
Secure Wiki System

A plugin-based solution to wiki security

Written by

Kasper Lindberg - s052257

Technical University of Denmark

Department of Informatics and Mathematical Modelling

Master's Thesis - IMM-M.Sc.-2012-28

March 2 - 2012

Secure Wiki System

Abstract

Wiki systems have become an important tool for knowledge sharing among people. From
the small wikis for knowledge sharing in organizations to the larger project-related wikis on
the Internet. In addition, Wikipedia, which is in a class of its own when it comes to size,
has managed to collect an impressive amount of information based solely on the cooperation
between strangers from around the world. Any open wiki, with a user-community so large that
members of the community have a certain degree of anonymity, su�er from the e�ects of directed
and random vandalism. This vandalism is a problem because it reduces the trustworthiness of
the content provided by the wiki system.

The secure wiki model is an integrity model that has been proposed to help prevent van-
dalism and improve the trustworthiness of articles in wiki system. This model is based on both
static and dynamic document access controls, which enforce a simple integrity based security
policy. This thesis improves this model by proposing a new policy for use with the model.
The proposed policy is evaluated and compared to the original policy. The evaluation shows
that the new policy is highly con�gurable and can be con�gured in such a way that it requires
signi�cantly less reviewers than the original policy, which can bene�t small systems with a low
number of users.

An implementation of a base wiki system have been created, which on its own equals any
other wiki in terms of its vulnerability to vandalism. In addition to this, an implementation
of the secure wiki model has also been created. The implementation is made as a plugin to
the base wiki system and adds an integrity model to the existing soft-security model that
is used by the base system and other wiki implementations. The integrity model provides
harder security guarantees and limits the ability of attackers to compromise the integrity of
wiki articles, without compromising the all can edit policy of open wiki systems.

ii

Secure Wiki System

Preface

This thesis was prepared at the Department of Informatics and Mathematical Modelling at the
Technical University of Denmark in partial ful�llment of the requirements for acquiring the
M.Sc. degree in Computer Science and Engineering.

The thesis deals with preserving integrity of documents in wiki systems using a previously
de�ned integrity model for wiki systems. The main focus is on the design and implementation
of the speci�c policy used in this model and the implementation of a proof-of-concept.

The project was completed in the period from October 3rd, 2011 to March 2nd, 2012 under
the supervision of Associate Professor Christian Damsgaard Jensen.

Lyngby, March 2012

Kasper Lindberg

iii

Secure Wiki System

Contents

Abstract ii

Preface iii

Contents iv

List of Figures vi

List of Tables vii

List of Listings viii

1 Introduction 1
1.1 Objectives . 3
1.2 Thesis Structure . 3
1.3 Terms and De�nitions . 3

2 Previous Work 4
2.1 Classic Wiki Security . 4
2.2 WikiTrust . 6
2.3 Wikipedia Recommender System . 7
2.4 The Secure Wiki Model . 7
2.5 Implementations of the Secure Wiki Model . 10
2.6 OSGi . 12

3 Analysis 16
3.1 Functional Analysis . 17
3.2 Generic Wiki Architecture . 19
3.3 Secure Wiki Model Plugin . 22
3.4 Secure Wiki Model Policy . 26

4 Design 30
4.1 Base Wiki System . 31
4.2 Secure Wiki Model Plugin . 38
4.3 Promotion Policy . 42
4.4 Demotion Policy . 43

5 Implementation 44
5.1 OSGi-Bridge . 44
5.2 API . 45
5.3 Data . 47
5.4 Core . 47
5.5 Frontend . 49
5.6 Secure Wiki Model Plugin . 50
5.7 Modi�cations of Third Party Components . 50

iv

Secure Wiki System

6 Evaluation 51
6.1 Evaluation Scenarios . 51
6.2 Estimation of Work . 52
6.3 Estimation of Number of Reviewers . 55
6.4 Estimation of Level Weights . 57
6.5 Estimation of Vote Threshold . 60
6.6 Required Number of Reviewers for Π2 . 64

7 Future Work 65

8 Conclusion 66

References I

A Wikipedia author activity III

B Project Setup V
B.1 Java . V
B.2 MySQL . VI
B.3 Apache Tomcat . VI
B.4 Application Installation . VII

C Patched Http Bridge Bundle VII

D Equinox JSP HTTP-Helper bundle XII

E Database SQL XIV

v

Secure Wiki System

List of Figures

1 Two ways to combine an OSGi-environment and an application server 15
2 Structure of a generic wiki article. 17
3 Functional model of a generic wiki . 19
4 Architectural model of a wiki . 20
5 Architectural model of a generic wiki with the secure wiki model 23
6 Execution environment . 31
7 OSGi-bridge bundle structure . 34
8 Base system domain model . 36
9 Secure wiki model domain model . 40
10 Plot of policy security for L1 review using linear work-function. 54
11 Plot of policy security for L1 review using increasing work-function. 54
12 Plot of policy security for L0 review using linear work-function and equal weights. 56
13 Plot of policy security for L0 review using linear work-function. 57
14 Plot of policy security for L0 review using linear work-function and equal weights. 57
15 Plot of policy security for L0 review using linear work-function. 58
16 Plot of policy security for L1 review using linear work-function. 58
17 Plot of policy security for L1 review using linear work-function. 59
18 Plot of policy security for L1 review using linear work-function. 60
19 Plot showing required combination of malicious users 61
20 Plot showing required combination of malicious users 62
21 Plot of policy security for L1 review using linear work-function. 62
22 Plot of policy security for L1 review using linear work-function. 63
23 Plot of policy security for L1 review using linear work-function. 63
24 Plot of policy security for L1 review using linear work function. 64
25 Plot of policy security for L1 review using linear work function. 64
26 Plot of policy security for L1 review using linear work function. 65

vi

Secure Wiki System

List of Tables

1 Edit statistics for Wikipedia. 51
2 Level size ratios . 52
3 Power-ratio for votes when Wi = i . 59
4 Editors with ≥ X edits in that month . III
5 percentage of active editors with ≥ X edits in that month IV
6 Editors with ≥ X edits. Cumulative all-time . IV
7 Percentage of active editors with ≥ X edits. Cumulative all-time V

vii

Secure Wiki System

List of Listings

1 Example Bundle Manifest . 14
2 wiki.xml . VII
3 org.apache.felix.http.bridge forward patch . VIII
4 org.apache.felix.http.bridge pom.xml . IX
5 CVS checkout command for JSP HTTP-Helper bundle sourcecode XII
6 org.eclipse.equinox.http.helper pom.xml . XII
7 Database creation SQL . XIV

viii

Secure Wiki System

1 Introduction

The Internet started as a means for researches at various American universities to exchange
data. In the early 1990's HTML was created by researches at CERN [3] to make sharing of
knowledge easier. Over time, the use of the Internet for knowledge sharing have evolved to be
much more. Online newspapers compete to be the �rst to publish news-stories, people from
all around the world get together to work on open source projects and some engage in the
creation of online encyclopedias. The dynamic nature of the Internet and the ease of accessing
it has made the Internet an important source of information for everyone connected to it.
The ease at which information can be published on the Internet has increased the sharing of
information but, at the same time, also increased the risk of getting bad information, even from
well-meaning authors. Some of the collaborative knowledge gathering and sharing systems on
the Internet are Wikipedia and Citizendium. Both allow everyone to edit existing articles and
create new articles, although Citizendium requires editors to register an account tied to a known
and veri�ed real-world identity. In addition to these, everyone can start wikis on any subject
on wikia.com. These and other collaborative systems are using the concept of crowdsourcing,
i.e. using the combined e�orts of a large crowd of people to accomplish a task, to gather
knowledge within the scope of the system. Wikipedia, Citizendium and wikia are all based
on the wiki technology. Wikis are open systems where anyone can edit everything which puts
any wiki at risk of being vandalized by malicious users. Vandalism ranges from the undirected
vandalism performed out of boredom to the more directed vandalism performed with speci�c
intentions and therefore the motivation to work around protection measures put up by the
wiki. In addition to vandalism, bad edits by well meaning users may introduce errors in the
wiki articles, that can be hard to detect by readers of the article. The open nature of a wiki
means that the reader of wiki articles must be aware that a number of caveats related to the
writing process [5]. The most signi�cant being

Accuracy The information contained in an article may be incorrect, without the possibility
to distinguish good from bad.

Motives The article may have been written with a speci�c point-of-view for commercial, po-
litical or religious reasons.

Author expertise The expertise of the author or authors who wrote the article may be low.
This can lead to the inclusion of speculation and rumors in the article.

Despite the issues with the open nature of a wiki, wikis have proven to be a popular and
successful tool for knowledge sharing. The success of the wiki idea can be illustrated by the
Wikipedia - the free encyclopedia that anyone can edit, which aims to cover just about anything,
smaller subject speci�c wikis at wikia.com and company and department wikis having only a
small group of people as users.

A study made by Wikipedia contributors concluded that 4-6% of edits made to Wikipedia
was vandalism [1, 22]. Although the sample-size used in the study is small, the number, if
assumed to be representative of Wikipedia, shows that the amount of vandalism that Wikipedia
receives is signi�cantly lower than what could have been feared, given the open nature of the
system. In the month of December 2011, close to 5.5 million edits were made to the English

1 / 67

Secure Wiki System

Wikipedia1. Given the large amount of edits made, 4-6% is still a large amount of vandalism
to correct.

To combat vandalism and correct errors by well meaning authors, Wikipedia contributors
regularly monitor recent changes to Wikipedia and checks the edits made in order to detect and
correct any problems [24]. In addition, automated bots have been deployed to monitor changes
to detect and correct vandalism [23]. With 4-6% vandalism, the need to do this is apparent,
but the time spent doing this is a waste of time that could go into researching and writing
articles.

In an attempt to reduce the amount of vandalism, basic vandalism detection have been
added to the Wikipedia software. As an example, when attempting to create a user-page
�lled with garbage2, Wikipedia will, at the time of writing, responded with the message �An
automated �lter has identi�ed this edit as potentially unconstructive, and it has been disallowed.
If this edit is constructive, please report this error.�

The soft-security model used by Wikipedia have proven itself to be su�ciently e�ective in
keeping Wikipedia relatively vandalism free. The success of this model is that most vandals
are demotivated by the quick removal of their vandalism. To combat the remaining vandalism
that does occur, new models providing harder security guarantees are needed. The challenge
for these models will be to stay within the open nature of the wiki, which requires the system
to be managed by the community. If such a system can remove all vandalism and at the same
time require signi�cantly less time to manage than what would have been spent correcting
vandalism, it can be considered a success.

The following will describe the secure wiki model [12] that aims to protect Open Collabo-
rative Authoring Systems (OCAS), of which wikis are a subset, against vandalism. The model
does not prevent legitimate contributors from contributing to a wiki system, but puts a cost on
the ability to edit articles in the system. For individual contributors this cost is negligible, but
for attackers this cost makes it costly to control the multiple colluding malicious users needed
to break the security of the model. Controlling multiple colluding malicious users is known as
a Sybil-attack [6]. The model also puts a cost on whitewashing [8] where users change accounts
to escape the bad reputation that the account has gained through malicious actions.

This thesis documents the proof-of-concept implementation of the secure wiki model and
the modi�cations to the model identi�ed as bene�cial wrt. having a model that can be accepted
by administrators and users of wiki systems. The implementation uses an alternative policy
than the one proposed by the original model, and compares this new policy to the original
policy wrt. the amount of work required by attackers to violate the policies.

The results produced by the thesis shows that the secure wiki model is an e�ective model that
can protect articles from vandalism and can be tailored to �t most systems, regardless of their
size. The evaluation shows that the work required to violate the new policy is su�ciently high
to make it infeasible for most attackers to break the security of the model and that the larger
the system the harder it is to break. The system has yet to go through a full-scale evaluation
in a real-life environment with both honest users and malicious colluding users attempting to
break the security of the system.

1First edit on December 1 2011 created revision 463382251, Last edit on December 31 2011 created revision
468850236. Di�erence: 5,467,985 revisions.

2speci�cally the content: asdfasdf asdfa sdfasdfasd fasd fasdfasd fad

2 / 67

Secure Wiki System

1.1 Objectives

Wiki systems allow groups of people to share knowledge, allowing individual members to obtain
the knowledge resulting from other individuals prior research. The danger is that the articles
in the wiki are not accurate, complete and unbiased. Current wiki systems uses citations, much
like scienti�c articles, to allow readers to verify the claims that are presented in an article.
Depending on whether a user checks the references and if the reference is any good, there is
still the chance that users can be misinformed by errors, omissions and bias in the article.

The goal of the project is to create a proof-of-concept wiki system that uses a plug-in based
approach to integrity and by that approach, improve the ability of wiki systems to ensure the
quali�cations of contributors, in relation to the quality of article these contributors edit and to
better communicate the accuracy, completeness and lack of bias of articles to readers.

This thesis will present a brief summary of some of the current approaches to integrity in
existing wiki systems. The thesis will describe why a new system is needed and present the
secure wiki model that addresses these problems. The main goals of the thesis is:

� Propose a new policy for use in the secure wiki system and evaluate its e�ectiveness
compared to the original policy.

� Implement a base wiki system with a plug-in architecture that allows the seamless ex-
change of the secure wiki model implementation.

� Implement a plug-in version of the secure wiki model that are using the proposed policy
and can be con�gured to match the speci�c system.

1.2 Thesis Structure

Previous work in Section 2 describes a number of approaches that are currently used to prevent
vandalism and/or provide a measure of the integrity of wiki documents. The section also
introduces the secure wiki model, which forms the basis for the work done in this thesis, and
describes the previous implementations and the experience gathered from these.

The analysis in Section 3 describes the analysis of a generic wiki, the secure wiki model in
the context of a generic wiki and analyses the requirements for the policy to use with the secure
wiki model.

Based on this analysis, Section 4 describes the design of a base wiki and the secure wiki
model to be used with it. The design section also de�nes a new policy to use with the secure
wiki model. The implementation of this system is documented in Section 5.

The evaluation in Section 6 establishes a guideline for the speci�c values used by the pro-
posed policy, evaluates the proposed policy and shows how it compares to the policy used by
the original secure wiki model.

Future work in Section 7 describes possible future extensions of the implemented system,
particularly with respect to the secure wiki model and the proposed policy.

The conclusion of the thesis is presented in Section 8 and describes the overall results of the
thesis along with closing remarks.

1.3 Terms and De�nitions

The following list de�nes the special terms used throughout this thesis.

3 / 67

Secure Wiki System

Reader A wiki user that only reads the content on the wiki, but does not write or contribute
to the wiki.

Contributor A wiki user that contributes to the wiki by writing content, �xing errors and
performs administrative task associated with the running of the wiki.

Review A procedure used for assessing the quali�cations of a contributor, based on the con-
tributor's contributions to the wiki.

Reviewer A wiki-user chosen to participate in a review.

2 Previous Work

Addressing wiki security and the trustworthiness of articles have previously been done using
di�ering approaches. Some of these approaches have been speci�cally designed for wiki systems
while some can be applied to any set of objects. The classic wiki security, used by most wiki
implementations have proven itself to be su�cient in the creation and maintenance of both
small and large systems, provided an active community of people supporting the many manual
operations needed to support it. Although this system have proven e�ective, the fact remains
that it is not su�cient to rule out the presence of incorrect information added by vandals.

In order to provide users with a measure of the level of trustworthiness for an article, both
content-based and collaborative �ltering approaches have been taken. Content-based �ltering
systems uses only the content that can be obtained from the running system, while collaborative
�ltering systems rely on input received from users.

Building on the behaviour of the classic wiki security mechanism, the Wikitrust system can
calculate a trust-score of a wiki article, based on the reputation of the authors that contributed
to the article. Trust-values and author reputation is based solely on the information retrieved
from article revisions and is therefore a content-based system. At the moment, Wikitrust is
active for only a handful of language-speci�c Wikipedia wikis. The Wikitrust system requires
no human interaction but acts exclusively on the content provided by the WikiMedia foundation
servers running Wikipedia.

Where Wikitrust is content-based �ltering, the Wikipedia Recommender System (WRS)
uses a collaborative �ltering approach, that allows WRS to predict the users rating for articles
that the reader have not seen before. Readers are asked to rate articles, which are then compared
to ratings by other users, which can then be used to identify users with similar rating-patterns
and predict the reader's rating of new articles. When no data is available, WRS uses the
WikiTrust system as a fall-back to ensure that WRS will always be able to give a rating.

These approaches are all based on providing a trust-value for the article as it is when
reading the article, but does not have the ability to prevent bad content from being added
to the articles. This is the goal of the secure wiki model, which establishes rules for who
can edit which articles, with the intention of protecting high-quality articles from low-quality
contributors and all articles from vandals.

2.1 Classic Wiki Security

Wiki systems rely on soft security where repairing the system is as easy as, or easier than,
creating the problem. The basic problems that any wiki needs to handle is the introduction

4 / 67

Secure Wiki System

of bad content into articles and deletion of good content from existing articles. Introduction
of bad content can come from both malicious and well-meaning users. Well-meaning users will
edit articles in a way that they believe improves the article. Their edit will usually add factually
incorrect content or maybe delete good content. Some malicious users will add content that is
completely unrelated to an article subject, simply to vandalize the article, while other malicious
users may have a speci�c purpose with their malicious edit. Articles dealing with controversial
topics, speci�cally those that contradict a belief or conviction held to be true despite clear
evidence to the contrary, e.g. conspiracy theories, are targets for directed vandalism.

In general, wikis deal with malicious edits by undoing the edit to restore the article to the
previous good revision. In small wikis where contributors know each other outside of the wiki
and where contributors can communicate through the wiki system, a contributor that made a
bad edit can be told so. Well-meaning contributors will take such a message into consideration
next time the contributor makes an edit. Malicious users may realize that their actions are
disruptive and stop, but the ones that continue, can be blocked from the system. Since newly
created accounts can do the same as old accounts, the cost of being blocked is relatively low.

Wikipedia is the biggest and best known wiki. For this reason Wikipedia also attracts
malicious users with the intention to vandalize Wikipedia articles. The size of Wikipedia, both
in terms of number of articles and the range of topics covered by those articles, means that
Wikipedia has extended its vandalism prevention features beyond that of a generic wiki and may
be the most advanced vandalism prevention used by any wiki. In addition to the normal strategy
of vandalism detection and correction with an optional block if the contributor repeatedly
vandalizes articles, Wikipedia has introduced measures to protect articles from vandalism by
preventing edits from certain users.

Wikipedia uses several types of article protection schemes, depending on the protection
needed. Full protection locks an article such that only administrators can edit the article while
Semi-protection locks an article such that new and unexperienced contributors cannot edit the
article. The speci�c condition used to determine if a contributor is new and unexperienced is
that the account should be more than four days old, and have made more than 10 edits3 [25].
A contributor meeting this criteria is said to be autocon�rmed. Using the semi-protection,
Wikipedia is able to prevent anonymous malicious edits intended at changing speci�c articles.
In addition, any autocon�rmed account can be blocked from editing, requiring the user to create
a new account and invest the time and e�ort needed to be autocon�rmed again. This e�ectively
puts a cost on being blocked, when engaging in directed vandalism. In addition, Wikipedia has
creation-protection to protect articles from being created (usually used to prevent the recreation
of a deleted article) and move protection to prevent the moving (renaming) of articles. The
need for full protection arise when a divided community engages in edit-wars and repeatedly
changes an article between two or more opinions. To resolve such disputes, an administrator
will enforce a full-protection of the article, forcing the community to discuss the issue on the
article talk-page. When the community reaches a consensus, the article can be unprotected
and the administrator can enforce the consensus by blocking contributors refusing to follow the
consensus of the community. In wikipedia terminology, an administrator is a user that have been
chosen from the community by the community to receive additional permissions. Out of the
English Wikipedia's 15.9 million registered users, only about 1500 are administrators [20]. In
addition to administrators, Wikipedia has a small number of bureaucrats with more permissions
than administrators, e.g. it requires a bureaucrat to promote a user to administrator. There

3The condition for contributors editing through the Tor network is 90 days and 100 edits

5 / 67

Secure Wiki System

are around 30 bureaucrats on the English Wikipedia [21].
Despite the fact that preventing certain users from editing speci�c articles goes against the

policy of anyone can edit, the additional vandalism protection features introduced by Wikipedia
has helped combat vandalism and edit-warring by both anonymous and registered users. Full
and semi protection in Wikipedia is applied only for the time needed and as soon as the
protection is no longer required it is removed from the article. Semi protection is especially
e�ective since regular contributors have no problem being autocon�rmed, allowing them to edit
semi-protected articles, while vandalism is usually performed by anonymous and new users [1].
New or anonymous users can still edit talk-pages, so if they have a contribution to make, they
can always ask to have their contribution added to the article by another contributor.

2.2 WikiTrust

Wikitrust is a system developed by researchers at UC Santa Cruz, Computer Science Depart-
ment. Wikitrust is a system that computes the reputation of contributors (system-internal use
only) and a trust value for articles [1]. Wikitrust is a content-based reputation system and
requires no direct interaction with wikipedia users.

Wikitrust tracks changes made to articles and can remember when individual words were
added to an article. When an author modi�es an article, Wikitrust considers the author to
have performed a review of the existing text and therefore, any text that survives the review
has the authors approval while text that is removed by the author is not approved by the
author. Wikitrust computes this on a word-by-word basis, and can recognize when a section
of text is reworked compared to being replaced. For each review of an article, the trust placed
in the words that survived the review is increased by a value dependent on the reputation of
the author performing the review. Authors gain reputation by writing content that survives
reviews by other authors and their gain in reputation is dependent on the reviewing author.
When high-reputation authors write content, the words they write are automatically assigned
a trust-value corresponding to the reputation of the author. Anonymous and new contributors
have gained no reputation while older and more experienced authors have gained reputation
on the basis of their contributions. With vandalism primarily being performed by anonymous
and new contributors [1] this e�ectively marks vandalism as low-trust, while the contributions
made by the reputable contributor are marked as high-trust, even when the added text have
not been reviewed by other authors.

To use Wikitrust, the user can install an addon for the Firefox web browser, which will
modify Wikipedia pages and add a tab that, when clicked, will load Wikitrust trust-values
for the article. When using the addon to get the Wikitrust trust-values for an article, the
addon will modify the background-color of the text to indicate the trust-score of each word.
Text that Wikitrust �nds to be trustworthy maintains its white background, while new and
untrustworthy text has an orange background. The shade is a dark orange for untrustworthy
text and gets progressively lighter as the trust in the text increases with each review performed
by high-reputation authors.

The result of using Wikitrust is that the trustworthiness of articles will be directly a�ected
by the majority opinion in the community. If the community writing articles all agree on a
speci�c, but incorrect, view of things, the community will maintain articles to that viewpoint.
Since the community does not revert this incorrect point of view, Wikitrust will assume authors
to have a high reputation and therefore the articles describing this point of view will be marked

6 / 67

Secure Wiki System

as trustworthy. However, this will be common to all systems relying on the actions of the
community and not an authoritative third party. Since an authoritative third party is unlikely
to be available, this is something that such systems will be a�ected by.

2.3 Wikipedia Recommender System

The Wikipedia Recommender System is a collaborative �ltering approach to providing users
with an article-rating of Wikipedia articles [13]. The system collects user ratings of articles
and stores them in a centralized database managed by the WRS server. When a user reads an
article from Wikipedia, WRS will compare the user's ratings with ratings given by other users
for articles which the users have already rated. By comparing the ratings, WRS can identify
other users with similar ratings. Assuming the other users with similar ratings have rated the
article that the user is reading, WRS can use these ratings to predict the rating that the user
would assign to the article. When no ratings are available for reference, WRS comes short since
no data is available to base a prediction on. In this situation, WRS uses Wikitrust as a fallback
to provide an article-rating. Where Wikitrust computes ratings on a word-by-word basis, WRS
provides a single rating for the entire article. Mapping from Wikitrust ratings to WRS ratings
is done using a weighted average of the Wikitrust ratings and a subsequent normalization to
move the rating from the interval [0 : 10] used by Wikitrust to the interval [1 : 9] used by
WRS [13].

Compared to Wikitrust that calculated a consistent rating regardless of the user requesting
a rating, the Wikipedia recommender system can report di�ering ratings to di�erent users if the
users disagree on their ratings. A user who rates articles in much the same way as the majority
of users in WRS will receive the ratings given by the majority of WRS users. Another user
who consistently rates articles contrary to the majority of WRS users will get ratings contrary
to the ratings of the majority. Despite this di�erence, both users receive the rating that they
would have given the article.

2.4 The Secure Wiki Model

The primary function of both Wikitrust and WRS is to establish the trustworthiness of a
Wikipedia article as it is, with all the possible inaccuracies and vandalism contained in the
article. Both systems lacks the ability to prevent inaccuracies and vandalism from entering the
article in the �rst place. The classical wiki security features can do this, but does so only on
speci�c articles and only when it is clear that the article would otherwise be vandalized and
the protection will be removed as soon as it is perceived that the threat of vandalism is gone.

The secure wiki model, suggested by Jensen [12] is an integrity model for use in Open
Collaborative Authoring Systems (OCAS), which wiki systems are a subset of. The purpose
of the secure wiki model is to provide a classi�cation of articles in terms of their correctness,
accuracy and lack of bias. To provide a reliable classi�cation, the secure wiki model de�nes a
number of constraints that control who can edit speci�c articles.

