj) (5.39)

= g

( D∑
i=0

w
(1)
ji xi

)
, x0 ≡ 1 (5.40)

The non-linear activation function g(·) should be chosen with respect to the
given data set and most often is a logistic sigmoid or a hyperbolic tangent (tanh).
To obtain the k'th output of the neural network, another linear combination is
constructed, now for the zj 's and a new activation function is applied, as in
equation (5.41).

yk = h

( M∑
j=0

w
(2)
kj zj

)
, z0 ≡ 1 (5.41)

Equation (5.42) gathers (5.40) and (5.41) to obtain the total output of the neural
network.

yk = h

( M∑
j=0

w
(2)
kj g

( D∑
i=0

w
(1)
ji xi

))
, x0 ≡ 1 z0 ≡ 1 (5.42)

Here it should be noted that the output of the neural network in (5.42) can also
be expressed as the non-linear activation function h(·) working on the activation
ak, as yk = h(ak). Hereby ak is given by (5.43).

ak =

M∑
j=0

w
(2)
kj g

( D∑
i=0

w
(1)
ji xi

)
, x0 ≡ 1 z0 ≡ 1 (5.43)
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As mentioned, the basis functions in the neural network are adaptive during
the training phase of the neural network. This means that the parameters,
w, are optimized during the training phase. The way to estimate and update
the parameters are by minimizing the error function given in (5.44) assuming a
training set of input vectors xn, n = 1, ...N with corresponding target vectors
tkn given. tkn is the target vector expressing if the observation xn belongs to
class k by addressing it the value 1 if it belongs to the particular class and 0
otherwise. The training set is collectively called D = {xn, tkn}.

ED(w, β) = −
N∑
n=1

c∑
k=1

tkn ln yk(xn,w) (5.44)

In (5.44), the coe�cient β will be explained later. The task is to �nd a set
of parameters, w, that minimizes the error function. The point at which the
error function reaches its minimum is where the gradient of the error function
is equal to zero. Since no analytical solution to the problem can be found,
the way to solve the problem is through an iterative approach. The general
iterative optimization scheme was explained in section 5.4.4 and as mentioned
there, many di�erent algorithms have been proposed to solve the parameter
optimization problem. The algorithm applied in this thesis for the ANN uses
the BFGS algorithm for the optimization of the parameters (weights).
The speaker identi�cation is a four-class problem, where the softmax function
is used for classi�cation. This is given by the last term in equation (5.31) under
multinomial regression. This means that the activation function h(·) in (5.41)
and (5.42) represents the softmax function. The softmax function as described
in section 5.4.4 provides the posterior probabilities in the multi-class case.
In the ANN algorithm considered in this thesis, a modi�ed version of the softmax
function has been used. The modi�ed version of the softmax includes the output
from c− 1 classes with c being the number of classes, and is given by (5.45).

p0(Ck|x) =
exp(ak(x))

1 +
∑c−1
k=1 ak′(x)

(5.45)

The posterior probability for the remaining class c, is then given by (5.46).

p0(Cc|x) = 1−
c−1∑
k=1

p0(Ck|x) (5.46)

The annotation p0(Cc|x) with subscript 0 will be described later. The choice of
this modi�ed version of the softmax function is due to problems of evaluating
the inverse Hessian matrix if the original softmax as shown in (5.31) was used.
The evaluation of the inverse Hessian matrix takes place in the BFGS algorithm
when updating the parameters as described later.
The ANN algorithm used in this thesis incorporates an outlier algorithm, [60].
The outlier algorithm aims at controlling random label noise by introducing an
estimate of the outlier probability. What is meant by random label noise is that
a target class label could erroneously have been assigned to another class than
it actually belongs to. If this was the case, this data point would deteriorate
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the modelling of the true class. [60] introduced the parameter epsilon = [0, 1]
which represents the probability of assigning with random target label. A for-
mulation of the posterior probability p(Cl|x) therefore includes the probability
of assigning with random target labels as given by (5.47).

p(Cl|x) = p0(Cl|x)(1− ε) +
ε

c− 1

c∑
k=1,k 6=l

p0(Ck|x) (5.47)

In (5.47) p0(Cl|x) is the posterior probability of the data x belonging to the class
Cl with zero outlier probability. (1− ε) represent the prior probability that x is
not an outlier. The �rst term in (5.47) therefore represents the probability that
x is not an outlier. The second term is the outlier contribution coming from
classes other than Cl. (5.47) can be reduced to (5.49) by introducing the scaling
of the outlier probability given by (5.48), where β is de�ned in the interval
β = [0; 1

c−1 ].

β =
ε

c− 1
(5.48)

p(Cl|x) = p0(Cl|x)(1− βc) + β (5.49)

In order to control the weight parameters, a regularization term is added to
the error function with one regularization parameter for each weight, with the
approach from [38], [39] and [40]. When the regularization term is added to
the error function in (5.44), the error function to be minimized is on the form
(5.50).

ẼD(w) = ED(w, β) +
α

2

∑
i

w2
i (5.50)

In (5.50) the weight decay term α
2

∑
i w

2
i acts as a regularization parameter for

the weights. In this way the weight parameters prevent the model in over-�tting
to the data and thereby to noise if present in data. The reason for this is to
obtain a generalized model that provides the most optimal error rate.
The value of α should be chosen in a way such that it does not restrict the
weights too much, but not too little either. If α for example is chosen too small,
the weights may get too large which results in an over-�t to the training data
and vice versa if chosen too big. MacKay [40] uses a Bayesian framework for
the updating of the weights w where the decay parameter α and scaled outlier
probability β, collectively called hyper parameters, are assumed given. The
posterior probability of the weights w can be seen in (5.51).

p(w|D, α, β) =
p(D|w, β)p(w|α)

p(D|α, β)
(5.51)

In (5.51) p(D|w, β) represents the likelihood and is given by (5.52) where ED(w, β)
can be seen in (5.50).

p(D|w, β) = exp[−ED(w, β)] (5.52)
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Further in (5.51) p(w|α) represents the prior and p(D|α, β) is called the evidence.
The prior is a zero mean Gaussian prior and is given by (5.53).

p(w|α) =
exp(−α

2

∑
i w

2
i )∫

exp(−α
2

∑
i w

2
i )dw

(5.53)

The optimization of the parameters is then carried out by minimizing the error
function given in (5.50). Here, as mentioned, the BFGS algorithm is used, that
applies a Gauss-Newton scheme for the approximation of the Hessian matrix.
The optimization of the parameters in order to minimize the error function can
be seen in (5.54).

wτ+1 = wτ + ηA−1(wτ )g(wτ ) (5.54)

In (5.54) η is the step size, determined by a line search algorithm. A is the Gaus-
Newton approximation to the Hessian matrix and g(w) is the gradient of the
error function (5.50) taken with respect to the weights. When the weights have
converged, the parameters α and β should be updated. This process should
be continued until α and β have converged as well. For more details on the
updating of the hyper parameters see [60].

5.5 Model Evaluation

When applying a classi�er, an essential thing is the evaluation of the perfor-
mance of that given classi�er. The question that arises is; what is a good
performance? The error rate of the classi�er reveals how many wrong decisions
the classi�er makes, when comparing the estimated class vector to the true class
vector. If more classi�ers are applied, the error rate of these can be compared if
the training and test set remains the same for the respective models. Naturally,
the performance of the classi�er should be better than the outcome of assigning
the observations in the test set randomly, called the by-chance error rate. The
by-chance error rate depends on number of classes as well as the number of
observations in each class. It is described more thoroughly in section 5.5.1.
To ensure a generalizable model di�erent approaches can be used, depending,
amongst other, on the data size. This is described in section 5.5.2.
As explained in section 5.3, di�erent features have been extracted that are to be
used as input to the classi�ers presented in section 5.4. The numerous features
selected for a given model may not be the most optimal and in the evaluation
of the model performance, testing di�erent feature combinations are therefore
an essential part. This is described in section 5.5.3.3 together with the concept
of combining the outcome from di�erent models.
Two microphones are used in the recording session, meaning that two signals are
available in the speaker recognition task. Combining the information from these
could possibly boost the performance of the classi�er. The aspect of combining
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the channels is also described in section 5.5.3.3 and rounds o� this section on
model evaluation.

5.5.1 Data Imbalance

The by-chance error rate is, as mentioned in the introduction to this section,
the error rate obtained by assigning each observation randomly if the class pro-
portions are equal (balanced data set). If, for instance, the problem considered
involved two classes and the class proportions were equal, the by-chance error
rate would be 50 %.
When the class proportions are unequal, corresponding to an imbalanced data
set, the by-chance error rate is more tricky to estimate. It can be estimated by
assigning the observations according to the prior probabilities in two ways. One
is to assign all observations to the class with the highest prior probability, as
for example with two classes with a prior probability for class A of 40 % and of
60 % for class B. This gives a by-chance error rate of 40 % if all observations
are assigned to class B.
The other method is more practical. For two classes with prior probability as
above, 40 % of all the observations is ascribed to class A and 60 % of all obser-
vations to class B. This would result in an error rate of 1−0.602−0.402 = 48%.
From this example it is clearly seen that the class proportions as well as the
number of classes in the problem has an in�uence on the error rate. The way
in which the classi�er ascribes the observations depend on the speci�c classi�er
and data set. The by-chance comparison error rate for imbalanced data sets
should therefore be accompanied by an analysis of the confusion matrix, which
is a matrix where the rows represents the actual classes and the columns the
predicted classes. In the case of the speaker identi�cation problem this would
result in a 4× 4 confusion matrix. The matrix could, for example, reveal if the
model is capable of �tting all the classes to some degree or if the model �ts two
classes perfectly but not the remaining two. This is discussed in detail in section
9.1.2.
In the case investigated during this thesis, the number of classes is four. If it is
assumed that each class has an equal proportion of observations, meaning that
the four prior probabilities are equal, the by-chance error rate is be 75 %. If the
class proportions on the other hand are unequal, the by-chance error rate would
be as seen in equation (5.55), shown for four classes where Nc is the number of
observations in class c and N is the total number of observations.

Errorrate = 1−
((N1

N

)2
+
(N2

N

)2
+
(N3

N

)2
+
(N4

N

)2)
(5.55)

Equation (5.55) is general in that more classes easily can be included.
With the number of observations given in table 5.2 for the window size of 150 ms,
this results in an error rate of 67%, see (5.56). This error rate is obtained if the
classi�er simply assigns each new observation to one of the classes according to
their prior probability only. The error rate obtained from the applied classi�ers
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should therefore be lower than 67% to be better than random.

Errorrate = 1−
(( 5849

59376

)2
+
(18788

59376

)2
+
( 7735

59376

)2
+
(27004

59376

)2)
= 67% (5.56)

An important note to the above discussion on imbalanced data sets, is that the
class imbalance proportion should be generalizable to the entire data set. That
is, the amount of segments where, for instance, the mother is speaking, should
be more or less the same across dyads. If this is not the case, the class priors
calculated based on the training set only, will di�er from the class priors of the
test set and the classi�cation is in risk of being degraded.
In table 5.4, the prior probabilities for each class in the training as well as the
test set are shown. From the table it is seen that the class priors of the training
and the test set are not completely identical. But what is also seen is that the
classes mother and no one in both cases has the largest prior as well as the
classes child and both has the smallest priors. Due to the fact that this is in
evidence, it is assumed that the priors of the training set represents the general
prior distribution over classes.

Class Prior-train Prior-test

Child 10 % 3 %

Mother 32 % 44 %

Both 13 % 2 %

No one 45 % 51 %

Table 5.4: The prior probabilities for the training set consisting of 14 dyads
and the test set consisting of 1 dyad.

5.5.2 Generalizing the Model

To obtain a generalizable error rate, the k fold cross-validation method could
be applied. In k-fold cross-validation the data set is split into k pieces where
the k − 1 pieces are used as a training set and the last piece is used as a test
set. An illustration of this can be seen in �gure 5.10 for k = 4.
The partitioning is made for k di�erent combinations where each observation
is only used in the test set once, leaving the observation as training point k− 1
times. The advantage of this method is that the error rate is evaluated over the
entire data set and the error rate thereby gives a generalized illustration of the
model performance. The drawback of the cross-validation method is that the
computations necessary increase since k number of models are to be �tted, [13].
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Figure 5.10: The concepts of k-fold cross-validation shown here for k = 4.
Figure from [13].

In this thesis it would mean that a 15-fold cross validation should be applied,
since the data set consists of 15 dyads. Each dyad should be used as test set
once and as training set 14 times. Due to the size of the entire data set, see
table 5.2, it is, based on [13], chosen not to perform this 15-fold cross validation.
Instead a generalized model is generated based on 14 dyads which is tested us-
ing one dyad as a test set only, thus the hold-out method is applied. With this
approach, the purpose of the model would be ful�lled since the goal is to make
a model that Babylab can use on future data sets.

5.5.3 Boosting Performance

When constructing a classi�er, di�erent methods can be used in order to boost
the performance of that given classi�er. Three di�erent approaches have been
applied that are described in the following.

5.5.3.1 Combining Models

One way to boost the performance of a classi�er is to combine the outcome of
a given number of classi�ers, to take advantage of the information from di�er-
ent sources. There are two ways in which this can be carried out. The �rst is
the combinations of the investigated classi�cation methods, here GMM, KNN,
decision tree, MNR and ANN. The idea is that if the errors of the classi�ers
are independent of each other, then one classi�er would make one type of er-
rors whereas another classi�er makes another type of errors. If the outcome of
these classi�ers are combined the performance would be boosted. The second
approach to combine models, is by �xing the classi�cation method and di�eren-
tiating the classi�ers through their features. This kind of model combination has
actually been investigated in some studies on the speaker identi�cation problem
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and these results are promising, [42].
The results of this test can be seen in section 9.1.3.

5.5.3.2 Window Predictability

One of the advantages of testing several window sizes, as explained in section
5.2, is that sub-window predictability can be investigated. The thought is that
an improvement in error rate is possible by using the output of smaller windows
in the prediction of larger windows. This is done by performing a majority
voting of the outcome of the smaller windows. For example, the majority of 3
consecutive 50 ms windows can be used to decide the outcome of one 150 ms
window. Figure 5.11 illustrates this.
The �gure shows a situation where the outcome of the majority voting results

Figure 5.11: The outcome of the classi�er at 50 ms shown at the top of the
�gure can be used in the prediction of the 150 ms outcome. In
this example the outcome of the majority vote is class 1, as shown
in the bottom of the �gure.

in the class label 1 of the 150 ms window. By applying this method for all the
observations for the sub-window size, the error rate calculated from these can be
compared to the error rate obtained from the classi�er with the larger window
size.
This procedure is tested in section 9.1.4.

5.5.3.3 Combining Channels

The speaker identi�cation problem investigated in this thesis, includes two mi-
crophones. The classi�er performance has been investigated for each channel
separately. To take advantage of the information from both recordings, a combi-
nation of the two channels, with the purpose of boosting classi�er performance,
has been carried out on the basis of the results in [37].
As mentioned in section 5.1, the speech signal is divided into quasi-stationary
smaller segments. The outcome of the classi�ers therefore represents the state
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or class of each segment. In [37] the outcome of the classi�ers for each micro-
phone (there are three) are gathered into one single classi�cation label through
a majority voting. Since only two microphones are available in the case of
mother/child speaker identi�cation, it is di�cult to make this majority voting.
To overcome this, the voting is performed by exploiting the appertaining smaller
window sizes, see section 5.2.
For instance, when the two channels with a window size of 150 ms are classi�ed,
the estimated class labels for each channel are compared. If the class labels for
the 150 ms time window are equal, this label represents the label of the com-
bined channels for this time window. That is, no majority voting takes place.
If, on the other hand, the outcome of the two channels are unequal, as in �gure
5.12, a majority voting of the appertaining six 50 ms windows is performed.
In �gure 5.12 the large rectangles represents the 150 ms windows whereas the
smaller rectangles represents the 50 ms windows. As seen in the �gure the class
label of the 150 ms window is ascribed class 1 since the majority of the six 50
ms windows are ascribed by the classi�ers to class 1.
In the case considered in this thesis it is expected that the signal from the

Figure 5.12: The outcome of the classi�ers for channel 1 and 2 respectively
represented both for the windows of 150 ms (large rectangles)
and 50 ms (small rectangles). If the two outcomes of the 150 ms
segments are unequal a majority voting of the smaller segments
takes place.

mothers channel would result in the best performance due to the fact that the
signal from the child's microphone in general is more noisy. The child makes
a lot of sudden movements and this results in scratching and thereby noise in
the microphone. On the other hand, the child's voice is of course lower in the
microphone of the mother due to the distance between them. The outcome of
the classi�er from the mother's microphone would, as a consequence of this, pos-
sibly have di�culty in classifying when the child is speaking. The combination
of the outcome from the classi�ers from each channel therefore might contribute
in a boosting of the performance in this case as well as in [37].
The test results obtained from this method are given in section 9.1.5.
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Chapter 6

Emotion Recognition

As well as identifying the speaker, which was the focus of chapter 5, it is of great
interest to the psychologists at Babylab to determine the child's emotional state.
This is done at Babylab by manually annotating the child's spoken utterances
as being either protests or not, see table 6.1.
Due to the numerous possibilities in many human-machine interactions, such as

Class Class de�nition

1 Protest

2 No protest

Table 6.1: The class de�nitions for emotion recognition.

applications where the speaker's emotional state determines the response given
by the system, [49], as well as for diagnostic purposes, [20], emotion recognition
is a popular subject within the area of pattern recognition and machine learning.
Many studies have been carried out with the aim of discovering the composition
of classi�er and features that provides the lowest error rate - and thereby the
best emotion recognizer - for the given emotion database. These databases in-
clude both acted and natural emotional utterances as well as utterances spoken
in di�erent languages (see [17] for a thorough description of several emotion
databases).
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The emotions to be classi�ed are usually the six archetypal emotions of joy,
anger, sadness, fear, disgust and surprise, [48], [58], [16]. For these emotions,
especially pitch, energy and speaking rate are used as features in the classi�er.
Furthermore, spectral features such as MFCC and LPCC are included in many
studies as well, [32], [59].
Among the articles that focus their work on real-life emotions are [36], [59] and
[62]. None of these studies base their emotion recognition on the same classi-
�er method, and this is also the general image in the emotion recognition area:
the best classi�er is not a speci�c one, but is dependent on the data set to
be analysed. The classi�ers applied in the aforementioned studies are linear
discriminant classi�cation, K-nearest neighbours, arti�cial neural networks and
hidden markov models (HMM), but also the classi�ers support vector machine
and decision tree have been applied in emotion recognition tasks.
In this thesis it has been chosen to work with the HMM classi�er. HMM is used
in many speech applications and likewise in many emotion classi�cations, [48],
[14], [32], [58], [17].
Details on the preprocessing of the sound signal before classi�cation is described
in section 6.1. The choice of features will be explained in the subsequent section
6.2, while details on the chosen classi�er will be given in section 6.3. In the last
section 6.4 the model optimization will be discussed.

