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ABSTRACT

Statistical solutions find wide spread use in food and medicine
quality control. We investigate the effect of different regres-
sion and sparse regression methods for a viscosity estimation
problem using the spectro-temporal features from new Sub-
Surface Laser Scattering (SLS) vision system. From this in-
vestigation, we propose the optimal solution for regression
estimation in case of noisy and inconsistent optical measure-
ments, which is the case in many practical measurement sys-
tems. The principal component regression (PLS), partial least
squares (PCR) and least angle regression (LAR) methods are
compared with sparse LAR, lasso and Elastic Net (EN) sparse
regression methods. Due to the inconsistent measurement
condition, Locally Weighted Scatter plot Smoothing (Loess)
has been employed to alleviate the undesired variation in the
estimated viscosity. The experimental results of applying dif-
ferent methods show that, the sparse regression lasso outper-
forms other methods. In addition, the use of local smoothing
has improved the results considerably for all regression meth-
ods. Due to the sparsity of lasso, this result would assist to
design a simpler vision system with less spectral bands.

Index Terms— Regression, Sparse Regression, Smooth-
ing, Sub-Surface Laser Scattering (SLS)

1. INTRODUCTION

Today, statistical computations and solutions play important
role in the analysis of biological, medical and various other
types of measured signals. These measurements are usually
performed by means of different kinds of sensors such as
imaging and vision systems. A part from the type of signal
and measurement system, the common requirement of all of
these applications is to analyze and interpret the input data for
the aim of prediction, classification or relation and correlation
between different attributes, features or variables.

Online quality inspection for food control is one of the
examples of such systems. For many years, human has
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performed this task. But, today there is more interest to-
ward online fast non-invasive inspections. Recently, a hyper-
spectral imaging technique [1, 2] and subsurface laser scatter-
ing (SLS) [3] have been successfully applied on different food
inspection cases. The advantages of these vision techniques
over the traditional methods include minimal sample prepara-
tion, contact-less and nondestructive nature, fast acquisition
times, and characterization of numerous chemical composi-
tions as well as rheological structures simultaneously.

In this paper, statistical linear regression and sparse re-
gression solutions are used to estimate the rheological char-
acteristics of fermented milk from its SLS features. Acidified
milk products like yoghurt are important food products and
their chemical and rheological characteristics play an impor-
tant role to their quality and palatability for the consumer.
These characteristics changes during the acidification pro-
cess. Therefore, online tracking of these changes would help
to control the quality of the product.

1.1. Measurement of Rheological Properties

The viscosity of acid milk increases during the acidification
process. One of the common milk acidification techniques is
based on the use of glucono − δ − lactone (GDL). The tra-
ditional method for measuring the rheological properties of
acid milk gels involves an oscillatory applied strain or stress
[4, 5]. In the strain controlled version of this experiment, the
sample is subjected to a sinusoidally oscillating strain from
which the viscosity response is measured. On the other hand,
it is possible to measure the chemical and structural variations
of material by means of SLS vision systems [3]. One impor-
tant benefit of this method is that, it is totally contact-less.

The aim of this paper is to apply linear regression as a sta-
tistical solution on the milk feature matrix obtained from the
SLS system and predict the viscosity level of the product. We
are also motivated to find a sparse regression solution which
requires less number of wavelengths for viscosity prediction.
The sparsity is important regarding to the fact that the vision
systems with their spectra are costly and not feasible to im-
plement in the industry for online food productions. Perform-
ing the prediction using the minimum number of wavelengths
would enable the selection of small specific vision systems
which are costly effective. Therefore, both regression and



sparse regression methods are applied on a training set of SLS
features to estimate the necessary parameters for the test set
(In this paper denoted as tr and ts) and their results are com-
pared.

The rest of this paper is organized as follows; Section 2
describes the data set. Different regression and local smooth-
ing methods used for viscosity prediction are described in sec-
tion 3. In section 4, we present the experimental results and
finally there is a conclusion in section 5.