Traditional wikis are lacking e�ective means for supporting, the traditional security process
based on prevention, detection and response. This is, in part, due to the fact that few prevention
mechanisms exists, detection is a manual process left to the community and the only response
is to undo the undesirable changes. For this reason, the secure wiki model combines the
reputation-system approach of deciding what is good and bad content with traditional integrity

7 / 67

Secure Wiki System

mechanisms to prevent undesirable content from entering good content. The secure wiki model
works by enforcing integrity levels for authors and articles in a manner based on the Biba
integrity model [4] and Biba's Low Watermark model [4]. The secure wiki model also de�nes
the process with which to manage the integrity levels.

The Biba integrity model de�nes the Simple Security Property and the *-Property

1. Simple Security property; A subject at a given level of integrity may not read an object
at a lower integrity level (No Read Down)

2. *-Property; A subject at a given level of integrity must not write to any object at a higher
level of integrity (No Write Up)

The user may have multiple programs open, e.g. web-browsers, so the simple security
property will be impossible to enforce in practice due to the lack of complete mediation of the
user's access to information. The secure wiki model therefore only enforces the *-property,
which it can, due to the fact that data written to the system will have to go through the
server-side of the OCAS system.

Each author in the OCAS-system registers an identi�er to be used when editing documents.
The identi�er serves as a pseudo-identity for the real author and enables the OCAS-system
to connect the author's actions regardless of the point of access (such as home or work PC)
from where the author edits documents. The secure wiki model assigns Integrity Levels (IL)
to documents and Quality Con�dence Values (QCV) to authors through their pseudo-identity
identi�er. The IL and the QCV describes the level of correctness, completeness and lack of
bias in documents and in the authors previous writings. An author is assumed to be consistent
in his writings and therefore the QCV is also considered an indication of the quality of the
writings the author will produce in the future.

The Secure Wiki Model builds on two separate integrity models, each intended to handle
di�erent aspects of the mechanism that ensures the integrity of the system. The �rst is the
static integrity part, which enforces access control and prevents unauthorized editing of articles.
The second part is the dynamic integrity model, which manages the assigned integrity levels of
articles and authors.

2.4.1 Static Integrity Model

The IL and QCV are used in the static access control, to ensure that the *-property is enforced,
such that authors are not able to corrupt documents with a higher integrity level. Formally,
the secure wiki model de�nes the following sets:

A is the set of identi�ers of authors who have registered to use the system.

D is the set of documents that are managed by the system.

I is a totally ordered set of integrity levels.

In order to compare the IL and the QCV, the model de�nes the following two functions, that
maps the IL and QCV to the integrity levels in the totally ordered set I.

qcv : A→ I which gives the quality con�dence value of the author a ∈ A.

il : D→ I which gives the integrity level of the document d ∈ D.

8 / 67

Secure Wiki System

These functions are then used to de�ne the predicate

can_edit : A× D→ {0, 1} which indicates if author a ∈ A can edit document d ∈ D.

The formal de�nition of can_edit is shown in (1).

can_edit(a : A, d : D) =

{
1 if il(d) ≤ qcv(a)

0 otherwise
(1)

The can_edit function is evaluated each time an author attempts to edit a document. The
function prevents authors from editing documents with an IL higher than the authors QCV.
This e�ectively enforces the *-property of the Biba integrity model, in that it prevents authors
from writing to articles with an IL higher than the authors QCV.

2.4.2 Dynamic Integrity Model

In addition to the static integrity model, the secure wiki model de�nes a dynamic integrity
model to manage the integrity levels assigned to documents and authors. Inspired by the low-
watermark model [4], the secure wiki model will automatically raise the IL of a document to the
QCV of the author that edits the document. This is done based on the assumption that authors
will improve the quality of documents they edit, to their QCV. The e�ect is the opposite of the
original low-watermark model.

The original low-watermark model says that when a subject accesses (i.e, reads) an object
with an integrity level lower than the subject, the subject will be given the integrity level of the
object. The secure wiki model turns this around, such that when the object (the document)
is written by the subject (the contributor) the document is given the integrity level of the
contributor. This is based on the assumption that authors with higher QCVs will improve
articles to the point where they deserve the higher IL.

In addition to having good authors improving documents, whose IL is lower than the author's
QCV, and thereby increasing the document's IL, users with a QCV equal to the document IL can
also improve documents to the point where the documents deserve a higher IL. Since the QCV
of the author equals the IL of the document, another method is needed to raise the IL of the
document. For this, the secure wiki model uses a promotion procedure based on users reviewing
the document and casting votes to determine consensus on the quality of the document. The
secure wiki model rewards such authors by promoting the principal author of documents that
are promoted through reviews. The secure wiki model uses the term principal author to mean
the author who contributed the most, but it could also be the author who contributed last or
the contributing author who requested the promotion review or a combination of factors [12].

In order to reduce the ability of an attacker to perform a denial of service attack through
repeated promotion-requests, the secure wiki model limits the set of authors who can request
such a review to the authors who contributed to the document.

The secure wiki model also has a demotion procedure that will allow the community to
reduce the IL of documents that no longer meet the criteria for the given IL. Demotion can
be necessary if the general quality of the documents at the given IL improves without similar
improvements being made to the document that is to be demoted. If a demotion procedure
results in the demotion of a document, the principal author will also be demoted. The secure
wiki model limits the set of authors who can request a demotion review to the authors who can
edit the document according to the can_edit predicate.

9 / 67

Secure Wiki System

The secure wiki model de�nes the following notation for the purpose of describing the review
policy used in a review procedure.

Li is the symbolic name used for the ith integrity level in I.

Λi is the set of registered users at level Li.

ri is the number of authors randomly selected from level Li to perform a review.

ΛRi
is the set of randomly selected users from level Li to perform a review.

τi is the threshold of votes necessary for level Li to return a positive result.

zi is the number of malicious colluding authors in ΛRi
.

Using these de�nitions, the review decision for reviewer j ∈ ΛRi
on the review of document

d ∈ D is then δj(d:D). The combined judgment of level Li is then de�ned as shown in (2)

Di(d : D) =

1 if

∑
j∈ΛRi

δj(d) ≥ τi

0 otherwise

(2)

The secure wiki model uses a policy termed Π1. Using Π1, two out of three levels must
approve the promotion of a document in order for the promotion review to succeed. To have a
document promoted from level Li to Li+1, Π1 dictates that each of the levels Li, Li+1 and Li+2

must review the document and at least two of them vote to promote, as expressed in (3).

D(d : D) = (Di+2(d) ∧ Di+1(d)) ∨ (Di+1(d) ∧ Di(d)) ∨ (Di(d) ∧ Di+2(d)) (3)

2.5 Implementations of the Secure Wiki Model

As part of the description of the secure wiki model, the e�ectiveness of the model was evalu-
ated using theoretical examples and calculations to determine the probability of an attacker's
ability to in�uence reviews. Having shown that the model is sound, when subjected to various
scenarios, the next step in evaluating the e�ectiveness of the secure wiki model is to have the
model implemented in a real-life system. Two such implementations have been made using the
JamWiki system as base. JamWiki is an open-source implementation of a wiki using the same
article-markup as MediaWiki and thus Wikipedia. JamWiki is licensed under LGPL and runs
on most application servers [11].

2.5.1 Secure Wiki Model in JamWiki

As a �rst prototype implementation, Sander [15] has implemented the secure wiki model in
JamWiki. The �rst prototype implementation contains small extensions to the original secure
wiki model that gives authors a �ner control of the document IL. These extensions are based on
a number of observations. First, when reviewing articles, the system needs to lock articles from
modi�cation for the duration of the review and that this is a problem as it prevents authors
from improving the article further while locked. Second, the watermark model, as used in the
original secure wiki model, does not support the work-process of the typical wiki-contributor.

10 / 67

Secure Wiki System

A contributor with a high QCV with the intention of improving the quality and thereby the IL
of a long article may rewrite the whole thing o�ine before submitting the changes in one go,
but due to the time-consuming process of improving a long article, it is more likely, that the
improvements will be made in steps, e.g. one section at a time. This means that just because
the article were modi�ed by a contributor with a high QCV, the article may not deserve an
IL matching the contributor's QCV. This is a problem since automatically determining the
appropriate IL of the revision is di�cult. With the need to lock articles during reviews and
the problem with determining the appropriate IL when articles are edited by contributors with
a higher QCV, the �rst prototype implementation asks the author what the appropriate IL
of the article should be, with choices ranging from the article's IL to the contributor's QCV.
E�ectively, this changes the secure wiki model from automatic document promotion to manual
document promotion.

The same considerations are made in relation to demotion, where the actual demotion
is managed by administrators. Administrators are trusted to only demote articles for which
there is a consensus to demote in the community. This consensus would be reached through a
discussion on the article's talk-page.

The �rst prototype implementation relies solely on individual authors and administrators to
promote and demote articles. Author QCV is managed by the community using a con�gurable
voting policy. Reviews of authors are based on the individual author's contributions to the
wiki. These contributions can easily be identi�ed using the user-contribution function available
in JamWiki and most other wikis.

Using JamWiki as a base system, the prototype implementation relies on existing features
to inform the user of the IL of the given article. Speci�cally the implementation places the
classi�cation of the article as part of the page-structure above the article-content. As far
as voting is concerned, no existing features exist in JamWiki that can be used. For this, the
prototype implementation has created separate pages that facilitate easy access to all necessary
information in order for the reviewers to reach a decision.

The prototype implementation uses a con�guration �le that allows system-administrators
to change values for the parameters used to con�gure the voting-policies. In addition, the
prototype implementation has an interface for the plugin that allows anyone to create a new
secure wiki model implementation that can replace the secure wiki model of the prototype
implementation, if the new policy to be used is di�erent from the policies that can be con�gured
in the prototype implementation.

The �rst prototype implementation is a system that assigns ILs to articles and QCVs to
contributors as well as enforcing the can_edit predicate de�ned by the secure wiki model.
In addition the prototype implementation can manipulate the ILs of articles and QCVs of
contributors. The prototype implementation has identi�ed a number of issues with the secure
wiki model that needs to be resolved before the secure wiki model can be applied to wikis
in general use. These issues relate primarily to the di�erence between the model's and wiki-
contributors' method of doing things. The prototype implementation has solved these issues in
a straight-forward way by giving a �ner control of document IL to authors.

2.5.2 Secure Wiki Model Plugin in JamWiki

A second implementation, made by Følsgaard and Ludwigs [9], focused on making a more
modularized implementation in order to extend the ability of the wiki system to be con�gured
to use alternative review policies. The second implementation is based on the �rst prototype

11 / 67

Secure Wiki System

implementation and the Open Services Gateway Initiative (OSGi) framework that enables java
applications to dynamically load classes and services from bundles added to the system at
runtime. OSGi will be described further in section 2.6. The second implementation will be
termed the OSGi-implementation.

The easy integration between OSGi and java based web applications makes the OSGi-
framework suited for the task of providing the necessary plugin-capabilities. With OSGi being
able to do this at runtime without having to restart the web-application itself means that
downtime of large websites can be avoided. This �ts perfectly with the plugin-framework-
requirements that the OSGi-implementation has.

The OSGi-implementation runs on the SpringSource Dynamic-Module server (DM-server)
instead of the Tomcat server used by the �rst prototype implementation. The advantages of
using the DM-server is that the DM-server is based on the OSGi-framework and tailored for
Spring-module based web applications. In addition, the OSGi-framework used by the DM-
server can be accessed and used by web applications running in the DM-server.

The OSGi-implementation is based on the �rst prototype implmentation of the secure wiki
model but has successfully taken the �rst prototype implementation and extended it to make
it simpler to change the secure wiki model plugin, such that any new policy, not originally
supported, can be added to a running system.

The OSGi-implementation uses the OSGi-framework concept of services, which allows the
implementation to work on abstract services de�ned by an interface. The use of an interface
means that the code itself can implement the �ow of operations and call the services and have
them perform the plugin-speci�c operations, such as the evaluation of a completed review. One
plugin may accept the review, where another would determine that the review were unsuccessful.
In addition to services, the OSGi-implementation also makes use of the ability to split an
application into multiple modules (or bundles in the OSGi terminology). Using multiple bundles
allows the system (or parts of it) to be updated to a new version, without taking down the
system.

2.5.3 Summary

The �rst prototype implementation was made by directly modifying the source code of the o�-
cial JamWiki. In terms of updating the system, the system is very monolithic in the sense that
the secure wiki model plugin needs to be reimplemented in each new version of JamWiki. The
OSGi-implementation has extracted the secure wiki model plugin to a separate bundle, allowing
the rest of the system to be updated, needing only to add back the hooks that allows the secure
wiki model plugin to work. When, at some point, the JamWiki system implements a plugin-
framework, the OSGi-implementation should be able to be used after an initial modi�cation to
�t into the future JamWiki plugin-API.

The changes made by the prototype implementation extends the JamWiki functionality by
adding the secure wiki model functionality. The OSGi-implementation adds little functionality
compared to the prototype, but instead restructures the implementation to make it easier for
administrators to switch secure wiki model implementations and policies.

2.6 OSGi

This project will build on the experiences documented in the theses describing the the �rst
prototype and the OSGi-implementation. Most can be referenced directly, where relevant, but

12 / 67

Secure Wiki System

since the OSGi-framework will be a key part of the project and is not familiar to most, the
OSGi-framework concepts and techniques used in this project will be detailed in this section.
For a more extensive description of OSGi, see Følsgaard and Ludwigs [9].

The Open Services Gateway Initiative (OSGi) created by the OSGi Alliance is a speci�cation
that enable the modular assembly of software built with Java technology [14]. Despite OSGi
being a speci�cation and not an implementation, the term OSGi will be used to denote an
implementation, when the speci�c implementation is irrelevant.

2.6.1 Classloader

Java programs consists of classes. These classes can be stored individually in the �le-system,
allowing the JVM to use the class-path, package-location and class name to locate the class
in the �le system. More often, however, classes are packaged into jar-�les, containing multiple
class-�les plus other resources, that java programs can access through the class-loader. Large
programs will usually consist of several projects that go together to form the �nished program.
A program created in java, that needs to read and parse an input-�le, perform statistical
calculations on the input, plot the result on screen and log various messages to disk could
implement all of these features itself, or it could rely on some of the existing implementations
available for use. Reading and parsing, could be done using ANTLR, statistical calculations
using Colt4, graphs using Java Advanced Imaging (JAI)5 and �nally use log4j to control the
log-output. Each of these projects are supplied in separate jar-�les containing the class �les
that make up the project. A java program would then contain all of these jar-�les, allowing
the program to use the classes contained in those jar-�les. Each of the jar-�les may have
dependencies, but these can be retrieved and added to the program class-path as well. Assuming
a stable API, this separation of functionality also allows a program component to be updated
without a�ecting the functionality of the program.

The JVM uses the class-path parameter to locate classes and jar-�les containing classes in
order to �nd and load the classes that are instantiated from the running program. The

in order for a program running in a normal jvm to load and unload classes, the program itself
must manipulate the classloaders, which is normally handled exclusively by the jvm. Without
manipulating the classloaders, the replacement of classes at runtime impossible.

The way OSGi can handle the runtime addition and removal of bundles is through the
manipulation of the classloaders used to load classes. Using OSGi to handle the dynamic
loading and unloading of classes means that individual programs do not need to implement the
classloader manipulation functionality themselves.

2.6.2 Manifest

A bundle is simply a jar-�le with extra attributes in the manifest used by the OSGi-framework
to identify the OSGi properties of the bundle.

A typical jar-manifest would specify the Main-Class and optionally the Class-Path plus
meta-information such as the creator of the jar, when it was created etc. The OSGi speci�c
entries are information such as the packages that the bundle imports (i.e. its dependencies) the
packages the bundle exports (i.e. the packages that other bundles can import) and the private

4http://acs.lbl.gov/software/colt/index.html
5http://java.sun.com/javase/technologies/desktop/media/jai/

13 / 67

http://acs.lbl.gov/software/colt/index.html
http://java.sun.com/javase/technologies/desktop/media/jai/

Secure Wiki System

packages used by the bundle which should neither be exported to other bundles, nor imported
from other bundles.

A bundle can be started and stopped by the OSGi-framework, which would add or remove
the classes of the bundle from the classpath used by active bundles. In order for a jar-�le to
be a valid OSGi-bundle, a number of properties must be speci�ed by the bundle-manifest. The
Bundle-Activator property speci�es a class implementing the BundleActivator interface. The
interface speci�es start and stop methods that are invoked when the bundle is, respectively,
started and stopped. A bundle manifest would typically also contain the Import-Packge, Export-
Package and Private-Package properties. The Import-Package property speci�es all packages
that the bundle imports, in order for the bundle to resolve its dependencies on other classes.
The Export-Package property speci�es the packages that the bundle exports to other packages.
Exported packages usually contains API classes that provide access to the functionality of the
bundle. The Private-Package property speci�es the packages that the bundle uses internally
and should not be replaced with classes from other bundles.

Listing 1: Example Bundle Manifest� �
1 Manifest−Version: 1
2 Bnd−LastModi�ed: 1324991661475
3 Build−Jdk: 1.6.0_26
4 Built−By: kasper
5 Bundle−Activator: dk.lindbergonline.wiki.api.WikiApiActivator
6 Bundle−Copyright: Kasper Lindberg
7 Bundle−Description: Wiki API OSGi Bundle
8 Bundle−ManifestVersion: 2
9 Bundle−Name: Secure Wiki System Interfaces

10 Bundle−SymbolicName: dk.lindbergonline.wiki.api
11 Bundle−Vendor: Kasper Lindberg
12 Bundle−Version: 0.0.3.SNAPSHOT
13 Created−By: Apache Maven Bundle Plugin
14 Export−Package: dk.lindbergonline.wiki.api.action;version="0.0.3.SNAPSHO
15 T",dk.lindbergonline.wiki.api.authentication;version="0.0.3.SNAPSHOT",d
16 k.lindbergonline.wiki.api.data;uses:="dk.lindbergonline.wiki.api.model,
17 dk.lindbergonline.wiki.api.authentication";version="0.0.3.SNAPSHOT",dk.
18 lindbergonline.wiki.api.plugin;uses:="dk.lindbergonline.wiki.api.model"
19 ;version="0.0.3.SNAPSHOT",dk.lindbergonline.wiki.api.model;uses:="javax
20 .servlet.jsp,javax.servlet.http";version="0.0.3.SNAPSHOT",dk.lindbergon
21 line.wiki.api.tracker;uses:="dk.lindbergonline.wiki.api.data,org.osgi.u
22 til.tracker,org.osgi.framework,org.osgi.service.log,dk.lindbergonline.w
23 iki.api.plugin";version="0.0.3.SNAPSHOT"
24 Import−Package: javax.servlet,javax.servlet.http,javax.servlet.jsp,org.o
25 sgi.framework;version="[1.5,2)",org.osgi.service.http;version="[1.2,2)"
26 ,org.osgi.service.log;version="[1.3,2)",org.osgi.util.tracker;version="
27 [1.4,2)"
28 Tool: Bnd−1.43.0� �

As shown in the example bundle manifest in Listing 1, the Export-Package property speci�es
both the package and the package version of the the packages being exported. Similarly, the
Import-Pacakge property speci�es the version-range of the packages to import. The format
used interprets [and] as inclusive and (and) as exclusive. This allows OSGi, in contrast
to the JVM class-path, to handle multiple versions of the same bundle. e.g. A bundle that
requires antlr-runtime version 3 can execute using version 3, while another bundle using Antlr-
runtime version 2 can execute using classes from the version 2 bundle. This is assuming that

14 / 67

Secure Wiki System

the two bundles using antlr-runtime will never interact in a way that could mix the two version.
The Uses-clause speci�ed in the Export-Package property is intended to prevent such con�icts
at runtime by moving the con�ict forward to the dependency-resolution stage of the bundle
activation. E�ectively this fail-fast approach will cause the OSGi-framework to complain and
fail to start a bundle, for which such a con�ict could occur.

Creating a program based on bundles is similar to creating a program based on regular
jar-�les. Using jar-�les, the JVM will have a class-path and the program will be able to access
all classes on the class-path. Using OSGi, the OSGi-framework will start all bundles, making
their exported classes available to other bundles importing those classes. The di�erence is that
when using OSGi, bundles can be added, removed and replaced at runtime, which will a�ect
the functionality available to the running program. This allows a bundle to be updated if the
bundle is found to contain a bug without restarting the program.

2.6.3 Services

A feature of OSGi that this project will make use of is the concept of services. Using OSGi, a
bundle can de�ne a service, that can then be retrieved by other parts of the system. Services
are registered as an implementation of a class or an interface, allowing one bundle to de�ne a
service-interface, a second bundle to retrieve and use that service to have an action performed,
while a third bundle provides the implementation of the service.

2.6.4 Application Servers

Normally, a java based application server, such as the Apache Tomcat, has a �xed class-path
set at startup. Integrating OSGi and application servers can be done using di�erent methods.
Figure 1 illustrates two methods to do this. Embedding an application server in an OSGi-
environment, as shown in Figure 1(a), requires the application server to be contained in one or
more bundles, which could allow the modi�cation of the application server's class-path. This
application server would then contain a minimalistic web-application that could be as simple as
calling modules de�ned in bundles added to the OSGi-environment outside of the application
server. Since both application server and the OSGi-framework is pure java, OSGi can also

JVM

OSGi

Application Server bundle

Web Application

Other bundles

(a) Application Server in OSGi

JVM

Application Server

Web Application

OSGi

Bundles

(b) OSGi in application server

Figure 1: Two ways to combine an OSGi-environment and an application server

be embedded into the web application container, as illustrated in Figure 1(b). This works by

15 / 67

Secure Wiki System

creating a bridging application that bridges the gap between the web-application container and
the OSGi-environment and manages the activation of bundles in the same manner as non-web-
based applications.

3 Analysis

A wiki is a knowledge sharing system managed by a user-community. The best known example
of a wiki is Wikipedia, which contains more than 3.5 million articles in the English edition
alone [20]. The ease at which users can add content to a wiki means that it has become a
popular tool for communities to collect information. At sites such as wikia.com, anyone can
create a new wiki, on a subject of their own choosing, from television shows6 to bacon7. In
addition, a number of implementations of the wiki-software exists, e.g. doku-wiki, media-wiki,
jam-wiki and more, allowing anyone to set up their own wiki when needed. Having the ability
to set up a private wiki is useful for organizations and companies that may prefer to have the
system running behind a �rewall and limit the access to the wiki to the members/employees
through logins, perhaps using their own authentication-infrastructure.

Users can be divided into to distinct categories. Users that limit their actions to searching,
reading and following links will be referred to as readers. Readers do not contribute to the
expansion and maintenance of the wiki. In contrast, users that actively participate in the wiki-
community by creating and editing articles and/or maintain the wiki by deleting bad content
are referred to as contributors.

The reasons for contributing may vary from individual to individual. Some may be readers
who upon having read an article, decides to contribute to the article by �xing errors or adding
content that they believe is missing from the article. Having contributed, they revert back to
readers. Others are regular contributors that regularly contributes by actively looking for and
�xing errors, creating new articles, expanding existing articles and/or checking contributions
for vandalism.

Most wikis allow users to create user-accounts in order for the users to be identi�ed regardless
of which IP the user connects to the wiki from but does not prevent anonymous contributors
from contributing. this means that contributors can be anonymous contributors or they can
register an account for the wiki system such that their edits can be traced back to them.

By registering an account, the contributor gets a pseudo-identity that becomes his identity
in relation to other users on the wiki. Unless the user directly reveals his true real-world identity,
the user is e�ectively anonymous to other users but still accountable for his actions, since those
actions will re�ect on the pseudo-identity used. As is the case in the real world, gaining a good
reputation for a pseudo-identity requires an e�ort and this reputation can be damaged if the
user vandalizes the wiki. To avoid the consequences of bad reputation, a user can abandon
the account and create a new account with no bad reputation. Changing accounts to get rid
of bad reputation is known as a whitewashing attack [8]. Doing so can be signi�cantly easier
than trying to restore the reputation by doing good. For contributors with an account with a
good reputation, changing the account and thereby pseudo-identity will be costly. To restore
the new account to the same level of reputation as the last account, the e�ort required would
be equal to the e�ort put into the previous account.

6http://stargate.wikia.com
7http://bacon.wikia.com

16 / 67

http://stargate.wikia.com
http://bacon.wikia.com

Secure Wiki System

Usually, anonymous users will be identi�ed by their IP address. For anonymous contributors,
gaining good reputation is di�cult since contributions are linked to the IP from where the
contribution was made. IP-addresses may be shared when contributors are behind a NAT-
router and a given contributor may contribute from di�erent IPs for various reasons. The same
argument can be made for gaining bad reputation, but when an IP-address repeatedly vandalizes
a wiki, administrators can hold the IP-address accountable and block it from making further
changes to articles. Given the structure of IP-address allocations to various ISPs, a contributor
will often be assigned IP-addresses belonging to a narrow range of addresses. Changing IP-
address (if possible) will therefore only be a temporary solution for the contributor as wikis
often have the ability to block entire IP-ranges. Should any legitimate contributor be a�ected
by such a range-ban, the contributor can register an account and have the account exempted
from the IP-ban.

3.1 Functional Analysis

The following will describe a functional analysis of a generic wiki system. This analysis identi�es
the components of the generic wiki and enables the breakdown the system in later stages of the
project.

3.1.1 Articles

Wiki systems consists of a set of articles, on which a number of operations can be made. Figure
2 shows the structure of an article in a generic wiki. The primary function of an article is
to display the current text to the reader. Displaying an article requires the wiki to render
the article-markup used to format an article into html used by web-browsers to produce the
intended formating of the content. In addition to rendering the article for reading, a number
of additional functions are available to contributors.

Wiki Article

HistoryEdit

R
ev
er
ti
n
g

DiscussionRendering

C
h
an
ge

T
ra
ck
in
g

P
re
v
io
u
s
V
er
si
on
s

W
ik
i
M
ar
k
u
p

P
re
v
ie
w

S
av
e

Figure 2: Structure of a generic wiki article. Discussion is not present in all implementations,
hence the dashed line.