6.1 Preprocessing

At Babylab the emotional states of the child have been annotated manually as
either protest or not protest based on the sound signal. As was explained in
chapter 5, the entire speech signal has been annotated into the four classes, child
speaking, mother speaking, both speaking or no one speaking. By extracting
the intervals where the child is speaking, the new signal only consists of the two
classes protest and no protest. This information can then be used as the ground
truth.
When applying HMM, the temporal changes in the signal is accounted for by the
model, which is why time segments of a certain length must be extracted. Since
not one speci�c approach is used for all HMM emotion classi�cation problems,
it is in this thesis assumed that one emotional utterance is given by the child
within 100 ms. This is assumed to be valid because the speaker is a 4 months
old infant and is therefore not able to say any words or sentences. Only short
sounds constitute the emotions that both the mother and the manual coder are
able to assess. Likewise it is assumed that the HMM can capture the variations
in the utterances.
Since the precision of the ground truth annotations is 10 ms, this window size is
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chosen to be the smaller segment from which the feature vectors are extracted.
I.e. one emotional utterance consists of 10 smaller segments from which the
temporal changes are modelled by the HMM. The details on the HMM is given in
section 6.3. Figures 6.1(a) and 6.1(b) illustrate spectrograms of 100 ms duration
of the sound signal, where the child is in protest and not in protest, respectively.
It should be noted, as for the spectrograms of the speaker identi�cation task,
�gure 5.4, that only the frequencies up to 7000 Hz are shown because it is
assumed that most of the frequency content lies in this area.
From the �gures it is clear that there is a di�erence in spectral content when the

Figure 6.1: Spectrogram of 100 ms of the sound signal during an utterance of
the child annotated by Babylab as (a) being protest and (b) not
protest.

child is in protest and is not in protest, respectively. Based on visual inspection
on several spectrograms of the child's emotional state, this seems to be the
general picture. From the spectral features alone, the possibility of separating
the two emotional states therefore appear achievable.
The emotion classi�cation is based on 11 dyads, for all of which the ground
truth is available. 10 dyads are used as training set and one as test set. The
amount of sequences of 100 ms and of feature vectors of 10 ms are shown in
table 6.2 for the training set.

Class Number of sequences Number of feature vectors

Protest 5212 52120

No protest 2355 23550

Table 6.2: The amount of data available in the training set.
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6.2 Feature Extraction

As mentioned in the introduction to this chapter, the emotional states usually
implemented as classes in an emotion recognition task are joy, anger, sadness,
fear, disgust and surprise. Energy, pitch, zcr and MFCC have all been applied
as features in these classi�cation problems. For both speech and speaker recog-
nition purposes, the delta and delta-delta cepstral coe�cients are used as well.
One article was found that investigated the classi�cation of negative versus not-
negative utterances in adults. Here energy and pitch was used as features, [36].
Since no articles have been found that focus their emotion recognition on the ut-
terances of infants, the feature choices here are based on the available literature.
Energy, zcr, MFCC and delta-MFCC are therefore all included as features in the
emotion recognition performed in this thesis, but since they were all explained
in detail in the chapter on speaker recognition, 5, section 5.3, these features will
not be discussed here.

The pitch feature represents a quality of the signal that is related to fundamen-
tal frequency, see 5.1 for an explanation on fundamental frequency. Pitch is
not a physical quantity of a sound signal, but is instead related to the human
sensation of perceiving sounds, [50]. Often the pitch of a sound is confused with
the fundamental frequency of a sound, and therefore the pitch estimation of a
sound is actually estimation of the fundamental frequency.
As was discussed brie�y in section 5.3 regarding zcr, a di�erence exists in the
speech produced by voiced and unvoiced speech. Pitch and fundamental fre-
quency is related only to voiced speech, since the vibration of the vocal cords
de�nes the frequency. In many of the articles already mentioned regarding emo-
tion recognition, the unvoiced regions of the speech are removed before classi�-
cation is performed. Since the purpose of the emotion recognition is to be able
to identify all of the child's utterances as either being protests or not, the pitch
feature will therefore not be included in the emotion classi�cation in this thesis.
The combination of features that are included in this classi�cation problem are
therefore the above mentioned which are gathered in table 6.3.
In the speaker identi�cation chapter, the features were normalized based on
the multiple dyad set-up. In emotion recognition in general, not one approach
is used regarding features, in spite of the often used multiple talker-scenario.
Some studies extract statistical measures, such as mean and standard deviation
of each feature, [36], whereas others apply not-normalized features that repre-
sent an instantaneous short time segment, [48].
In the emotion recognition set-up used in this thesis it is chosen to apply the
raw instantaneous features and thereby not normalize.
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Features Representation of each time window

MFCC's Representation of speci�c qualities of the sound sig-
nal extracted from the Mel frequency spectrum

delta-MFCC's Di�erence in MFFC between two consecutive win-
dows

Zero-Crossing Rate The rate of the times the sound signal crosses the
x-axis

Energy The total energy

Table 6.3: Selected features for the emotion classi�cation followed by a short
description.

6.3 Classi�cation

The HMM classi�er takes, as mentioned in section 6.1, the temporal changes of a
speech segment into consideration. This is useful in dealing with speech signals
where the acoustics properties vary over time and are not always independent
of each other.
The idea of the HMM is based on Markov chains, in which an observation is de-
pendent on the previous x observations. The usual assumption of independent
and identically distributed observations, that is ful�lled if all observations are
drawn from the same probability distribution and are independent from each
other, is therefore not given with these models.
The HMM introduces discrete latent variables, also referred to as states, where
transition probabilities describe the moving between states. Furthermore, emis-
sions are introduced, which describes the probability of causing each possible
observation from each state. An example of a HMM is shown in �gure 6.2, from
[7]. As explained in the caption of �gure 6.2, three states and four observa-
tions are included in this model. The a's represent the transition probabilities,
whereas the b's represent the emission probabilities. For instance, the probabil-
ity of moving from state 1 to 2 is equal to a12, moving from state 2 to 1 is equal
to a21, etc. If a transition probability is not shown in the �gure, it is equal to
zero. This is the case for a11, a22, a33, a13, a31 and a32 which means that these
transitions do not occur.
The transition matrix will in this case appear as (6.1).

A =


0 a12 0

a21 0 a23

0 0 0

 (6.1)
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Figure 6.2: Example of an HMM. Here three states and four observations are
included in the model. The a's represent the transition proba-
bilities, whereas the b's represent the emission probabilities. For
instance is the probability of moving from state 1 to 2 equal to
a12, etc. If a transition probability is not shown in the �gure, it is
equal to zero. This is the case for a13, a31 and a32 which means
that the transitions from state 1 to state 3, state 3 to state 1 and
state 3 to state 2 never occurs. Also the transitions from a state to
the same state also never occurs in this example. These transition
probabilities, a11, a22 and a33, are therefore equal to zero. Figure
modi�ed from [7].

The corresponding emission matrix will for the same example be written as
(6.2).

B =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

 (6.2)

From the above example it is clear that the transition and emission probabilities
will vary according to the data set to be modelled.
In addition to the transition and emission probabilities, the HMM introduces the
initial state probabilities that determines in which state the HMM is initiated. If
S is the total number of states and K is the size of the codebook, the transition
probability matrix, described by A, has a size of S×S. The emission probability
matrix, B, has a size of S×K and the initial state probability vector, π, a length
of S. The parameters of the HMM model are represented by λ as in (6.3).

λ = (A,B, π) (6.3)

A restriction of the transition and emission matrices is that each row must sum
to 1. This is due to the �nite and �xed number of states and observations in-
dicating that the possible moves are con�ned between states and likewise from
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state to observation.

The approach used in this thesis is isolated emotion recognition through dis-
crete HMM. Here two models are estimated; one for each of the two emotions,
based on their separate training set observations. For every observation in the
test set the likelihood of the sequence given each of the two estimated models is
calculated. The sequence is ascribed to the model, and thereby emotion, with
the highest likelihood.
As explained in section 6.1, ten feature vectors, i.e. 10 observations of 10 ms
duration each, constitute one emotional sequence. Each feature vector in the
total training set, corresponding to 10 times the total number of sequences rep-
resenting both emotions, are used in the estimation of one common codebook.
This is obtained through the use of the K-means algorithm and has the purpose
of representing the observations through a �nite number of clusters in order to
reduce the complexity of the model.
The K-means algorithm performs a partitioning of the feature vectors into K
clusters. For this, the distortion measure J is a useful guideline of how well the
clusters represent the observations. This is shown in equation 6.4, from [13].

J =

N∑
n=1

K∑
k=1

jnk||on − µk||
2 (6.4)

Here, N is the total number of observations, K the total number of clusters, on
the n'th observation and µk the cluster center of the k'th cluster. jnk is 1 for the
value of k with which the squared distance measure ||on − µk||2 is minimized.
For all other k's jnk is 0. This can also be expressed mathematically, as in 6.5.
From [13].

jnk =

 1 if k = arg minj ||on − µj ||2

0 otherwise
(6.5)

The minimized J corresponds to the cluster composition that represents the
data set in the best possible way. To obtain this expression, the EM-algorithm
is applied. As was explained in section 5.4.1 related to the GMM, the approach
of this algorithm is to iteratively obtain the values of jnk and µk that minimizes
J . The cluster centres, µk, are initiated randomly and �xed, while the jnk is
estimated through minimization of J . Next, the estimated jnk is �xed while J
is now minimized with respect to µk. This is repeated until J has converged or
until the maximum number of iterations is reached.

With this procedure, the global HMM codebook is obtained, consisting of K
cluster centres. The next step is to quantize all sequences in the training set for
the estimation of the two emotional models. For each sequence, each observa-
tion is quantized by assigning it to the cluster to which the distance between the
observation itself and the cluster center is the smallest. The output is therefore
a series of sequences, in which each observation takes on a value from 1 to K
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depending on the cluster assignment.
From the quantized training sequences, two HMM models are estimated; one
based on the training set of the emotion protest and one on the emotion no
protest. The forward-backward algorithm (f-b algorithm) is used for this. Here,
the goal is, through a special case of the iterative EM-algorithm, to maximize
the likelihood of the quantized training sequences O given the model λ, that
is P (O|λ), in order to obtain a reliable model estimate that can predict the
emotions of the test set. The optimal models are found when the likelihood has
converged or the maximum number of iterations has been reached.

The f-b algorithm consists of two passes; the forward pass and the backward
pass. In general, the forward pass, denoted α(o1:t, i), is used to calculate
the joint probability of the model having generated the observation sequence,
O = o1, o2, ..., ot and having arrived at state si at time t, where i = 1, 2, ..., S
indicates the state and where t = 1, 2, ..., T with T being the number of ob-
servations in each sequence.. In mathematical terms this is written as (6.6).

α(o1:t, i) = P (o1, o2, ..., ot, qt = si|λ) (6.6)

Here, the qt refers to the state at time t of the state sequence Q = q1, q2, ..., qt.
The backward pass, referred to as β(ot+1:T , i), is applied for calculating the
probability of having the observation sequence O = ot+1, ot+2, ..., oT given the
state si at time t and the model λ. This is shown in (6.7).

β(ot+1:T |i) = P (ot+1, ot+2, ..., oT |qt = si, λ) (6.7)

The approach for obtaining αT and βT , i.e. the forward and backward passes
for the entire observation sequence O, is based on recursion, meaning that the
result from α1 is used to estimate α2 and so on, and likewise for β.
To estimate the α and β parameters for each time instant t of the entire sequence,
(6.8) and (6.9), respectively, are used. From [51].

α(ot, j) =

S∑
i=1

aijα(ot−1, i)b(ot|j), α(o1, i) = πib(o1|i) (6.8)

β(ot+1|j) =

S∑
i=1

ajiβ(ot+2|i)b(ot+2|i), β(oT+1|j) = 1 (6.9)

The α and β parameters are scaled to avoid numerical problems. This is done
through the use of (6.10) by multiplying it with (6.8) and (6.9), respectively, for

each time instant of the sequence O. Hereby α̂ and β̂ are obtained. From [23].

ct =

( S∑
i=1

α(ot, i)

)−1

(6.10)

As observed in (6.8) and (6.9), the parameters of the model are part of the f-b
pass calculations. To maximize the likelihood P (O|λ), these parameters should
be adjusted. This is done iteratively, through the use of the following updating
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rules for the elements of A, (6.11), B, (6.12), and π, (6.13). Modi�ed from [23].

āij =

∑L
l=1

∑Tl−1
t=1 aijα̂

(l)(ot, j)b(ot+1|i)β̂(l)(ot+2|i)∑L
l=1

∑Tl−1
t=1 α̂(l)(ot, j)β̂(l)(ot+1|j)/c(l)t

(6.11)

b̄jk =

∑L
l=1

∑Tl
ot=k,t=1 α̂

(l)(ot, j)β̂
(l)(o

Tl
t+1|j)/c

(l)
t∑L

l=1
1

P (o(l)|λ)

∑Tl
t=1 α̂

(l)(ot, j)β̂(l)(o
Tl
t+1|j)/c

(l)
t

(6.12)

π̄i(1) = P (s1 = i) =
1

L

L∑
l=1

α̂(l)(o1, i)β̂
(l)(o2|i)

c
(l)
1

(6.13)

The updates in (6.11), (6.12) and (6.13) are given for the case of isolated HMM
for multiple training sequences, which is denoted by l = 1, 2, ..., L.

For each iteration, the likelihood is calculated as the sum of (6.6) with respect
to i. This is shown in (6.14).

P (O|λ) =

S∑
i=1

α(o1:T , i) =

( T∏
τ=1

cτ

)−1

(6.14)

The likelihood in (6.14) is converted into the log-likelihood in (6.15), to avoid
numerical problems.

logP (O|λ) = −
T∑
τ=1

log cτ (6.15)

The log-likelihood is maximized through the iterative procedure. The optimal
solution, i.e. the optimal model parameters λ, is obtained when no further
increase in likelihood is found or when the maximum number of iterations is
reached.

With the above described approach, the two HMMs are obtained. The task
is now to use the estimated models to classify each emotional sequence in the
test set. Each sequence is to be quantized through the codebook and then clas-
si�ed by estimating the likelihood of the test sequence given the two models.
The test sequence is assigned to the emotional model that provides the largest
of the two likelihoods.

