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1. INTRODUCTION

Based on the original, linear minimum noise fraction (MNF) trans-
formation [1] and kernel principal component analysis [2], a kernel
version of the MNF transformation was recently introduced [3, 4].
Inspired by [5] we here give a simple method for finding optimal
parameters in a regularized version of kernel MNF analysis. We
consider the model signal-to-noise ratio (SNR) as a function of the
kernel parameters and the regularization parameter. In 2-4 steps of
increasingly refined grid searches we find the parameters that maxi-
mize the model SNR. An example based on data from the DLR 3K
camera system [6, 7] is given.

2. THE KERNEL MNF TRANSFORMATION

In a regularized version of the kernel MNF transformation we maxi-
mize the Rayleigh quotient [3, 4]

1

NF
=

bTK2b

bT [(1− λ)KNKT
N + λK]b

, (1)

i.e., the inverse noise fraction, NF, here defined as the variance of the
noise according to some noise model divided by the variance of the
total. K and KN are centered kernelized versions of the data and
the noise part, respectively [3, 4]. This corresponds to maximizing
the signal-to-noise ratio, SNR = 1/NR− 1. Alternatively, we may
minimize the Rayleigh quotient

NF =
bTKNKT

Nb

bT [(1− λ)K2 + λK]b
. (2)

Below we maximize the expression in Equation 1. We use a Gaus-
sian kernel function κ(xi, xj) = exp(− 1

2
‖xi − xj‖2/σ2), where

xi and xj are vectors of observations, with σ = sσ0 where σ0 is
the mean or the median distance between the observations in feature
space and s is a scale factor.

3. SIMPLE PARAMETER OPTIMIZATION

We consider the model SNR as a function of the kernel parame-
ter(s) and the regularization parameter, here SNR = SNR(σ, λ) =
SNR(s, λ). We use the mean for σ0 and the residual from a fit
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to a quadratic in a 3 by 3 window as the noise. We start by cal-
culating SNR(s, λ) for discrete values of s and λ in crudely sam-
pled intervals, here s ∈ [0.1 0.25 0.5 1.0 2.0 5.0 10.0] and λ ∈
[0 10−9 10−6 10−3]. Based on the result we home in on the max-
imal SNR for either the leading factor or a combination (sums or
products) of the first few factors by confining s and λ to more nar-
row and denser intervals and end up finding the values for s and λ
that maximize SNR.

4. DATA AND PROCESSING

The images used were recorded with the airborne DLR 3K camera
system [6, 7] from the German Aerospace Center, DLR. This sys-
tem consists of three commercially available 16 megapixel cameras
arranged on a mount and a navigation unit with which it is possible
to record time series of images covering large areas at frequencies
up to 3 Hz. The 1000 rows by 1000 columns example images ac-
quired 0.7 seconds apart cover a busy motorway. Figure 1 shows the
RGB images at two time points. The data were orthoprojected using
GPS/IMU measurements and a DEM. For flat terrain like here one
pixel accuracy is obtained. In these data, the change occurring be-
tween the two time points will be dominated by the movement of the
cars on the motorway. Undesired, apparent change will occur due
to the movement of the aircraft and the different viewing positions
at the two time points. Figure 2 shows simple band-wise differences
between data from the two time points.

Figure 3 shows (top) result of the initial crude optimization (λ
along x-axis and s along y-axis), and (bottom) eigenvalues/SNRs for
several choices of σ after final optimization (in all cases here we get
λ = 0), see also Table 1. As in [3] calculations are based on ∼1000
training samples.

Figure 4 shows leading kMNFs for the default (s = 1, top) and
optimum for the products of the first nine kMNFs (s = 1.5, bot-
tom) cases. In the upper-right 100 × 100 pixels no-change back-
ground the ratio between the variances of the leading kMNFs the for
s = 1.5 and s = 1 cases is 13.72 corresponding to 11.37 dB consti-
tuting a considerably better noise suppression for the s = 1.5 case.
(Compared to the linear model the noise suppression improvement
measured in the same fashion for the s = 1.5 case is 37,623 or 45.75
dB.)
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Description s σ SNR [dB] Colour in Figure 3

both first eigenvalue and sum of first nine eigenvalues 1.7 27.12 57.40 red
product of first nine eigenvalues 1.5 23.93 51.52 limegreen
mean (default) 1.0 15.95 40.66 black
median 10.49 38.28 orange
linear 18.60 blue

Table 1: SNR for leading factor (λ = 0 in all cases).

Fig. 1. DLR 3K camera system RGB images taken 0.7 seconds apart,
note the moving cars on the motorway, 1000 × 1000 pixels.

Fig. 2. Simple band-wise differences, note the noise in the no-
change background.
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Fig. 3. Top: Intital crude optimization of model SNR over inter-
vals s ∈ [0.1 0.25 0.5 1.0 2.0 5.0 10.0] along the downward y-axis
(the origo is in the top-left corner) and λ ∈ [0 10−9 10−6 10−3]
along the x-axis. Bottom: First few eigenvalues for several cases
- optimum for both first eigenvalue and sum of first nine eigenval-
ues: s = 1.7, σ = 27.12, λ = 0 (red), optimum for product of
first nine eigenvalues: s = 1.5, σ = 23.93, λ = 0 (limegreen),
mean (default): s = 1, σ = σ0 = 15.95, λ = 0 (black), median:
σ = 10.49, λ = 0 (orange), linear MNF: λ = 0 (blue).

Fig. 4. Leading kMNFs for the default (s = 1, top) and the optimum
for the products of the first nine eigenvalues (s = 1.5, bottom) cases
(λ = 0 in both cases).
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5. CONCLUSIONS

A simple method for optimization of kernel function and regulariza-
tion parameters in the kernel MNF transformation is devised and ap-
plied to change detection in simple differences of bi-temporal DLR
3K camera system data. Figure 3 shows that although we get a much
higher SNR for s = 1.7 than for s = 1.5 (57.40 dB vs 51.52 dB),
the latter case because of the product applied, provides several (here
four) eigenvalues higher than the default (s = 1) case. By coinci-
dence, the two cases where we optimize SNR for the first factor only
and where we optimize for the sum of the first nine factors, both give
s = 1.7. In all cases here λ = 0.

Figures 3 and 4 show that with the suggested method, we ob-
tain a clearly smoother background of no-change with a considerably
better noise suppression at the potential risk of a few misses.
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