17 / 67

Secure Wiki System

Articles are written in an implementation speci�c markup-language that enables contribu-
tors to de�ne section-headlines, bold text, italic text and other formating. The Edit-function
available from the page of the rendered articles allows a contributor to edit the markup of
the article. Using the edit-function, a contributor can do anything from �xing minor errors
to adding entire new sections to an article. A few wikis have a WYSIWYG8-style editor that
functions as modern text-processing programs. The WYSIWYG editor allows the contributor
to see the result of the changes while editing. The rest of the wikis uses a preview function
that renders the modi�ed markup and displays the result to the contributor. The contributor
can then continue editing the markup until the result is satisfactory and eventually save the
result and thereby creating a new revision of the article. The preview function is particularly
useful if the contributor is experimenting with formating and layout since it removes the need
for creating new revisions for each experiment.

Article pages also provide access to the history of the article. The history is a list of previous
revisions of the article plus information about the edit itself. This information includes the user
who made the edit, the time and date the edit were made and the edit-summaries written by
the user who made the revision. From the content of revisions, the changes made between
any two revisions can be calculated and displayed, allowing anyone to determine if the changes
introduced between the two revisions were good or bad. The �nal part of the article history is
the ability to revert changes introduced by any revision.

Although not all wiki-implementations have them, discussion pages allows contributors to
discuss changes before adding them to the main article. Discussion-pages can therefore be an
important part of the community-based writing process. As an example of their use, consider an
article that describes an actor and the article regularly changes the actors nationality between
two (or more) nationalities, a discussion between contributors can be made on the discussion
page and the result (consensus) of the discussion used in the main article. After the discussion,
an administrator can enforce the consensus and punish contributors that insists on changing
the text against the consensus as that can be considered vandalism.

3.1.2 Generic Wiki

The typical user can enter a wiki through links from other pages or through bookmarks in the
user's browser. In public wikis, the user is most likely to enter the wiki as a side-e�ect to doing
a search in an external search engine. In a private wiki, the entrypoint is usually the main
page, from where the user will use the wikis own search function. Figure 3 shows the functional
model of a generic wiki.

Users that enters through the main page will usually start a search to �nd articles that
describe the subject of which the user needs information. When a user has navigated to an
article, using internal or external search engines, the user can perform a new search or follow
internal links on the wiki, that will lead the user to other articles describing a di�erent subject.

As described previously, contributors have the ability to edit articles and revert revisions
if and when they feel that it is necessary. unrelated to speci�c articles, wikis can use the
revision history of all articles to generate a list of recent edits, and most do so. The list of
recent edits, provides contributors with a simple method of monitoring changes to the wiki.
Some contributors contribute to the wiki by inspecting these changes and checking them for
vandalism and other types of bad edits, e.g. addition of unsourced content. Using the article

8What You See Is What You Get

18 / 67

Secure Wiki System

Search
function

Article Display/
Rendering

Edit
function

History View

Login/

Authentication

Revert
function

Enter wiki directly to main page
or directly to article through external
search engine or bookmark

Internal link navigation
Leave wiki using

external link

Figure 3: Functional model of a generic wiki

history and revison-di� function, these contributors can easily identify the change that were
made and decide if the edit were a good or bad edit. In case of a bad edit, the contributor have
the option of using the edit-function to �x the problem or use the revert function to restore the
article to the state of a previous, good, revision.

3.2 Generic Wiki Architecture

Using a web-browser, a user can interact with a wiki. The wiki front-end that is sent to the
browser as html and displayed to the user provides the means for navigating the wiki.

After navigating to a wiki, a user may authenticate to log in as a previously created user,
giving the user a pseudo-identity that will identify the user's actions on the wiki. If the user
does not authenticate, his identity will be dependent on information that can be extracted from
the connection and will be subject to change if the user changes location and can be shared by
others if their connection-information equals the users connection-information9.

Most wikis do not directly provide a table of contents, with which user can locate speci�c
articles. For small wikis, a table of content can be created manually or automatically (assuming
a method of grouping/ordering exists), but for large wikis, such as Wikipedia, with a huge
number of pages and a large number of categories, which provides little to no real grouping,
a table of content would be extremely large and probably somewhat incomprehensible and
therefore unusable. The main method of �nding information in wikis is therefore the search
function, usually available from any page in the wiki. The ease at which information can be
found is then directly tied to the quality of the search tool. For publicly available wikis, external
search engines can be used, but for private wikis in organizations the wiki's users only have the
wiki's own search tool.

Figure 4 shows the architectural model of a generic wiki. The backend web server, which
provides the content to the client web browser, is one of the major components of a wiki. An-
other is the data storage from where the backend server retrieves the content to display. Around
this, is components that handles the articles, the edit-functionality, the revert functionality, the
search functionality and the authentication functionality. When working together, these com-
ponents enable users to �nd and view articles as well as create and edit articles. The following
describes these components in more detail.

9This can happen when multiple users on a NAT-network share the same external IP

19 / 67

Secure Wiki System

Revert Module

Login Module

Edit Module
Data Storage

Article Model

Search Module
Backend
Server

Figure 4: Architectural model of a wiki

3.2.1 Backend Server

A part of the success that wikis have become, is the fact that wikis can be accessed using
nothing more than a simple browser, something which is provided by all modern desktop OS
environments. It is uncertain if Wikipedia would have grown to the size it is now, with millions
of articles, if access to the site required the users to install a client-program for the speci�c
purpose of accessing Wikipedia. Web browsers are the client part of the client-server setup
of any website with web-servers being the server-part. Web-server is a type of program, for
which several implementations exist, all with di�erent capabilities. The open-source Apache-
webserver is a popular choice for simple static webpages but can easily be extended to run server
side scripting such as PHP, on which many wikis, including MediaWiki, the software that is
used by Wikipedia, are based. For Wikis that are written in Java (e.g. JamWiki, xwiki), the
basic Apache HTTP server is insu�cient since it is lacking the ability to run Web applications.
For this, Apache has created the web application server Tomcat, but other servers such as Jetty
and IBM Websphere Application Server are equally capable of running web applications and
therefore wikis written in java.

Small wikis have small backend requirements while big wikis that serves a high number of
requests have big requirements to their backend servers. Small wikis dedicated to narrow topics
with a low number of visitors can run on a single machine with standard or low-end hardware.
Larger sites, such as Wikipedia and wikia.com have a signi�cantly larger number of visitors and
needs to run on high-end hardware while taking advantage of clustering and load-balancing,
both wrt. web-servers but also wrt. the databases that store data.

20 / 67

Secure Wiki System

3.2.2 Editor & Rendering Engine

The article rendering and editor components of a wiki systems are closely related in the sense
that editors usually assists the contributors in formating the article. Editors can range from
very advanced WYSIWYG-editors that works just as modern text-processing programs to a
simple text-area where the contributor can enter unformatted plain-text. Most wiki-systems
use a combination, where the input is plain-text, but the editor provides the features of modern
text-processors. The combination results in a plain-text input containing character sequences/-
markup indicating the formating to use for the following and/or enclosed text.

Articles are usually written in a simple implementation-speci�c wiki-markup language that
the rendering engine can convert into html that will be sent to the client and displayed in the
browser.

The purpose of the wiki-markup language is to simplify the creation of articles, while al-
lowing the contributors to format text as they normally would. A well written text will as a
minimum contain sections and paragraphs, where each section is started by a heading. Html
de�nes six headings in di�erent sizes and wiki-markup tends to match this number. Editors
usually provide buttons and/or shortcuts to insert the start and end character sequences for
creating such headlines as well as bold and italic text, ordered and unordered lists and im-
plementation speci�c formating features of the wiki. Wiki markup usually provides the same
core set of formatting options, but di�erent implementations can use di�erent and directly
incompatible markup syntax.

3.2.3 Backend Database

The backend server's database can be managed using anything from large-scale enterprise
database systems distributed across multiple servers to database systems on the same ma-
chine as the webserver or it may even be managed using plain text�les stored on disk. The
speci�c approach used by the wiki depends on the size of the wiki and the number of visitors
the wiki has. Regardless of which type of datastorage the wiki uses, the database needs to
store information on user-accounts, existing pages, the text of pages and the revisions that are
created during the lifetime of the wiki.

If the wiki is to be optimized to use only the minimum amount of storage required, each
new revision could be stored as a di�, relative to the previous version of the article. This
approach could dramatically reduce the storage required, when the wiki contains long articles,
to which only small changes are made in each revision. The downside of this approach is that in
order to display an article, the system must sequentially calculate each revision using the di�s.
This will a�ect the loading speed of articles and will worsen for each new revision. To speed
things up, the full text of the current version of an article could be cached, but for comparing
revisions, the overhead still exists. Luckily, storage is cheap, so storing the full text for each
new revision is not a problem. Besides storing the text for each revision, the database should
contain information on which pages have been created and be able to link this information
the information on revisions. The revision data would normally contain information on the
user who created the revision, the date and time on which the revision was created and the
edit-summary given by the user.

21 / 67

Secure Wiki System

3.2.4 Reverting Revisions

Despite people's best intentions, it will happen that one person writes something that another
person �nds to be factually incorrect and/or unsourced, i.e. unveri�able. For this purpose
contributors have the option of reverting an edit to the state of the previous revision. Being
able to revert edits is also helpful in case of vandalism, which, due to the open nature of wikis,
they are vulnerable to.

When reverting a revision, basic wikis will copy the previous revision and make a new
revision using the copied content. This has the unfortunate consequence of reverting all newer
revisions too. Since most vandalism is reverted quickly, this is not necessarily a big problem.
Good revisions made after a vandalism-revision will most likely have removed or reverted the
vandalism manually, removing the need for reverting the vandalized revision. More advanced
wikis have the ability to revert any edit without a�ecting any newer revisions. This is done by
reading the revision to revert and the revision that should be reverted to, from the database and
calculating the changes that were introduced by the edit. These changes will then be reverted
in the newest revision and the result presented to the contributor, who initiated the revert, in
the editor. This allows the editor to �x any problems before completing the reverting by saving
the new revision.

3.3 Secure Wiki Model Plugin

When adding functionality to a base implementation of a system through the use of plugins,
two approaches can be taken. Depending on the type of functionality, the plugins may be
informational only or they may be capable of a�ecting the normal operational �ow. In the
�rst case, such a plugin could be a Page-Ranking plugin to a browser that can look at the
address of webpage displayed in a browser and present information about the page based on
information from a third-party server. The second case could be a Phishing-�lter plugin10 that
would check addresses against a database of known malware sites before the browser retrieves
the page. If the phishing �lter determines that the address is dangerous to the user, the plugin
needs the capability to stop the browser from connecting to the address. Technically, the
plugins are similiar in that they both check a URL against a database, the di�erence being
how much control over the base system they need. The Page-Ranking plugin needs only the
ability to display information which it can do by initiating new actions in the browser whereas
the phishing �lter plugin needs to be able to terminate a running procedure being performed
by the browser.

In terms of supporting the two types of plugins in the base system, type 1, exempli�ed by
the page-ranking plugin, needs only an API to call and the ability to be noti�ed when certain
events occurs. In contrast, type 2, exempli�ed by the phishing �lter plugin, needs to be called
as part of a procedure, and the procedure needs to be designed such that the type 2 plugin can
prevent the procedure from continuing.

10Phishing �lters are a standard part of many modern webbrowsers, but a plugin using di�erent databases
implementing a whitelist-approach in stead of the normal blacklist approach may be relevant in a high-security
corporate environment

22 / 67

Secure Wiki System

3.3.1 Overview

The secure wiki model described in Section 2.4 is a combination of both plugin types. Figure 5
shows the architecture of the secure wiki model plugin on top of the generic wiki architecture
from �gure 4. In order for the secure wiki model to guarantee the consistency of the database,
the secure wiki model plugin must be able to control all operations that can modify the database.
As shown in Figure 5, this requires that the secure wiki model plugin is consulted before editing,
reverting and storing articles in order for it to be able to stop the action from completing, when
necessary. In addition, the secure wiki model adds promotion and demotion actions to the
wiki system. These actions are responsible for changing the QCV of contributors. Finally, the
secure wiki model plugin also needs to be able to add the integrity level of an article to the
article before it is sent to the user.

Revert Module

Login Module

Edit Module
Data Storage

Article Model

Search Module
Backend
Server

Promotion Demotion

Revert checkingEdit checking

IL assignment

IL injection

Figure 5: Architectural model of a generic wiki with the secure wiki model

3.3.2 View Model

The aim of the secure wiki model is to secure the correctness, completeness and lack of bias in
articles and to report this measure to the readers. Without a means to communicate an articles
rating to the reader, the secure wiki model would fail its purpose. It is therefore crucial, that
the secure wiki model plugin can inject a representation of the article IL into the output sent
to the reader. The representation of the integrity level can be numbers, but can also be phrases
such as good, bad, neutral, excellent etc. Using phrases instead of numbers might be easier to
relate to and therefore more user friendly, giving a better user experience.

3.3.3 Edit Model

In terms of functionality, there are two steps needed to edit an article. At �rst, the article
markup must be retrieved for editing and then the modi�ed markup must be submitted to the

23 / 67

Secure Wiki System

system to be stored. Any attacker determined to change the markup of the article can bypass
the �rst step and submit a new markup directly to the system. For this reason, any security
features put in the �rst step will be of little consequence to attackers. Any legitimate user
would on the other hand bene�t from a system with a fail-fast approach, so that the users will
not spend time writing articles that cannot be stored.

Users will usually access the edit-page from the article-page. The secure wiki model could
therefore be given the ability to either disable the edit-link or display a warning that the user
is unable to store the modi�ed markup. If the user, despite the e�orts made to disable the
edit-feature, manages to access the edit-page, the same warning should be displayed. The user
can chose to ignore the warning, but the checks made when performing the actual storing of
the new revision would stop the user from making an unauthorized modi�cation to the article.
The condition for editing speci�ed by the secure wiki model is the can_edit predicate de�ned
by (1) and, in a simpli�ed form, shown in (4).

il(d) ≤ qcv(a) (4)

3.3.4 Revert Model

The secure wiki model does not directly specify the criteria for reverting revisions. Reverting
a revision e�ectively alters the article, which suggests that the criterias for editing should also
apply to reverting. When reverting an article, the revision that is being reverted to can have an
IL that is lower, equal to or higher than the current revision. It could be argued that since the
can_edit predicate de�ned by the secure wiki model is based on the assumption that any edit
will not reduce the quality of an article, reverting to a revision with a lower IL should not be
allowed. However, it must be assumed that an attacker has the markup of the previous revision,
and therefore could simply edit the document to achieve the same e�ect. The condition for
revert is therefore reduced to the condition for editing shown in (4).

3.3.5 Storage Model

Both the edit-feature and the revert-feature ultimately calls the storage module to store a new
revision. The edit and revert feature should perform their respective checks to ensure that no
unauthorized modi�cations are made. The storing of a new revision requires that the revision is
given an IL. As the �rst prototype concluded, the automatic promotion of articles to the QCV
of the contributor, as suggested by the secure wiki model, does not take into account the times
when contributors (with a higher QCV) makes small changes that does not signi�cantly increase
the IL of the article. To solve this problem, the automatic promotion could be removed from
the secure wiki model and then let the community promote revisions. The wiki community,
however, cannot be expected to review and promote every new revision that is made of every
article. The compromise used in the �rst prototype is to let the author of a revision decide the
IL of the revision with the limitation that it must be between the IL of the previous revision
and the QCV of the author. Formally, this is expressed by (5).

il(dold) ≤ il(dnew) ≤ qcv(a) (5)

The need for demotion, however, removes the lower bound. This is argued in Section 3.3.7 and
formalized by (6).

24 / 67

Secure Wiki System

3.3.6 Promotion Model

Promotion of articles and contributors has no corresponding action in a traditional wiki. Based
on the decisions to give authors the ability to and responsibility for promoting articles with
an IL lower than their QCV, promotion reviews of articles is not relevant in this model. This
leaves promotion of contributors to be handled by the secure wiki model. Contributors who
are selected to perform a promotion review of another contributor are referred to as reviewers.
Reviewers should have a means of navigating to the page containing the necessary information
about the review, including a means for the reviewer to indicate his decision on the review. The
review-page itself needs to contain information relating to the contributor being reviewed. The
relevant information about a review would be the contributor's contributions to the wiki dating
back a limited time, no longer than when the contributor were last promoted. The reason for
not including all contributions, is that contributions before the last promotion should not be
relevant to the promotion of the contributor to a higher QCV. The time-constraint limits the
number of contributions to be looked at by reviewers, while preventing early bad contributions
from a�ecting the promotion review of a contributor who have improved in quality. In contrast,
the same time-limit would prevent early good contributions from a�ecting the promotion review
of a contributor whose writing quality have worsened. For a stable contributor, the time-limit
means nothing as the included contributions are representative of his writing. Despite this, the
full list of contributions made by any contributor can be seen and therefore reviewers can, if
they really wish, use the entire contribution-history against the contributor, for good or bad.

An attacker that controls a (large) number of malicious colluding users has a certain prob-
ability of controlling a review. This means that if the attacker repeatedly attempts to be
promoted immediately following a failed promotion review, the attacker should in theory, by
virtue of the random selection of reviewers, get a selection of reviewers which is controlled by
the attacker. To slow down this kind of attacks, a cooling-o� period can be enforced, such that
an attacker cannot start a new promotion review immediately following a failed review. This
is also bene�cial wrt. normal users, who has nothing to gain from starting a new promotion
review, as the outcome is most likely the same. Enforcing a cooling-o� period means that
reviewers are saved the trouble of re-reviewing a contributor and ultimately re-cast a negative
vote.

Storing modi�ed QCVs is directly handled by the secure wiki model plugin since ILs and
QCVs are not a part of normal wiki-systems.

3.3.7 Demotion Model

Demotion, like promotion, does not have a corresponding action in traditional wikis. In the
�rst prototype, demotion of articles are left to the administrators of the system. However, since
this takes demotion out of the control of the community, and a discussion among contributors
takes time, this makes promotion fast and demotion slow. In the secure wiki model all users
who can edit articles, i.e. for those who the can_edit predicate is true, can request a demotion
review. Since individual contributors have been given the ability to promote documents without
a review, so should individual contributors be given the ability to demote documents without
a review.

This decision means that demotion reviews of articles are not part of the model while
demotion of contributors should still be handled by the secure wiki model. Reviewers should
have the same information available as when making a promotion review.

25 / 67

Secure Wiki System

In contrast to the promotion reviews, demotions reviews should not have a cooling-o� period.
Any malicious user that survives a demotion review should not be protected by a cooling-o�
period. If a user is repeatedly made the subject of a demotion-review, without this review
succeeding, the user who initiates the demotion-reviews can be demoted due to his actions. For
this to be e�ective, a demotion review should only be started by users with a QCV equal to or
higher than the QCV of the user that is made the subject of a demotion review.

Demotion of a document requires the contributor to indicate an IL lower than the docu-
ment's current IL. With this consideration, (5) must be modi�ed to allow lower ILs. When
creating a new revision, contributors should be able to select ILs freely up to their own QCV.
This is expressed by (6).

0 ≤ il(dnew) ≤ qcv(a) (6)

3.3.8 Voting

Wiki systems normally do not include the functionality needed to manage secret voting. Voting
in Wikipedia is conducted through editing a talk-page and writing signed statements of support
of opposition. Voting in other wiki-systems would presumably be conducted in a similar manner.
As evidenced by the e-bay rating system, where both buyers and sellers are rated, and where a
bad rating from one party can be retributed with a bad rating from the second party, a public
vote could become problematic as no-one would be interested in giving a negative review. To
avoid contributors using the voting system as retribution, voting needs to be secret11. The
secure wiki model needs to manage the voting data independently of the wiki system, as voting
is not part of normal wiki-systems.

3.4 Secure Wiki Model Policy

The general philosophy behind a wiki is that everyone can contribute to everything. This, how-
ever, is also the problem that wikis needs to deal with, everyone can contribute with vandalism
instead of good content. If readers of wiki systems are to be able to trust the content of the
wiki, this central concept needs to be bend a little to allow for the wiki (through a plugin) to
prevent users from negatively changing good articles.

The original secure wiki model requires that contributors and articles are associated with
an integrity level and that these integrity levels determine if a contributor can edit an article.
For any contributor, not at the highest integrity level, there will be a set of articles that the
contributor cannot edit while at that level. The important thing to note is that the contributor
is not permanently prevented from editing the set of articles, but only until the contributor
proves himself to be capable of writing at the same level of quality as the articles. Wikipedia
uses a similar approach on their semi-protected articles, where new contributors are prevented
from editing until their account is four days old and have made 10 other edits. The two polices
are similar in that they prevent some users from editing a set of protected articles, until the
users meets a set criteria. The di�erence being that the criteria for the later is a simple task,
where the former can require a bigger e�ort than the user is willing to invest. The exact e�ort
is based on the community managing the integrity levels and it will therefore be up to them

11The secrecy is only required between contributors. The system can know the source of votes, as it does not
reveal this information to users of the system, neither directly nor indirectly.

26 / 67

Secure Wiki System

to decide the required quality of each integrity level and by extension the integrity level that
matches a user's quality of writing.

3.4.1 Overview

The policy used by the secure wiki model can vary depending on the seize and needs of a speci�c
wiki. The original secure wiki model used community based voting procedures to determine
if a document should be promoted or demoted. In a community where each account is given
a vote, controlling multiple accounts means controlling multiple votes. This is often referred
to as a sybil-attack. If a single attacker controls enough accounts, the attacker will be able to
control the outcome of a review. Preventing such compromise is a requirement for a successful
promotion policy, while the demotion policy should be able to restore a partially compromised
user-base to an honest one. If an attacker manages to completely compromise the user-base,
where no demotion policy has any chance of performing a successful demotion, the system must
be cleaned by system administrators.

An attacker wishing to compromise a promotion policy must �rst get users in a position to
in�uence the promotion policy. This requires the attacker to invest the e�ort required to have
a user promoted. If a single honest user can be promoted, a malicious user will also be able to
get a single malicious user promoted. Getting the second and third user promoted will also be
within the capabilities of an attacker. The requirement for a promotion policy will be to allow
normal users to be promoted but prevent an attacker from getting a large number of malicious
users promoted, such that they will be able to control a review.

To be promoted, an e�ort needs to be made, demonstrating the writing skills of the users.
The brute-force approach to attacking this system would be to follow the rules and have a
number of malicious users promoted on the basis of an honest e�ort. To reduce the e�ort
required, an attacker can take a number of shortcuts. Copying existing works outside the
system, possibly translating the text in the process, can be an easy way to contribute complete,
accurate and unbiased content to a system. However, automatic translators usually does not
produce well-written translations. Making these translations well-written therefore still requires
some e�ort by the attacker, although less than if the attacker were to create the text from
nothing.

If an attacker can acquire high-level accounts in good standing through the use of blackmail,
bribes, phishing12 etc., the attacker can bypass the e�ort required by the promotion policy. No
policy can prevent against account ownership changes made using means outside of the system.
The secure wiki model can only react to ownership changes by starting a demotion review
to determine if the new owner meets the requirements for the, at that time, current QCV.
Maintaining the integrity level of a compromised account is relatively cost-free and allows the
attacker to amass many accounts before starting to perform malicious actions with the acquired
accounts. Whether accounts are acquired through bribe, blackmail, phishing or other methods,
each acquired account represents an e�ort made by the attacker. In addition, owners of accounts
acquired through fraud may inform the administrators of the system who can then take action
against the compromised accounts and have them returned to the rightful owners

Lastly, any attacker who can �gure out which users are able to cast votes on the promotion
vote, can attempt social engineering. How successful this approach will be is di�cult to say,
but it is plausible that reviewers who are undecided can be convinced to cast a positive vote,

12Beatings are unlikely as account-owners are assumed not to be in physical contact.

27 / 67

Secure Wiki System

where they would otherwise have cast a negative vote. This reduces the amount of work needed
to be promoted, however, the social engineering requires some work, which may equal or exceed
the amount of work otherwise saved.

3.4.2 Promotion Model

The original secure wiki model uses a promotion model, where the decision to promote is made
based on the majority decision between three levels, each holding their own individual vote to
determine the level-decision. In the �rst prototype implementation, this procedure was changed
to being only a single vote between all users having higher integrity levels and the majority of
the vote were the result of the review.

Regardless of the procedure used to promote contributors, the trustworthiness of an article,
comes from the trustworthiness of its integrity level, which in turn comes from the trustworthi-
ness of the promotion procedure used to promote authors.

A strong promotion procedure that only promotes the best of the contributors will increase
the trustworthiness of articles. However, too strong a promotion procedure could be said to be
incompatible with the all-can-edit policy of open wiki systems. In contrast, if the promotion
procedure is too lose, too many low-quality contributors would be promoted and the trustwor-
thiness of articles would decrease as a result. The appropriate policy to use for a given wiki
system will most likely depend on the type and size of the system. Small wikis will bene�t
from a loose procedure that will allow the wiki to grow while systems the size of Wikipedia can
bene�t from a stronger promotion procedure to build reputation and trustworthiness.

Regardless of the wiki and its needs, the promotion policy must be su�ciently secure to
prevent attacks by malicious users. Assuming that an attacker cannot bypass the promotion
procedure by hacking the system, the primary threat to a voting-based promotion procedure
is collusion between users in order to get a speci�c outcome. Two colluding authors is not a
problem, but collusion between a signi�cant number of authors can at best a�ect the apparent
support for a promotion and at worst, control a review.