6.4 Model Evaluation

For the emotion recognition task, di�erent aspects should be considered with
respect to the classi�cation.
Section 6.4.1 deals with the aspect of an imbalanced data set, as was also the
focus of section 5.5.1. As with the speaker identi�cation problem, a general-
ized model of the child's emotional states is desirable, and a discussion of this
therefore constitute the topic of section 6.4.2.
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6.4.1 Data Imbalance

As was the case with the speaker identi�cation problem in chapter 5, the two
classes in the emotion recognition task, which is the focus of this chapter, are
imbalanced. That is, there are more than twice the amount of the emotion
protest compared to the emotion no protest in the training set. In the speaker
identi�cation problem, recall section 5.5, the ratios between the four respective
classes were comparable across data sets, which is why it made sense to per-
form classi�cation on the entire data set. In this problem, the ratio between the
amount of the two emotions in the training set does not correspond to the same
ratio of the test set. Here, the amount of the emotion protest outnumbers the
emotion no protest by a little more than a factor 4. The prior probabilities of
the training and test set for the two emotions, respectively, are shown in table
6.4.
Another issue of the emotion recognition task is that it is not clear whether the

Class Priors of training set Priors of test set

Protest 69 % 80 %

No protest 31 % 20 %

Table 6.4: The prior probabilities of the two emotions for the training and test
set, respectively.

child on the day of the recording session is in a good or a bad mood. Therefore
it can never be known if the number of protests outnumbers the no protest-class,
if it is the other way around or if there are an equal amount of both types of
utterances. Hence the priors of the new observation (or dyad) is not known in
advance and the use of the prior of the training can therefore possibly deterio-
rate the results.
Because of this insecurity of the imbalance between training and test set, it is
chosen to balance the data set in the emotion recognition task. The balancing of
the data set is done after the two HMM models are estimated. This means that
all available sequences was used to estimate the HMM and the data balancing
therefore was performed only on the test set.
Balancing the data set theorizes the emotion recognition problem, in that the
possibility of applying the model on an new dyad data set is much limited. The
thought here is therefore to illustrate the potential of applying an emotion clas-
si�er which then, in the future, has the potential of being improved through
di�erent methods for data imbalance, [15], [26].
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6.4.2 Generalizing the Model

The approach applied here for model generalization corresponds to that of
speaker identi�cation, section 5.5.2, i.e. applying all but one dyad recordings as
training set and the last as test set. For the emotion recognition task here, the
ground truth, that is the manual labelling executed by Babylab, is available for
11 dyads. Therefore 10 are used as training set and 1 as test set. This approach
is assumed valid, confer the discussion in section 5.5.2, considering the large
data set as shown in table 6.2.
Furthermore, since the modelling of the HMM from the training set is initiated
randomly, i.e. the transition matrix, emission matrix and the initial state prob-
ability vector are randomly chosen, every test regarding the HMM is run 15
times. The error rates shown in the result section, 9.2, are thereby the mean of
these 15 runs.
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Chapter 7

Motion Capture

Annotations

The psychologists at Babylab focus much of their work on the physical rela-
tionship between the mother and child. For this, motion capture data is highly
relevant. The manual annotations from Babylab regarding the motion capture
modality that are to be automated in this thesis are listed below, summed up
from chapter 3.

� Child's head position

� Distance between faces

� Child's physical energy level

The infant head position is currently being extracted by a group at Babylab
by manually annotating according to four categories from the video recordings.
The four categories are listed in table 7.1 below and refer to the angular interval
between the child's and the mother's head positions where the angles chosen
have been inspired by [35] and [10].
The angle of the child's head position is by Babylab determined with respect to
a reference point in the room, that is not the mother. The angle annotations
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Category Angular Interval

En face [0◦ : 30◦]

Minor avert ]30◦ : 60◦]

Major avert ]60◦ : 90◦]

Arch ]90◦ : 180◦]

Table 7.1: The category de�nition based on the four angular intervals: en face,
minor avert, major avert and arch.

is applied in the analysis of the relationship between the mother and child by
Babylab.
Likewise, the distance between the heads of the mother and child is annotated
by Babylab. This is calculated in Excel from the marker coordinates MheadB
and CheadB, see �gure 3.1. By combining the child's head orientation and the
distance between the mother and child, the concept of chase and dodge, as for-
mulated in, amongst others, [11], is investigated by Babylab. The idea is that
if the child feels intruded by the mother if she leans forward, too much or too
fast, the reaction is that the baby moves its head back and away.
The last annotation that is to be automated in this thesis is the child's physical
energy level. This is at Babylab interpreted as the covered distance of the right
wrist marker. Currently this is calculated by Babylab in excel from the marker
coordinates of motion capture.
The child's physical energy level can be used in the analyses of the existence of
speci�c patterns between the mother's vocalizations and the child's movements
as well as in the child's coordination of movement and vocal actions.
It should be noted that, as was also mentioned in section 3.2, in almost every
mocap �le, a number of not-identi�ed mocap markers exists. This is a source
of error, in that these must be estimated to make use of the entire 10 minutes.
In some sessions only a few markers have not been identi�ed in a few frames,
whereas in others a countless number is missing. Examples of this is shown in
the results section on mocap features, 9.3.
The approach to extract the three mocap annotations is explained in the fol-
lowing sections.

7.1 Child's Head Position

The infant head position with respect to the mother's head was investigated in
[34]. This included both the child moving its head up and down, corresponding
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to a movement in the XZ-direction of the mocap coordinate system, as well as it
moving its head to the sides, corresponding to a movement in the XY -direction.
The coordinate system is illustrated in �gure 7.1.
[34] introduced two new points, namely CheadM and MheadM, which repre-

Figure 7.1: The 3-D coordinate system of the recording room from Qualisys.
The markers of the mother and child are illustrated with green
and yellow, respectively

sented the mid point of the child's and the mother's head, respectively. These
were calculated as the mean point between the two markers CheadR and CheadL
for the child, and as MheadR and MheadL for the mother. See �gure 3.1 for a
recollection of the position of these markers.
To calculate the orientation of the child's head at all frames regarding the XZ-
direction, [34] �rst estimated the reference plane between the two heads. This
is thought of as the plane between the mother and child, where they point their
faces towards each other and is interpreted by Babylab as the plane where the
child faces the mother, because it is assumed that the mother is always orien-
tated towards her child.
This plane was estimated in [34] by drawing a vector from the CheadB marker
to the CheadM marker and likewise from the MheadB marker to the MheadM
marker. Where the two vectors were in parallel, it was assumed that the mother
and child were looking at each other. Due to the fact that the CheadB marker
is positioned on the top of the child's head, the vector between the CheadB and
CheadM markers was pointing downwards instead of directly ahead as expected.
The calculation of the child's head position therefore involved a manual estima-
tion of the angle between the vector representing the child's direction and the
corresponding vector for the mother. This was done once for every recording
from the video data at a frame where the child visually directs its head towards
the mother and vice versa, see [34] for more details.
Due to these corrections that must be included before calculating the child's
head orientation in the XZ-plane, it is here decided not to use this as a feature,
because of the manual aspect of it which is in con�ict with the objective of this
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thesis.

[34] also extracted the head position of the child with respect to the XY -plane,
i.e. the child's side-to-side head moving. The child's head orientation was also
calculated with respect to the mother in this task and was again carried out by
representing the midpoints of the child's and the mother's head through the two
created markers MheadM and CheadM, respectively. In this task, [34] applied
the manually corrected back point on the head of the child.
In this thesis, the child's head position with respect to the XY -plane is calcu-
lated automatically. The two extra markers MheadM and CheadM has been
found as in [34] and used for the calculations. After this a vector is drawn be-
tween the back marker and the new generated point, see �gure 7.2. The two
vectors represents the direction of the mother's and child's head and the angle
between these two vectors can be perceived as the head position of the child
with respect to the mother. When the angle between the two vectors is zero,
they are facing each other. The approach is shown in �gure 7.2.
The angle between the two vectors are given by the formula in (7.1) where

Figure 7.2: Illustration of how the angle between the mother and her child is
calculated.

M and C are the vectors representing the mother's orientation and the child's
orientation, respectively.

cos(θ)n =
M · C
|M ||C| (7.1)

In (7.1) the vectors M and C only include the x and y coordinates, since the
z coordinate, as mentioned, only carry information about the position in the
vertical direction and thereby not about the position of the child's head moving
from side to side with respect to the mother's.
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Equation (7.1) is therefore applied to extract the angular information for each
frame of the mocap �le.

7.2 Distance Between Faces

The distance between the mother and the child's faces is simply calculated for
all frames of the mocap �le with use of the formula given in equation (7.2). Here
n = 1, 2, ..., N where N is the total number of frames.

distn =
√

(xMn − xCn)2 + (yMn − yCn)2 + (zMn − zCn)2 (7.2)

In (7.2) xM , yM , zM , xC , yC and zC refer to the mothers x, y and z coordinates
and the child's x, y and z coordinates, respectively. The coordinates that have
been used in calculating the distances are the mean coordinate of the markers
MheadR and MheadL in �gure 3.1 for the mother and the mean of the corre-
sponding markers for the child, CheadR and CheadL, in �gure 3.1. The choice
of these estimated markers bases on the belief that they represent the positions
of the mother's and child's head.

7.3 Child's Physical Energy Level

The child's physical energy level has, as mentioned, been calculated as well. To
calculate this, the child's right wrist marker has been used, named CwristR in
�gure 3.1, due to the fact that this marker is also being used at Babylab for this
particular calculation.
The child's physical energy level has been estimated by calculating the covered
distance between two consecutive frames of the mocap �le, and is given by (7.3),
with n = 1, 2, ..., N where N is the total number of frames.

energyn =
√

(xCn − xCn−1)2 + (yCn − yCn−1)2 + (zCn − zCn−1)2 (7.3)

In (7.1), xC , yC and zC refers to the x, y and z coordinates of the child's right
wrist.
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Chapter 8

Combining Modalities

The uniqueness of the data provided by Babylab lies in the fact that three dif-
ferent data modalities have been used to measure the interaction between the
mother and her child. In continuation of the speaker identi�cation task in chap-
ter 5 as well as the emotional classi�cation in chapter 6 that focused only on
features extracted from sound, the chapter presented here seeks to solve the
same problems just now by incorporating the information from the motion cap-
ture. The �rst part of this chapter therefore discusses the combination of the
sound and motion capture for the speaker identi�cation task and the emotional
classi�cation, respectively. The chapter is rounded o� by a brief discussion on
the third available data modality; video and how this modality could contribute
in the two problems considered.

8.1 Combining Sound and Motion Capture

The automatic annotations from mocap are, as previously stated, the head ori-
entation and the physical energy level of the child as well as the distance between
the mother and the child. These are all possible candidates for improvement of
the classi�cation error rates for both the speaker identi�cation and the emotion
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recognition tasks.
The following provides a combined discussion on the possible improvement in
both classi�cation tasks for all three motion capture annotations. This discus-
sion includes acknowledged psychological theory, Babylab's ideas and thoughts
on the interactions, as well as the intuitive assumptions and expectations of the
authors of this thesis that have emerged during the study.
Regarding the head orientation of the child with respect to the mother, the psy-
chologists at Babylab believe in a connection between the child's utterance and
head orientation. In combination with this is the distance between the mother
and child. At Babylab the concept of chase and dodge as explained in chapter
7 is incorporated in their analyses of the mother-child interaction.
With this theory it would be reasonable to assume that the head movement is
assisted by an emotional utterance. It is possible to assume that when the child
makes a negative utterance, it could be prone to turn its head away from the
reference position, that is, the child facing the mother. This also induces the
expectation that for the child's positive utterances, the head orientation is most
likely in the direction of the mother.
Another, very likely scenario, is that if the child is bored it might turn its head
to examine whether more interesting things are occurring in the vicinity. The
expected immediate response of the mother is that she begins to speak and per-
haps leans forward to capture the child's attention again.
Are these theories in fact true, the angular feature and the head distance feature
could be of assistance to both the speaker and the emotion classi�cation, and
thereby improve the ratio of correct automatic labels in both tasks.
For a substantiation to the above mentioned theories, selected video recordings
have been visually inspected by the authors of this thesis, but since much of
the stated interactions occur simultaneously it is very di�cult to validate the
presumptions.

The results for the two problems of speaker identi�cation and emotion recogni-
tion are discussed in sections 9.4.1 and 9.4.2.
The child's physical energy feature could likewise, potentially, improve both
classi�cation tasks. In the recorded videos it is often seen that the child re-
sponds to the mother's actions (vocal or physical) by either moving or making a
sound or sometimes both. The physical energy level of the child could therefore
possibly contribute in a more con�dent assigning of the label child speaking in
the speaker identi�cation task. An issue with this interaction between sound
and movement is that it is not always instantaneous. A delay between the child's
sounds and the movement is observed, which could result in a deterioration of
the classi�cation compared to excluding this feature in the speaker identi�cation
problem. The result of including this feature can be seen in section 9.4.1.
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Regarding emotion recognition no apparent connection is present with respect to
the child's physical level from the video recordings, but a somewhat far-fetched
possibility is that the child could combine positive utterances with movement
to show the enthusiasm. The physical energy of the child is thus included in the
emotion recognition task, all though no improvement is expected. The results
are discussed in section 9.4.2.

8.2 Information from Video

The third data modality available is as mentioned the video recordings. The
video enables the visual interaction between the mother and her child, recall
�gures 3.3(a) and 3.3(b). Thus, the video carry information that can not be
extracted from the two additional recording modalities sound and motion cap-
ture, respectively.
Regarding the problems already considered concerning the speaker identi�cation
and emotion recognition, it could be very bene�cial to extract the child's facial
expressions from the video as well as information about the mouth movement of
the child. These informations could contribute as a support to the information
already extracted from the sound and motion capture �les in the two respective
problems and thereby improve the precision of the classi�cations.
In addition to the presumed improvement of the classi�cation problems ap-
proached in this thesis, the information on the child's facial expressions is applied
by Babylab in the analyses of many psychological interaction patterns between
mother and child. One of their teams focus on coding the facial expressions of
the child to analyse the emotions of the child, inspired from [44], as well as the
interaction pattern between this and the mother's actions. As mentioned in 1,
the problems with manual codings are that there can be large di�erences in the
labelling from one coder to another and that the coding is very time consuming.
Therefore, it is of great interest for Babylab to obtain automatic annotations.
To extract the mentioned information from the video modality the believe is
that the Active Appearance Model can be applied, [45]. Due to the scope of
this thesis, the Active Appearance Model has only been investigated brie�y and
the description as well as discussion of this can therefore be found in appendix
B.
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Chapter 9

Results and Discussion

In this chapter the results obtained in this thesis are presented and discussed.
The chapter is divided into four sections, where the �rst, section 9.1, presents
the results obtained in the speaker identi�cation problem, exclusively based on
features from the sound modality. Section 9.2 focus on the results obtained
from the emotion classi�cation, again exclusively based on the sound modality.
The subsequent section, 9.3, discuss the annotations obtained from the motion
capture modality whereas the section hereafter, 9.4, provides the results for the
speaker identi�cation problem as well as the emotional classi�cation problem
when the features from motion capture are included.

9.1 Speaker Identi�cation

In this section the results from the speaker identi�cation task will be shown and
discussed. Since the intention of the speaker identi�cation task is to generate
a generalized model across dyads which can be used by Babylab, the results
shown in this section are for 14 dyads, unless otherwise mentioned. One dyad
is used as test set to see how the generalized model performs in classifying the
data from an unknown dyad. The model is thereby tested in this thesis using
the same approach as is intended for Babylab. It is to be noted that for all tests
performed regarding speaker identi�cation, except of course for the combining
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of channels, only the mother's channel is applied (channel 2). This is because
of the much more noise-�lled channel belonging to the child (channel 1), due to
the many movements the child makes during the recording sessions.
It should be noted that due to the large data set and the time-consuming ma-
chine processing, all tests in this section on speaker identi�cation have been run
only once, that is for dyad 001 as test set. Therefore no error bars will appear
on the resulting �gures.
Various aspects regarding the performance of the classi�ers have been discussed
and augmented before running the actual tests of the performances. Among
these are the optimal window size, parameter optimization for the �ve respec-
tive classi�ers, combination of features, combination of channels and so on. Due
to the many possible combinations of the above mentioned, it is not possible to
optimize all of these aspects concurrently. Augmented decisions are therefore
to be made and from this, the best possible combination of parameters is to be
found so as to obtain the best possible model performance.

It is in this study decided that the �rst evaluation is performed as a function
of the window sizes, as explained in section 5.2, for each of the �ve classi�ers
described in section 5.4. Before performing this test, the parameters of each
classi�er are to be estimated. These results are shown in section 9.1.1 and from
this the performance of the classi�ers can be compared as well as their individ-
ual performance for each of the window sizes can be determined.
Section 9.1.1 on parameter estimation and window size, is followed by a section
regarding the confusion matrices, section 9.1.2. Here the types of errors that
each of the classi�ers make are evaluated, as well as a discussion on the reason
for these errors. A brief description on how the true class labels are coded, as
well as the reliability of these manual codings, is also included in this section.
The optimal composition of features is determined by an evaluation of the model
performance as a function of di�erent feature combinations in section 9.1.3, pro-
viding the optimal features in the speaker identi�cation problem. It is further-
more investigated in this section if the combination of classi�ers with di�erent
features can be combined to boost the performance of the classi�er. Again the
types of errors made by each classi�er are discussed.

As mentioned, the performance of the classi�ers for di�erent window sizes are
tested. In section 9.1.4 it is investigated if the use of sub windows to predict
a given window size can contribute in a boosting of performance of that given
window size. In continuation of this, the time-related errors that the classi�ers
make are investigated through plots of the class labels as a function of time.
This will contribute in the understanding of the prediction performance using
sub windows.
While the already mentioned tests are carried out using only one channel it is
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in section 9.1.5 tested whether a combination of the outcome of the classi�er for
each the two available channels can contribute in a boosting of the performance.
The chapter is rounded o� by a brief summary of the results obtained so far in
the speaker identi�cation problem.

9.1.1 Parameter Estimation

As mentioned, the �rst evaluation of the model performance regards the six
window sizes, in order to obtain the size of the sound segment that has the
best predictive ability as well as to determine which of the classi�ers that show
the best performance. Before this test is possible, the parameters for the �ve
respective classi�ers, as mentioned in section 5.4, are to be decided.
For the sake of overview, table 9.1 presents each classi�er and the corresponding
parameters that are optimized in this thesis.
In the following, the approach of the parameter estimation is described for each

Classi�er Parameter

GMM Components, K

KNN Nearest neighbour, K

TREE Size of leaf, κ + split criteria

MNR None

ANN Hidden units, H

Table 9.1: Each of the �ve classi�ers and the corresponding parameters to be
optimized.

of the �ve classi�ers.