The policy used in the original model required an attacker to compromise at least two of
the three levels participating in a promotion review, one of which being above the level being
promoted from. Compromising a level required the attacker to control enough users in the level
to have enough colluding malicious users included in the set of selected reviewers of the level.

The promotion policy used in the �rst prototype implementation changed this to a simple
majority vote between all contributors in and above the level being promoted from. As a
consequence, votes at the lowest level will count as equal to votes at the higher levels. With all
contributors included in reviews relating to levels equal to or lower than their own level and the
potentially high number of reviews for contributors to participate in, contributors have little
motivation to vote on a speci�c review and they cannot be expected to vote on all reviews. This
means that there will be a limited number of users that participate in a given review. Assuming
that the total number of honest contributors that participate in a review is X, the number of
colluding malicious authors needed to compromise a promotion review would be X + 1. The
X honest contributors will be distributed between all participating levels, but since all votes
have an equal weight, the X + 1 malicious colluding authors can all exist in the lowest level.
The security of this policy therefore depends on the value of X being high enough to make it
infeasible for an attacker to control X + 1 malicious users at the lowest level participating in
the review.

28 / 67

Secure Wiki System

A possible attack on this policy would be an attacker that systematically compromises each
level with malicious users. An attacker trying to violate an L0 review can register new users, at
little to no cost, until the attacker has the needed number of colluding malicious users. Once
the L0 review has been compromised, the attacker can get users to L1 at little to no cost.
This procedure is then repeated until all levels are compromised. To make this kind of attack
harder to perform, the lowest level must be weaker than the higher levels, thus requiring more
malicious colluding users at the lowest level. Giving votes from di�erent levels di�erent weights
could change the balance of power towards the higher levels. This increases the protection from
colluding users, as more users would be needed at the lower levels to account for the increased
power given to the higher levels.

Promoting a malicious user from one level to the next means that the malicious user will
have the ability to compromise documents at the next level. If the malicious user is promoted
from the lowest to the second lowest level, this wrongful promotion is of little consequence, as
only low-level documents are at risk of being compromised by the user. Doing the same at the
highest levels have greater consequences since compromise of the highest levels can compromise
the promotion/demotion procedure beyond repair. The promotion of a malicious user to the
highest levels means that the user can in�uence promotion reviews and assist other malicious
users in being promoted to the highest levels. For the low-level case, the user will also have
an in�uence on the promotion/demotion procedure, but when the low-level user demonstrates
malicious intent, the user can be demoted. In the high-level case, this is not necessarily the
case, if an attacker has enough users to control a demotion review of a user at the highest level.

In order to protect the promotion procedure from being compromised, the ease at which
a contributor is promoted must be di�cult, while at the same time, it must be easy for a
contributor to be promoted, in order to preserve the all-can-edit policy of open wiki systems.
Going with the weighted promotion procedure described above, this apparent con�ict can be
resolved by gradually increasing the requirement for promotion as the need to promote only
high-quality contributors increase. In e�ect, instead of requiring a majority decision, the yes-
votes should be above a variable threshold that can be anything from 1% to 100%.

At some point, depending on the weights given to each level, the threshold will be so high,
that even if all selected users from the lowest level are colluding, they will not be able to
control the promotion review decision. In order to control the promotion review, colluding
authors would have to be promoted to higher levels in su�cient numbers to control the review.
In order for colluding authors to get to these higher levels, an additional e�ort would be required
by the users promoted to higher levels. In the case of a sybil-attack, where colluding authors
are controlled by one small group of people, possibly just one individual, the e�ort required by
the group of attackers would be increased proportionally to the ratio of attackers to accounts.

When selecting a set of users to perform a review, it will happen that some of the selected
users will fail to cast their vote. Initially, this is insigni�cant, if the threshold is evaluated based
on the theoretical maximum number of votes. If, however, the number of votes cast is too low,
there is a chance that the votes do not represent the opinion of the community. If this happens,
the vote should fail on account of unreliability.

3.4.3 Demotion Model

If for some reason a malicious user is detected, or a user starts to make contributions of
insu�cient quality for the user's current integrity level, a demotion of the user is necessary.
The original secure wiki model didn't explicitly specify a policy for demotion, although a policy

29 / 67

Secure Wiki System

similar to the promotion policy is a likely choice. The thesis describing the �rst prototype
implementation is not much help in this respect either, since it doesn't document the speci�c
policy used for demotion.

If the promotion policy is perfect, no demotion of users is needed. However, the promotion
policy relies on necessary assumptions, e.g. that users are assumed to continue writing at
the quality of their previous contributions, and assumptions are not guarantees. Mistakes
happen, honest users can change behavior and attackers can make a high number of high-
quality contributions, only to turn and compromise the system.

In the case of mistakes and users who change behavior in a negative way, any demotion
policy will work, as long as it accurately determines the consensus of the community. The
primary problem that the demotion policy must solve is the demotion of malicious users that
have been promoted. Using a weighted policy will allow the demotion of malicious users from
a level where the number of malicious users have compromised the integrity of the level. This
requires that the threshold used is set su�ciently, such that the colluding users at the lowest
level cannot control the demotion procedure.

If the highest level is compromised it may be di�cult to perform a demotion review. In
this case the community have no option but to throw the towel and call on the administrators
of the system to clean up the level in a dictatorial manner. The same applies if any level is
compromised to the point where any demotion will be followed by a subsequent and immediate
promotion of the demoted user. Given a good management of the promotion policy and a quick
detection of malicious users, this should not happen.

4 Design

Many wiki system implementations can easily be found on the Internet. Most of these imple-
mentations are provided under a license that would allow non-commercial use and modi�cation
of their source code and distribution of the resulting product. The implementations are often
made using PHP or Java. PHP is a popular language used by many open-source web-projects,
in part due to the ease with which a php-enabled webserver can be set up and the number
of people capable of writting PHP means that the number of contributors to a project can
easily grow large enough to keep the project going. Similar argument can be made for the Java
variant. The problem with PHP, from a commercial point of view is that to distribute the
project, the source code itself must be distributed. Commercial wikis written in java can be
packaged into web-archives (WAR) and distributed in binary form. Since commercial wikis do
not provide source code that can be modi�ed, using a commercial wiki is not an option.

Most popular wiki implementations are large and complex and any extension made to these
wikis would be subject to the design-decisions made by the original implementation. JamWiki,
as used by Sander and Følsgaard and Ludwigs has no support for plugins due to it's lack of a
plugin-architecture. Creating the necessary plugin architecture in JamWiki is a complex task
that requires a great amount of work as demonstrated by Følsgaard and Ludwigs. In contrast,
The mediawiki software, developed by the Wikimedia foundation as part of their e�orts to
manage and advance Wikipedia, does have a very e�ective plugin-architecture that could allow
a plugin to abort the storing of a new article revision. The mediawiki plugin-architecture also
enables plugins to add a new tab next to the read/edit/history tabs, which could be used to place
links to promotion/demotion pages for each article. Despite these obvious bene�ts, previous
experience with the mediawiki implementation have shown that the API is unstable [13] which

30 / 67

Secure Wiki System

would break any extension relying on the old version of the API.
Creating a base wiki implementation, for the purpose of having a stable API and a plugin-

architecture that is capable of supporting the actions needed by the secure wiki model, will
require an extra e�ort, but this e�ort may equal the e�ort that could be needed if an existing
wiki implementation needs to be modi�ed to support the secure wiki model. The argument
for using an existing wiki implementation would be that a plugin could be created for this
wiki, that could be deployed to any installation. If the source is modi�ed, even by a little, this
argument fails and it makes little di�erence if the whole system is made from scratch.

Ultimately, creating a base wiki implementation is the approach chosen, which will allow
continued testing and development of the secure wiki model plugin. When a stable and e�ective
plugin has been identi�ed, the plugin can be rewritten in the prober language, using the target-
wiki APIs. Working based on an existing implementation would only decrease the number of
wikis, incompatible with the development version, by one.

4.1 Base Wiki System

This base wiki system will be based on Java as the implementation language, partly because
of the ease of development when using java, partly because of the chosen plugin framework
described in Section 4.1.2.

4.1.1 Execution Environment

An important thing to establish is the execution environment that the system will be running
in. De�ning the characteristics of this environment allows the system to be set up on any
platform that can provide this environment. The environment that will be used is shown in
Figure 6 and described in the following. When using java to create a web-based application,

JVM

Apache Tomcat 6

Web App (Bridge)

OSGi

Bundles

MySQL database

Figure 6: Execution environment

a java application server is needed to run the system. If done right, the choice of application
server is irrelevant. Any java web-application should be able to run on any standard java
application server.

The Apache Tomcat 6 application server is an easily accessible and popular application
server available for most modern operating system. In addition, con�guration of Apache Tomcat
is well documented and has an active community that can provide support when the written
documentation comes short. The lack of documentation and di�culties in downloading the
Dynamic Module server (DM-server) chosen by Følsgaard and Ludwigs, combined with the

31 / 67

Secure Wiki System

apparent lack of bene�ts over the Apache Tomcat means that the DM-server was discarded as
a candidate for the task of application server.

The choice of using the Apache Tomcat server for development was made because it only
requires a JVM installation and that it functions very well with the chosen plugin-framework.
The choice of plugin framework is described in Section 4.1.2 and it should be apparent from
this section that the Tomcat server is a good �t with the chosen plugin-framework.

In addition to the Apache Tomcat application server, the base system requires a database.
The database chosen to be used is MySQL, due to the availability, stability and popularity of
this particular database system. The use of Tomcat and MySQL means that this system can
be set up on most major platforms including Windows, Linux and Mac. Since connections to
MySQL is made through the network, it makes no di�erence to the implmentation whether
the database system is located on the same physical machine as the application server or on a
di�erent machine.

4.1.2 Plugin Framework

In the work Følsgaard and Ludwigs made in converting JamWiki to a plugin-based implemen-
tation, they have shown that the Open Services Gateway Initiative (OSGi) framework is an
e�ective and powerful framework on which a modularized web-application can be based. OSGi
is also the backing framework used by Eclipse, a successful java-based IDE supported by an
open-source community as well as large cooperations such as IBM and Oracle, both of which
are active contributors [7]. Based on the OSGi-framework speci�cation, a number of imple-
mentations of the OSGi-framework exists. Among the most noticeable is the Eclipse Equinox,
the Knop�er�sh and the Apache Felix implementations.

With the intentions of creating an easy-to-deploy system, the approach where Tomcat will
be running in an OSGi-environment (see section 2.6.4) will require modi�cations to existing
tomcat installations or the use of a dedicated server such as the DM-server used by Følsgaard
and Ludwigs13. The opposite approach, where the OSGi-environment will be running in a
Web-container managed by Tomcat will allow for the creation of a WAR �le that can be
deployed to most applications servers. A number of issues arise when embedding OSGi in an
application server. OSGi-frameworks needs to be started, in order for them to work. Usually
the OSGi-framework is started and instructed to start everything else. Running in a Tomcat-
container the OSGi-framework needs to be embedded in a web-application and started with the
application. In addition, most OSGi-frameworks provide a management console, enabling the
user to start and stop bundles. This console is accessed using std-in and std-out, which, when
running in a Tomcat-container, is not immediately available. For the Equinox framework, a
web-application is available for download that will bridge the gap between the Tomcat container
and the OSGi-environment. Knop�er�sh provides no such bridge, nor were documentation on
how to create it found. The Apache Felix implementation does not have a �nished OSGi-bridge,
but has su�cient documentation and example code to create a customized bridge. In addition,
a number of OSGi bundles are available from Apache Felix, one of which, the WebConsole,
enables web-based management of an OSGi-framework.

Even though the extra bundles could be used in any OSGi-framework, the ability to easily
create a customized OSGi-bridge means that the Apache Felix OSGi-framework is the frame-

13From their thesis it is clear that the application-server part of the DM-server is a tomcat running inside the
OSGi-framework.

32 / 67

Secure Wiki System

work chosen for the base wiki system. By creating a proof-of-concept, the combination of
Apache Felix, Apache Tomcat 6 and available support bundles was tested to ensure that the
Apache Felix OSGi could be successfully embedded in Apache Tomcat 6 and managed through
the webconsole. The proof-of-concept also had custom-made bundles intended to test the ex-
porting and importing packages as well as the use of services from other bundles. Based on the
successful evaluation of the proof-of-concept, Tomcat and Felix were chosen.

4.1.3 System Architecture

In its most basic form, an OSGi-bridge is a web-application whose only function is to start the
OSGi-framework and perform the initial con�guration of the framework, such that the relevant
OSGi bundles are started and their functionality activated. A little more advanced bridge may
maintain the framework by starting, restarting and stopping bundles added to, modi�ed in or
deleted from a precon�gured watch-directory.

The content of bundles work together to form a working program. Bundles export java-
packages for other bundles to use or they can register services, such that other bundles can
access and invoke, knowing only the interface provided by the service, not the source of the
implementation. The ability of bundles to export both individual classes that can be used
directly, assuming the proper java-imports are used, and services, where the caller has no
need for importing classes from the bundle that implements the service, means that a bundle
containing interfaces can be used to de�ne services, while other separate bundles, implementing
the services, can be made by independent third parties.

Conceptually, the whole system can be considered to be packaged in a single bundle. From
this all-inclusive bundle, a number of things can be moved to a separate bundle. The �rst
thing to be moved will be all interfaces that de�nes the API boundary between the di�erent
components in the system. Secondly, Storing data can be done using many di�erent approaches.
The most common of these is storing data in text-�les on disk or using one of the many types
of databases. Regardless of which approach is chosen, the system should be able to abstract
away from the speci�c type of storage. Separating the data-access in its own bundle will allow
an administrator to use a data storage of his own choosing. Being a java web-application,
the Model-View-Control pattern is the recommended way of creating an application. Using
the MVC pattern, it is relatively easy to separate the frontend of the system into a separate
bundle. This would also allow administrators to use a di�erent frontend-bundle with a di�erent
theme for their wiki. What is left in the conceptual all-inclusive bundle will be the core of
the system. A number of additional core features, e.g. article-formatting, could be placed in
separate bundles, but this is not deemed necessary at the moment. These considerations leads
to the architecture shown in Figure 7. The bundles are described further below:

OSGi-bridge The OSGi-bridge is the web application that is installed in the application
server. The bridge will be responsible for starting the OSGi-framework and managing bundles
that are added to, updated in and removed from a location on disk. The management consists of
loading, reloading and unloading the bundles. The bridge itself will not contain any wiki-system
related functionality.

API Bundle To enable the system to use di�erent sources of data, depending on what is
available, the core bundle will not perform data access directly but through an implementation

33 / 67

Secure Wiki System

Bridge
API

Core Data

Frontend

MySQL database

Figure 7: OSGi-bridge bundle structure

de�ned by another bundle. Providing this implementation to the core bundle will be done using
an OSGi-service.

To register and retrieve an OSGi-service, the service must be registered as an instance of a
class or interface, known by both the registering and retrieving bundles. For this purpose an
API bundle will be used and contain the interfaces that describe how one part of the system can
interact with another. The API bundle also contains interfaces describing the model objects
used as parameters in these interfaces.

Core Bundle The core system functionality is to be handled by a core bundle that is respon-
sible for the control-�ow of the wiki system. The responsibilities of the core will be to receive
requests for pages in the system, retrieve data and process it and then forward the result to
the frontend. Both the frontend and the data-backend is handled by other bundles. Commu-
nication with the data bundle is done using an OSGi-service, referred to as the data service.
Communication with the frontend is done through model-objects from which the frontend will
get the data to be displayed.

The functionality handled by the core bundle is:

Authentication As user identity is tied to the operation of the base system wiki, the core
bundle needs to ensure that the user have been logged in and authenticated in order for the
system to allow the user to perform most of the functions in the base system. This is similar
to other wikis, where every action requires some form of identity. Most wikis allow anonymous
users to be identi�ed by their IP, but the added complexity needed to handle anonymous users
in the base system makes this undesirable. Requiring users to have a registered identity is not
a con�ict with the all can edit policy of a wiki, as long as registering an account is unrestricted.

Article Requests The core system will receive requests to view articles and will use the
data service provided by the data-bundle to retrieve the markup of the requested article. The
core bundle will then format the article to html format and forward the html to the frontend
bundle for display.

Editing and Storing Articles Requests to edit articles will be handled by the core in
much the same way as requests for articles. The core must retrieve the article markup using
the data service and forward this to the frontend. When the frontend returns a new revision,

34 / 67

Secure Wiki System

the core bundle shall use the data service to store the new revision. When editing, the core
bundle needs to be aware of the secure wiki model plugin's need to abort a storage request.

Reverting Revisions In order to revert a revision, the revision previous to the revision
being reverted must be retrieved using the data service. This revision must then be formated
as if it is being edited, and forwarded to the edit-frontend. The user can then modify the result
before storing the markup of the previous revision as the new revision.

User Contributions Reviewers participating in an secure wiki model review will bene�t
from this list to determine the quality of a user's contributions. however, since most wikis
provide such a list, the list is a core feature. The core bundle will retrieve the user's contributions
using the data service and forward these to the frontend for display.

Article History Identifying the changes made to an article is the core of the classic
wiki soft-security scheme. The core will be responsible for retrieving information about article
revisions and forward this information to the frontend for display.

Revision Di�s Part of the history feature is to identify the changes made between two
revisions. The core will retrieve the two revisions that are to be compared and, using the third
party library java-di�, calculate their di�erences. These di�erences will then be passed to the
frontend along with the original markup.

Keyword Search Searching is highly dependent on the data storage format. The core
system will therefore use the data service to search the data for given keywords. When the
data service returns matching articles, the core bundle must forward these to the frontend.

Data Bundle Data for the base system will be stored in a MySQL database. The data
service implementation will therefore target this database. Using a separate bundle for the
data service would allow anyone to switch to use text-�les or other data-sources simply by
replacing the data-bundle with another implementation.

Frontend Bundle Functionality (backend) and appearance (frontend) of a system does not
require a tight coupling. The functional part of the system can perform preprocessing of input
and retrieve relevant data from the data-source, pack the processed data into model-objects and
pass these to the frontend to be displayed. With a clearly de�ned API of the model objects as
well as a clearly de�ned API for the interaction with the backend, the frontend can be isolated
into a separate bundle, allowing administrators of a running system to change the theme of the
wiki simply by changing the front-end bundle.

4.1.4 Plugin API

A requirement by the secure wiki model plugin is to be able to inject content into pages. The
base system will support this need by using a viewmodel that will be passed to a presentation-
plugin to be manipulated before being sent to the frontend and converted to html to be displayed
to the reader. The presentation plugin will only have one method, that will receive a viewmodel

35 / 67

Secure Wiki System

to be manipulated. The viewmodel will have a number of methods, allowing the presentation-
plugin to inject content into various locations in the page.

In addition to injection of content into pages, the secure wiki model plugin needs to be
noti�ed of certain events. The events that the secure wiki model plugin needs to be noti�ed of
is before and after a new revision of an article is stored. Before storing an article, the secure
wiki model plugin must be called to perform the can_edit-test and return the result. After a
revision has been stored, the secure wiki model plugin must be noti�ed to update the IL of
the newly created revision. To support this, the base system will have an integrity plugin type
and be aware that these plugins must be called before and after the storing of a revision and
that the return value of the pre-store function indicates if the storing of the revision should be
aborted. Although the plugin-API have been designed with the secure wiki model in mind, the
API does not have any specialized functions that a more generic plugin wouldn't have. The
call made to the plugin before the storing of a new revision can be considered a pre-store-event
and the second call is the post-store-event. Both of these are events that could be relevant to
any generic plugin.

4.1.5 Database Design

Storing data can be done using the �le system, or a database. The advantage of a database
compared to storing data in �les is the optimized search-routines that are used when recalling
articles and searching for keywords using the search-function to be implemented in the base
system. Figure 8 displays the domain model, on which the database design is to be based. Each
time an article is stored, a new revision is created. Since an article includes revision history,
an article consists of many revisions. The text text being displayed being the latest revision.
Each revision is created by a single user.

Article Revision User1 * 1 1

Figure 8: Base system domain model

Article Requesting an article is done using a url entered in the browsers address bar or by
clicking a link to a url. The url will therefore serve as the primary means to retrieve an article.
As will be apparent in the discussion of revisions below, the url is not suitable to be the primary
key. For the primary key, a dedicated integer-id will be used. The dynamic nature of articles,
means that a timestamp, indicating when the article were last modi�ed should also be stored
such that it can be displayed with the article. In addition, the markup of the article is needed.

Revision The latest revision made for a given url is the current article being displayed. This
means that revisions must include all information that articles requires. Creation of a revision
is done by a speci�c user. This user must be tied to the revision in order to display this user on
the article history page. When creating the new revision, the user can give a short description
of the changes made or can mark the changes as minor. The storing a revision must store this
edit-summary and if the revision should be marked as a minor-edit.

User Users have a unique username and a password that must be checked when the user log
in. Since the username is a string, and that it may change, the primary id of a user will be an
integer id.

36 / 67

Secure Wiki System

Database Tables These considerations suggests the creation of a table for users and a ta-
ble for revisions. Articles being selected revisions will be created as a view of those selected
revisions. In order to use the mysql text-search function on the article markup and url, The
fulltext key is used on the markup and url �elds in the revisions table and by extension on the
article view.

Users table
uid Integer Primary Key, auto_increment
username Text
password Text
created Timestamp Default CURRENT_TIMESTAMP

Revisions table
rid Integer Primary Key
markup Text Fulltext key
url Text Fulltext key
uid Integer Foreign key to Users
minor_edit Integer
edit_summary Text
modi�ed Timestamp on update CURRENT_TIMESTAMP

Articles view
aid Integer Primary Key
markup Text Fulltext key
url Text Fulltext key
modi�ed Timestamp

4.1.6 Markup Language

Wikis use a special markup language that allows users to input plaintext into the system,
which is then transformed into formated text when displayed to readers. The transformation
relies on special formating-control sequences contained in the text to identify which parts of
the text that is to be formated in bold and italic or made to a headline etc. Large wikis have
an extensive syntax for formating text, but the core of the formating features are the same. At
minimum, the markup language of a wiki needs to support formating headlines and paragraphs
to allow for a structured text. In addition formating text as bold and italic will allow authors to
emphasize certain words and phrases in the text. These formating features will be implemented
in the base system. In addition, ordered and unordered lists are often used in text and will be
implemented as well.

For the purpose of allowing readers to jump from one article to a related article, links
between pages are needed. The base system will have support for formating links in text to
clickable links.

For ease of maintenance and consistency, some wikis use templates to display common
components of an article. This can range from templates that display a single character (e.g.
λ, that would otherwise require knowledge of the html-encoding of the character) to info-boxes
that displays information in a way consistent across multiple pages (in terms of layout and order

37 / 67

Secure Wiki System

of info-�elds). Such templates takes parameters that can be used to customize the information
displayed by the template. This is however too advanced to be implemented in the base system.

The syntax used by mediawiki is the same as the one used by jam-wiki. Other wiki im-
plementations have a similar syntax, but with both minor and major di�erences depending on
the implementation. The markup language used in the base system will be a subset of the one
used by mediawiki. Speci�cally, the formating will include

Headlines Mediawiki uses a number of equal-signs on either side of a piece of text to indi-
cate various levels of headlines. This is ranging from ==X== for a level 2 headline to
======X====== for a level 6 headline.

Bold Mediawiki uses three single-quotes before and after text that is to be formated as bold,
e.g. '''This is bold'''

Italic Mediawiki uses two single-quotes before and after text that is to be formated as italic,
e.g. ''This is italic''

Bold & Italic To have both bold and italic, the two are combined to give �ve single-quotes
before and after text, e.g. '''''This is bold and italic'''''

Links Formating a link is done using two square-brackets, e.g. [[Link]].

Lists For each line in a list, the line must be pre�xed with * for an unordered list and # for
an ordered list.

4.1.7 System Management

A number of third-party bundles are available as support for system-functionality, such as log-
ging, and for OSGi-framework management. Most signi�cant is the Webconsole-bundle which
allows web-based management of the OSGi-framework. The bridge will load and unload bun-
dles to and from the OSGi-framework, but to activate or deactivate the functionality provided
by these bundles, the bundles must be started or stopped. In addition to being able to start and
stop bundles, the webconsole can be extended to provide Con�guration services, log-output,
system information, a command-line shell for direct OSGi-framework management and other
more or less useful services.

The log-output and system-information will be useful for debugging problems, the shell is
nice to have when troubleshooting bundle-dependency issues, but otherwise replaced by the
webconsole functionality. Parameters to the base system will be entered through the webcon-
sole con�guration service interface. This gives administrators a webbased input method for
parameters, removes the risk of having malformed input �les and automates the setting of
input parameters in the base system.

4.2 Secure Wiki Model Plugin

Creating a generic plugin architecture would require plugins to be noti�ed for each event that
happens in the wiki system. In this context, an event could be post-login, pre-edit, pre-save,
post-save, pre-view-article etc. Depending on the plugin-functionality, di�erent events may be
relevant.

38 / 67

Secure Wiki System

Implementing a generic plugin architecture, can be done by registering the plugin to listen
for each individual event or the plugin can register to listen for all events and only act on
the relevant events. The de�nition of truly generic-plugin API is out of scope for the current
project. The base system will therefore use an approach where a plugin registers as a plugin
of a given type and the base system will then invoke the plugins where relevant. The system
will use a plugin-mediator that allows the base system to retrieve registered plugins. This
approach is similar to that of a generic plugin architecture. The di�erence between this and a
generic plugin architecture is limited to the system knowing the type of plugin that is relevant
to call at a speci�c point in the control-�ow. To convert it to a generic plugin architecture,
the plugin-type must be removed and all plugins called instead. Other than this, the plugin
architecture is similar to that of a generic plugin architecture, although the number of events
are limited.

As shown in the analysis, the secure wiki model plugin must be called before a new article
revision is stored, to determine if the contributor is allowed to store it and when an article has
been stored, in order to update the article IL if needed. In addition, the secure wiki model
plugin has a need to inject content into the pages displayed to the user. Primarily, the injection
of the article IL into article pages, to inform the user of the articles IL, but it also needs to
inject an IL-selector into the edit-page, allowing the user to select the appropriate article IL
before saving. The result of this selection must then be passed along to the secure wiki model
plugin when the plugin is noti�ed that a new revision has been stored.

4.2.1 Architecture

The secure wiki model plugin is constrained by the plugin-API de�ned by the base system.
The base system provides two plugin-types that can be used. A presentation plugin used to
modify the presentation of data and an integrity plugin that can veto storage of new revisions
and is noti�ed when a new revision have been stored.

by implementing an integrity plugin, the secure wiki model plugin can evaluate the can_edit
predicate and decide if the storing of the article should proceed. The subsequent post-storing-
event can then be used to assign the proper IL to the new revision. In order for the post-storing-
event to assign an IL, the request to store the revision needs to include the corresponding IL in
the request. In order for the IL to be included in the request, the form that is submitted must
be altered to include this input. Adding the IL parameter to the form will be done using the
presentation plugin. The presentation plugin will include the means to place content on the
edit-page inside the form, allowing an extra input �eld to be added.

Using the same presentation plugin, the article display page can be modi�ed to include the
article IL. The presentation plugin will also be used to inject menu items into the menu, to
provide access to the speci�c features of the secure wiki model plugin, such as requesting a
review and viewing the active reviews in the system.

When requesting a review and when evaluating a �nished review, a number of parameters
are needed. When starting a review, the number of users that should participate is needed.
When evaluating, the weights of each vote and the threshold to use is needed. From the
webconsole, these parameters can be entered into the con�guration service, which will then
update the secure wiki model plugin.

39 / 67

Secure Wiki System

Secure Wiki Model Overview For the secure wiki model to be useful, the secure wiki
model plugin must provide an overview of the running reviews and provide the means for users
to make an informed decision and indicate their decision to the system. This will be accessible
from the navigation-menu.

Receiving a Vote The secure wiki model plugin must provide reviewers with a means to
cast a vote. When a vote is received, the secure wiki model plugin must update the review
with the reviewer's decision. Reviewers will be provided with links on the overview page to the
reviews they can vote on.

Requesting a Review Starting a review is a manual task. From the navigation-menu, users
will have access to pages where they can request a promotion and demotion review of themselves
or a di�erent user.

Processing a Review When a review ends, de�ned by the end-timestamp of the review, the
votes must be counted and the result evaluated according to the policy speci�ed in Sections 4.3
and 4.4 using the parameters con�gured by the administrator.

4.2.2 Database Design

Since the secure wiki model plugin is a plugin, the base system database cannot be modi�ed to
suit the needs of the plugin, but must be extended to support the needs of the plugin. Figure
9 shows the extended domain model.

Article Revision User

Review Vote

1 * 1 1

1

*

1 *

1

*

Figure 9: Secure wiki model domain model

Article The secure wiki model plugin needs to associate an IL with articles. Since articles
are a subset of revisions, no additional information is needed.

Revision Articles, being a subset of all revisions, must be associated with an IL. For this
reason, each revision will be associated with an IL. In stead of storing one IL for the article, an
IL will be stored for each revision. This allows the IL to be displayed when viewing previous
revisions. Since the Revisions table cannot be changed, a new table is needed. The table must
contain a reference to the revision and the IL of that revision.

User Like the Revisions table, the Users table cannot be changed. Again a new table is
used, where there is a reference to the Users table and the QCV of the user. To support both
document and user levels, both a document-QCV and a user-QCV will be stored.

40 / 67

Secure Wiki System

Review Reviews are used to determine the consensus in the community on whether a user
should be promoted or demoted. For referencing the review, an integer id is needed. To
distinguish between promotion and demotion reviews, a type, indicating if the review is for
promotion or demotion, is needed. To identify the user, for which the review is about, a
reference to the user must be stored. In addition, reviews must be ended after a certain period
of time, so a start and end time is needed. For audit purposes, storing a reference to the
user who requested the review as well as the target QCV will be needed. When requesting a
promotion or demotion the user can enter a reason for the request. This information should
also be stored with the review.

Vote Votes indicate the decision by individual users. Each vote will have a unique integer id,
reference the review for which the vote is related and the value of the vote (yes/no/unanswered).
In addition, since secret voting is only a requirement between users, a reference to the user
who cast the vote can be stored in the table. Doing this means that an enforcement of the
(reviewid,userid) pair being unique by the database makes it impossible for one user to vote
more than once for any given review.

Database Tables These considerations leads to the creation of 4 additional tables.

Swmp_user table

uid Integer Primary Key, Foreign key to Users
doclevel Integer
userlevel Integer

Swmp_revision table

rid Integer Primary Key, Foreign key to Revisions
il Integer

Reviews table
rid Integer Primary Key, auto_increment
uid Integer Foreign key to Users
description Text
type Integer
targetqcv Integer
requestorid Integer Foreign key to Users
start Timestamp default CURRENT_TIMESTAMP
end Timestamp
processed Integer Default 0

Votes table
vid Integer Primary Key, auto_increment
rid Integer Foreign key to Reviews
uid Integer Foreign key to Users
vote Integer Default NULL

41 / 67

Secure Wiki System

4.3 Promotion Policy

The policy to be used in this project will combine elements from both the original model and
the �rst prototype implementation. From the original model, the idea of selecting a number
of authors to perform the review will be used. This has the bene�t that in large systems with
many users, it is unrealistic that everyone will constantly participate in reviews. Reducing the
number of reviewers to a statistically representative number will reduce the voting frequency of
the individual users without a�ecting the �nal decision of the vote and hopefully increase the
willingness to participate. In addition, it will also allow the system to calculate a participation
percentage, which can be used to determine if a su�cient percentage of possible votes were
cast. In addition, selecting a set of reviewers, prevents an attacker from using all colluding
malicious users to in�uence the review, in the manner described in Section 3.4.2.

Votes cast by users in each level will be given weights and the number of votes multiplied
by their respective weights will be the score of the vote. The promotion review success criteria
will be based on a threshold of yes-votes that di�ers for each level. For any vote to succeed,
the number of no-votes cannot exceed the number of yes-votes, if the review is to result in
promotion. The threshold of a vote is based on the maximum score of a vote, allowing a 30%
threshold without the number of no-votes exceeding the number of yes-votes.

For a 30% threshold, only 30% of the reviewers needs to cast a vote. For lower thresholds,
even fewer reviewers needs to cast their vote. To ensure that the decisions are valid, a su�ciently
large number of people needs to participate in the review. Participation percentage should be
checked for, when evaluating a vote, but otherwise does not a�ect the promotion/demotion
policy.

As evidenced by the original model, handling the promotion to the two highest integrity
levels becomes tricky, as the three levels required by the normal procedure does not exists.
The original model compensates by requiring a unanimous decision. Since the integrity of the
highest levels are the most important, reducing the strength of the promotion policy would be
undesirable. In order to use the common-case promotion policy for the highest integrity levels,
one additional author-only integrity level can be introduced. The original secure wiki model
uses �ve integrity levels. Using level 0 to 4 for documents and authors and adding a level 5 for
authors only, would allow the common-case policy to be used for promotion of authors from
level 3 to level 4. The author-only integrity level would still write documents at level 4, but
stricter policies can be used to protect this level, that may require considerable e�ort to get to,
i.e. not something that everybody can do.

The original secure wiki model [12] used the policy Π1. The policy de�ned in this thesis
will be referred to as Π2. Like Π1, the levels involved in a review, are levels Li, Li+1 and Li+2

from where a number of users, de�ned as ri, will be randomly selected to perform the review.
For each level, ΛRi

is used to denote the set of the selected reviewers.
In the event that a given level does not contain any users, the level above will be used to

supply the users needed at the empty level. The two primary causes for empty levels is when
all users at a level has been promoted and during the bootstrapping phase of the system, before
the levels have been populated. The strategy of selecting users from levels above empty levels
has the e�ect that in order to bootstrap the system, only a single user is needed at the top level.
This user should be one of the administrators of the system and can therefore be trusted not to
act maliciously. In addition, the user will be included in most reviews during the bootstrapping
phase and have a signi�cant amount of control on the result of the review, which again suggest
that this user should be an administrator of the system.

42 / 67

Secure Wiki System

Using δj(a:A) as the decision of reviewer j ∈ ΛRi
on the review of author a ∈ A and with

each vote weighed according to the level of the reviewer who cast the vote, the level score can
be expressed as shown in (7) where Wi is the weight of the level.

Si(a) =
∑
j∈ΛRi

δj(a) · Wi (7)

The maximum score that a level can produce is the number of selected reviewers multiplied
with the weight of the level. This is expressed in (8).

Smax

i (a) = |ΛRi
| · Wi (8)

The threshold that must be reached is denoted using τi. In contrast to Π1, where the threshold
were an integer threshold, which the number of positive votes should exceed, τi will, in the
context of Π2 be a percentage, denoting the percentage of the maximum score to exceed. The
common case for the promotion policy can then be speci�ed as shown in (9).

D(a) = Si(a) + Si+1(a) + Si+2(a) ≥(
Smax

i (a) + Smax

i+1 (a) + Smax

i+2 (a)
)
· τi

for i ∈ {0, 1, . . . , |I| − 2}
(9)

For the special case of i = |I|−1, only two levels can be included in the review, but is otherwise
parallel to the common case. This is expressed by (10).

D(a) = Si(a) + Si+1(a) ≥
(
Smax

i (a) + Smax

i+1 (a)
)
· τi (10)

for i = |I| − 1

If it is deemed necessary additional author-only levels could be used. Since (9) and (10) are
de�ned in relation to |I|, the de�nition of the common and special case conditions would remain
the same.

4.4 Demotion Policy

The demotion policy will be similar to the promotion policy. However, using a di�erent thresh-
old for demotion allows administrators to make demotion easy or hard compared to promotion.
Doing this has an e�ect on the motivation of users to do work. If promotion requires a signi�-
cant e�ort, but demotion can happen if a contributor makes a single bad action, it can hurt the
motivation of contributors as their e�orts may be wasted if they make a simple mistake, but for
the same reason, an attacker will have a problem keeping the level of the attacker's colluding
'malicious users. If demotion is more di�cult, contributors will be more willing to make an
e�ort as they know that they will not risk being demoted. This, however, also makes it easier
to keep malicious users at their repective levels. The amount of negative work to perform to
be demoted therefore a balance between ensuring the motivation of contributors and demoting
malicious users who tries to blend in the crowd.

The condition for the general case is largely the same as for promotion, except the threshold
to use can be set independently. The threshold for demotion is denoted τdemi . The condition
for demotion is given by (11).

D(a) = Si(a) + Si+1(a) + Si+2(a) ≥(
Smax

i (a) + Smax

i+1 (a) + Smax

i+2 (a)
)
· τdemi

for i ∈ {0, 1, . . . , |I| − 2}
(11)

43 / 67

Secure Wiki System

For demotion of a user at level L|I|−1, where only two levels (L|I|−1 and L|I|) can participate in
the review, the condition becomes that shown in (12).

D(a) = Si(a) + Si+1(a) ≥
(
Smax

i (a) + Smax

i+1 (a)
)
· τdemi (12)

for i = |I| − 1

For demotion of a user at the author-only level, L|I|, where only the same level L|I| can partic-
ipate in the review, the condition becomes that shown in (13).

D(a) = Si(a) ≥
(
Smax

i (a)
)
· τdemi (13)

for i = |I|

If a malicious user is at level Li, the chances are that more malicious users are at level Li. The
inclusion of level Li in a demotion review that may demote a user from level Li to Li−1 can
therefore potentially include malicious colluding author protecting the user who are subject to
a demotion review. It is believed, however, that this will not have a signi�cant e�ect on the
demotion review. Should enough malicious colluding authors exist at level Li, such that they
can control a demotion review, they would also have the power to control a promotion review
that could reestablish the QCV of any demoted user. In such a case, not only is the demotion
policy violated, but the entire system is in trouble.

5 Implementation

As described by the design section, the secure wiki system have been implemented using Java
and targeted to a java web application server. For each of the bundles that have been created,
a bundle manifest must also be created. The content of this manifest is, in part, extracted from
the existing build con�guration and, where necessary, explicitly encoded in the con�guration.
This allows the manifest to be created on-the-�y during the build process. For the entire
project, Apache Maven has been used to control the life-cycle of the build process. This means
that everything from dependency management to compilation, packaging and deployment have
been controlled using maven. Using maven has the bene�t that the project can be compiled
from source and have dependencies downloaded automatically as part of the build-process. For
this project, however, two third-party bundles have been created from source (see section 5.7)
and therefore not generally available for download, these have been deployed to a private maven
repository during the development of the project. Another e�ect of using maven to build the
project, is that bundle dependencies, that are not available as a bundle, can be embedded into
the �nished bundle at build-time, removing the need to convert those dependencies to bundles.
This also makes it easier to change the version to depend on.

5.1 OSGi-Bridge

The OSGi-Bridge component is the physical web application to be deployed on the server. The
bridge itself is very simple and contains no wiki functionality, but contains the OSGi-framework
used to handle the bundles that make up the wiki system. When the application is deployed
and the application server initializes the application, the bridge will create and start an instance
of the OSGi-framework. The framework used is the Apache Felix OSGi-framework version 4.

44 / 67

Secure Wiki System

The framework and its dependencies are contained as jar-�les in the lib-folder of the bridge
application.

For the purpose of framework management, the bridge starts a thread that runs concurrent
to the framework. The thread monitors a directory on disk, where bundles can be added to and
removed from. The thread repeatedly calculates a hash for each of the bundles in the directory
to identify changes to bundles. When a bundle is added to the directory, the bundle is installed
in the framework. When a bundle is changed on disk, the thread will reload the bundle. When
a bundle is deleted from the directory the thread will stop and remove the bundle from the
OSGi-framework.

For the purpose of being able to restart the OSGi-framework, the thread will initially consult
the �le init.bundles located in the watch-directory to determine which bundles should also be
started after installation. The �le contains references to other .bundles-�les or bundles that
should be started.

When building the brigde, all bundles required for the wiki to run is automatically copied
to the bundle-watch directory to be started when the bridge starts. The bundles include
both the speci�c wiki-bundles described below but also the web-console bundle and all of its
dependencies and extensions. The inclusion of the web-console bundle in the bridge allows
manual management of the OSGi-framework.

5.2 API

The API bundle contains all the interfaces that de�ne the boundary between system compo-
nents. In addition to de�ning constants for use by all parts of the system, the API bundle
de�nes a number of models and services.

5.2.1 Models

The API bundle de�nes interfaces describing models used to communicate information between
the Data, Core and Frontend bundles. The primary models used by the system is the user model
and article models. In addition to this, the history, contribution and di� features each have
a model used to transport a collection of data from the data bundle to the core and onto the
frontend.

User Model The user model is de�ned by the interface WikiUserModel which de�nes meth-
ods for retrieving the username and the userid. In addition, methods, to get and set properties
related to the user object, are de�ned.

Article Models Articles have a model for a missing article (WikiNoArticleModel) contain-
ing only the url and title of the missing article. For articles that are to be formated and
displayed, there is an article model (WikiArticleModel) that provides the formated html to
the frontend, along with methods that provide the information needed when editing articles.
For use in the history view, a revision model (WikiRevisionModel) exists, that provides the
id of the revision as well as convenience methods for determining if the revision is a new page
or has been marked as a minor edit. In addition, methods for retrieving the edit-summary,
contributor name and revision size are de�ned.

45 / 67

Secure Wiki System

View Model The view model is de�ned by the interface WikiViewModel and is used as a
parameter to the presentation plugin. After each presentation plugin have had a chance to
modify the view model, it is passed on to the front end, where it is used to construct the
content of the pages shown to the user. The view model de�nes seven points on the page where
data can be added.

� Head: Used to add javascript and stylesheets to the head of the page.

� Navigation: Used to include links to other pages in the navigation. The frontend
implementation is free to decide the location of the navigation on the page.

� Action menu: Used to include links to page actions in the action menu. The frontend
implementation is free to decide the location of the action menu on the page.

� Before the content: Used to add content before the start of the page content.

� Next to the content: Used to add content that �oats next to the page content.

� After the content: Used to add content that follows the page content.

� Form: Used to add content to the the primary html-form of a page. At the moment,
this is only used on the edit pages.

5.2.2 Services

The API bundle de�nes a number of services, that are used to share functionality between
bundles. The data service (DataService) and formatting service (ArticleFormatterService)
are used to perform actions directly, while the lookup service (LookupService) and plugin
service (PluginService) functions as mediators between the di�erent parts of the system.

Data Service The DataService interface is used to de�ne an OSGi-service used by the core
bundle to access data from the data storage. The interface de�nes functions to get information
needed by the core bundle as well as the storing of new article revisions. For the purpose of
the secure wiki model plugin, which relies on an SQL datasource, functions to select, insert,
update and delete has been added in an SQLDataService interface, which extends the normal
data service interface.

Formating Service The ArticleFormatterService interface is used to de�ne an OSGi-
service used to format the article markup into html. The formatter has been separated into
an OSGi-service such that other bundles may use this, if needed. This service could easily be
moved to a separate bundle, but so far this has not been necessary.

Lookup Service The LookupService interface de�nes an OSGi-service that functions as the
mediator between di�erent parts of the system. Strings de�ned by one bundle can be looked
up by another bundle using the same de�ning key and get the value registered for that key.

46 / 67

Secure Wiki System

Plugin Service The PluginService interface is used to de�ne and OSGi-service and used
by plugins to register themselves as well as the core to access all registered plugins. The plugin
service di�erentiates between integrity plugins and presentation plugins allowing the core to
retrieve only the relevant plugins.

5.2.3 Plugins

The API bundle also de�nes the interfaces describing the plugin-API, which allows the presen-
tation and integrity plugin to be called.

Presentation Plugin The PresentationPlugin interface has a single method, execute, that
is called with a view model as parameter. The presentation plugin can then call methods on
the viewmodel to manipulate its content.

Integrity Plugin The IntegrityPlugin interface de�nes two functions. A function that is
called before the storing of an article revision and one that is called afterwards. The pre-store
function allows the secure wiki model plugin to perform its can_edit check, and indicate if the
storing of the article should be aborted. The second is used to update the database with the
integrity level of the new revision.

5.3 Data

The data bundle is responsible for managing the data source. The data source used by the
data bundle is a MySQL database. The Data bundle provides and implementation of the
SQLDataService de�ned by the API bundle. Because the data bundle is responsible for fetching
article and user information, the data bundle contains an implementation of the article and
user models. Because the system is running in an application server, the database connection
is de�ned by the web-application in the context �le of the web application. The �le must be
installed in the applicaiton server by the administrator of the system prior to the installation of
the wiki web application. The content of this �le and it installation is documented in Appendix
B. Creation of the database used as the datastorage backend is documented in Appendix E.

5.4 Core

The core bundle contains the functionality that handles the control part of the Model-View-
Control pattern that java web applications are encouraged to use. For each major feature in
the base system, the core has a controller (servlet). These are described in the following.

5.4.1 Authentication

The authentication servlet (AuthenticationServlet) is the part of the system that handles
the security of user creation and identi�cation. When creating a user, the servlet will protect
the password using a SHA-256 hash algorithm and store the hash instead of the users password.
When authenticating a user, the password provided by the user will be protected in the same
way and compared with the value stored in the database. The implementation does not guard
against automated user creation. Methods to achieve such protection are well documented and
in use in several places [17, 2, 16, 10, 18]. In a production ready system, such prevention should

47 / 67

Secure Wiki System

be implemented, but the lack thereof is of no consequence to the current implementation of the
secure wiki system in terms of it being a proof-of-concept system for the secure wiki model.
The security of the user-creation process is assumed. The solutions for ensuring, that this
assumption is valid, exists and the implementation of these solutions are left for future work.

5.4.2 Article

The article servlet (ArticleServlet) is responsible for decoding the requested url to extract
the identi�er of the article. Using the url, the article is retrieved from the database and the
markup of the article is formated, using the formating service. Having formated the article
markup into xhtml, the article model is forwarded to the frontend for display.

5.4.3 Edit

When a users wishes to edit an article, the edit servlet (EditServlet) will fetch the article
markup using the data service and forward this to the frontend where it will be presented to
the user for editing. When the user has modi�ed the markup, the edit servlet will be called
to either create a preview of the modi�ed markup or to store a new revision. To create a
preview, the modi�ed markup is formated into xhtml and added to an article model sent to the
edit-page. The modi�ed markup is forwarded to the edit-page as well to be displayed to the
user for further editing.

The edit servlet is aware of the integrity plugin and calls this before creating a new revision.
If the integrity plugin does not indicate a problem, the revision will be stored using the data
service and the integrity plugin is noti�ed that the revision has been stored.

5.4.4 Revert

The revert servlet (RevertServlet) is called with a parameter indicating the revision to undo.
Using the data service, the revision previous to the revision to undo is retrieved and forwarded
to the edit-page to be edited and stored as a new revision. No attempts are made to identify
the speci�c changes between the revisions and revert them from later revisions. This has
the unfortunate side-e�ect that reverting a revision will revert all revisions after it. This is
acceptable for the moment, as most revisions are either reverted quickly or not at all [1].

5.4.5 Contribution

The contribution servlet (ContributionServlet) serves simply as input validation and medi-
ator between the data service and the frontend. The contribution servlet uses the data service
to retrieve the contributions made by the username given to it as input and forwards the model
object it receives directly to the frontend.

5.4.6 History

The history servlet (HistoryServlet) is a mediator between the data service and the frontend.
Retrieving the history of an article is handled by the data service which returns a history object,
which is then passed on to the frontend.

48 / 67

Secure Wiki System

5.4.7 Di�

The di� servlet (DiffServlet) is responsible for calculating the di� between two article re-
visions. The di� servlet fetches the revisions using the data service. Using the third-party
library java-di�, which is also used by JamWiki, it calculates the di�erences between the two
revisions and transforms the output from java-di� to a di� model object that is forwarded to
the frontend.

5.4.8 Search

The search servlet (SearchServlet) performs input validation and passes the keywords on to
the data service to perform the search. The data service returns a list of articles, which are
passed on to the frontend.

5.4.9 Formating Service

The formating service (WikiCoreAntlrFormatterService) is a frontend to an ANTLR-
generated parser that reads the article markup. The formating service then uses the parser
output to generate the xhtml that corresponds to the markup-input. The creation of the parser
is an automated process, based on an input grammar to the ANTLR parser-generation tool.
Since maven is used to control the build-process of the project, the generation of the parser has
been incorporated into the build-process.

5.5 Frontend

The frontend implementation consists primarily of JSP �les. To prepare the web application
to use the JSP �les contained in the frontend bundle, the frontend bundle activator uses the
functionality of the Equinox JSP Jasper and Equinox JSP HTTP-helper bundles to register
each JSP �le as a servlet having the same name as that of the JSP �le. In addition to the
JSP �les, a number of resources, such as images, javascript �les and css-stylesheets, needs to
be registered as resources to be available for direct download as is necessary when browsers
renders the generated html of the jsp-pages.

The frontend is implemented using a master-layout which then includes the content speci�c
jsp pages. Using the viewmodel, the master layout can determine the correct content �le
to include along with the content to include in the head, navigation and action menu and
before, after and next to the content. The frontend bundle also contains a presentation plugin
implementation used to modify the viewmodel for each page that is displayed. This presentation
plugin is required since the navigation and action menu are part of the master layout and
changes to the these are out of reach of the content-speci�c pages.

The decision to structure the frontend in this manner is partly due to page maintenance
being easier when only one �le de�nes the layout and partly because of the needs of plugins to
create content-speci�c pages. If the layout were to be embedded into every page, plugins would
not be able to seamlessly integrate into any frontend theme used by the system, unless separate
plugin frontend implementations were made for every theme available to the base system.

49 / 67

Secure Wiki System

5.6 Secure Wiki Model Plugin

The secure wiki model plugin consists of an integrity plugin, that implements the static access
control, a presentation plugin for displaying article ILs and a number of servlets and JSP-�les
that implements the dynamic part of the secure wiki model. The presentation plugin is also
responsible for modifying the navigation menu such that users can access the review-related
pages supplied by the secure wiki model plugin bundle. In addition, the presentation plugin is
used to modify the edit-page to include an IL-selector used when saving a new revision.

5.6.1 Review

The review servlet (ReviewServlet) is used to display the details of a review. In case the
servlet is not instructed to display a valid review, the servlet will display a list of ongoing
reviews. The servlet also handles the registration of a vote cast by a reviewer.

5.6.2 Requesting a Review

The request-review servlet (RequestReviewServlet) will display a form that allows users to
request either a promotion or a demotion review to begin. When the servlet receives the request
to start a review, it will randomly select a number of users and assign these as reviewers for
the review. The number of users that are randomly selected are de�ned by ri of the policy and
the value set using the con�guration service interface of the web console. Reviews are created
with an expiration date of two weeks.

5.6.3 Processing a Review

To process �nished reviews, the implementation uses a ProcessReviewWorker class that imple-
ments the functionality that evaluates the result of all expired reviews as speci�ed in Sections
4.3 and 4.4. Depending on the type and level of the speci�c review, the worker will use the
condition de�ned by (9), (10), (11), (12) or (13) to evaluate the review. The worker will, if
the evaluation condition indicates that the review is successful, promote or demote the relevant
user depending on the type of the review. The worker is scheduled to run once every hour,
thereby concluding any �nished review.