9.1.1.1 Gaussian Mixture Model

The GMM, as explained in section 5.4.1, models each speaker in the speaker
identi�cation problem separately. Thus, for each class the optimal number of
components, K, in the Gaussian Mixture is to be decided. Before deciding the
number of components, di�erent decisions about the covariance matrix Σ should
be made where the number of covariance matrices is one of them.
Di�erent opportunities arises; the model can have a covariance matrix for each
component K, one single covariance matrix for all components in one speaker
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model and �nally shared covariance matrix between the models and thereby
speakers. Furthermore the covariance matrix can be chosen to be full or diago-
nal. If K is the number of components and F the number of features, the full
covariance matrix would result in the estimation of K(F + F (F + 1)/2) + K
parameters whereas for the diagonal covariance matrix this reduces to the es-
timation of K(F + F ) + K parameters. In the expression of the number of
parameters, the term KF represents the number of means to be estimated, the
term K(F (F + 1)/2) presents the number of parameters in the covariance to be
estimated and �nally the last term K presents the number of probabilities for
each component, πk, to be estimated.
[57] uses the approach where a covariance matrix for each component K is used
and further these covariance matrices is chosen to be diagonal. The choice was
based on initial experiments where this composition showed the best identi�ca-
tion results. It is therefore in this thesis chosen to use the same approach as in
[57].
As mentioned the number of components to model each speaker is to be found.
One way to do this is to calculate the Bayesian information criterion (BIC) which
is given by equation (5.17), from section 5.4.1. In �gure 9.1, the BIC is shown
for class 1 as a function of number of components K. As already explained,
BIC only allows the number of components to increase if the model complexity
does not overcome the increase in likelihood. The curve is therefore expected to
have a minimum at a given K that thereby represents the best trade-o� between
model complexity and how well the model �ts the data.

Figure 9.1: BIC as a function of number of components, K, for the GMM
here shown for class 1, window size 150 ms, channel 2 (mother)
and with all features included as shown in table 5.3.
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By looking at �gure 9.1 it is seen that the BIC decays as a function of number
of components K, until approximately K = 100. An increase in BIC is seen
when the number of components reaches 200. This means that the increase in
model complexity at the point of K = 200 overcomes the increase in likelihood
and thereby how well the model �ts the data. From this it can be assumed
that the data investigated in this study has a really complex structure, since
the Gaussian Mixture for class 1 alone should include between 100 and 200
components to model and thereby �t the data.
The time it takes to train the model should also be taken into account in the
evaluation of the number of components used in the GMM. The �tting of a
model with 100 components and with the number of observations as in the
scope of table 5.2, with the window size 150 ms, takes about 7 hours compared to
approximately 7 minutes for 10 components, when the calculation is performed
on the cluster facilities at IMM. Therefore, because of the results obtained from
�gure 9.1 it is decided to seek another method for �nding the optimal K.
Another way to calculate the optimal K is by evaluating the classi�cation error
rates as a function of the number of components, where these are assumed equal
for each class, i.e. K1 = K2 = K3 = K4. This is carried out for each window
size, and the result for 150 ms is shown in �gure 9.2. The results are obtained
using all the features presented in table 5.3. Results for the remaining �ve
window sizes are shown in appendix D.1.1.

Figure 9.2: The error rate as a function of number of componentsK for GMM,
when K is assumed equal for all classes. Here shown for the win-
dow size 150 ms.

By looking at �gure 9.2 it can be seen that for K = 4 the error rate reaches
its minimum. This result and the results derived from the �gures in appendix
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D.1.1 regarding the remaining �ve window sizes are summarized in table 9.2.

Window size Optimal K

10 ms 10

50 ms 30

100 ms 11

150 ms 4

200 ms 4

250 ms 7

Table 9.2: The optimal number of components, K, for GMM for each window
size, when the number of components are assumed equal across
classes and is decided as the K with the best resulting error rate.
Results are for channel 2 (mother) and with all features included
as shown in table 5.3.

9.1.1.2 K-Nearest Neighbour

In the K-nearest neighbour algorithm, presented in section 5.4.2, the number of
neighbours included in the classi�cation can be varied and the optimal number
of neighbours must therefore be found. This is carried out by calculating the
error rate as a function of the number of neighbours. The results are shown in
�gure 9.3 for the window size of 150 ms with all features included. See table 5.3
for a recollection of these features.

The results in �gure 9.3 show that when the number of neighbours reaches 15,
the error rate is at its minimum. The �gures showing the results for the remain-
ing window sizes can be found in appendix D.1.2 whereas a summing up of the
results for each window size can be seen in table 9.3.
From table 9.3 it is seen that the optimal number of neighbours lies in the range
8-18 for the six respective window sizes. These results indicate that the obser-
vations are positioned in smaller clusters in the 61-dimensional feature space,
since only a smaller number of neighbours are required to obtain the best model
�t. If the optimal neighbours on the other hand had shown to be 50 the clusters
would probably have been larger in the 61-dimensional feature space. The opti-
mal number of neighbours given in table 9.3 are used in the following regarding
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Figure 9.3: The error rate as a function of number of neighbours when using
KNN. Here shown for the window size 150 ms, channel 2 (mother)
and with all features included as shown in table 5.3.

Window size Optimal neighbours

10 ms 18

50 ms 10

100 ms 8

150 ms 15

200 ms 8

250 ms 8

Table 9.3: The optimal number of neighbours when using the KNN shown for
each window size. Results are for channel 2 (mother) and with all
features included as shown in table 5.3.

the KNN classi�er.

9.1.1.3 Decision Tree

Regarding the Decision Tree, as described in section 5.4.3, di�erent parameters
can be varied to optimize the �tting of the tree. The size of each leaf in the
decision tree is varied, to investigate the performance of the tree as a function
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of the number of κ. Here κ is the number of observations that each impure node
must at least have to undergo a split. Recall from section 5.4.3 that an impure
node is a node where observations belonging to more than one class is present.
The result of varying κ can be seen in �gure 9.4 for the window size of 150
ms, where the entropy, as given by equation (5.26), was used as the impurity
measure. The results for the remaining window sizes can be found in appendix
D.1.3.

Figure 9.4: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 150 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used for
these results is the entropy measure given by equation (5.26).

As seen from �gure 9.4 the error rate reaches its minimum when κ is equal to
approximately 1300 for the window size of 150 ms. O�-hand, 1300 observations
seems of many, but in comparison to the size of the data set of 150 ms, as seen
in table 5.2, 1300 only accounts for approximately 2 % of the entire data set
and 22 % of the smallest class. The results for the remaining window sizes are
shown in table 9.4.

As mentioned in the section about decision trees, section 5.4.3, another way
of determining the split stop is by pruning the tree. Recall that pruning is
the process where smaller parts of the tree can be removed if these parts only
contribute minimally in the �nal outcome of the classi�er. Because pruning is
another method of determining when the splitting should stop, it is decided to
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Window size Optimal κ

10 ms 800

50 ms 1520

100 ms 1060

150 ms 1300

200 ms 300

250 ms 1900

Table 9.4: The optimal number of κ in the decision tree classi�er where κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Results are for channel
2 (mother) and with all features included as shown in table 5.3.

omit a test of this.
As mentioned in section 5.4.3 the two measures of impurity as split criteria are
the entropy and the Gini measure. The test for deciding the optimal number of
κ above was carried out using the entropy measure. Therefore it is also tested
how the Gini impurity measure acts on this data. The results for this can be
seen in appendix D.1.3 in the �gures D.16, D.17, D.18, D.19 and D.20. In look-
ing at the results for the Gini impurity measure, the error rates seem to be
insigni�cantly di�erent in comparison to the entropy measure. It is therefore
decided that the remaining tests for the decision tree set-up is carried out using
the entropy measure.
In �gure D.31 in appendix D.6 a TREE is shown. Due to the very complex
structure of the TREE's obtained in this study a simpli�ed version has been
made. The TREE is �tted using only 1300 observations and only the features
energy, zcr and the cross-correlation has been used.

9.1.1.4 Multinomial Regression

As mentioned under the classi�cation methods in section 5.4, the MNR classi-
�er has also been applied to the speaker identi�cation problem. There are no
obvious parameters to be optimized with regard to this classi�er and the MNR
is therefore tested with default settings, see appendix D.2 for these settings.
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9.1.1.5 Arti�cial Neural Network

The ANN requires the number of hidden units as an input. There is no general
rule describing how many hidden units is needed to model a given data set and
in the case considered in this study, not much is known about the data set. The
number of hidden units is therefore to be decided by testing the performance
of the ANN, with the number of hidden units in the range from 1 to 15. The
maximum of 15 is based on the computational cost of the calculations, which
increase drastically when increasing the number of hidden units. The results,
based on the error rates of the classi�cation, of varying the number of hidden
units from 1 to 15 can be seen in �gure 9.5 for the window size of 150 ms.
In �gure 9.5 in can be observed that the number of hidden units that results in

Figure 9.5: The error rate as a function of number of hidden units in ANN.
Here shown for the window size 150 ms, channel 2 (mother) and
with all features included as shown in table 5.3.

the lowest error rate for the window size of 150 ms is 11. Table 9.5 summarizes
the results for the remaining window sizes, where the corresponding �gures can
be seen in appendix D.1.4.

The results in table 9.5 show that the number of hidden units needed to model
the data are in the range of 5-11 for the six respective window sizes. The number
of hidden units provides a kind of information on how complex the problem to
be modelled is. Because of the relatively high number of hidden units needed
to model the data, it seems that the data has a highly non-linear structure in
the feature space.
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Window size Optimal hidden units

10 ms 5

50 ms 9

100 ms 8

150 ms 11

200 ms 9

250 ms 10

Table 9.5: The optimal number of hidden units when using the ANN shown for
each window size. Results are for the window size 150 ms, channel
2 (mother) and with all features included as shown in table 5.3.

9.1.1.6 Test of Window Size

With the optimal parameters presented in tables 9.2, 9.3, 9.4 and 9.5, the error
rate as a function of window size can be calculated for all respective classi�ers.
The result of this can be seen in �gure 9.6.

In �gure 9.6 the �rst thing that should be noticed is that every classi�er per-
forms better than the by-chance error rate described in equation (5.56) of 67 %
for the imbalanced data set. This indicates that there is a clear signal, meaning
that the classi�ers are capable of separating the four respective classes from
each other in the feature space. Furthermore it is seen from the �gure that the
MNR classi�er clearly has the worst performance. As mentioned, the number
of hidden units needed to model the data indicates that the problem dealt with
has a highly non-linear structure in the feature space. The same conclusion was
drawn when the BIC was plotted against the number of components, as shown
for 150 ms in �gure 9.1. This non-linearity of the feature space as well as the fact
that the MNR classi�er is only capable of making linear decision boundaries,
explains the much worse performance of the MNR compared to the four other
classi�ers.

Observing the di�erent window sizes in �gure 9.6, and excluding the MNR, the
classi�ers of 10 ms windows has the worst predictive ability in comparison to the
classi�ers of the larger window sizes. This implies that the information obtained
from a 10 ms sound signal holds a smaller amount of information than the other
window sizes. This should be compared to the fact that the data set of 10 ms
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Figure 9.6: Error rate of the �ve classi�ers (KNN, decision tree, ANN MNR
and GMM) each represented by di�erent colours as a function of
window size. The results are for channel 2 (mother) using all the
features in table 5.3.

windows by far has the highest amount of observations, as seen in table 5.2. It
seems understandable that the classi�ers' predictability of the 10 ms windows
are worse than the others, because 10 ms of sound is very little for distinguishing
between the four classes. A task that not even the human ear would be able to
handle.

From the �gure of window sizes, another noticeable fact is that ANN and TREE
show really good performances in comparison to the three remaining classi�ers.
Generally, the performance with respect to error rate is in the order of 15 %,
which clearly deviates from the error rates of the others. In the window range
of 100 ms - 250 ms the error rates are almost stable for ANN and TREE. Thus,
not one particular window size appear more capable of prediction than another.
Based on this as well as on the claim made by [24], as mentioned in section 5.2,
that the concept of stationarity in sound signals holds for window sizes up to 200
ms, the choice of 150 ms windows in the further tests thereby seems reasonable.
An advantage of the 150 ms window, is that the 50 ms window can be used in
the test of predictability, which is carried out in section 9.1.4.
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9.1.2 Confusion Matrix

Before making a �nal conclusion on which of the classi�ers that in the best
possible way models the four-class speaker identi�cation problem, the confusion
matrices should be taken into consideration. These illustrate how many of each
class that have been classi�ed correctly and how many that have been misclassi-
�ed into each of the three other classes, see 5.5.1 for an explanation on confusion
matrices. Since ANN and TREE seem to be the best performing classi�ers from
�gure 9.6, the confusion matrices for these are shown in �gure 9.7, whereas the
confusion matrices for MNR and KNN can be found in appendix D.3. A window
size of 150 ms is used, as decided in the previous section, section 9.1.1.
The error rates for ANN and TREE are observed to be 15% and 14%, re-

(a) (b)

Figure 9.7: Confusion matrices shown for (a) ANN and (b) TREE, both for
the window size 150 ms.

spectively. Based on this, the performances of these two classi�ers appear quite
equal. By looking at the confusion matrix for ANN in �gure 9.7(a) it is seen
that the errors occur in the classi�cation of mother versus no one (and vice
versa), child versus no one, and both versus mother. Here the true classes are
indicated by the former of the two and the predicted classes as the latter. From
�gure 9.7(b) it is seen that the misclassi�cations made by the TREE are similar
to ANN, only with a little lower frequency.
It is seen from the confusion matrices that both the ANN and the TREE mod-
els the classes no one and mother quite well. These are the classes with the
highest number of observations as seen in table 5.2. Another noticeable thing
about the two confusion matrices is that when the actual class is no one, then
no observations are classi�ed as the class both. Furthermore, when the actual
class is no one then 121 and 166 observations are classi�ed as the class mother
by the ANN and TREE, respectively. These two cases might be the result of
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the imbalanced data set and thereby unequal prior probabilities for each class,
recall table 5.4 that showed the prior probabilities for each class in the training
set and the test set.
From table 5.4 is can be seen that the prior probability of the classes both and
mother are 13 % and 32 %, respectively. This, as mentioned, might be the rea-
son why no observations from the class no one are classi�ed as the both class.
That the two classes mother and no one have very large priors is probably
the explanation of the 121 and 166 misclassi�ed observations for the ANN and
TREE, respectively. The di�erence between these two classes is presumed to be
large in the feature space and thereby few misclassi�cations between the two is
expected. Clearly, this is an example of the e�ect of the prior probabilities in
classi�cation tasks.

Because GMM is the most applied classi�er in the speaker identi�cation prob-
lem [57], [31], [33], it is interesting to analyse the confusion matrix for GMM as
well. This is shown in �gure 9.8. From this it can be seen that the confusion
is largest when the child speaks. Furthermore it can be observed that the mis-
classi�cations of the GMM are somewhat similar to the mistakes made by ANN
and TREE, only with a higher frequency.
In continuation of the discussion of the confusion matrices shown in this sec-

Figure 9.8: Confusion matrix for GMM.

tion, it is interesting to move deeper into the discussion of the errors that the
classi�ers make. The confusion matrices shows that 274, 227 and 263 observa-
tions belonging to the class mother are classi�ed as the class no one by the tree
classi�ers ANN, TREE and GMM, respectively. The manually annotated labels
made at Babylab are, as already stated, used as the true classes and naturally
human errors will occur in the coding process. In continuation hereof, certain
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guidelines are made at Babylab for these codings. One of the instructions at
Babylab for the manual annotations is that when the mother whispers, the true
class label is set to the class mother.
Due to the low power in the signal at time instances where the mother whispers,
this could be the reason why the 274, 227 and 263 observations are classi�ed
as the class no talks. Of course it should be kept in mind that this class, no
one, as seen from table 5.4 has a prior probability of 45 %, but because the
class mother also has a high prior probability (32 %) this fact is probably not
capable of explaining but a few of the misclassi�cations of the mother to the
no one group. In continuation hereof, the intuition is that the classi�er would
normally be able to distinguish between these two groups, due to their presumed
dissimilarity in the feature space. It is therefore assumed that by far the ma-
jority of the misclassi�cations of the class mother to the class no one is due to
the manually annotated labels, where whisperings of the mother is assigned to
the class mother.

Another example of these guidelines of the manual codings is that the child's
burpings and hiccups are not included in the class child with the argument that
this is not to be used in the further analysis of the labels. This could also cause
a confusion in the classi�cation of speaker identity due to the fact that the signal
segments of these occurrences contain energy as well as spectral content.
When the annotations are carried out at Babylab one coder annotates the full 10
minutes of the recordings while another coder annotates 2 minutes of the same
recoding, for the sake of reliability testing. The confusion between two coders
can be seen for two di�erent dyads, 018 and 012, in the confusion matrices in
�gure 9.9. The confusion between two coders for dyad 006 and 020 can be found
in appendix D.3.