5.7 Modi�cations of Third Party Components

A few of the components required to implement the secure wiki system was either not available
in bundle form or contained errors that were critical in relation to the project. Fixing these
problems have created artifacts not generally available. As described above, the bridge applica-
tion handles http-requests and forwards these requests to the servlet registered to handle that
request. Using the MVC pattern, servlets will commonly include and/or forward a request to
another servlet or JSP page which in turn can do the same. The Apache Felix OSGi-framework
has built-in support for this, but a critical bug in the system meant that the process would fail.
In order for the system to function as intended it was necessary to patch the system and create
a working bundle. Creation of the patched bundle is documented in Appendix C.

In order to load JSP-pages from bundles, they need to be registered as as a servlet with
the OSGi-framework. The apache Felix framework does not directly support jsp-pages. As
part of the development of the Eclipse Equinox OSGi-framework, the Eclipse foundation have

50 / 67

Secure Wiki System

developed the code that extends an OSGi-framework with JSP support. The code relies on
the Apache Tomcat JSP-engine and therefore �ts nicely with the use of the Apache Tomcat
application server. OSGi being a standard means that bundles intended for one framework will
work just as good in other frameworks. This means that the Apache Felix framework can be
extended with JSP support using the bundle created by the Eclipse foundation. This bundle is
generally available as a bundle, but a dependency of the bundle is not. The source code for the
missing classes and dependencies of those are generally available through the Eclipse foundation
CVS server. The source code have therefore been downloaded, compiled and packaged into a
bundle which is then installed in the OSGi-framework. Creation of the bundle is documented
in Appendix D.

6 Evaluation

The policy, Π2, de�ned in this thesis has been de�ned using variables. The value of these
variables are intended to be adjusted to �t the speci�c needs of the speci�c wiki system that
uses the policy Π2 with the secure wiki model. However, in order to evaluate the e�ectiveness
of Π2, a number of assumptions, regarding a speci�c system and the environment, in which it
exists, must be made.

In the following, the values for each of the variables will be discussed and an estimate of a
value will be used to compare Π2 with Π1.

6.1 Evaluation Scenarios

In the following, two scenarios will be used as basis for the evaluation. The �rst is a basic
model of a wiki system. The community of this wiki consists of levels with 100 users in each.
Although this even distribution of users is unlikely, the basic model has the advantage that the
number of reviewers can be translated directly into percentages.

In real-life systems, everyone can register an account and thus get to the �rst level. A subset
of these users will have the skills and motivation to get to the next level. A subset of these
users will have the skills and motivation to get to the next level and so on. If equating an
edit in Wikipedia, with an amount of work that the user is willing to make, user-contribution
statistics for Wikipedia [19], which groups contributors based on the number of edits they have
made, can be used to estimate a grouping of users based on the amount of work they will make.
This of course speaks nothing of the quality of the individual edits or whether the edits were a
correction of a typo, or the addition of a large section. However, a user with many edits is more
likely to have written much and of reasonable quality, compared to users with a low number of
edits, which is not to say that low-edit users write content of low quality.

The statistics [19] covers Wikipedia from the beginning in 2001 to September 2008. Table
1 shows the data for the last month of available data, which is representative for the last year
of available data (see Appendix A where the statistics have been partially reproduced).

X 1 5 20 100 250 1000 2500 10000
Per Month 68.3% 21.3% 7.2% 2.1% 1.0% 0.1% 0.0% 0.0%

Total 64.8% 23.1% 7.8% 2.3% 1.2% 0.5% 0.2% 0.1%

Table 1: Percentages of active authors with ≥ X edits to Wikipedia, September 2008 [19]

51 / 67

Secure Wiki System

Although the distribution of users in terms of their edits to Wikipedia cannot be translated
directly into an integrity level user distribution, what the statistics does show is that there is a
pyramid shaped distribution of users in terms of how much work they put into the creation and
maintenance of content in Wikipedia. This suggests that a more real-life scenario is a scenario
where the user distribution has a pyramid shaped distribution.

Assuming a user-distribution that matches the one given by the total -row in Table 1, the
relative level sizes can be calculated. Table 2 shows the level size ratio and a normalization of
these for easier comparison. From this table, an estimate of a realistic user-distribution can be

i Original Normalized
0 64.8 : 23.1 : 7.8 8.3 : 2.96 : 1
1 23.1 : 7.8 : 2.3 10 : 3.4 : 1
2 7.8 : 2.3 : 1.2 6.5 : 1.9 : 1
3 2.3 : 1.2 : 0.5 4.6 : 2.4 : 1
4 1.2 : 0.5 : 0.2 6 : 2.5 : 1
5 0.5 : 0.2 : 0.1 5 : 2 : 1

Table 2: Ratios of level sizes, based on Table 1

determined and be used as the basis for the second scenario. A fair approximation to the two
�rst rows of the table is the ratio 9:3:1. The remaining levels can be approximated with the
ratio 6:2:1. Since the lower levels are the ones that will be attacked �rst, these are of higher
interest. The second scenario used in the evaluation will therefore have user distribution where
levels are 3 times larger than the next. Speci�cally, |Λi| = 3 · |Λi+1|. Given this size-ratio of
levels, and arbitrarily choosing |Λi+2| = 50, it follows that |Λi+1| = 150 and |Λi| = 450.

In order to evaluate the policies Π1 and Π2, both policies will be simulated to determine
the probability of control, given all possible distributions of malicious users, ranging from none
to all users behaving maliciously. The simulation will, based on a set of given values for the
variables used to de�ne Π1 and Π2 simulate reviews for each possible combination of malicious
users. For each combination, the review is simulated 100 times, in order to �nd the probability
of controlling a review.

The work/probability plots are based on the results of these simulations. A simulation
results in a value for the probability of control for each combination of malicious users. The
work/probability plots described in the next section and used throughout the evaluation-section
are created based on the results of these simulations, using the user-combination/work mapping
in (17).

6.2 Estimation of Work

The number of malicious users (x,y,z) at levels Li, Li+1 and Li+2 required to violate the policy
Π2 is an important metric for the security of Π2. However, given the fact that multiple com-
binations, numbering in the thousands, give the same probability of controlling a review and
cannot be ordered, it is practically infeasible to document the characteristics, in terms of x,y,z,
of the combinations that has a given probability of controlling a review.

The reason for the importance of the number of malicious users is because they give an
indication of the e�ort needed by an attacker in order to violate the given policy. Using the fact
that some of these combinations requires less work to achieve than others, and that attackers

52 / 67

Secure Wiki System

will target the cheapest combinations that has a given probability, the combination of users
can be translated into the work required to achieve that speci�c combination, using the work-
function in (17). The work required to get a given combination gives a signi�cant characteristic
for combinations (x,y,z) and can be used to order these. In addition, work/probability gives a
good measure for the security of the system, given an upper bound on the amount of work an
attacker can perform.

Using |ΛRzi | to denote the set of malicious users that are selected from level Li to participate
in a review, an attacker will be able to control a review if the condition in (14) is ful�lled.

|ΛRzi | · Wi+
∣∣ΛRzi+1

∣∣ · Wi+1 +
∣∣ΛRzi+2

∣∣ · Wi+2 ≥(
Smax

i (a) + Smax

i+1 (a) + Smax

i+2 (a)
)
· τi

(14)

Given the random selection of users, it can be assumed that in order to control x% of the
reviewers from a given level, an attacker must control x% of the level. The amount of work
needed to get a given combination of malicious users zi, zi+1, zi+2 included in a review is
therefore not limited to the promotion of zi, zi+1 and zi+2 users to levels Li, Li+1 and Li+2

respectively, but to the users needed to have zi, zi+1, zi+2 users selected to perform the review.
The work required to have one user promoted from level Li to level Li+1 is denoted by αi.

In order for an attacker to have a malicious user added to the system and then promoted to
level Li is then

i−1∑
j=0

αj (15)

To have x users at level Li, the attacker will have to make an e�ort x times greater.

i−1∑
j=0

αj · x (16)

In order to get a given x, y, z combination of users at levels Li, Li+1 and Li+2 respectively, the
e�ort required is

i−1∑
j=0

αj · x+
i+1−1∑
j=0

αj · y +
i+2−1∑
j=0

αj · z (17)

Using (17) as a mapping between combinations of malicious users and the work required to
achieve that combination allows the creation of work/probability plots, that shows the work
needed by an attacker in order to achieve a given probability of controlling a review. As attack-
ers must be assumed to target the cheapest combinations of users, the important parameter
becomes the work required to achieve a given probability and not the speci�c combinations
that give the same probability.

The work-function in (17) is de�ned based on the values of αi. The value of αi for all
i can therefore a�ect the security of the policy. If using a linear work-function where the
elemental work required to be promoted from one level to the next is constant, i.e. that
α0 = α1 = . . . = α|I|−1, a work/probability plot can look like shown in Figure 10.

When looking at the work/probability plots, the important things to consider is the left
and right edges of the colored areas. These areas will be referred to as the areas of vulnerability
for Π1 and Π2 respectively. The left edge of an area indicates the minimum amount of work
an attacker is required to perform in order to have a given probability of controlling a review.

53 / 67

Secure Wiki System

Figure 10: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 4]. τi = 50%.

This is important because smart attackers will attempt to control a combination of malicious
users that requires the least amount of work, i.e. a combination that results in a work value
that lies on the left edge. The right edge of an area indicates the maximum amount of work
that an attacker will have to do in order to have the given probability of control, even when
using an undirected brute force approach. Any work beyond the right edge is guaranteed to
increase the probability of control.

To get a sense of the work parameter, it should be noted, that in order to control 25%
of the three levels included in a review, the amount of work required, when using the linear
work-function is 25 · (1) + 25 · (1 + 1) + 25 · (1 + 1 + 1) = 25 + 50 + 75 = 150. Controlling 25% of
each of the levels is di�cult to impossible, depending on the size of the system. The larger the
system, the less feasible it will be to control 25% of the levels. In addition, when comparing
this to Figure 10, it can be seen that this has little probability of controlling a Π2 review and
only a 50% chance of controlling a Π1 review.

From Figure 10, it can be seen that an attacker must perform 100 units of work, in order to
have even a small probability of controlling a Π1 review. For Π2, the necessary work is close to
200. The left edge for Π1 also shows that a smart attacker will require a little more than 200
units of work to have 100% probability of controlling Π1 reviews. The corresponding value for
Π2 is around 300.

Figure 11 shows a work/probability plot of the same simulation, but using a di�erent work-
function. For this plot, it is assumed that it requires progressively more work to be promoted
to the next level, i.e. αi > αi−1. The speci�c αi-values used for the work-function are α0 = 1,
α1 = 2, and α2 = 3.

Figure 11: Plot of policy security for L1 review using increasing work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 4]. τi = 50%.

From Figure 11, it can be seen that for a Π1 review, an attacker must perform 100 units
of work and 150 before the attacker will have any signi�cant probability of control. For an
attacker to have 100% probability of control, the attacker must perform around 275 units of

54 / 67

Secure Wiki System

work. For this amount of work, an attacker has at most 2% probability of control for a Π2

review. Full control for a Π2 review is not achieved until having performed around 575 units of
work.

Figures 10 and 11 illustrates the e�ect of changing the work-function. Increasing the value of
αi increases the maximum value of the work-function and therefore the horizontal axis of Figure
11 is extended to match this. In addition, the work required to get a given combination of users
is increased. The increase of α2 from 1 to 3, while keeping α0 = 1 means that the combinations,
with users in the higher levels, requires more work to achieve. These combinations are also the
ones that have a higher probability of control. The more work required for higher probabilities
means that the shape of the area of vulnerability for Π2 shifts further to the right, for higher
probabilities of control, relative to the lower probabilities of control. The fact that Π2 moves
further right shows that Π2 is more susceptible to changes in the work-function than Π1.

In a real-life system, the αi parameter is not something that can be con�gured, but is implic-
itly de�ned as a consequence of the requirements imposed by the community. If a community
has a low standard for promotion, αi will be correspondingly low. If the community on the
other hand requires a high standard for promotion αi will be correspondingly high. For each
level, a di�erent opinion of the level of standard may exists which will cause αi to di�er for
each i. Administrators can attempt to a�ect αi by de�ning guidelines, but in the end has little
direct control of αi.

In the following, the work-function used will be the linear work-function described above.
Without loss of generality the e�ort needed to be promoted from level Li to Li+1 is assumed
to be 1 as other values simply results in a scaling of the result.

6.3 Estimation of Number of Reviewers

The number of reviewers that participate in a review (ri) has an e�ect on the robustness of the
review in terms of reaching the decision of the reviewers. The number of reviewers from each
level to include in a review can be set in di�erent ways. The simplest approach is to de�ne
ri as a percentage of the users at level Li. Assuming a pyramid-shaped distribution of users
in the level-hierarchy, this will result in a pyramid-shaped distribution of users in the three
consecutive levels included in the review. An alternate approach will be to �x the value of ri
to a constant value, such that the number of users included in a review is the same for each
level Li, Li+1 and Li+2.

The relative size between ΛRi
, ΛRi+1

, ΛRi+2
will a�ect the in�uence each level has on the

review decision. When ri = ri+1 = ri+2, the in�uence each level has on the review decision is
determined by the weights given to the votes at each level. When ri > ri+1 > ri+2, Level Li will
have a greater in�uence on the review decision than the weight Wi would otherwise suggest.
With more users at the lowest level, an attacker will have more malicious users included in the
review and have a greater in�uence on the review decision.

Figure 12 shows the simulation of an L0 to L1 review for Π1 and Π2, using a pyramid shaped
user-distribution with ri = 20% of |Λi|, equal weights and linear work-function with no cost of
user registration requiring only a simple majority. The obvious problem with this con�guration
is that the left edge of the area of vulnerability for Π2 is a vertical line up from work=0. This
means that an attacker only needs to register, but not promote, malicious colluding users to
control a review. The reason for this is the large number of reviewers from L0, which in itself
can account for the score needed to reach the simple majority needed to perform a successful

55 / 67

Secure Wiki System

Figure 12: Plot of policy security for L0 review using linear work-function and equal weights.
Π1 (in gray): |Λi| = [450, 150, 50]. ri = [90, 30, 10]. τi = [45, 10, 5].
Π2 (in black): |Λi| = [450, 150, 50]. ri = [90, 30, 10]. Wi = [1, 1, 1]. τi = 50%.

review. For an L0 review, the problem is further complicated by the zero entry cost into level
L0. Π1 on the other hand still requires enough users at level L1, to get a simple majority in
the L1 vote. This fact is the reason that the Π1 area has a left edge starting from a work of
10 up to a work of 66 for 100% probability of control. The right edge of the Π2 area is also
a vertical line. This is caused by the fact that an attacker can perform the work needed to
control 100% of the users in levels L1 and L2, and still not have the users needed to exceed the
50% threshold. Having partial control of levels L1 and L2 in an L0 Π1 review, will result in a
probability of control of the review, giving Π1 its right edge in the �gure.

Figure 12 illustrates the fact that di�erences in the relative size between ΛRi
, ΛRi+1

, ΛRi+2

will have a measurable e�ect on the security of Π2, compared to Π1, where size-di�erences in
ΛRi

, ΛRi+1
, ΛRi+2

is insigni�cant. In order to improve the security of Π2, a number of approaches
can be taken. Raising the threshold, τi, can increase the score needed to have a successful review
and therefore will increase the number of users needed at levels Li+1 and Li+2. However, for
the current case, the threshold must be above 70% before for this approach to have an e�ect.
Another approach will be to use the weights to shift the power from the lower to the upper
levels.

Figure 13 shows a simulation using the same con�guration as that of Figure 12, except for
the weights which have been modi�ed to shift power away from the lowest level, such that
each level accounts for a third of the maximum score. Since only the weights are di�erent, the
area of vulnerability for Π1 is the same as that of Figure 12. For Π2, the change of weights
signi�cantly increases the e�ort required by an attacker, to violate Π2. This increase in e�ort is
su�cient to increase the security of Π2 to a level slightly better than the security of Π1. What
is not immediately obvious from the �gure is that the right edges of Π1 and Π2 are roughly
in the same location in the plot. Given a stable user-distribution, the number of reviewers
can be chosen as a �xed fraction of the level-size and the relative strength of each level can
be corrected using the weights. Using the weights to correct issues caused by size-di�erences
can, however, be di�cult, if the level-sizes are unstable. Another approach is to use an equal
number of reviewers at each level, and only use the weights for controlling the relative power
between levels.

This approach is taken in Figure 14, which shows the result of a simulation using the same

56 / 67

Secure Wiki System

Figure 13: Plot of policy security for L0 review using linear work-function.
Π1 (in gray): |Λi| = [450, 150, 50]. ri = [90, 30, 10]. τi = [45, 15, 5].
Π2 (in black): |Λi| = [450, 150, 50]. ri = [90, 30, 10]. Wi = [1, 3, 9]. τi = 50%.

con�guration as that of Figure 12, except the number of reviewers are equal. Using equal

Figure 14: Plot of policy security for L0 review using linear work-function and equal weights.
Π1 (in gray): |Λi| = [450, 150, 50]. ri = [10, 10, 10]. τi = [5, 5, 5].
Π2 (in black): |Λi| = [450, 150, 50]. ri = [10, 10, 10]. Wi = [1, 1, 1]. τi = 50%.

weights and equal number of reviewers e�ectively means that each level controls one third of
the total score. This e�ect is the same as the one obtained by using the weights in Figure 13,
however, this distribution is guaranteed to be stable, regardless of �uctuations in the sizes of
the levels. With a stable number of reviewers in each level, the power-ratio between levels can
be guaranteed to be the same as the ratio between the weights. This means that the weights
can easily be modi�ed to strengthen the power of one or more levels, relative to the others.

As shown by Figures 12, 13 and 14, it is possible to use a non-equal number of reviewers, if
the weights are adjusted accordingly. However, in the following, the number of reviewers will
be equal, i.e. ri = ri+1 = ri+2, which will eliminate the problem caused by size-di�erences.

6.4 Estimation of Level Weights

The weights (Wi) used by Π2 are there to control the di�erence in power between the reviewers
included in a review. As shown above, using the weights, a level can be given more or less

57 / 67

Secure Wiki System

in�uence on the outcome of the review and thereby be used to increase or decrease the security
of Π2. As demonstrated by Figures 12, 13 and 14, using weights that increases the in�uence of
the highest level signi�cantly improves the security of Π2. The simulation illustrated in Figure
15 uses a user-distribution with an equal number of users at each level, along with an equal
number of reviewers from each level and using equal weights. This �gure can be seen to be

Figure 15: Plot of policy security for L0 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 1, 1]. τi = 50%.

similar to Figure 14, except for the amount of work needed, due to the di�erence in level size.
Like in Figure 14, the right edges of Π1 and Π2 in Figure 15 are located in the same location
in the plot. For Π2, an attacker needs to perform 34 units of work, in order to have a 5%
probability of controlling a review. For 100% probability of control, the work required is 73.
The corresponding numbers for Π1 is 29 and 66.

As illustrated by Figure 12, giving the lowest level greater in�uence than the highest level
will signi�cantly reduce the security of the policy. For this reason, Wi should be de�ned such
that Wi <Wi+1.

Figure 16 is based on the same simulation as that of Figure 15, but shows an L1 to L2

review. The di�erence between the L0 and L1 review is that there is a cost on controlling

Figure 16: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 1, 1]. τi = 50%.

users at all levels. This extra cost, relative to the L0 review in Figure 15, is clearly seen as a
right-shift of the location of the areas of vulnerability. For the con�guration used in Figure 16,
an attacker must perform 113 units of work to have a 5% probability to control a Π1 review
and 202 to have 100% probability of control. For Π2, the corresponding values are 166 and 245.
From these values, it can be seen that the left edge of Π2 shifts further right, than Π1.

58 / 67

Secure Wiki System

For both Π1 and Π2, the width, in terms of work, of the areas of vulnerability increases,
but the Π1 area increases the most. The right-edge of Π1 moves further right because of the
possibility of an attacker wasting e�ort on compromising L1, without gaining anything, when
the attacker has already partially compromised L2 and L3, which is the most expensive attack.

In order to have weights increase with levels, the simplest de�nition is Wi = i. Figure 17
displays the e�ort required by an attacker to violate Π2 when using Wi = i. The con�guration

Figure 17: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 3]. τi = 50%.

is equal to that used in Figure 16, except for the weights. This means that the Π1 area is equal
to that of Figure 16. For Π2 an attacker must perform 217 units of work in order to have a 5%
probability of controlling a review and 328 to have 100% probability of control. This represents
a signi�cant improvement in security, even though the area of vulnerability is relatively thin.
This low width means that there will be little di�erence in the e�ectiveness of a brute force
attack and an attack directed at the left edge.

Using the weight Wi = i has the consequence that the relative power ratio between the
highest and lowest level decreases as i increases. Table 3 shows the relative power ratio between
the highest and lowest level for i <= 5. The problem is that, given enough levels, the relative

i power ratio low-high-ratio
0 0:1:2
1 1:2:3 1:3.0 (1:3)
2 2:3:4 1:2.0 (2:4)
3 3:4:5 1:1.6 (3:5)
4 4:5:6 1:1.5 (4:6)
5 5:6:7 1:1.4 (5:7)

Table 3: Power-ratio for votes when Wi = i

power ratio would asymptotically approach a 1:1 ratio, which is undesirable. To mitigate this
situation, the weights can be increased, such that they maintain a �xed power-ratio for all
reviews, independent of the placement in the level-hierarchy. This power-ratio can be achieved
by de�ning Wi = 2i, e�ectively doubling the weight of the previous level as i increases and
�xing the power-ratio to 1:2:4. Figure 18 displays the e�ort required by an attacker to violate
Π2 when using Wi = 2i. The con�guration is equal to that used in Figure 16, except for the
weights. For Π2 an attacker must perform 192 units of work in order to have a 5% probability
of controlling a review and 294 to have 100% probability of control. This is less than that of
Figure 17, but still an improvement over Figure 16.

59 / 67

Secure Wiki System

Figure 18: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 4]. τi = 50%.

Arguments for both cases can be made, depending on the speci�c system in which Π2 is
used. UsingWi = i, the di�erence, in terms of work, between the left and right edge is relatively
low. In contrast, using Wi = 2i is signi�cantly wider, but at the expense of having a left edge
further left, i.e. an attacker requires less e�ort to violate it. It is believed that the di�erence
is insigni�cant compared to the e�ort that an attacker will have to make. For Π2 it holds that
the greater the number of users in each level, the greater the complexity of determining the left
edge of the system and the more likely it is that an attacker will use a brute-force approach
to violating the policy. If the system manages to keep the values of the parameters secret, it
would further complicate the calculations of the left edge. A best-e�ort brute-force approach is
believed to follow a a path from 0% to 100% that lies between the left and right edges. Based on
this, the greater di�erence between the left and right edge will help protect the system against
attackers that are using a brute-force approach to violating the system.

In the following, Wi = 2i will be used as this shifts power to the higher levels ensuring that
their in�uence in reviews are required for a review to succeed.

6.5 Estimation of Vote Threshold

The threshold value (τi) is the indicator of the level of consensus that is needed in order for a
review to succeed. Having a low threshold means that only a low number of reviewers needs
to vote to promote a user, which makes it easier to be promoted. On the other hand, a high
threshold requires the reviewers to have a high degree of consensus which helps reach the correct
decision before promoting a user. The threshold value τi can be estimated using the estimated
values for ri and Wi and the review condition for Π2 stated in (9). To estimate the e�ect
of varying τi, the de�nition of Si(a)) in (7) can replace the term Si(a) in (9). By replacing
the sums over reviewers in ΛRi

, ΛRi+1
and ΛRi+2

with x, y, z respectively and isolating z, the
resulting equation is that in (18).

z =

(
Smax

i (a) + Smax

i+1 (a) + Smax

i+2 (a)
)
· τi −Wi · x−Wi+1 · y

Wi+2

(18)

A plot of (18) will show the combination of malicious users that is needed to reach the threshold
and control the review. In addition, any combination of users that falls above the plane will
exceed the threshold and therefore also control the review. Using 100 reviewers at each level,
where x, y and z are malicious, the plot can be interpreted in percentages, such that x = 25
indicates 25% of |ΛRi

|. The plot in Figure 19 shows the combination of malicious users needed

60 / 67

Secure Wiki System

to control a review using τi = 0.5. The plot shows that given a speci�c value for τi, the

Figure 19: Plot of (18) showing the combinations of colluding reviewers needed to control a
review when using τi = 0.5

combination of users needed to control a review, forms a plane. The gradient of the plane is
dependent on the value of the weights, but it clearly shows how a change in one level can be
accounted for in the other levels.

For the 50% threshold and weights 1, 2 and 4, Figure 19 shows that even if an attacker
controls both lower levels, (x and y), the attacker still needs control of 13 (12.5 to be precise)
of the 100 users at level Li+2. The �gure also shows that 88 (87.5) of the 100 users at level Li+2

can control a review without the help of the lower levels. Controlling all of the lowest level,
but none at the middle level requires an attacker to control 63 (62.5) of the 100 users at level
Li+2. Similarly, controlling all of the middle level, but none at the lowest requires an attacker
to control 38 (37.5) of the 100 users at level Li+2.

For a review from level L|I|−1 to L|I|, the review condition is that of (10). Rewriting this in
the same way as was done with (9) gives the result in (19).

y =

(
Smax

i (a) + Smax

i+1 (a)
)
· τi −Wi · x

Wi+1

(19)

Since (19) only involves two levels, the result of ploting (19) is a line, not a plane. The gradient
of the line is dependent on the weights used and also shows how a change in one level can be
accounted for in the other level. The plot of (19) for various values of τi is shown in Figure 20.
Like Figure 19, the line represents the combinations that reach the threshold with anything
above exceeding it.

From �gures such as Figure 19 and Figure 20, the required number of malicious users needed
by an attacker to control a review can be found. Having decided a good threshold value, the
value can be used in a simulation to see the result of using this value.

61 / 67

Secure Wiki System

Figure 20: Plot of (19) showing the combinations of colluding reviewers needed to control a
review when using τi = 0.5

Figures 21, 22 and 23 shows the result of three di�erent simulations. The simulations are
based on the same con�guration, where, for i ∈ {1, 2, 3}, the level size |Λi| = 100, the number
of reviewers ri = 20 and having the weights double to shift power to the higher levels, i.e.
Wi = 2i. The simulations di�er only in the value used for the threshold.

Figure 21 uses τi = 50%. In order for an attacker to have a 5% probability of controlling a Π2

Figure 21: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 4]. τi = 50%.

review, the attacker must perform a minimum of 192 units of work. To have a 100% probability
of control the work required is at least 294. The worst-case, i.e. right edge, approach requires
the attacker to perform 312 units of work in order to get a 1% probability of control. The worst-
case e�ort needed for a 95% probability of control is 413. For a Π1 review, 5% probability of
control requires a minimum of 110 units of work. To have a 100% probability of control the
work required is at least 207. The worst-case approach requires the attacker to perform 389
units of work in order to get a 1% probability of control. The worst-case e�ort needed for a
95% probability of control is 480.

Figure 22 uses τi = 60%. In order for an attacker to have a 5% probability of controlling a
Π2 review, the attacker must perform 262 units of work. To have a 100% probability of control
the work required is 356. The worst-case approach requires the attacker to perform 355 units of
work in order to get 1% probability of control. The worst-case e�ort needed for 95% probability
of control is 462. For a Π1 review, 5% probability of control requires a minimum of 141 units of

62 / 67

Secure Wiki System

Figure 22: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [12, 12, 12].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 4]. τi = 60%.

work. To have a 100% probability of control the work required is at least 235. The worst-case
approach requires the attacker to perform 417 units of work in order to get a 1% probability of
control. The worst-case e�ort needed for a 95% probability of control is 505.

Figure 23 uses τi = 75%. In order for an attacker to have a 5% probability of controlling a

Figure 23: Plot of policy security for L1 review using linear work-function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [15, 15, 15].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. Wi = [1, 2, 4]. τi = 75%.

Π2 review, the attacker must perform 358 units of work. To have a 100% probability of control
the work required is 466. The worst-case approach requires the attacker to perform 430 units of
work in order to get 1% probability of control. The worst-case e�ort needed for 95% probability
of control is 531. For a Π1 review, 5% probability of control requires a minimum of 186 units of
work. To have a 100% probability of control the work required is at least 263. The worst-case
approach requires the attacker to perform 456 units of work in order to get a 1% probability of
control. The worst-case e�ort needed for a 95% probability of control is 546.

From these �gures it can be seen how the changes in the threshold value e�ectively shifts
the area of vulnerability to the right, indicating an increase in the amount of work needed to
violate Π2. Comparing the values of the right and left edges on the �gures show that the area
of vulnerability for Π2 gets thinner as the threshold value is increased. The thinner area of
vulnerability means that an attacker, using an undirected brute force approach, is more likely
to perform work close to the optimal approach. Given the high amount of work required when
following the left edge, it is not a problem that the width of the area decreases, since the left
edge should be su�ciently secure.

In addition to Π2 moving to the right, so does Π1. From the �gures, it can be seen that
Π2 moves signi�cantly further right than Π1, which illustrates how signi�cantly the security of
Π2 increases compared to the increase in security of Π1. E�ectively, this means that Using Π2,
the requirement for consensus between reviewers can be relaxed without sacri�cing security in
relation to Π1.

63 / 67

Secure Wiki System

6.6 Required Number of Reviewers for Π2

The concept of reviews introduced by the secure wiki model is the biggest issue when attempting
to incorporate the secure wiki model into a running wiki with many users. The fact that users
will have to perform a review, which is an action not usually done, may not be something many
users will participate in. Therefore, the lower the number of reviewers needed to perform a
review, the better chances of success for the secure wiki model.

For Π2 any number of reviewers will su�ce to have a working system. For each reviewer
removed from the set of selected reviewers will reduce the work required by an attacker since the
attacker will need to control fewer users in the system. This means that each reviewer removed
reduces the security of Π2. The security of Π2 would worsen gradually and it is therefore
di�cult to set an absolute value for a threshold indicating when the security is insu�cient.

The proposed policy Π2 is intended to replace the original secure wiki model policy Π1. In
order for this replacement to be acceptable, the security of Π2 cannot be worse than that of
Π1. This suggests that the lower limit of the number of reviewers used in a Π2 reviewer is set
at the number of reviewers that reduces the security of Π2 to that of Π1, for otherwise equal
parameters.

To �nd this this lower limit of reviewers, a number of simulations were run, using varying
values for the number of reviewers. Based on this trial-and-error approach, the results shown
in Figures 24, 25 and 26 was found. For all three �gures, the number of reviewers in for the Π2

Figure 24: Plot of policy security for L1 review using linear work function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [20, 20, 20]. τi = [10, 10, 10].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [5, 5, 5]. Wi = [1, 2, 4]. τi = 50%.

Figure 25: Plot of policy security for L1 review using linear work function.
Π1 (in gray): |Λi| = [100, 100, 100]. ri = [40, 40, 40]. τi = [20, 20, 20].
Π2 (in black): |Λi| = [100, 100, 100]. ri = [10, 10, 10]. Wi = [1, 2, 4]. τi = 50%.

review is a quarter of those used in the Π1 review. From the �gures, it can be seen that the left
edge of the area of vulnerability for Π2 initially follows the left edge of the area of vulnerability
for Π1 but after this initial common edge, the left edge of Π1 increases quickly. At no time is
the left edge of Π2 to the left of Π1, however, it is as close as it can be. From this, it can be
seen that Π2 can maintain the same level of security as Π1 using only a quarter of the reviewers

64 / 67

Secure Wiki System

Figure 26: Plot of policy security for L1 review using linear work function.
Π1 (in gray): |Λi| = [225, 150, 100]. ri = [45, 30, 20]. τi = [23, 15, 10].
Π2 (in black): |Λi| = [225, 150, 100]. ri = [12, 8, 5]. Wi = [1, 2, 4]. τi = 50%.

needed by Π1. In addition, the security of Π2 is still signi�cantly better than Π1 for the higher
probabilities of control.

7 Future Work

The secure wiki model, as described in this thesis, is a good and easy to use model. The
model is simple to implement and can easily be incorporated into existing wiki systems without
having to rewrite the base code of the wiki. The implementation has been made with the
experiences of the previous implementations in mind and therefore does not use the document-
review procedure as de�ned by the secure wiki model, but is limited to user-reviews. In the
implementation, document reviews have been replaced with the ability of individual users to
de�ne the appropriate IL of documents which they can edit. In the future, the implementation
should be evaluated to determine if the IL selection by individual users is su�cient to keep a
stable and correct IL for documents. If this evaluation �nds that the document reviews are
necessary, a method for document reviews, that addresses the issues explained in Section 2.5.1,
should be implemented and evaluated.

The implementation focused on the secure wiki model and made the assumption that the
user-creation process is secure. In order to use the implementation in a hostile environment,
this assumption must be ensured to be valid. Various methods for ensuring this assumption,
such as captchas [16] exists and should be implemented in the future.

Other wiki-related functionality have also been implemented only to the extend it was nec-
essary. Most notable is the missing feature of locking articles from being edited simultaneously
by multiple contributors, which will lead to one contributor's contribution being overwritten by
the second contributor. The secure wiki model plugin, as implemented in the proof-of-concept
system, has the features de�ned by the secure wiki model and is capable of managing the
IL of documents and QCV of users. The secure wiki model does not depend on users being
able to communicate, but having user pages, user talk pages and article discussion pages can
greatly aid in the administration of the wiki system and the secure wiki model. In general, such
pages are implemented using namespaces, e.g. user, talk and discussion, with articles located
in the main namespace, which is usually nameless. In the future, the base system should be
extended to support namespaces, such that user pages, talk pages and discussion pages can be
implemented and can be used by contributors to discuss changes to articles and the merits for
promotion/demotion of users. Finally, the syntax allowed by the article markup language is
not as �exible and comprehensive as that of existing wiki implementations, e.g. Wikipedia has
support for template inclusion and the inclusion of images. This means that the parser used
by the base system to read the article markup should be updated to support a more �exible
and comprehensive syntax in order to be on par with other wiki systems and the base system

65 / 67

Secure Wiki System

must be extended to allow upload of images.
The secure wiki model requires contributors to spend time reviewing contributions in stead

of researching and writing content. In a standard wiki system, without the secure wiki model,
contributors would spend time correcting vandalism. For the secure wiki model to be worth
the e�ort, the time needed to manage the model must be less than the time otherwise used to
correct vandalism. The time spend managing the secure wiki model should be evaluated and
compared to the time spend correcting vandalism in wiki systems su�ering from various degrees
of vandalism. This evaluation should show the characteristics of wiki systems where the secure
wiki model can be used to reduce or eliminate vandalism.

8 Conclusion

This thesis have addressed issues with trustworthiness of content in wiki systems caused by
the open nature of these systems. To this end, this thesis has described the secure wiki model,
along with previous implementations of this model. The design-decisions made by the previous
models have been analyzed and the knowledge gained has been used to propose an alternative
policy for use with the secure wiki model. This thesis has also presented an analysis of a generic
wiki system and an analysis of the secure wiki model in the context of this generic wiki system.
Based on this, a proof-of-concept prototype has been designed and implemented.

The secure wiki model assigns integrity levels to users (QCVs) and articles (ILs)), and
de�nes the procedures for managing these. The ILs for articles are managed by individual
contributors when editing articles, while integrity levels for contributors are managed through
promotion and demotion reviews. In this thesis, a new policy, Π2, has been proposed. The
new policy changes the promotion and demotion review-policy from a vote between levels to
a weighted vote between users that makes the higher levels stronger than the lower levels, in
terms of deciding the outcome of a review.

Where most wiki security schemes are reactive, the secure wiki model is proactive in that
it limits contributors' ability to contribute to certain articles. Ensuring the integrity of arti-
cles in wiki systems by means of limiting the freedom of contributors to edit any article is in
principle a con�ict with the all can edit policy of wiki systems, but the practice of limiting
contributors' ability to edit articles is already being used in existing wiki security schemes. The
anti-vandalism protection measures employed by Wikipedia includes semi- and full-protection,
which limits new or non-administrator contributors from editing protected articles. The ap-
proach to integrity that the secure wiki model has taken therefore does not con�ict with a
pragmatic view of the open nature of wiki systems. The implementation of the base wiki sys-
tem and the secure wiki model plugin, using the new policy to evaluate reviews of contributors,
have shown that the secure wiki model requires few changes to the user-interface of existing
wikis.

The proposed policy Π2 has been evaluated to determine appropriate values for the variables
used in the de�nition of the policy and the work required to violate it. The evaluation of Π2 has
shown that the policy is highly con�gurable, giving the policy the ability to be con�gured to
both strict and relaxed security requirements, without being vulnerable to attackers, allowing
it to be tailored to most systems despite their varying needs. It has been shown that the new
policy can achieve the same level of security with signi�cantly less reviewers. This reduced
number of reviewers is bene�cial in motivating contributors to review, since they will be asked
to do so less frequently than when using Π1. This can help small systems with a low number

66 / 67

Secure Wiki System

of contributors.
As outlined in Section 7, the implementation still requires the implementation of a number

of wiki-related features, as well as the improvements of the other wiki-related features, before
the system is on par with existing wiki systems. The lack of these features, however, does not
a�ect the operation of the secure wiki model plugin, which does not rely on these. Although a
number of features still needs to be implemented, the system does meet the de�nition of a wiki
and can be set up and function as one.

67 / 67

Secure Wiki System

References

[1] B. Thomas Adler, Luca de Alfaro, and Ian Pye. Detecting wikipedia vandalism using
wikitrust, 2010.

[2] Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. Captcha: using hard
ai problems for security. In Proceedings of the 22nd international conference on Theory
and applications of cryptographic techniques, EUROCRYPT'03, pages 294�311, Berlin,
Heidelberg, 2003. Springer-Verlag.

[3] Tim Berners-Lee and Daniel Connolly. Hypertext markup language (html). http://

tools.ietf.org/html/draft-ietf-iiir-html-00, 1993. [Online; accessed 21-February-
2012].

[4] K. J. Biba. Integrity considerations for secure computer systems (technical report mtr-
3153). The Mitre Corporation, 1977.

[5] Peter Denning, Jim Horning, David Parnas, and Lauren Weinstein. Wikipedia risks. Com-
mun. ACM, 48:152�152, December 2005.

[6] John R. Douceur. The sybil attack. In Revised Papers from the First International Work-
shop on Peer-to-Peer Systems, IPTPS '01, pages 251�260, London, UK, 2002. Springer-
Verlag.

[7] Eclipse.org. All eclipse foundation members. http://www.eclipse.org/membership/

showAllMembers.php. [Online; accessed 23-February-2012].

[8] Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica. Free-riding and
whitewashing in peer-to-peer systems. In Proceedings of the ACM SIGCOMM workshop
on Practice and theory of incentives in networked systems, PINS '04, pages 228�236, New
York, NY, USA, 2004. ACM.

[9] Christopher Følsgaard and Mark Ludwigs. Support for integrity module as plug-in in an
existing wiki. Master's thesis, Technical University of Denmark, 2011.

[10] Google.com. recaptcha. http://www.google.com/recaptcha. [Online; accessed 23-
February-2012].

[11] JamWiki. Jamwiki � jamwiki java wiki engine. http://jamwiki.org/wiki/en/Special:
History?topicVersionId=18518&topic=JAMWiki, 2011. [Online; accessed 19-November-
2011].

[12] C. Jensen. Security in wiki-style authoring systems. In Proceedings of the Third IFIP In-
ternational Conference on Trust Management (IFIPTM'09), pages 81�98, West Lafayette,
Indiana, U.S.A., June 2009.

[13] M. Mihaila. Addressing the cold start problem in the wikipedia recommender system
through content-based �ltering. Master's thesis, Technical University of Denmark, DTU
Informatics, 2011.

I

http://tools.ietf.org/html/draft-ietf-iiir-html-00
http://tools.ietf.org/html/draft-ietf-iiir-html-00
http://www.eclipse.org/membership/showAllMembers.php
http://www.eclipse.org/membership/showAllMembers.php
http://www.google.com/recaptcha
http://jamwiki.org/wiki/en/Special:History?topicVersionId=18518&topic=JAMWiki
http://jamwiki.org/wiki/en/Special:History?topicVersionId=18518&topic=JAMWiki

Secure Wiki System

[14] osgi.org. OSGi Alliance. http://www.osgi.org/About/HomePage. [Online; accessed 26-
December-2011].

[15] Poul Sander. Security in wiki-style systems. Master's thesis, Technical University of
Denmark, DTU Informatics, 2009.

[16] Luis von Ahn, Manuel Blum, Nicholas Hopper, and John Langford. The o�cial captcha
site. http://www.captcha.net/. [Online; accessed 23-February-2012].

[17] Luis von Ahn, Manuel Blum, and John Langford. Telling humans and computers apart
automatically. Commun. ACM, 47:56�60, February 2004.

[18] Wikipedia. Log in / create account � wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Special:UserLogin&campaign=

ACP2&type=signup&returnto=Main+Page. [Online; accessed 23-February-2012].

[19] Wikipedia. Wikipedia:editing frequency � wikipedia, the free encyclopedia. http://

en.wikipedia.org/wiki/Wikipedia:Editing_frequency, 2008. [Online; accessed 23-
February-2012].

[20] Wikipedia. Wikipedia:about � wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Wikipedia:About&oldid=466855878, 2011. [Online; accessed
20-December-2011].

[21] Wikipedia. Wikipedia:bureaucrats � wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=Wikipedia:Bureaucrats&oldid=463277316, 2011.
[Online; accessed 20-December-2011].

[22] Wikipedia. Wikipedia:wikiproject vandalism studies/study1 � wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_

Vandalism_studies/Study1&oldid=403633901, 2011. [Online; accessed 29-December-
2011].

[23] Wikipedia. Category:wikipedia anti-vandal bots � wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Category:Wikipedia_anti-vandal_bots, 2012. [On-
line; accessed 19-February-2012].

[24] Wikipedia. Wikipedia:patrols � wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Wikipedia:Patrols, 2012. [Online; accessed 19-February-2012].

[25] Wikipedia. Wikipedia:user access levels � wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Wikipedia:User_access_

levels&oldid=474727213, 2012. [Online; accessed 19-February-2012].

II

http://www.osgi.org/About/HomePage
http://www.captcha.net/
http://en.wikipedia.org/w/index.php?title=Special:UserLogin&campaign=ACP2&type=signup&returnto=Main+Page
http://en.wikipedia.org/w/index.php?title=Special:UserLogin&campaign=ACP2&type=signup&returnto=Main+Page
http://en.wikipedia.org/wiki/Wikipedia:Editing_frequency
http://en.wikipedia.org/wiki/Wikipedia:Editing_frequency
http://en.wikipedia.org/w/index.php?title=Wikipedia:About&oldid=466855878
http://en.wikipedia.org/w/index.php?title=Wikipedia:About&oldid=466855878
http://en.wikipedia.org/w/index.php?title=Wikipedia:Bureaucrats&oldid=463277316
http://en.wikipedia.org/w/index.php?title=Wikipedia:Bureaucrats&oldid=463277316
http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Vandalism_studies/Study1&oldid=403633901
http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Vandalism_studies/Study1&oldid=403633901
http://en.wikipedia.org/wiki/Category:Wikipedia_anti-vandal_bots
http://en.wikipedia.org/wiki/Wikipedia:Patrols
http://en.wikipedia.org/wiki/Wikipedia:Patrols
http://en.wikipedia.org/w/index.php?title=Wikipedia:User_access_levels&oldid=474727213
http://en.wikipedia.org/w/index.php?title=Wikipedia:User_access_levels&oldid=474727213

Secure Wiki System

Appendix

A Wikipedia author activity

The edit-frequencey statistics shown below are a reproduction of a list retrieved from Wikipedia
itself [19]. The statistics where written in 2008 by the user Dragons �ight14, an administrator
of the English Wikipedia since 200515. In addition, the user claims to be the lead scientist,
Robert Rohde, from Berkeley Earth Surface Temperature16. The claim seems to be valid and
overall these facts lend credibility to the statistics.

The statistics below reproduce the last 13 entries from the statistics. Table 4 and 6 shows
the number of authors with the more than the speci�ed number of edits, respectively, per month
and in total. Table 5 and 7 shows the corresponding percentages of active authors, respectively,
per month and in total.

Table 4: Editors with ≥ X edits in that month

Year-Month 1 5 20 100 250 1000 2500
2008-9 132487 41393 13971 4127 1780 266 61
2008-8 130163 42610 15019 4391 1893 286 55
2008-7 130200 43298 15095 4392 1928 278 53
2008-6 131446 42547 14759 4260 1819 271 39
2008-5 146932 45835 15360 4449 1943 275 49
2008-4 150529 46782 15386 4520 1974 303 48
2008-3 152438 47820 15847 4750 2080 302 56
2008-2 145151 45346 14903 4411 1903 263 50
2008-1 144786 45404 15141 4566 2036 324 41
2007-12 132555 42123 14403 4207 1782 256 36
2007-11 143631 44667 14835 4339 1836 255 38
2007-10 151003 47362 15601 4563 1944 269 33
2007-9 141835 45284 15429 4490 1915 240 30

14http://en.wikipedia.org/wiki/User:Dragons_flight
15http://en.wikipedia.org/wiki/Wikipedia:Requests_for_adminship/Dragons_flight
16http://berkeleyearth.org/about-us/

III

http://en.wikipedia.org/wiki/User:Dragons_flight
http://en.wikipedia.org/wiki/Wikipedia:Requests_for_adminship/Dragons_flight

Secure Wiki System

Table 5: percentage of active editors with ≥ X edits in that month

Year-Month 1 5 20 100 250 1000 2500
2008-9 68,26 21,33 7,2 2,13 0,92 0,14 0,03
2008-8 66,95 21,92 7,73 2,26 0,97 0,15 0,03
2008-7 66,69 22,18 7,73 2,25 0,99 0,14 0,03
2008-6 67,36 21,8 7,56 2,18 0,93 0,14 0,02
2008-5 68,39 21,33 7,15 2,07 0,9 0,13 0,02
2008-4 68,57 21,31 7,01 2,06 0,9 0,14 0,02
2008-3 68,27 21,42 7,1 2,13 0,93 0,14 0,03
2008-2 68,46 21,39 7,03 2,08 0,9 0,12 0,02
2008-1 68,2 21,39 7,13 2,15 0,96 0,15 0,02
2007-12 67,85 21,56 7,37 2,15 0,91 0,13 0,02
2007-11 68,53 21,31 7,08 2,07 0,88 0,12 0,02
2007-10 68,4 21,45 7,07 2,07 0,88 0,12 0,01
2007-9 67,79 21,64 7,37 2,15 0,92 0,11 0,01

Table 6: Editors with ≥ X edits. Cumulative all-time

Year-Month 1 5 20 100 250 1000 2500 10000
2008-9 2021613 721512 242923 72119 38051 14245 6666 1727
2008-8 1969294 704787 237862 70821 37340 13944 6517 1674
2008-7 1920020 687910 232248 69294 36589 13644 6362 1617
2008-6 1871225 670554 226322 67677 35768 13325 6198 1561
2008-5 1821382 653433 220667 66215 35025 13051 6054 1503
2008-4 1761683 633571 214654 64604 34202 12738 5900 1438
2008-3 1699030 612626 208545 63012 33418 12418 5756 1379
2008-2 1634116 591340 202058 61315 32535 12093 5558 1323
2008-1 1572530 570938 196139 59795 31769 11771 5408 1267
2007-12 1511339 551325 190335 58164 30958 11432 5227 1208
2007-11 1459721 533975 184909 56673 30212 11138 5066 1157
2007-10 1400439 514534 179139 55132 29416 10836 4895 1101
2007-9 1335976 493363 173011 53507 28544 10493 4729 1051

IV

Secure Wiki System

Table 7: Percentage of active editors with ≥ X edits. Cumulative all-time

Year-Month 1 5 20 100 250 1000 2500 10000
2008-9 64,82 23,13 7,79 2,31 1,22 0,46 0,21 0,06
2008-8 64,73 23,17 7,82 2,33 1,23 0,46 0,21 0,06
2008-7 64,7 23,18 7,83 2,33 1,23 0,46 0,21 0,05
2008-6 64,69 23,18 7,82 2,34 1,24 0,46 0,21 0,05
2008-5 64,65 23,19 7,83 2,35 1,24 0,46 0,21 0,05
2008-4 64,56 23,22 7,87 2,37 1,25 0,47 0,22 0,05
2008-3 64,45 23,24 7,91 2,39 1,27 0,47 0,22 0,05
2008-2 64,33 23,28 7,95 2,41 1,28 0,48 0,22 0,05
2008-1 64,19 23,31 8,01 2,44 1,3 0,48 0,22 0,05
2007-12 64,04 23,36 8,07 2,46 1,31 0,48 0,22 0,05
2007-11 63,94 23,39 8,1 2,48 1,32 0,49 0,22 0,05
2007-10 63,79 23,44 8,16 2,51 1,34 0,49 0,22 0,05
2007-9 63,6 23,49 8,24 2,55 1,36 0,5 0,23 0,05

B Project Setup

This will describe how to set up the execution environment needed to run the implementa-
tion of the wiki system described in this thesis. The development of the project was made
on linux, but can also run on Windows. Where there is a choice, 64 bit programs are the
recommended version. The �les referenced in this section is available from the cd containing
the implementation.

B.1 Java

Ensure that java is available on the machine. From a terminal (Linux) or command-prompt
(Windows), execute java -version. If the program java cannot be found, install it using the
steps below. The output from the program, should look like

Java version output on Windows� �
1 java version "1.6.0_26"
2 Java(TM) SE Runtime Environment (build 1.6.0_26−b03)
3 Java HotSpot(TM) Client VM (build 20.1−b02, mixed mode, sharing)� �

Java version output on Linux� �
1 java version "1.6.0_22"
2 OpenJDK Runtime Environment (IcedTea6 1.10.6) (6b22−1.10.6−0ubuntu1)
3 OpenJDK Client VM (build 20.0−b11, mixed mode, sharing)� �

If the java-version is below 1.6, java should be updated.

V

Secure Wiki System

B.1.1 Ubuntu Linux

Using Ubuntu, openjdk-6 is installed with the operating system. If this has been removed, or
for some reason is not present, install it using� �

1 sudo apt−get install openjdk−6−jre� �
Alternatively, to install the Sun/Oracle java 6, download it from http://java.com/en/

download/linux_manual.jsp?locale=en and follow the instructions to install it. Issue java
-version again to verify that java has been installed correctly.

B.1.2 Windows

To install java on Windows, download it from http://java.com/en/download/windows_

manual.jsp?locale=en and follow the instructions to install it. Issue java -version again
to verify that java has been installed correctly.

B.2 MySQL

To run the wiki system, a MySQL server must be set up.

B.2.1 Ubuntu Linux

Install the MySQL database server using� �
1 sudo apt−get install mysql−server� �
B.2.2 Windows

Download the MySQL server from http://dev.mysql.com/downloads/mysql/ and install it.