The confusion matrix in �gure 9.9(a) and 9.9(b) between two coders show that
the error rate between their labels are 19% and 7%, respectively, whereas the
ones shown in appendix are 8 % and 31 %, respectively. This gives rise to the
question; what are the true labels?
The striving after an as small as possible error rate should of course be held
up against the fact that no exact de�nition of the true labels is available. This
means that if an error rate of 3 % is obtained when comparing the automatic
estimated labels with the annotations of one coder, an error rate of 15 % might
be obtained if the same automatic estimated labels were compared to the anno-
tations made by another coder.
It should be mentioned that the confusion of 31 % is being re-annotated by
Babylab due to this very bad reliability. In continuation of the discussion about
the true labels it should be noticed that the precision with which Babylab per-
forms the annotations in Praat is 10 ms. It could be doubted that a precision of
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(a) (b)

Figure 9.9: The human confusion between two coders at Babylab shown for
(a) dyad 018 and (b) dyad 012.

this size will always result in the true class labels because the human ear simply
cannot validate the reliability of these labels.
A note should be made that only these four data sets were available from Baby-
lab with double codings for reliability. If double codings were available for all
dyads, a probability density function over all the human error rates could be
calculated. Assuming this probability density function over human error rates
was available, it would be possible to see if the error rates obtained with the ma-
chine learning approach in this thesis, would belong to this probability density
function. If this was the case, the classi�er performance would be just as good
as the manual annotations. Since this is not possible, it can only be assumed
that the classi�er confusions are similar in size to the human confusions.
As a conclusion on this section, it is chosen to exclude the MNR and KNN
classi�er in the subsequent sections due to their higher error rates compared
to ANN and TREE. This also explains why the ANN and TREE are used in
the following experiments. It is furthermore chosen to investigate the GMM
as well because this classi�er, as mentioned, is the most commonly used in the
literature regarding speaker identi�cation.

9.1.3 Test of Features

Until now, the full feature combination has been used, as it appears in table
5.3. The composition and choice of these features is as mentioned due to the
literature �ndings, see section 5.3. Naturally, the composition of features that
results in a good error rate depends on the speci�c problem, data and classi�-
cation method. It is therefore, in this thesis, decided to perform a test of the
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features to investigate the in�uence of the di�erent features on the performance
of the classi�er.
Furthermore, the problem of speaker identity in this thesis di�ers from the usual
speaker identi�cation problems because of the availability of two microphones
as well as the position of these microphones. Also the case of four classes with
two of them not just consisting of one speaker, but either both or none, di�er-
entiates this problem from the problems in the literature.

To test the in�uence of di�erent feature combinations, the performance of the
classi�ers TREE, ANN and GMM is evaluated as a function of variable feature
compositions. This is shown in �gure 9.10, with the numbers from 0 to 9 rep-
resenting these combinations. Table 9.6 shows the feature combinations that
corresponds to the numbers. In relation to this it should be noted that either
all MFCC's are included or none. Combinations of di�erent coe�cients of the
Mel-frequency cepstrum are thereby not tested.
As seen in �gure 9.10, the performance of the classi�ers varies with the dif-

Composition Feature Composition

0 MFCC, delta MFCC, delta-delta MFCC, energy, zcr,
cross-correlation

1 MFCC, delta MFCC, energy, zcr, cross-correlation

2 MFCC, energy, zcr, cross-correlation

3 MFCC, energy, zcr

4 MFCC, zcr, cross-correlation

5 MFCC, energy, cross-correlation

6 MFCC, cross-correlation

7 MFCC

8 Energy, zcr, cross-correlation

9 Energy, cross-correlation

Table 9.6: The tested feature compositions.

ferent combinations of features. The lowest error rates are obtained with the
feature composition 9 for GMM and ANN and with feature composition 8 for
TREE. These two feature compositions include only very simple features of the
sound signal, namely the energy of the signal and the cross-correlation between
channel 1 and channel 2 for both compositions and the zero crossings included
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Figure 9.10: The performance of the classi�ers as a function of feature combi-
nations. The combination of the three classi�ers at each feature
composition is shown as well.

in composition 8 as well. Thus, the feature compositions that result in the best
error rates do not include the MFCC features.
Due to the results from the literature mentioned on MFCC, [24], [55], [46] and
[57] where the MFCC's are the primary features used, the outcome of �gure
9.10 was not as expected. But as mentioned, the problem considered here is not
identical to that of the literature, which might be the reason why the MFCC
features does not have the same impact on the performance of the classi�ers.
Another possible scenario is that the number of coe�cients extracted from the
Mel-frequency cepstrum is not optimal with respect to this problem. The num-
ber of coe�cients used in this study was based on the literature, and although
interesting, this aspect will not be further investigated here.
The feature compositions that performs the worst are composition 3 and 7, re-
spectively. From table 9.6 it is seen that these two compositions are the only
ones that do not include the cross-correlation features. The cross-correlation be-
tween the two channels provides the information of the identity of the speaker
is the mother or the child, see the explanation of the cross-correlation in section
5.3.1. It therefore appears reasonable that this feature contributes in an increase
of the performance of the classi�ers.

As mentioned in section 5.5.3.1, the outcome of each classi�er can be combined
by a majority voting. If, as mentioned, the errors made by the individual clas-
si�ers are independent of each other a gain in the performance would be seen
when combining these. In �gure 9.10 the combination of the TREE, ANN and
GMM at each feature composition can be seen as the dotted magenta curve.
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What is seen is that the combination of the three di�erent classi�ers only show
a gain at feature composition 7. Thus an overall gain in the performance is not
seen when combining the classi�ers.
Figure 9.10 illustrates how in�uential the individual features and the combina-
tion of these are to the classi�cation (ranges from 14 % to 25 % for TREE, 14
% to 21 % for ANN and 17 % to 25 % for GMM). Based on this observation
it would be interesting to investigate if the classi�ers for di�erent feature com-
binations can contribute in a boosting of the performance, as described under
model evaluation in section 5.5. The prerequisite for obtaining a lower error
rate by combining classi�ers is that the errors made by the classi�ers should be
independent of each other. This means that when one classi�er fails in ascribing
an observation correctly, another classi�er perhaps correctly ascribes the same
observation, which could result in a boosting of the performance if these clas-
si�ers were combined. To make a majority voting between the classi�cations
from several classi�ers an odd number of classi�ers must be combined.
This test is performed for the TREE classi�er and therefore the types of er-
rors that this classi�er makes are analysed. For this, the confusion matrices are
useful. The confusion matrices for all the feature compositions, are shown in
appendix D.3. From these it is observed that the confusion matrices of feature
composition 0 and 1 are identical, i.e. they make the exact same errors.
It can also be seen that all the classi�ers to some degree are capable of modelling
the two classes no one and mother. Where the classi�ers di�erentiate from each
other, is in the modelling of the class child. The classi�ers of the feature com-
positions 0, 1, 2, 5, 8 and 9 show the highest precision of this class.
Of interest would be to combine one of these classi�ers with one that has a
higher precision in one or more of the other classes, to bene�t from the di�erent
classi�cation errors. From the confusion matrices it is seen that the feature com-
positions 4 and 6 models the class no one somewhat better than the 0,1,2,5,8
and 9, mentioned before. Based on this, and on the error rates of the classi�ers,
it is investigated if the combination of 6, 8 and 9, that obtain the lowest error
rates individually, results in an improvement of the error rate.
The resulting error rate is 14 % and is shown in table 9.7. The error rates for
composition 6, 8 and 9 are 16%, 14% and 14%, respectively, meaning that no
overall gain in the performance is obtained when combining these classi�ers.
In table 9.7 the results of combining other feature compositions is also shown.
Here the individually obtained error rate is shown as well in the parenthesis next
to each of the feature compositions. The approach is the same as the previous:
the combinations chosen show di�erent kinds of errors in the confusion matrices.

As seen from table 9.7 the error rates obtained when combining 3 TREE clas-
si�ers with di�erent feature compositions, are no lower than the smallest error
rate for each individual classi�er. If a �nal conclusion was to be made, all combi-
nations of the feature compositions should be tested. This is not carried out due
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Composition A Composition B Composition C Combined

6 (16 %) 8 (14 %) 9 (14 %) 14 %

2 (14 %) 5 (15 %) 9 (14 %) 14 %

1 (14 %) 4 (16 %) 9 (14 %) 15 %

1 (14 %) 5 (15 %) 8 (14 %) 14 %

7 (25 %) 8 (14 %) 9 (14 %) 14 %

0 (14 %) 4 (16 %) 8 (14 %) 15 %

Table 9.7: The error-rates obtained when combining 3 TREE classi�ers with
di�erent feature compositions. The individually obtained error
rates are shown as well.

to numerous combinations. But from the results shown, it seems that no boost-
ing in the performance can be obtained by applying the method of combining
classi�ers with di�erent feature compositions.

9.1.4 Test of Predictability: Windows versus Sub-Windows

The section presented here tests the predictability of a given window size. The
window size used is that of 150 ms. The predictability of the 150 ms window is
tested from the outcomes of the 50 ms windows. The error rate obtained here
is then to be compared with the error rate from the classi�er of the 150 ms
windows. The details on window predictability were given in section 5.5.3.2.
The majority voting of the 50 ms windows is carried out for the classi�ers TREE,
ANN and GMM. The optimal parameters for the window size 50 ms, shown in
tables 9.2, 9.4 and 9.5, are used. The results can be seen in table 9.8 where
the feature composition 8 is used for TREE and feature composition 9 for ANN
and GMM (recall that these were the feature compositions that resulted in the
lowest error rate for the respective classi�ers in section 9.1.3).

As seen from table 9.8 the only classi�er that have been boosted in performance
by the window predictability is the GMM. The analysis of error types made
by the classi�er has been done until now through the confusion matrix. The
disadvantage of the confusion matrix is that it does not provide any information
on the time-related errors. With this is meant that it is not known if the errors
made by the classi�ers are randomly placed throughout the classi�ed data set



9.1 Speaker Identi�cation 101

Classi�er 50 ms 150 ms Sub - windows

TREE 17 % 14 % 15 %

ANN 17 % 14 % 16 %

GMM 17 % 17 % 15 %

Table 9.8: The error rates for windows of 50 ms and 150 ms are shown. The
column Sub - windows presents the results obtained when using the
50 ms windows to predict the outcome of the 150 ms window. The
feature composition 8 is used for TREE and feature composition 9
is used for ANN and GMM.

or if for example 5-10 errors in a row occurs. If the last situation is valid, then
the majority of 3 consecutive 50 ms window would not contribute in a boosting
of the performance, but on the other hand, if the �rst statement is valid, then
the majority voting of the 3 consecutive window will act as a kind of smoothing
and thereby possibly contribute in a boosting of the performance. It is there-
fore interesting to investigate the class labels as a function of time for GMM
where the result in table 9.8 showed a performance boosting (decrease in error
rate of 2 %) and for example the ANN where the result in table 9.8 had the
opposite e�ect on the performance. Figure 9.11 shows the estimated class labels
for 600 consecutive observations when using ANN and GMM respectively with
the window size 50 ms. The misclassi�ed observations are presented by red dots
whereas the correct classi�ed observations are presented with green dots.
The estimated class labels for ANN in �gure 9.11(a) show that when ANN

makes one misclassi�cation, it is often directly followed by 3 or more extra mis-
classi�cations. Comparing this to the misclassi�cations of the GMM, as seen in
�gure 9.11(b), the GMM makes a lot of single misclassi�cation, i.e. misclassi-
�cations that are not followed directly by new misclassi�cations. This explains
the di�erence in performance for the two classi�ers, GMM and ANN.
For the TREE classi�er in table 9.8, no boosting was found either. The es-
timated class labels for 600 observations are shown in appendix D.4 and the
same argumentation as for the ANN can be used to clarify why no boosting in
performance is obtained for the TREE when using sub windows.

9.1.5 Combining Channels

As mentioned in 5.5, the outcome of the classi�ers for the two respective channels
can be combined in a majority voting with the purpose of boosting the classi�er
performance. In this way the information from both channels, which to some
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(a)

(b)

Figure 9.11: (a) The estimated class labels for 600 observations when using
ANN at 50 ms. Red indicates a misclassi�ed observation and
green a correct classi�ed observation. (b) The estimated class
labels for 600 observations when using GMM at 50 ms.



9.1 Speaker Identi�cation 103

degree is assumed identical, is combined. Section 5.5 gave the details on the
approach used for this. From �gure 5.12 it was shown that if the class label for
the same 150 ms window of the two channels was not the same, the majority of
the 3 corresponding 50 ms windows for each channel (6 in total) determined the
class label of the 150 ms window. The test is carried out for each of the three
classi�ers, TREE, ANN and GMM. Feature composition 8 is used for TREE,
table 9.6 since this was the feature composition that gave the best result for the
TREE classi�er, see �gure 9.10 whereas feature composition 9 is used for ANN
and GMM with the same argumentation.
In table 9.9 the error rates for the TREE classi�ers at 50 ms and 150 ms window
are shown for each of the two channels individually.

Window Channel 1 Channel 2

50 ms 18 % 17%

150 ms 16 % 14 %

Table 9.9: The error rates for the two windows 50 ms and 150 ms for each of
the two channels. The TREE classi�er has been used where the
combined error rate gives 16 % .

The table shows the error rates of the classi�ers for the two channels and the two
window sizes used in combining the channels. What can be observed from the
table is that channel 2 has the lowest error rate of the two. Channel 1 represents
the child's microphone and this channel is quite noisy due to the child's many
movements. The higher error rate of channel 1 might therefore stem from this
noise.
Combining the channels, in the way shown in �gure 5.12, results in an error rate
of 16 %. When comparing to the error rates given in table 9.9, no gain in the
performance was obtained by the combination of channels, which is assumed to
be because of the di�erence between the error rates of channel 1 and 2, as seen
in table 9.9. Also the larger error rate for the 50 ms window classi�ers should
be taken into considerations, because these windows are used in the majority
voting. The results for the ANN and GMM can be seen in appendix D.5 where
the results for the ANN showed, as with the TREE, that no gain in performance
was obtained when combining the channels. When combining the channels for
the GMM on the other hand a gain of 1 % was observed.
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9.1.6 Summary

Many tests have been conducted for the speaker identi�cation task with the
purpose of identifying the best possible classi�er. The original setting consisted
of the �ve classi�ers GMM, KNN, TREE, MNR and ANN, and the six window
sizes 10 ms, 50 ms, 100 ms, 150 ms, 200 ms and 250 ms. The feature vector
consisted of MFCC, delta-MFCC, delta-delta-MFCC, energy, zcr and the cross-
correlation between the two channels. The data set consisted of 15 dyads, from
where 14 was used as training set and 1 as test set, i.e. the hold-out method
was applied.
With the �rst test of window sizes, all �ve classi�ers were optimized according
to their model parameters. The window sizes of 100 ms, 150 ms and 200 ms all
showed good results, and the window of 150 ms was chosen. All following tests
were therefore run using this particular window size. Furthermore the classi�ers
KNN and MNR were excluded from further testing because they showed poor
results. The TREE and ANN performed the best, but because of the overweight
of GMM classi�ers for speaker identi�cation in the literature, this classi�er was
kept for further testing as well.
Following the performance optimization for the individual classi�ers using all
the features, was a discussion on the types of errors that the two best classi�ers
made. This also included a discussion on the reliability of the manual codings
made at Babylab, that had error rates in the range of 7 % to 31 %. These
�ndings raised the question of what the true labels are and thereby making it
more easily acceptable with a classi�er error rate of 14 - 15 %, which was the
lowest error rates obtained so far.
The following tests conducted was for �nding the optimal feature composition.
Several combinations were tested and the best ones for the three remaining
classi�ers; TREE, ANN and GMM, were actually the most simple features. For
GMM and ANN the best error rate was obtained with the energy and cross-
correlation as features, whereas the zero crossings were included as well for the
TREE. An important conclusion that was made following these results was that
the cross-correlation features contributed with a large amount of information to
the classi�cations.
To take advantage of the many classi�ers all of di�erent feature compositions,
it was tested if the performance could be boosted by combining several of these
through a majority voting. For TREE one of these combinations consisted of
composition 6 (16 %), 8 (14 %) and 9 (14 %), based on their individual types
of errors, and the combined error rate was obtained to be 14 %. This meant
that no performance improvement was obtained, which was the general image
throughout the combinations.

With the many window sizes available, the question of predictability arose: was
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it possible to predict the 150 ms windows from the three corresponding sub-
windows more accurately than by classifying with the 150 ms windows? The
test showed that the time-aspect of the classi�cations could explain the contra-
dicting results. Improvement was seen when using sub-windows for prediction
only for the GMM. Here the misclassi�cations were observed to be spread out
in time, whereas the misclassi�cations were more grouped for ANN and TREE,
where a deterioration of the error rates was observed when using sub-windows.

Finally it was tested if it would improve the classi�cation performance to com-
bine the classi�ed labels of the mother's and the child's channels. If the time-
corresponding windows for the two channels di�ered in label, the three sub-
windows of 50 ms each for both channels were used in a majority vote to esti-
mate the label. A slight worsening in the result was observed when using the
TREE: 14 % error rate for the 150 ms window for the mother's channel alone
and 16 % for the 150 ms window for the combined channels. The assumption
for this outcome was that the child's microphone was more �lled with noise, and
thereby more prone to errors, as well as the fact that the classi�ers of 50 ms
had higher error rates than those of 150 ms. The same conclusion was drawn
when using the ANN but for GMM a gain in performance of 1 % was obtained
when combining the channels.

The �nal constellation of the three classi�ers for the speaker identi�cation task
is thereby as shown table 9.10.
It should be noticed at this point that the best performance of 14 % was actually
obtained in the very �rst test; the test of window size. The remaining tests only
showed a gain in performance of the GMM classi�er. A reason for this could be
that the GMM as a starting point showed a higher error rate than that of the
TREE and the ANN. As mentioned, the manually annotated labels are used
as the ground truth. Due to already mentioned issues concerning these labels,
the reason why no further gain in performance was obtained could possible be
explained by these issues. It is therefore assumed that the performance of 14 %
is just as good as the manual annotations carried out at Babylab.

9.2 Emotion Classi�cation

The results of the emotion classi�cation of the child's utterances are presented
in this section. The �rst results are based on the HMM parameter optimization,
which will be discussed in section 9.2.1. The model's performance evaluated on
the basis of the confusion matrix will be discussed in the subsequent section,
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GMM TREE ANN

Windows 150 ms 150 ms 150 ms

Parameters K = 4 κ = 1300 H = 11

Features energy,
cross-corr

energy,
cross-corr,
zcr

energy,
cross-corr

Sub-windows yes no no

Combine channels yes no no

Error rate 15 % 14 % 14 %

Table 9.10: The three best classi�ers for the speaker identi�cation problem
of this thesis. The rows Sub-windows and Combine channels are
marked yes if this execution resulted in a gain of the performance
and vice versa if set to no, i.e. no gain in performance was ob-
served. The error rate shown in the last row is the best obtained
error rate for the given classi�ers.

9.2.2. Here the human error rate, i.e. the error rate between two manual codings
performed at Babylab, is included and discussed as well. The last section, 9.2.3
focus on obtaining the feature combination that provides the lowest error rate.

9.2.1 Parameter Estimation

The size of the codebook of the HMM, corresponding to the total number of
clusters K along with the number of states S must be chosen prior to the
classi�cation using the two HMMs (one for protest and one for no protest). The
method chosen here is to �x S and vary K to obtain the best codebook size.
With the optimal K �xed, S is varied and optimized.
As explained in section 6.3, the distortion measure can be used to determine K,
where the wish is to minimize J . In [51] the distortion measure was analysed,
where it was found that when the number of clusters exceed 32, the decrease of
J per increase of K is limited. This fact is shown for the data in this thesis in
�gure 9.12.

The �gure clearly illustrates the claim of [51] that after around a codebook size
of around 30, the reduction in distortion is only very small.
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Figure 9.12: The distortion measure for a codebook size varied from 2:64.

With this knowledge at hand, it is of interest to investigate whether a smaller
number of K than 32 is able to describe the emotional data set better, in spite
of the higher distortion measure. This is obtained by evaluating the mean error
rate across 15 replicates of the entire set-up for each K. This means that for
each K = [2 : 32] the following process is performed 15 times: all feature vectors
of the training set are quantized into a common codebook, the HMM for each
emotion is trained and each sequence in the test set is classi�ed as being one
of the two emotions. The number of states is here �xed at S = 5, which was
randomly chosen.
The mean error rates of the emotion classi�cation task with the number of states
�xed at 5, while varying the codebook size as described above, are illustrated
in �gure 9.13. In the �gure the red lines indicate the standard deviation of the
mean.
From the �gure it is clear that the mean error rate varies quite a lot depending
on the codebook size. The lowest error rates are for K = 10 and K = 29,
which are both 12 %. It could be argued that the distortion measure should
be included in this discussion and thereby that K = 29 should be used because
of the reduction in distortion with an increase from K = 10 to K = 29, recall
�gure 9.12. Since the mean error rates show equal results for the two codebook
sizes, the higher distortion measure is not an issue, and a codebook size of 10
is therefore chosen to represent all the features through vector quantization be-
cause of the simpler feature representation.

The number of states to include in the HMM can be set based on various
thoughts [51]. The �rst option is to set the number of states according to
the phonemes in the word to be characterised. Since the emotions worked with
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Figure 9.13: The mean error rate estimated across 15 replicates for each code-
book size of K = [2 : 32]. S is held �xed at 5 states. The red
vertical lines indicate the standard deviation of the mean.

in this thesis are not expressed through words, but rather through sounds, this
option is probably not appropriate. A second option is to have as many states as
segments in each sequence, which would be 10 in this case. Although a rational
choice, the approach chosen is a third option - to estimate the number of states
based on the mean error rate of 15 replicates. Furthermore, it is chosen to apply
the same number of states to both HMMs. This means that just one S should
be estimated instead of two, which could be a simpli�cation of the problem that
is not truly correct. Despite the interesting aspect of investigating the number
of states for the two classes individually, the limited time prospect of this thesis,
means that it is left for future work.
The optimal K, found as described above, is �xed while the number of states is
varied. The optimal number of states is as K investigated for values up to 32.
Thus the total interval is S = [1 : 32].
With K = 10 �xed, the number of states is estimated as well from the mean
error rates based on 15 replicates each. Figure 9.14 illustrate the results. In the
�gure it can be observed that the lowest mean error rate is obtained at S = 11
with a mean error rate of 11 %. This is therefore chosen as the number of states
to be applied in the two HMMs. Likewise it is observed that the di�erence in
mean error rate varies only very little when the number of states exceed 5.
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Figure 9.14: The mean error rate estimated across 15 replicates for each num-
ber of states of S = [1 : 32]. K is �xed at a codebook size of
10. The red vertical lines indicate the standard deviation of the
mean.

9.2.2 Confusion Matrix

With the combination of a codebook size of 10 and a number of states of 11, the
types of errors that the HMM makes can be investigated. For this the confusion
matrix is used, which is shown in �gure 9.15. It should be noted that because the
optimal parameters of the HMM are found by replicating the classi�cations 15
times, the confusion matrix representing the lowest error rate of the 15 replicates
is illustrated.

The confusion matrix illustrates that out of 124 observations belonging to the
class no protest in total, only 1 of these is misclassi�ed as protest, corresponding
to less than 1 % of the total number of no protests. On the other hand, more
than 20 % of the class protest are misclassi�ed as no protest.
A possible explanation is that the misclassi�cations of the class protest are the
outcome of misinterpretations at Babylab for when the child is in protest or not.
Since the task of interpreting an infant's sounds is very subjective, it is possible
that where the child is actually not protesting it is classi�ed by the coders at
Babylab as if the infant was protesting.
Following the discussion on the true labels from Babylab, the reliability of the
codings carried out at Babylab is tested. This has only been possible to inves-
tigate for one dyad, since this is the only recoding provided by Babylab where
reliability of the emotional state of the child has been carried out. The human
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Figure 9.15: The confusion matrix with the lowest error rate of the 15 repli-
cates for the best combination of codebook size and number of
states, K = 10 and S = 11.

confusion matrix illustrating the errors made between the two coders for dyad
018 is shown in �gure 9.16. The error rate of the human labelling between the

Figure 9.16: The human confusion matrix between two coders at Babylab
shown for dyad 018.

two coders is seen to be 6 %. Since this is the only reliability coding available,
it is di�cult to determine if this is the general image. Including the reliability
testings performed for the speaker identi�cation task, section 9.1.2, it was seen
that the error rates of these varied from 7 % to 31%. A reliable assumption is
that the manual annotation task of determining the speaker, is more objective
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than that of determining the emotion. Since the emotion recognition requires
the coder to interpret on the utterances, it could be argued that the general
reliability between coders in this annotation task thereby is worse or as a mini-
mum the same as for the speaker identi�cation task.

9.2.3 Test of Features

To optimize the classi�er, di�erent feature compositions are tested. Some of the
included features, see table 6.3 for a recollection of these, may not be appro-
priate for the emotion classi�cation task considered in this thesis. Table 9.11
illustrate the tested combinations. Note that feature composition 0 corresponds
to the full feature vector.
Figure 9.17 visualizes the error rates obtained for the 10 tested feature compo-

Composition Feature Composition

0 MFCC, delta-MFCC, energy, zcr

1 MFCC, energy, zcr

2 MFCC, energy

3 MFCC, zcr

4 MFCC

5 energy, zcr

6 MFCC, delta-MFCC, energy

7 MFCC, delta-MFCC

8 delta-MFCC, energy

9 delta-MFCC, energy, zcr

Table 9.11: The tested feature compositions for the emotion recognition task.

sitions. The x-axis in the �gure corresponds to the combinations shown in table
9.11.
From the �gure it can be observed that feature compositions 3, 4 and 7 are by
far the worst. In common for these three compositions is that the energy is not
included, which it is in all other feature combinations, see table 9.11. The �gure
therefore clearly shows that the energy feature is of the uttermost importance
to the emotion classi�cation.
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Figure 9.17: The obtained error rates as a function of the tested feature com-
positions for the emotion recognition task. Each number refers
to a composition which can be seen in table 9.11.

In the �gure it can also be seen that the best feature combination, although not
convincingly, is actually the original one, with MFCC, delta-MFCC, energy and
zcr included. The best error rate is therefore still the 11 % from before.
To follow the procedure of speaker identi�cation, section 9.1.3, the combining
of several classi�ers of di�erent feature compositions is tested here as well. The
thought is, as has already been explained, that if these classi�ers make errors
that are independent of each other, the combination of these, could boost the
performance.
In table 9.12 the classi�ers of di�erent feature compositions (three classi�ers at a
time) have been combined through majority votings, to obtain a common error
rate. By looking at the confusion matrix of the best feature composition, �gure
9.15, as well as the confusion matrices for the remaining 8 feature compositions,
shown in appendix E, the same pattern is observed for all of them. The class of
no protest is for all 9 classi�ers the one of the two classes with the least errors.
Therefore, the choices of combinations in table 9.12 are exclusively based on the
observed error rates.
For each feature composition in table 9.11 the classi�cations were as mentioned
run 15 times each, providing 15 class labels. For the combining of classi�ers, a
random replicate was therefore chosen to make the test.

From the table it is clear that the improvements in combining classi�ers are
limited. In fact, the only combination where an actual decrease is seen for the
error rate is for the last tested combination. These all performed very good
individually (12 % for all of them) and combining them gave an error rate of
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Composition A Composition B Composition C Combined

0 (11 %) 1 (12 %) 5 (12 %) 11 %

3 (26 %) 4 (25 %) 7 (25 %) 27 %

0 (11 %) 3 (26 %) 5 (12 %) 11 %

4 (25 %) 5 (12 %) 7 (25 %) 22 %

7 (25 %) 8 (12 %) 9 (12 %) 12 %

5 (12 %) 6 (12 %) 8 (12 %) 11 %

Table 9.12: The error-rates obtained when combining 3 HMM classi�ers with
di�erent feature compositions. The individually obtained error
rates are shown as well.

11 %. This improvement in spite, the best individual feature composition also
provided an error rate of this size. It must therefore be concluded that the
combination of classi�ers of di�erent feature compositions do not outdo that of
the individual classi�cations.

9.2.4 Summary

The emotion recognition task carried out in this thesis have showed promising
results based on the sound features alone. Tests were carried out to obtain the
best �tted HMM, for the purpose of classifying the emotional states no protest
and protest.
The parameters of the model were �rst to be estimated. The relatively small
codebook size of K = 10 turned out to be very representative for the data ap-
plied in the thesis, in spite of the larger distortion measure. The number of
states were tested as well, and the optimal number was S = 11.
With these parameters chosen, the resulting confusion matrix was discussed,
where the reliability of the true labelling was included in this. Based on the
argument that the coding of the emotional states of the child is a somewhat
subjective task, the misclassi�cations can therefore, at least partly, be due to
human labelling errors.

Di�erent feature compositions were tested to investigate if an improvement of
the error rate was possible. With this survey, it became clear that the energy in
the signal segment was of great importance to the classi�er. Furthermore it was
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determined that the feature composition that gave the lowest error rate was in
fact the primary one, i.e. the composition with all the features included.
Finally it was tested if a combining of classi�ers of di�erent feature composi-
tions would improve the classi�er performance. Here only very small decreases
in error rates were observed, but not lower than the already lowest obtained
error rate of 11 %.
The �nal constellation of the emotion recognition classi�er is thereby the fol-
lowing, shown in table 9.13.

HMM

Parameters K = 10, S = 11

Features MFCC, delta-MFCC, energy, zcr

Combine classi�ers no

Error rate 11 %

Table 9.13: The best HMM for the emotion recognition task of this thesis. The
row Combine classi�ers is marked no because the combinations of
the classi�ers of di�erent feature compositions, provided no error
rates lower than already obtained. The error rate shown in the
last row is the best obtained error rate in the speech emotion
recognition.

9.3 Motion Capture Annotations

As mentioned in section 7, the annotations made from the motion capture
modality includes the head position of the child, the distance between the faces
of the mother and the child and �nally the child's physical energy level. All
these annotations have been executed on a frame-by-frame basis for each dyad.
The following three sections presents the pro�les obtained using the three au-
tomatic methods for the mocap annotations.
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9.3.1 Child's Head Position

The angular pro�le between the mother and the child, as a representation of the
child's head orientation, is shown for dyad 002 in �gure 9.18(a), and for dyad
010 in �gure 9.18(b) for the time interval 0-75 seconds.

(a) (b)

Figure 9.18: Angular pro�les for the �rst 75 seconds of (a) dyad 002, and (b)
dyad 010. It is seen that for dyad 010 there are several miss-
ing angles around 5 seconds, re�ecting the not-identi�ed mocap
markers in Qualisys. Note that the y-axis is not the same in the
two �gures.

What is seen from �gure 9.18, showing the angle between the mother and the
child, is that in the interval 0-75 seconds, the angle is equal to 0 only once in
(a), at around 70 seconds, and several times in (b). The zero angle, represents
the time instants where the mother and the child are facing each other.
To relate the raw angles to the scheme of categories introduced in table 7.1, the
following �gure 9.19 shows the above illustrated angle pro�les in a histogram
where each bar represents one of the four categories.

From the �gures it is clear that by far the most of the angles belong to the
En face category. This represents the angles of 0-30 degrees. In only few of
the frames the child's head is averted more than 30 degrees from the mother's
which is clear from both 9.19(a) and 9.19(b). This is also the general image
when analysing the angle pro�les.
As explained in chapter 7, the manual codings of the angles determined at
Babylab are carried out using a given reference point in the room and not with
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(a) (b)

Figure 9.19: Histogram representing the distribution of the 36000 (frame-by-
frame) calculated angles between the mother and child with re-
spect to the four categories, En face, Minor avert, Major avert
and arch. (a) illustrate that of dyad 002, and (b) that of dyad
010. Note that the histogram has been normalized.

respect to the position of the mother as the approach used in this thesis. It has
therefore not been possible to validate the angles obtained automatically with
the manually coded angles.

9.3.2 Distance Between Faces

The distance between the mother's and child's faces for dyad 002 and 010 are
illustrated in �gure 9.20 for 0-75 seconds.
As for the angle pro�le, it can be observed for dyad 010, in 9.20(b), that some
not-identi�ed markers are present around 5 seconds.
As mentioned in the introduction of chapter 7 the distance between the faces of
the mother and the child is calculated in Excel by the psychologists at Babylab.
No validation of the distance pro�les obtained in this thesis with respect to the
ones calculated by Babylab has been carried out. The reason for this is that
the distance pro�les are unique, meaning that they only have one solution. The
only di�erence is the actual distance which will di�er from the ones in this thesis
to those of Babylab, because they at Babylab use the back markers MheadB
and CheadB, see �gure 3.1, for the calculations. In this study the MheadM and
CheadM are used, see �gure 7.2, since this is thought of as a good representation
of the head positions. Despite this di�erence, the relation between the distance
of each frame remains constant.
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(a) (b)

Figure 9.20: Distance between the head of the mother and child for the �rst
75 seconds of (a) dyad 002, and (b) dyad 010. It is seen that for
dyad 010 there are several missing distances around 5 seconds,
re�ecting the not-identi�ed mocap markers in Qualisys. Note
again the di�erence of the y-axis between the two �gures.

9.3.3 Child's Physical Energy Level

Figure 9.21 shows the distance pro�le for dyads 002 and 010 for 0-75 seconds,
based on the method of calculation shown in section 7.3.
It can be observed for dyad 010, in 9.20(b), that many not-identi�ed markers
are present around 15 seconds, from 50-55 seconds, around 60 seconds and again
from 65 seconds and up to 75 seconds.
As was the case for the calculations of the head distance above, it was men-
tioned in the introduction of chapter 7 that the child's physical energy level is
calculated in Excel by the psychologists at Babylab. The energy pro�les ob-
tained in this thesis has not been validated with respect to the ones calculated
by Babylab with the same reasoning as above.

9.3.4 Summary

The motion capture annotations of the head position of the child, the distance
between the faces of the mother and the child and �nally the child's physical
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(a) (b)

Figure 9.21: The child's physical energy level for the �rst 75 seconds of (a)
dyad 002, and (b) dyad 010. It is seen that for dyad 010 there
are several missing distances around 15 seconds, from 50-55 sec-
onds, around 60 seconds and again from 65 seconds and up to
75 seconds. These time intervals re�ect the not-identi�ed mo-
cap markers in Qualisys. Note again the di�erence of the y-axis
between the two �gures. This re�ects the di�erence in physical
energy level of the child in the two recording sessions.

energy level have all been calculated and illustrated in this minor section. De-
spite their own calculation methods, the psychologists at Babylab have shown
interest in the annotation methods obtained in this thesis, which could be be-
cause of the more automated, and thereby less time-consuming, approach used
here.
The child's head position is calculated with respect to the mother, as explained
in 7.1, as opposed to a reference point in the room as in the approach of Babylab.
Therefore it has not seemed appropriate to compare the resulting annotations
of the two methods.
The resulting distance pro�les as well as those of the child's physical energy
level have not been validated either, due to the unique solutions of these when
calculating them from the marker coordinates.