B.2.3 Setup

To create the database used for the base system and the secure wiki model plugin execute the
following command (db.sql is the �le in Listing 7. It is also included on the CD).� �

1 mysql −u root −p < db.sql� �
When prompted for the root password, enter it. To create the database user the wiki system
will use to connect, log in to the database server using:� �

1 mysql −u root −p� �
Then create a dedicated user with full access to the created database using the command:� �

1 grant all on wiki.* to '<user>'@'\%' identi�ed by '<password>';� �
Remember the values chosen for '<user>' and '<password>'.

B.3 Apache Tomcat

Apache Tomcat 6 is the application server chosen to run the wiki web application.

VI

http://java.com/en/download/linux_manual.jsp?locale=en
http://java.com/en/download/linux_manual.jsp?locale=en
http://java.com/en/download/windows_manual.jsp?locale=en
http://java.com/en/download/windows_manual.jsp?locale=en
http://dev.mysql.com/downloads/mysql/

Secure Wiki System

B.3.1 Ubuntu Linux

On ubuntu, The tomcat server can be installed using� �
1 sudo apt−get install tomcat6� �

The lib-folder will be /usr/share/tomcat6/lib/, the con�g-folder will be /etc/tomcat6/, the
context-folder will be /etc/tomcat6/Catalina/localhost/ and the web-application directory will
be /var/lib/tomcat6/webapps/.

B.3.2 Windows

Tomcat 6 for windows is available at http://tomcat.apache.org/download-60.cgi. Down-
load the Windows Service installer and follow instructions to install. Assuming standard in-
stallation path, Relative to the base installation directory, usually C:\Program Files\Apache
Software Foundation\Tomcat 6.0, the lib-folder will be \lib, the con�g-folder will be \conf,
the context-folder will be \conf\Catalina\localhost and the web-application directory will be
\webapps.

B.3.3 Setup

To connect to a MySQL database, the tomcat installation must be extended with a MySQL-
driver. To do this, add mysql-connector-java-5.1.6.jar to the lib-folder. Create a �le with the
content shown in Listing 2 (it can also be copied from the cd). Change the username and
password to match the credentials of the database user created above.

Listing 2: wiki.xml� �
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Context>
3 <Resource name="jdbc/wiki" auth="Container" type="javax.sql.DataSource"
4 username="<user>" password="<password>"
5 driverClassName="com.mysql.jdbc.Driver"
6 url="jdbc:mysql://localhost:3306/wiki"
7 maxActive="15" maxIdle="3"/>
8 </Context>� �

Add the �le to the context-folder of the tomcat installation. The �le should be named wiki.xml.

B.4 Application Installation

To install the wiki web application, copy the the web-application wiki.war to the tomcat web-
application directory, and start the tomcat server, if it is not running already. Wait for the
tomcat to start itself and the wiki web application, then access the server on port 8080, using
/wiki as the context path, e.g. http://localhost:8080/wiki.

C Patched Http Bridge Bundle

The following description assumes knowledge of maven, maven projects and their structure as
well as access to a repository server, e.g. http://archiva.apache.org/, where the bundle will
be deployed to. To create the apache felix http bridge-bundle used for the base wiki system, a

VII

http://tomcat.apache.org/download-60.cgi
http://localhost:8080/wiki
http://archiva.apache.org/

Secure Wiki System

maven project should be created using the standard maven project structure, with source-�les
in src/main/java. The sources are located in multiple projects and should be fetched from the
following sources:

� http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.api-2.2.

0-project.tar.gz

� http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.base-2.2.

0-project.tar.gz

� http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.bridge-2.2.

0-project.tar.gz

� http://repo1.maven.org/maven2/org/osgi/org.osgi.compendium/4.2.0/org.

osgi.compendium-4.2.0-sources.jar

The sources should be merged such that the following package structure is obtained.� �
1 org
2 org/apache
3 org/apache/felix
4 org/apache/felix/http
5 org/apache/felix/http/api
6 org/apache/felix/http/base
7 org/apache/felix/http/base/internal
8 org/apache/felix/http/base/internal/context
9 org/apache/felix/http/base/internal/dispatch

10 org/apache/felix/http/base/internal/handler
11 org/apache/felix/http/base/internal/listener
12 org/apache/felix/http/base/internal/logger
13 org/apache/felix/http/base/internal/service
14 org/apache/felix/http/base/internal/util
15 org/apache/felix/http/bridge
16 org/apache/felix/http/bridge/internal
17 org/osgi
18 org/osgi/service
19 org/osgi/service/http� �

The patch shown in Listing 3 should then be applied to the sources.

Listing 3: org.apache.felix.http.bridge forward patch� �
1 Index: src/main/java/org/apache/felix/http/base/internal/dispatch/ServletPipeline.java
2 === ←↩

3 −−− src/main/java/org/apache/felix/http/base/internal/dispatch/ServletPipeline.java (revision 60)
4 +++ src/main/java/org/apache/felix/http/base/internal/dispatch/ServletPipeline.java (working copy)
5 @@ −88,7 +88,7 @@
6 public void include(ServletRequest req, ServletResponse res)
7 throws ServletException, IOException
8 {
9 − this.handler.handle((HttpServletRequest)req, (HttpServletResponse)res);

10 + this.handler.handle(new RequestWrapper((HttpServletRequest)req, this.path), (HttpServletResponse) ←↩
res);

11 }
12 }

VIII

http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.api-2.2.0-project.tar.gz
http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.api-2.2.0-project.tar.gz
http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.base-2.2.0-project.tar.gz
http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.base-2.2.0-project.tar.gz
http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.bridge-2.2.0-project.tar.gz
http://mirrors.dotsrc.org/apache/felix/org.apache.felix.http.bridge-2.2.0-project.tar.gz
http://repo1.maven.org/maven2/org/osgi/org.osgi.compendium/4.2.0/org.osgi.compendium-4.2.0-sources.jar
http://repo1.maven.org/maven2/org/osgi/org.osgi.compendium/4.2.0/org.osgi.compendium-4.2.0-sources.jar

Secure Wiki System

13

14 @@ −103,6 +103,12 @@
15 this.requestUri = requestUri;
16 }
17

18 + @Override
19 + public String getPathInfo() {
20 + return getRequestURI();
21 + }
22 +
23 + @Override
24 public String getRequestURI()
25 {
26 return this.requestUri;� �

To build the bundle, add the following pom-�le to the root of the project. The Distribution-
Management section of the pom-�le should be modi�ed to match the repository server that will
hold the snapshot of the bundle.

Listing 4: org.apache.felix.http.bridge pom.xml� �
1 <!−−
2 Licensed to the Apache Software Foundation (ASF) under one
3 or more contributor license agreements. See the NOTICE �le
4 distributed with this work for additional information
5 regarding copyright ownership. The ASF licenses this �le
6 to you under the Apache License, Version 2.0 (the
7 "License"); you may not use this �le except in compliance
8 with the License. You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE−2.0
11

12 Unless required by applicable law or agreed to in writing,
13 software distributed under the License is distributed on an
14 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15 KIND, either express or implied. See the License for the
16 speci�c language governing permissions and limitations
17 under the License.
18 −−>
19 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/ ←↩

XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven. ←↩
apache.org/maven-v4_0_0.xsd">

20

21 <modelVersion>4.0.0</modelVersion>
22 <parent>
23 <groupId>org.apache.felix</groupId>
24 <artifactId>org.apache.felix.http</artifactId>
25 <version>2.2.0</version>
26 </parent>
27

28 <name>Patched Apache Felix Http Bridge</name>
29 <artifactId>org.apache.felix.http.bridge</artifactId>
30 <version>${org.apache.felix.http.bridge.version}.patched−SNAPSHOT</version>
31 <packaging>bundle</packaging>
32

33 <properties>

IX

Secure Wiki System

34 <org.apache.felix.http.bridge.version>2.2.0</org.apache.felix.http.bridge.version>
35 </properties>
36 <build>
37 <resources>
38 <resource>
39 <directory>${basedir}/src/main/resources</directory>
40 </resource>
41 <resource>
42 <targetPath>META−INF</targetPath>
43 <directory>${basedir}</directory>
44 <includes>
45 <include>LICENSE</include>
46 <include>NOTICE</include>
47 <include>DEPENDENCIES</include>
48 </includes>
49 </resource>
50 </resources>
51 <plugins>
52 <plugin>
53 <groupId>org.apache.maven.plugins</groupId>
54 <artifactId>maven−compiler−plugin</artifactId>
55 <version>2.3.2</version>
56 <con�guration>
57 <source>1.6</source>
58 <target>1.6</target>
59 <fork>true</fork>
60 <executable>/usr/lib/jvm/java−6−sun/bin/javac</executable>
61 <compilerVersion>1.6</compilerVersion>
62 </con�guration>
63 </plugin>
64 <plugin>
65 <groupId>org.apache.maven.plugins</groupId>
66 <artifactId>maven−source−plugin</artifactId>
67 <version>2.1.2</version>
68 <executions>
69 <execution>
70 <id>attach−sources</id>
71 <phase>verify</phase>
72 <goals>
73 <goal>jar−no−fork</goal>
74 </goals>
75 </execution>
76 </executions>
77 </plugin>
78 <plugin>
79 <groupId>org.apache.felix</groupId>
80 <artifactId>maven−bundle−plugin</artifactId>
81 <extensions>true</extensions>
82 <version>2.0.0</version>
83 <con�guration>
84 <instructions>
85 <Bundle−Activator>
86 org.apache.felix.http.bridge.internal.BridgeActivator
87 </Bundle−Activator>
88 <Export−Package>
89 org.apache.felix.http.api;version=2.2.0,

X

Secure Wiki System

90 org.osgi.service.http;version=1.2.0
91 </Export−Package>
92 <Private−Package>
93 org.apache.felix.http.base.*,
94 org.apache.felix.http.bridge.internal.*
95 </Private−Package>
96 <Import−Package>
97 javax.servlet.*,
98 *;resolution:=optional
99 </Import−Package>

100 </instructions>
101 </con�guration>
102 </plugin>
103 </plugins>
104 </build>
105

106 <dependencies>
107 <dependency>
108 <groupId>javax.servlet</groupId>
109 <artifactId>servlet−api</artifactId>
110 <scope>provided</scope>
111 </dependency>
112 <dependency>
113 <groupId>org.osgi</groupId>
114 <artifactId>org.osgi.core</artifactId>
115 <scope>provided</scope>
116 </dependency>
117 <dependency>
118 <groupId>org.osgi</groupId>
119 <artifactId>org.osgi.compendium</artifactId>
120 <scope>provided</scope>
121 </dependency>
122 </dependencies>
123 <!−− replace example.com below with the appropriate url−−>
124 <distributionManagement>
125 <repository>
126 <id>internal</id>
127 <name>Archiva Managed Internal Repository</name>
128 <url>http://example.com:8080/archiva/repository/internal</url>
129 </repository>
130 <snapshotRepository>
131 <id>snapshots</id>
132 <name>Archiva Managed Internal Snapshot Repository</name>
133 <url>http://example.com:8080/archiva/repository/snapshots</url>
134 </snapshotRepository>
135 </distributionManagement>
136 </project>� �

Build and deploy the bundle using maven

Maven deploy command� �
1 mvn clean deploy� �

If no repository server is available, use install instead of deploy. The bundle will then have to
be installed in the local repository on every computer used for development.

XI

Secure Wiki System

D Equinox JSP HTTP-Helper bundle

The following description assumes knowledge of maven, maven projects and their structure as
well as access to a repository server, e.g. http://archiva.apache.org/, where the bundle will
be deployed to. To create the Equinox JSP HTTP-Helper bundle used for the base wiki system,
a maven project should be created using the standard maven project structure, with source-�les
in src/main/java. The sources are located in multiple projects and should be fetched from the
following sources:

To build the JSP HTTP-Helper bundle, check out revision v20070607 of
org.eclipse.equinox/server-side/bundles/org.eclipse.equinox.jsp.jasper from
:pserver:anonymous@dev.eclipse.org:/cvsroot/rt

The source were fetched using the following cvs command from a linux terminal.

Listing 5: CVS checkout command for JSP HTTP-Helper bundle sourcecode� �
1 cvs −Q −d :pserver:anonymous@dev.eclipse.org:/cvsroot/rt co −r v20070607 \
2 org.eclipse.equinox/server−side/bundles/org.eclipse.equinox.jsp.jasper� �

To build the bundle, add the following pom-�le to the root of the project. The Distribution-
Management section of the pom-�le should be modi�ed to match the repository server that will
hold the snapshot of the bundle.

Listing 6: org.eclipse.equinox.http.helper pom.xml� �
1 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/ ←↩

XMLSchema-instance"

2 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven- ←↩
v4_0_0.xsd">

3 <modelVersion>4.0.0</modelVersion>
4 <groupId>org.eclipse.equinox.http</groupId>
5 <artifactId>helper</artifactId>
6 <description>Bundle for org.eclipse.equinox.http.helper ,created using maven, from sources found at ←↩

:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse /equinox−incubator/org.eclipse.equinox.http ←↩
.helper </description>

7 <packaging>bundle</packaging>
8 <name>org.eclipse.equinox.http.helper</name>
9 <version>0.0.2−SNAPSHOT</version>

10 <dependencies>
11 <dependency>
12 <groupId>javax.servlet</groupId>
13 <artifactId>servlet−api</artifactId>
14 <version>2.5</version>
15 </dependency>
16 <dependency>
17 <groupId>org.osgi</groupId>
18 <artifactId>org.osgi.compendium</artifactId>
19 <version>4.2.0</version>
20 </dependency>
21 <dependency>
22 <groupId>org.osgi</groupId>
23 <artifactId>org.osgi.core</artifactId>
24 <version>4.2.0</version>
25 </dependency>
26 </dependencies>
27 <build>

XII

http://archiva.apache.org/

Secure Wiki System

28 <plugins>
29 <plugin>
30 <groupId>org.apache.maven.plugins</groupId>
31 <artifactId>maven−compiler−plugin</artifactId>
32 <version>2.3.2</version>
33 <con�guration>
34 <source>1.6</source>
35 <target>1.6</target>
36 <fork>true</fork>
37 <executable>/usr/lib/jvm/java−6−sun/bin/javac</executable>
38 <compilerVersion>1.6</compilerVersion>
39 </con�guration>
40 </plugin>
41 <plugin>
42 <groupId>org.apache.maven.plugins</groupId>
43 <artifactId>maven−source−plugin</artifactId>
44 <version>2.1.2</version>
45 <executions>
46 <execution>
47 <id>attach−sources</id>
48 <phase>verify</phase>
49 <goals>
50 <goal>jar−no−fork</goal>
51 </goals>
52 </execution>
53 </executions>
54 </plugin>
55 <plugin>
56 <groupId>org.apache.felix</groupId>
57 <artifactId>maven−bundle−plugin</artifactId>
58 <extensions>true</extensions>
59 <version>2.0.0</version>
60 <con�guration>
61 <instructions>
62 <Bundle−Name>Http Service Helper Bundle</Bundle−Name>
63 <Bundle−SymbolicName>org.eclipse.equinox.http.helper</Bundle− ←↩

SymbolicName>
64 <Bundle−Description>${project.description}</Bundle−Description>
65 <Bundle−Version>${project.version}</Bundle−Version>
66 <Bundle−Vendor>Eclipse.org</Bundle−Vendor>
67 <Bundle−Activator>org.eclipse.equinox.http.helper.Activator</Bundle− ←↩

Activator>
68 <Bundle−Copyright>Eclipse.org</Bundle−Copyright>
69 <Import−Package>javax.servlet;version="2.5",javax.servlet.http;version="2.5", ←↩

org.osgi.framework;version="1.3.0",org.osgi.service.http;version="1.2.0"</ ←↩
Import−Package>

70 <Export−Package>org.eclipse.equinox.http.helper</Export−Package>
71 </instructions>
72 </con�guration>
73 </plugin>
74 </plugins>
75 </build>
76 <distributionManagement>
77 <!−− replace example.com below with the appropriate url−−>
78 <repository>
79 <id>internal</id>

XIII

Secure Wiki System

80 <name>Archiva Managed Internal Repository</name>
81 <url>http://example.com:8080/archiva/repository/internal</url>
82 </repository>
83 <snapshotRepository>
84 <id>snapshots</id>
85 <name>Archiva Managed Internal Snapshot Repository</name>
86 <url>http://example.com:8080/archiva/repository/snapshots</url>
87 </snapshotRepository>
88 </distributionManagement>
89 </project>� �

Build and deploy the bundle using maven

Maven deploy command� �
1 mvn clean deploy� �

If no repository server is available, use install instead of deploy. The bundle will then have to
be installed in the local repository on every computer used for development.

E Database SQL

The following script creates the database as described in the design section. The script creates
tables for both the base system and the secure wiki model plugin.

Listing 7: Database creation SQL� �
1 −− MySQL dump 10.13 Distrib 5.1.58, for debian−linux−gnu (x86_64)
2 −−
3 −− Host: localhost Database: wiki
4 −− −−
5 −− Server version 5.1.58−1ubuntu1
6

7 /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
8 /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
9 /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

10 /*!40101 SET NAMES utf8 */;
11 /*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
12 /*!40103 SET TIME_ZONE='+00:00' */;
13 /*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
14 /*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, ←↩

FOREIGN_KEY_CHECKS=0 */;
15 /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=' ←↩

NO_AUTO_VALUE_ON_ZERO' */;
16 /*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
17

18 −−
19 −− Current Database: `wiki`
20 −−
21

22 /*!40000 DROP DATABASE IF EXISTS `wiki`*/;
23

24 CREATE DATABASE /*!32312 IF NOT EXISTS*/ `wiki` /*!40100 DEFAULT CHARACTER SET utf8 ←↩
COLLATE utf8_bin */;

25

XIV

Secure Wiki System

26 USE `wiki`;
27

28 −−
29 −− Temporary table structure for view `articles`
30 −−
31

32 DROP TABLE IF EXISTS `articles`;
33 /*!50001 DROP VIEW IF EXISTS `articles`*/;
34 SET @saved_cs_client = @@character_set_client;
35 SET character_set_client = utf8;
36 /*!50001 CREATE TABLE `articles` (
37 `aid` int(11),
38 `markup` text,
39 `url` varchar(255),
40 `modi�ed` timestamp
41) ENGINE=MyISAM */;
42 SET character_set_client = @saved_cs_client;
43

44 −−
45 −− Table structure for table `reviews`
46 −−
47

48 DROP TABLE IF EXISTS `reviews`;
49 /*!40101 SET @saved_cs_client = @@character_set_client */;
50 /*!40101 SET character_set_client = utf8 */;
51 CREATE TABLE `reviews` (
52 `rid` int(11) NOT NULL AUTO_INCREMENT,
53 `uid` int(11) NOT NULL,
54 `description` text COLLATE utf8_bin NOT NULL,
55 `type` int(11) NOT NULL,
56 `targetqcv` int(11) NOT NULL,
57 `requestorid` int(11) NOT NULL,
58 `start` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
59 `end` timestamp NOT NULL DEFAULT '0000−00−00 00:00:00',
60 `processed` int(11) NOT NULL DEFAULT '0',
61 PRIMARY KEY (`rid`),
62 KEY `uid` (`uid`),
63 KEY `requestorid` (`requestorid`)
64) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
65 /*!40101 SET character_set_client = @saved_cs_client */;
66

67 −−
68 −− Table structure for table `revisions`
69 −−
70

71 DROP TABLE IF EXISTS `revisions`;
72 /*!40101 SET @saved_cs_client = @@character_set_client */;
73 /*!40101 SET character_set_client = utf8 */;
74 CREATE TABLE `revisions` (
75 `rid` int(11) NOT NULL AUTO_INCREMENT,
76 `markup` text NOT NULL,
77 `url` varchar(255) NOT NULL,
78 `uid` int(11) NOT NULL,
79 `minor_edit` tinyint(3) NOT NULL DEFAULT '0',
80 `edit_summary` varchar(256) DEFAULT NULL,
81 `modi�ed` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE ←↩

XV

Secure Wiki System

CURRENT_TIMESTAMP,
82 PRIMARY KEY (`rid`),
83 KEY `url` (`url`) USING HASH,
84 KEY `users` (`uid`),
85 FULLTEXT KEY `article` (`markup`,`url`)
86) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
87 /*!40101 SET character_set_client = @saved_cs_client */;
88

89 −−
90 −− Table structure for table `swmp_revision`
91 −−
92

93 DROP TABLE IF EXISTS `swmp_revision`;
94 /*!40101 SET @saved_cs_client = @@character_set_client */;
95 /*!40101 SET character_set_client = utf8 */;
96 CREATE TABLE `swmp_revision` (
97 `rid` int(11) NOT NULL,
98 `il` int(11) NOT NULL,
99 UNIQUE KEY `docid` (`rid`)

100) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
101 /*!40101 SET character_set_client = @saved_cs_client */;
102

103 −−
104 −− Table structure for table `swmp_user`
105 −−
106

107 DROP TABLE IF EXISTS `swmp_user`;
108 /*!40101 SET @saved_cs_client = @@character_set_client */;
109 /*!40101 SET character_set_client = utf8 */;
110 CREATE TABLE `swmp_user` (
111 `uid` int(11) NOT NULL,
112 `doclevel` int(11) NOT NULL DEFAULT '0',
113 `userlevel` int(11) NOT NULL DEFAULT '0',
114 UNIQUE KEY `userid` (`uid`)
115) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
116 /*!40101 SET character_set_client = @saved_cs_client */;
117

118 −−
119 −− Table structure for table `users`
120 −−
121

122 DROP TABLE IF EXISTS `users`;
123 /*!40101 SET @saved_cs_client = @@character_set_client */;
124 /*!40101 SET character_set_client = utf8 */;
125 CREATE TABLE `users` (
126 `uid` int(11) NOT NULL AUTO_INCREMENT,
127 `username` varchar(48) NOT NULL,
128 `password` varchar(128) NOT NULL DEFAULT '',
129 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
130 PRIMARY KEY (`uid`),
131 UNIQUE KEY `username` (`username`)
132) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
133 /*!40101 SET character_set_client = @saved_cs_client */;
134

135 −−
136 −− Table structure for table `votes`

XVI

Secure Wiki System

137 −−
138

139 DROP TABLE IF EXISTS `votes`;
140 /*!40101 SET @saved_cs_client = @@character_set_client */;
141 /*!40101 SET character_set_client = utf8 */;
142 CREATE TABLE `votes` (
143 `vid` int(11) NOT NULL AUTO_INCREMENT,
144 `rid` int(11) NOT NULL,
145 `uid` int(11) NOT NULL,
146 `vote` int(11) DEFAULT NULL,
147 PRIMARY KEY (`vid`),
148 UNIQUE KEY `voteid` (`rid`,`uid`),
149 KEY `uid` (`uid`)
150) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
151 /*!40101 SET character_set_client = @saved_cs_client */;
152

153 −−
154 −− Current Database: `wiki`
155 −−
156

157 USE `wiki`;
158

159 −−
160 −− Final view structure for view `articles`
161 −−
162

163 /*!50001 DROP TABLE IF EXISTS `articles`*/;
164 /*!50001 DROP VIEW IF EXISTS `articles`*/;
165 /*!50001 SET @saved_cs_client = @@character_set_client */;
166 /*!50001 SET @saved_cs_results = @@character_set_results */;
167 /*!50001 SET @saved_col_connection = @@collation_connection */;
168 /*!50001 SET character_set_client = latin1 */;
169 /*!50001 SET character_set_results = latin1 */;
170 /*!50001 SET collation_connection = latin1_swedish_ci */;
171 /*!50001 CREATE ALGORITHM=UNDEFINED */
172 /*!50013 DEFINER=`wiki`@`%` SQL SECURITY INVOKER */
173 /*!50001 VIEW `articles` AS select `a`.`rid` AS `aid`,`a`.`markup` AS `markup`,`a`.`url` AS `url`,`a`.`modi�ed ←↩

` AS `modi�ed` from `revisions` `a` where (`a`.`rid` = (select max(`b`.`rid`) from `revisions` `b` where (`a ←↩
`.`url` = `b`.`url`))) */;

174 /*!50001 SET character_set_client = @saved_cs_client */;
175 /*!50001 SET character_set_results = @saved_cs_results */;
176 /*!50001 SET collation_connection = @saved_col_connection */;
177 /*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;
178

179 /*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
180 /*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
181 /*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
182 /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
183 /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
184 /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
185 /*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;
186

187 −− Dump completed on 2012−03−02 0:41:28� �

XVII

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Objectives
	Thesis Structure
	Terms and Definitions

	Previous Work
	Classic Wiki Security
	WikiTrust
	Wikipedia Recommender System
	The Secure Wiki Model
	Implementations of the Secure Wiki Model
	OSGi

	Analysis
	Functional Analysis
	Generic Wiki Architecture
	Secure Wiki Model Plugin
	Secure Wiki Model Policy

	Design
	Base Wiki System
	Secure Wiki Model Plugin
	Promotion Policy
	Demotion Policy

	Implementation
	OSGi-Bridge
	API
	Data
	Core
	Frontend
	Secure Wiki Model Plugin
	Modifications of Third Party Components

	Evaluation
	Evaluation Scenarios
	Estimation of Work
	Estimation of Number of Reviewers
	Estimation of Level Weights
	Estimation of Vote Threshold
	Required Number of Reviewers for Pi2

	Future Work
	Conclusion
	References
	Wikipedia author activity
	Project Setup
	Java
	MySQL
	Apache Tomcat
	Application Installation

	Patched Http Bridge Bundle
	Equinox JSP HTTP-Helper bundle
	Database SQL