9.4 Combing Modalities

The results for the speaker identi�cation and the emotion recognition tasks
so far, has exclusively been obtained using features extracted from the sound
modality.
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In order of being able to combine the features from sound and motion capture in
the tasks of speaker identi�cation and emotion recognition, certain modi�cations
must be carried out. For the speaker identi�cation problem, the features from
motion capture are to be �tted to the window sizes used in the classi�cation,
that is the window sizes 10 ms, 50 ms, 100 ms, 150 ms, 200 ms and 250 ms.
The approach to this is to take the mean of the angles from the frames that
corresponds to the particular window size. This approach is also applied for the
distance features, whereas features for the child's physical energy level is carried
out by summing over the frames, to obtain the covered distance in each window.
The motion capture �les has, as mentioned in chapter 3, a sampling frequency
of 60 Hz, i.e. a sample every 16.667 ms. The corresponding number of frames
for each of the six window sizes can be seen in table 9.14.

Window Frames

10 ms 0.6

50 ms 3

100 ms 6

150 ms 9

200 ms 12

250 ms 15

Table 9.14: The window sizes with the corresponding number of frames in
mocap.

As can be seen in table 9.14, the �tting of the mocap features to the window
size of 10 ms gives rise to a problem since 0.6 is not an integer. In the speaker
identi�cation this is not a problem, since the 150 ms window showed to be the
best.
For the emotional classi�cation segments of 10 ms are used to predict the out-
come of the HMM at 100 ms. To obtain the mocap features for this window
size, interpolation is therefore carried out. The interpolation is performed such
that 3 mocap frames are used to obtain the values of �ve 10 ms segments (3
mocap frames equals 50 ms, table 9.14). The �rst of the �ve segments is set
to the value of the �rst of the three frames. The second segment is set to the
mean value of the �rst and the second frame. The third segment is set to the
value of the second frame and so on. The procedure can be seen in table 9.15,
where the value of the frames in this case refers to either angle, head distance
or physical energy in that given frame.
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In the following the combining of sound features and motion capture features

Window Frames

First 10 ms The value of the �rst frame

Second 10 ms The mean of the �rst and second frame

Third 10 ms The value of the second frame

Fourth 10 ms The mean of the second and third frame

Fifth 10 ms The value of the third frame

Table 9.15: The interpolation procedure in order to �t the mocap features to
the 10 ms segments as used in the emotion recognition.

for the tasks of speaker identi�cation, section 9.4.1, and emotion recognition,
section 9.4.2, is conducted and the resulting classi�ers are discussed.

9.4.1 Speaker Identi�cation

With respect to the speaker identi�cation task it is in this section investigated
if features from the data modality motion capture can contribute in the task of
identifying the speaker, see also the description in section 8.1 about combining
modalities.
To be able to use the features from the motion capture data, the synchronization
between the sound modality and the motion capture must be found, which is
carried out in chapter 4. The delay is only known for 10 full data sets, and
the motion capture feature can therefore only be included for these 10 dyads to
ensure synchronization. The di�erent issues regarding the number of available
dyads are discussed in chapter 4 about synchronization.
Two models must be generated from the dyads where the synchronization is
known: one that is based exclusively on the sound features and one where the
features from motion capture are included as well. This makes it possible to
obtain an expression of the performance of the motion capture features.
It is decided to run this test for the TREE classi�er only. The new TREE is
�tted to nine dyads, and the remaining one is used as the test set, as with the
model generated from 14 dyads.
For the model with sound-based features only, the same parameters as found
for the larger data set is chosen, i.e. κ = 1300 and a window of 150 ms. The
features correspond to the feature composition 8 from table 9.6, that showed
the best result for the TREE with the larger data set. These are energy, cross-
correlation and zcr. The resulting error rate for this particular TREE classi�er
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is shown in table 9.16.

Feature Composition Error rate

Energy, zcr, correlation 14 %

Table 9.16: The error rates of the TREE generated from 9 dyads based exclu-
sively on features from the sound modality.

The same model is then generated only now with the features from motion cap-
ture included as well, in di�erent combinations. The results of these tests are
shown in table 9.17.
As seen from table 9.17 the best result obtained is 14 % when including the

Feature Composition Error rate

Energy, zcr, correlation, mocap-energy, mocap-distance,
mocap-angle

16 %

Energy, zcr, correlation, mocap-energy 16 %

Energy, zcr, correlation, mocap-angle 15 %

Energy, zcr, correlation, mocap-dist 14 %

Energy, zcr, correlation, mocap-dist, mocap-angle 15 %

Energy, zcr, correlation, mocap-energy, mocap-angle 16 %

Energy, zcr, correlation, mocap-energy, mocap-dist 16 %

Table 9.17: The error rates for the TREE generated from 9 dyads based on
features from both sound and motion caption. The features with
pre�x mocap are from the motion capture modality whereas the
ones with no pre�x are the features from the sound modality.

motions capture feature. When comparing with table 9.16 where the sound fea-
tures exclusively have been used, the error rate obtained also showed a minimum
of 14 %. The inclusion of the features from motion capture therefore appears
to have no e�ect on the performance of the speaker identi�cation problem.
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9.4.2 Emotion Recognition

For the emotion recognition task it is likewise investigated if the motion capture
features a�ects the performance of the classi�er in a positively way.
The number of dyads for which the synchronization di�erence has been extracted
as well as where the manual annotations of the child's emotional state have been
executed con�nes to 6 dyads. This means that 5 are used to �t the HMM and
one as test set.

9.4.2.1 Parameter Optimization

After the synchronization has been performed, two models are again constructed:
one for the sound-based features only, referred to as the sound-based HMM,
and one that combines the sound features with the motion capture features,
the sound/mocap-based HMM. Since the data set is reduced by half from the
original set-up, see section 6.1, it is decided to estimate the optimal codebook
size and the number of states again for each model with full feature vectors.
Here the same approach is used as for the original model, which is to �x the
number of states at S = 5 and estimate K and then �x K at this value whilst
varying S to determine the optimal number of this.
The feature vectors of the two models can be seen in table 9.18.
For the sound-based HMM, the estimation of optimal K and S is shown in �g-

Model Features

Sound-based HMM MFCC, delta-MFCC, energy, zcr

sound/mocap-
based HMM

MFCC, delta-MFCC, energy, zcr,
mocap-energy, mocap-distance, mocap-
angle

Table 9.18: The feature compositions for the two models that exclude and
include mocap features, respectively.

ures 9.22(a) and 9.22(b), respectively. It is to be noted again that the choice of
number of states is based on the best codebook size.
Figure 9.22(a) illustrates that the optimal codebook size clearly is K = 2. For
K = 3 the mean error rate increases heavily, whereupon it stabilizes around 45
% for K > 3. This course of error rate as a function of codebook size, is very
di�erent from that of the full data set from section 9.2. This must be due to
the much smaller data set size, which, as can be seen, has a large impact on the
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(a) (b)

Figure 9.22: The choice of parameters for the sound-based HMM. (a) shows
the estimation of the size of the codebook, and (b) the estimation
of number of states. The y-axis on both �gures are the obtained
mean error rates of 15 replications. The red vertical lines indicate
the standard deviation of the mean.

parameter estimation.
With K = 2 �xed, S is varied to �nd the optimal number of states. From �gure
9.22(b) it is observed that for increasing S the error rate stabilizes around 22
%. The �rst time the error rate reaches 22 % is when the number of states
S equals 10, where also a small standard deviation of the mean can be seen.
S = 10 should therefore be chosen. Thus the optimal error rate obtained with
this sound-based HMM on 5 dyads is therefore 22 %.
For the sound/mocap-based HMM, the estimation of K and S can be seen from
the following �gures, 9.23(a) and 9.23(b), respectively.
In �gure 9.23(a) it can be observed that the best error rate is obtained for

a codebook size of K = 3. The error rate here is 46 %, which is observed to
increase heavily with increasing K. Again the surprisingly bad error rates must
be caused by the much smaller data set as well as the inclusion of the motion
capture features.
With this K = 3, the S is varied to extract the most optimal number of states.
Figure 9.23(b) illustrates the stabilization of error rate with increasing S. The
optimal number of states is observed to be S = 14. The best error rate for this
feature combination is thereby 46 %.
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(a) (b)

Figure 9.23: The choice of parameters for the sound/mocap-based HMM. (a)
shows the estimation of the size of the codebook, and (b) the
estimation of number of states. The y-axis on both �gures are
the obtained mean error rates of 15 replications. The red vertical
lines indicate the standard deviation of the mean.

9.4.2.2 Test of Features

Since the optimal combination of sound-based features was tested for the orig-
inal set-up with full data set, this is assumed to be valid for the sound-based
HMM investigated here for the smaller data set as well.
Di�erent feature compositions are, on the other hand, tested for the sound/mocap-
based HMM. The full set-up of the sound-based features are included in all
compositions since this composition showed the best performance in the model
for the larger data set. The feature combinations for the mocap-based features
are on the other hand varied. The following table, 9.19, illustrates the compo-
sitions of features. It can be observed in the table that the optimal feature
composition is found using the mocap-energy feature only in combination with
the sound-based features. Although the best, the error rate obtained with the
same data set, but for sound-based features only, was observed to reach its min-
imum at an error rate of 22 %. From this it must be concluded that the motion
capture features are deteriorating for the classi�er of the emotion recognition
task. If more synchronized �les were available, and thereby a larger data set
was at hand, it is possible that the inclusion of motion capture features could
have a positive e�ect on the classi�er's performance. Or at least be indi�erent
to the classi�cation, as was the case in the previous section on including mocap
features in the speaker identi�cation task.
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Feature Composition Error rate

MFCC, delta-MFCC, energy, zcr, mocap-energy, mocap-
distance, mocap-angle

46 %

MFCC, delta-MFCC, energy, zcr, mocap-energy, mocap-
distance

46 %

MFCC, delta-MFCC, energy, zcr, mocap-energy, mocap-
angle

65 %

MFCC, delta-MFCC, energy, zcr, mocap-distance, mocap-
angle

46 %

MFCC, delta-MFCC, energy, zcr, mocap-energy 36 %

MFCC, delta-MFCC, energy, zcr, mocap-distance 46 %

MFCC, delta-MFCC, energy, zcr, mocap-angle 66 %

Table 9.19: The error rates for the sound/mocap-based HMM from 5 dyads
based on features from both sound and motion caption. The fea-
tures with pre�x mocap are from the motion capture modality
whereas the ones with no pre�x are the features from the sound
modality.

9.4.3 Summary

To make use of the fact that three data modalities are available, it has been
tested whether the inclusion of the three motion capture features, child's head
position, head distance between mother and child and child's physical energy
level, could improve the classi�er performance.
In the speaker identi�cation task it was observed that the combining of informa-
tion from both sound and motion capture did not change the error rate obtained
with the pure sound-based TREE classi�er, neither in a positive or negative di-
rection. The best error rate is therefore still 14 %.
In the emotion recognition task, on the other hand, the combination of sound-
based features and mocap features showed a clear deterioration of the classi�er
performance. It was here argued that the reason could be the much smaller data
set. If a larger data set was available, it would be interesting to see if a gain in
performance could be obtained by including the mocap features. The best error
rate obtained in the emotion recognition task is therefore 11 %.
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Chapter 10

Conclusion and Perspectives

During the course of this thesis, automatic approaches for the re-labelling of
Babylab's manually extracted labels, have been investigated. The results ob-
tained in the sound-based tasks of speaker identi�cation as well as emotion
recognition showed very promising results.
For the speaker identi�cation task di�erent classi�ers were tested and the lowest
error rate obtained was 14 %. This was obtained for TREE and ANN with only
the simple features of energy, cross-correlation and zero crossings included. De-
spite the many initiatives for performance boosting, including the incorporation
of features from mocap, the results remained steady at 14 % as the lowest, im-
plying that the human labelling perhaps were constraining to the improvement
in performance.
The same scenario was observed for the emotion recognition task. The lowest
averaged error rate obtained, of 11 %, was the outcome of the HMM with all
features included. Combining of classi�ers or incorporation of mocap features
did not improve the error rate. Here, the human confusion was discussed as well
as a probable candidate for the lack in performance improvement.

From these results, it should be bene�cial for Babylab to incorporate the, in
this thesis, developed methods into their future annotation tasks. Since the
obtained error rates are seen to be within the acceptance area of the manual
annotations and a massive workload reduction would be the output at Babylab,



128 Conclusion and Perspectives

the arguments for keeping the approach of conducting manual codings are few.
If manual labellings were available for other dyads, the models could be ex-
panded for the sake of generalizability, which could induce even more reliable
classi�cation results. Furthermore, the availability of several age groups (7, 10
and 13 months) could be exploited as well. First of all, it should be tested if
the models at hand are capable of classifying these other age groups with the
same performance rate as that of the 4 months. If the models were capable of
this, the generalizability of the models would de�nitely be established.
If, on the other hand, the models were not applicable, new models should be
�tted to the new data sets. I.e. models for speaker identi�cation and emotion
recognition, respectively, should be �tted to the training data for each of the
available age groups on the basis of the manually annotated labels.
Another, very interesting, annotation that could be re-labelled automatically is
the vocalization of the mother. If she is speaking or singing is of importance
to the psychologists at Babylab, since their assumption is that the child's emo-
tional state is more likely to change from negative to positive when the mother
start singing.
This automatic labelling could be pursued by using the already applied classi-
�ers and the already extracted sound features and is therefore one of the more
easy approachable tasks for future work.

Facial expression recognition through the use of Active Appearance Models has
been super�cially examined for the purpose of acquiring a basic understanding
of the possibilities within this area for the psychologists at Babylab. The man-
ual annotations of the child's facial expressions made at Babylab are extremely
time-consuming, which is why an automatic approach, here as well, would be
bene�cial.
The results of the small study on automatic facial expression recognition showed
that especially the shape recognition seemed promising. It should be kept in
mind that the training set used for this test is very small; only four images of
the same child has been used to obtain these results.
It would be very interesting to investigate this area further. If more images were
used and if several of the dyads were included, the hope is that a completely
generalized model would be obtained that could be used to make the annota-
tions at Babylab in the future.

The annotations at Babylab are used for the analysis of the interaction between
mother and child. These analyses are based on connections and patterns be-
tween the annotations and between modalities. Amongst many, the onset of
vocalizations of mother and child and the pattern between these onsets: for
example, does the child begin speaking when the mother speaks or the other
way around? This is thereby a sound-based analysis.
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Also the pattern between the mother's leaning behaviour in relation to the child's
head turning is of interest. Here, the idea is that if the mother leans forward the
child avoids her by turning its head away. In this, the velocity of the mother's
movement could be included. This would therefore be a mocap-based analysis.
A relationship between the child's physical energy level and its vocalizations,
as well as the facial expressions of the child and its emotional utterances, are
interesting multimodal analyses that are possible to solve by machine learning.

The unique data provided by Babylab has the potential of providing the basis
of numerous analyses within the area of mother-child interaction. For many
of these analyses, the machine learning approach is very applicable, in that it
provides generalizability and in an elegant manner is able to account for the
large variety in practical data set.
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Appendix A

Facial Expression Scheme

The following scheme shows the the categories of the manual facial expression
annotations that are conducted by Babylab.
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Figure A.1: The scheme followed by Babylab in order to obtain the manual
annotations on facial expressions.



Appendix B

Active Appearance Model

B.1 Information from Video

In section 8.2 it was outlined that the third data modality, video, carries in-
formation that can not be extracted from either sound or motion capture. An
interesting aspect of the automatic annotation process evaluated in this thesis
is to investigate if the facial expressions of the child can be extracted from the
video by machine learning methods. This could automate the complex manual
annotation task, for which the coding scheme is shown in appendix A, as well
as support the results already found in the speaker identi�cation and emotion
recognition tasks.
To extract this information from the video modality, the believe is that the Ac-
tive Appearance Model (AAM) can be applied, [44]. A brief study on the AAM
and an expansion of this, the Elastic Appearance Model (EAM), has therefore
been carried out in order to see if this model is capable of extracting the facial
expressions of the child.
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B.2 The Model

The AAM is a statistical model describing both the shape and the grey-level
appearance of a given object of interest, in this case the child's face. In the
following, the shape model and the appearance model is described separately,
starting with the shape model.
The shape model is build up of a mesh that is believed to describe the shape
of the object of interest. This mesh or shape is de�ned as the coordinates that
build up the mesh, see B.1.

s = (x1, y1, x2, y2, ..., xv, yv)T (B.1)

In (B.1), the subscript v de�nes the number of coordinates with which the mesh
is build. In order for the model to be able to capture the changes in the shape
of the object, the shape is allowed to vary linearly. This is incorporated in the
model by describing the shape as a base shape plus a linear combination of a
given number n of shape vectors, see B.2.

s = s0 +

n∑
i=1

pisi (B.2)

Here, the base shape s0 represents the mean shape of a given number of training
meshes, whereas the pi represents the shape parameters belonging to the shape
vectors si.
The particular model considered in this study is the EAM, which is an expansion
of the AAM. The term elastic in the name EAM refers to the fact that the
shape can vary not only linearly but also non-linearly. For this, the Riemann
elasticity framework has been applied, which is capable of capturing complex
deformations, see [22] for further details.
In order to obtain the n shape vectors, principal component analysis (PCA) is
applied on the training meshes, [43].
PCA is a method to project data onto a principal subspace to maximize the
variance of the projected data. Furthermore, PCA is usually applied to reduce
the dimensionality of the data, such that the principal subspace has a lower
dimension than the original data.
[13] shows that if the observations in the data, xn where n = 1, 2, ..., N and N
is the total number of observations in the data set, is projected onto a vector u1

then the variance is represented by (B.3) where S is the data covariance matrix,
u1 is an eigenvector of S with the corresponding eigenvalue λ1.

uT1 Su1 = λ1 (B.3)

Maximizing the variance in (B.3) corresponds to setting u1 equal to the eigen-
vector that belongs to the largest eigenvalue, λ1 of S.
To relate PCA to the shape model, the n shape vectors represents the eigenvec-
tors belonging to the n largest eigenvectors of the training meshes.
The training meshes are labelled by hand on a given number of images. In this
thesis only a small study on the EAM has been carried out as already men-
tioned and the training of the model is based on 4 images of the child's face.
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The meshes are annotated by a 73-point mesh system.
The training images of the child's face only constitute a small section of the
original images, corresponding to (70 × 70) pixels. The extracted images de-
scribing the child facial expressions belong to dyad 011, thus only one child is
used in this study.
The appearance model is de�ned in a way similar to the shape model where the
appearance is de�ned as a base appearance image A0(x) and a linear combina-
tion of m appearance images Ai(x), as given in (B.4).

A(x) = A0 +

m∑
i=1

λiAi(x) ∀x ∈ s0 (B.4)

As indicated in (B.4), the image A(x) is de�ned over the pixels in the mesh of
the shape model s0. λi are the appearance parameters. Again A0(x) is set to
be the mean image of the training images and the Ai(x) to be the eigen-images
corresponding to the m largest eigenvalues. [43].
Above, the two parts of the model, shape and appearance, was described sep-
arately. The AMM/EAM combines the two parts to one model. From (B.2)
and (B.4) it is seen that the shape and the appearance can be obtained if the
shape parameters p = (p1, p2, ..., pn)T , as well as the appearance parameters
λ = (λ1, λ2, ..., λm)T are given. The model is then created by warping the tex-
ture from the base mesh to the shape. With warping is meant that points are
mapped to points without changing the grey levels.
The way the warping is carried out is by triangulating the mean shape s0, where-
upon linear interpolation is carried out in order to �t the triangles in s. [43] has
visually illustrated this in a very expressive way, see �gure B.1.
The warping is in the following represented as W(x; p) and the model is rep-

Figure B.1: Illustration of the warping from s to s0. Figure taken from [43].

resented as M(W(x; p)). With the goal of �tting the model, M(W(x; p)), to
an input image, I(x), in the best possible way, the approach is to minimize the
error between the estimated M(W(x; p)) and I(x).
To ensure that the coordinates of the model and of the input image are the
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same, the coordinate system for the model is used. The term that needs to be
minimized is, for each given pixel, the di�erence between the appearance of the
model in that pixel and the intensity of the input image in that pixel. This is
formally described by B.5.

∑
x∈s0

(
A0(x) +

m∑
i=1

λiAi(x)− I(W(x; p))
)2

(B.5)

As indicated in the subscript of the sum, the minimization takes place in every
pixel inside the mesh de�ning the shape. Where B.5 is minimized the optimal
shape and appearance parameters p and λ are found. For a more detailed de-
scription of the Active Appearance Model see [22], [43].

B.3 Results

The results of the AAM includes both a shape and the appearance of the test
images where the appearance can be perceived as the texture or grey level ap-
pearance in the image. The shape output is more interesting in the case of
automating the facial expressions of the child, because it represents the coordi-
nates of di�erent key points of the child's face. Due to the publication of this
thesis the images showing the results from the Active Appearance Model will
not be shown.

To sum up the study on the AAM/EAM, it has shown promising results. The
model in this study is as mentioned trained using only 4 frames and tested
using 6 frames, all of which showing the same child. If a more thorough study
should be carried out, the training set should consist of a number of frames from
several dyads (only the face of the baby) to generalize the model completely.
This model should be tested on the remaining frames of all the dyads to evaluate
the performance. The hope for this is that the optimal model, in an acceptable
way, represents the child's facial expressions. These could then be applied as
features in a classi�er that could group the facial expressions according to the
scheme in A and thereby to be used at Babylab. Furthermore the key points
could be used as features in the classi�ers in speaker recognition and emotion
classi�cation to improve the performance.
The Matlab code used in this study is from [8].



Appendix C

Synchronization

C.1 Sound versus Motion Capture

To extract the syncronization information between the external sound �les and
the motion capture �les, one idea was to extract the distance pro�le between the
mother and child from each of the two modalities and then correlate the two.
The distance between the mother and child can be calculated, for each frame,
from the head marker coordinates extracted from the Qualisys �les. In practice,
the forehead coordinates for both the mother and child are estimated by taking
the mean of the two front head markers. The distance between these two esti-
mates are then assumed to represent the head distance between the dyad. An
example of a distance pro�le is shown in �gure C.1.
Likewise, the distance pro�le can be estimated from the time delay between

the mother's and child's mouth microphones. Since the mother's utterances
are registered in the child's microphone and the other way around, the time
delay between the two channels can be estimated through the cross-correlation
function, see equation 4.1. By applying the speed of sound measure, i.e. sound
travels with a speed of around 343 m/s, the distance between the two micro-
phones (corresponding to the distance between the mother and child) can be
estimated. A cross-correlation function is calculated for every interval of 800
samples in the sound signal, which is equal to one mocap frame, in which the
location of the maximum value represents the time delay. A common represen-
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Figure C.1: Distance pro�le of dyad 001 calculated from the head markers of
the mother and child.

tation of the two distance pro�les is thereby obtained.
The estimated distance pro�le for dyad 001 is shown in �gure C.2. The two dis-

Figure C.2: Distance pro�le of dyad 001 estimated using the cross-correlation
of the signals from the two mouth microphones.

tance measures can then be compared by correlating the distance development
over time for each of the two recording modalities. As is observed from the two
�ltered and normalized distance pro�les, they are very dissimilar. The cross-
correlation between the two pro�les is calculated to extract the synchronization
di�erence. This function is shown in �gure C.3.
As can be seen, no clear maximum peak is observed, making this approach
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Figure C.3: Cross-correlation of the two distance pro�les.

rather uncertain. The maximum peak is shown in �gure C.4. Here can be seen
that there is an actual max value, but that it is very uncertain. This maximum
peak corresponds to a time delay between the two distance pro�les, and thereby
between the external sound �le and the motion capture �le, of 1.45 seconds.
Further more, if analysed closer, the entire �at area of the maximum values
exactly shows the position of the two signals where they overlap completely.

Figure C.4: Cross-correlation of the two distance pro�les, zoomed in on the
maximum peak.
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Appendix D

Results - Speaker

Identi�cation

This appendix assists the results obtained in the speaker identi�cation problem
in section 9.1. The appendix is divided into sections corresponding to the ones
in section 9.1.

D.1 Parameter Estimation

Before the test of window size can be carried out, the optimal parameters is to
be decided for each of the �ve respective classi�ers. In the following results used
to decide these optimal parameters for each of the �ve classi�ers are shown.

D.1.1 Gaussian Mixture Model

The �gures presented here are �gures D.1, D.2, D.3, D.4 and D.5 showing the
error rate of the GMM classi�er as a function of number of components, K, for
the window sizes 10 ms, 50 ms, 100 ms, 200 ms and 250 ms respectively.
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Figure D.1: The error rate as a function of number of components, K, for
GMM when K is assumed equal for all classes. Here shown for
the window size 10 ms.

Figure D.2: The error rate as a function of number of components, K, for
GMM when K is assumed equal for all classes. Here shown for
the window size 50 ms.

D.1.2 K-Nearest Neighbour

This section presents �gures that shows the error rate for the KNN classi�er as
a function of the number of neighbours. The results are shown in �gure D.6,
D.7, D.8, D.9, D.10 for the window sizes 10 ms, 50 ms, 100 ms, 200 ms and 250
ms respectively. The result for the last window size of 150 ms is shown in �gure
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Figure D.3: The error rate as a function of number of components, K, for
GMM when K is assumed equal for all classes. Here shown for
the window size 100 ms.

Figure D.4: The error rate as a function of number of components, K, for
GMM when K is assumed equal for all classes. Here shown for
the window size 200 ms.

9.3 in section 9.1.1. The summing up of the results shown in this section can
be seen in table 9.3 in section 9.1.1.
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Figure D.5: The error rate as a function of number of components, K, for
GMM when K is assumed equal for all classes. Here shown for
the window size 250 ms.

Figure D.6: The error rate as a function of number of neighbours in KNN.
Here shown for the window size 10 ms. It should be noted that the
number of neighbours only goes up to 19, due to computational
time.

D.1.3 Decision Tree

This section shows the results needed for deciding the minimum number, κ, of
observations in each node before the impure node undergoes a split. The results
are shown both when using the entropy as a split criteria in section D.1.3.1 as
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Figure D.7: The error rate as a function of number of neighbours in KNN.
Here shown for the window size 50 ms.

Figure D.8: The error rate as a function of number of neighbours in KNN.
Here shown for the window size 100 ms.

well as using the Gini impurity measure as a split criteria in section D.1.3.2.

D.1.3.1 Split Criteria - Entropy

This section presents �gures that shows the error rate for the decision tree
classi�er as a function of the number, κ, that decides the minimum number of
observations before the impure node undergoes a split. The split criteria used
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Figure D.9: The error rate as a function of number of neighbours in KNN.
Here shown for the window size 200 ms.

Figure D.10: The error rate as a function of number of neighbours in KNN.
Here shown for the window size 250 ms.

in this section is the entropy measure, as given in equation 5.26 in section 5.4.3.
The results are shown in �gure D.11, D.12, D.13, D.14 and D.15 for the window
sizes 10ms, 50ms, 100ms, 200ms and 250ms respectively. The result for the last
window size of 150 ms is shown in �gure 9.4 in section 9.1.1.
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Figure D.11: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 10 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the entropy measure given by equation 5.26.

Figure D.12: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 50 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the entropy measure given by equation 5.26.
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Figure D.13: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 100 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the entropy measure given by equation 5.26.

Figure D.14: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 200 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the entropy measure given by equation 5.26.
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Figure D.15: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 250 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the entropy measure given by equation 5.26.

D.1.3.2 Split Criteria - Gini

This section presents �gures that shows the error rate for the decision tree clas-
si�er as a function of the number, κ, that decides the minimum number of
observations before the impure node undergoes a split. The split criteria used
in this section is the Gini impurity measure, as given in equation 5.27 in section
5.4.3. The results are shown in �gure D.16, D.17, D.18, D.19 and D.20 for the
window sizes 50ms, 100ms, 150ms, 200ms and 250ms respectively.

D.1.4 Arti�cial Neural Network

This section presents �gures that shows the error rate for the ANN classi�er
as a function of the number of hidden units. The results are shown in �gure
D.21, D.22, D.23, D.24, D.25 for the window sizes 10ms, 50ms, 100ms, 200ms
and 250ms respectively. The result for the last window size of 150 ms is shown
in �gure 9.5 in section 9.1.1.
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Figure D.16: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 50 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the Gini measure given by equation 5.27.

Figure D.17: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 100 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the Gini measure given by equation 5.27.
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Figure D.18: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 150 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the Gini measure given by equation 5.27.

Figure D.19: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 200 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the Gini measure given by equation 5.27.
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Figure D.20: The error rate as a function of κ in the decision tree classi�er. κ
is the number that decides the minimum number of observations
before the impure node undergoes a split. Here shown for the
window size 250 ms, channel 2 (mother) and with all features
included as shown in table 5.3. The measure of impurity used
for these result is the Gini measure given by equation 5.27.

Figure D.21: The error rate as a function of number of hidden units in ANN.
Here shown for the window size 10 ms, channel 2 (mother) and
with all features included as shown in table 5.3. Note that this
�gure only shows the error rate op to 5 hidden units. Due to
the size of the data for the window size of 10 ms it is not com-
putationally possible to go higher up in number of hidden units.
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Figure D.22: The error rate as a function of number of hidden units in ANN.
Here shown for the window size 50 ms, channel 2 (mother) and
with all features included as shown in table 5.3.

Figure D.23: The error rate as a function of number of hidden units in ANN.
Here shown for the window size 100 ms, channel 2 (mother) and
with all features included as shown in table 5.3.

D.2 Other Optional Parameters

This section includes tables regarding the �ve respective classi�ers and their
setting values in Matlab.
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Figure D.24: The error rate as a function of number of hidden units in ANN.
Here shown for the window size 200 ms, channel 2 (mother) and
with all features included as shown in table 5.3.

Figure D.25: The error rate as a function of number of hidden units in ANN.
Here shown for the window size 250 ms, channel 2 (mother) and
with all features included as shown in table 5.3.

D.3 Confusion Matrices

In this chapter the confusion matrices for the remaining classi�ers (KNN and
MNR) can be found in �gure D.26.

In �gure D.27 the human confusion between two coder at Babylab can be seen
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Parameter Value

'distance' 'euclidean'

'rule' 'nearest'

Table D.1: The setup for the KNN classi�er in Matlab.

Parameter Value

'Nh' Variable

Table D.2: The setup for the ANN classi�er in Matlab.

(a) (b)

Figure D.26: The confusion matrices for the (a) KNN classi�er and (b) MNR
classi�er both for the window size 150 ms.

for dyad 006 and 020 respectively. It should be mentioned that the data for
dyad 020 are re-annotated at the moment at Babylab due to the high confusion
of 31 % and thereby low reliability.

Figure D.28 shows the confusion matrices for the TREE classi�er, the window
size 150 ms and for each of the �ve �rst feature compositions in table 9.6. Figure
D.29 shows in continuation to �gure D.28 the confusion matrices for the last
�ve feature compositions from table 9.6.
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Parameter Value

'model' 'nominal'

'interactions' 'o�'

'link' 'logit'

'estdisp' 'o�'

Table D.3: The setup for the MNR classi�er in Matlab.

Parameter Value

'start' 'randSample'

'replicates' 30

'CovType' 'diagonal'

'SharedCov' 'false'

'regularize' 0

Table D.4: The setup for the GMM classi�er in Matlab.

(a) (b)

Figure D.27: The confusion matrices for the human coders at Babylab. (a)
Dyad 006. (b) Dyad 020.
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Parameter Value

'prune' 'on'

'minparent' Variable

'weights' 1

'splitcriterion' Deviance/Gini

Table D.5: The setup for the TREE classi�er in Matlab.

D.4 Test of Predictability: Windows versus Sub-

Windows

Figure D.30 shows the estimated class labels for 600 consecutive observations
when using the TREE classi�er with the window size 50 ms. The misclassi�ed
observations are presented by red dots whereas the correct classi�ed observations
are presented with green dots. The estimated class labels for TREE shows that
when TREE makes one misclassi�cation, it is often directly followed by 3 or
more extra misclassi�cations.

D.5 Combining Channels

This section provides the tables for the ANN and the GMM classi�er when
combining the channels. The result when combining are shows in the caption to
the tables. Table D.6 shows the results for ANN whereas table D.7 shows the
results for GMM.

Window Channel 1 Channel 2

50 ms 20 % 17%

150 ms 17 % 14 %

Table D.6: The error rates for the two windows 50 ms and 150 ms for each
of the two channels. The ANN classi�er has been used where the
combined error rate gives 15 % .
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(a) (b)

(c) (d)

(e)

Figure D.28: The confusion matrices for the TREE classi�er for the �rst �ve
feature compositions as shown in table 9.6. (a) Composition 0.
(b) Composition 1. (c) Composition 2. (d) Composition 3. (e)
Composition 4.

D.6 Example of a TREE
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(a) (b)

(c) (d)

(e)

Figure D.29: The confusion matrices for the TREE classi�er for the last �ve
feature compositions as shown in table 9.6. (a) Composition 5.
(b) Composition 6. (c) Composition 7. (d) Composition 8. (e)
Composition 9.

Window Channel 1 Channel 2

50 ms 18 % 17 %

150 ms 17 % 17 %

Table D.7: The error rates for the two windows 50 ms and 150 ms for each
of the two channels. The GMM classi�er has been used where the
combined error rate gives 16 % .
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Figure D.30: The estimated class labels for 600 observations when using
TREE at 50 ms. Red indicates a misclassi�ed observation and
green a correct classi�ed observation.

Figure D.31: An example of a TREE where only the features, energy, zcr and
the cross correlation has been used. Only 1300 observations has
been used to �t the TREE due to overview.
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Results - Emotion

Recognition

In this chapter the best confusion matrices for the emotion recognition task
are shown. All feature combinations are included, except for composition 0 (all
features included) that was discussed in section 9.2.2.

Figure E.1: Confusion matrix for HMM, feature composition 1: MFCC, en-
ergy, zcr.
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Figure E.2: Confusion matrix for HMM, feature composition 2: MFCC, en-
ergy.

Figure E.3: Confusion matrix for HMM, feature composition 3: MFCC, zcr.
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Figure E.4: Confusion matrix for HMM, feature composition 4: MFCC.

Figure E.5: Confusion matrix for HMM, feature composition 5: energy, zcr.
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Figure E.6: Confusion matrix for HMM, feature composition 6: MFCC, delta-
MFCC, energy.

Figure E.7: Confusion matrix for HMM, feature composition 7: MFCC, delta-
MFCC.
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Figure E.8: Confusion matrix for HMM, feature composition 8: delta-MFCC,
energy.

Figure E.9: Confusion matrix for HMM, feature composition 9: MFCC, en-
ergy, zcr.
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