2. DATA DESCRIPTION

In the applied SLS technique, a hyper-spectral laser beam
(450-1020nm with steps of 10nm) is exposed to the surface
of a sample, while a vision system acquires an image for each
wavelength [3]. From these images, scattering profiles are
extracted from the scattering center and outwards as shown in
Fig.1a. Each of these profiles yields an intensity curve, which
is analyzed by applying the double logarithm to intensities.
This approximates a linear behavior, which is modeled by a
linear model. This model consists of a slope and an intercept,
which makes up the aforementioned SLS features. The fea-
ture matrix is XN×P , where N denotes the number of time
points and P is the number of wavelengths. The viscosity
level is YN×1, Which is shown in Fig.1b.

(a) SLS profile (b) Milk viscosity

Fig. 1: The SLS scattering profile (a) The viscosity of acid milk during
acidification (b).

3. VISCOSITY ESTIMATION FROM SLS FEATURES

The general linear regression problem Ŷ = Xβ̂ols + ε , results
to a minimum biased output [6]. However, in practical ex-
periments, usually there are variations and inconsistency in
measurements due to different sources of noise. On the other
hand, it is always probable that some inputs have higher corre-
lation to the output, which necessitates weighing and shrink-
ing strategies. In order to decrease the variance of the output,
regularization strategies would be employed to the regression
problem.

3.1. Ridge Regression

In ridge regression, the regression coefficients are shrunk in
size by a L2 norm penalty term:

β̂ridge = argminβ


N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

β2
j

 (1)

The second term in Equ.1, increases the bias of the model
and, also controls the shrinkage of the coefficients to decrease
the variance. Thus, the choice of λ is a trade off between bias
and variance.

3.2. Least Angle Regression (LAR)

In Least angle regression, the coefficients are sequentially
added to the model. At the first step, the variable with high-
est correlation with the response is moved to an active set, and
its corresponding coefficient will move toward its least square
value. Thus, its correlation with the residual would decrease
Then, the search for the next variable with the same corre-
lation with the residual starts and when found, it would be
moved also to the active set and the coefficients of all active
variables would move together in a way that keeps their cor-
relations tied and decreasing. This is continued until all the
variables join the model, and ends at the full least-squares fit.
But, the minimum error is not necessarily obtained from the
full coefficients set. The training error reduces as the steps in-
crease. But, for test error, the error starts to increase in a criti-
cal point again due to the ovefitting of the model. Therefore, a
sparse LAR solution with less number of non-zero regression
coefficients works better for a test set.

3.3. Principle Component Regression (PCR)

Principal component regression uses the principal compo-
nents of the input vector (zm = Xvm: vm is the mth eigen
vector of X), and then regresses Y on z1, z2, ..., zM for some
M ≤ P . Since the zm are orthogonal, this regression is just a
sum of uni-variate regressions:

ŷpcr(M) = ȳ1 +

M∑
m=1

θ̂mzm, (2)

where ȳ1 is the mean vector and θ̂m = 〈zm, y〉 / 〈zm, zm〉.
Usually M is the number of components including more than
90 or 95 percent of variance of the input. Therefore, PCR
discards the P−M smallest eigenvalue components. However,
PCR is not a sparse solution.

3.4. Partial Least Squares (PLS)

PLS uses Y , in addition to X , for construction of a set of lin-
ear combinations of the inputs for regression. Therefore, its
solution path is a nonlinear function of Y. PLS seeks direc-
tions that have high variance and have high correlation with



the response, in contrast to PCR which is only based on high
variance. However, if there is a lot of variation in X that has
no connection to the variation of Y , PCR would have prob-
lem. Because, it finds those latent variables that describe as
much as possible of the variation in X even correlated or not
to Y . If the output be only sensitive to only small variations in
X, and if the interferences vary a lot, then the latent variables
found by PCR may not describe Y in best way. PLS is capa-
ble of finding better solutions in this situation, since it forms
variables that are relevant for describing Y .

The PLS algorithm is iterative. First some parameters
should be trained:

1. Standardize each xjtr column of trainingXtr = {x1, ..., xP }
and Set ŷ(0) = Ȳtr1, and x(0)j = xjtr; j = 1, ..., P .

2. Form = 1, 2, ..., P

• (a) zm =
∑P
j=1 ϕ̂mjx

(m−1)
jtr , Where zm is the mth partial

least squares direction, and ϕ̂mj =
〈
x
(m−1)
jtr , Ytr

〉
, are

the weights that describe the uni-variate effects of xjtr
on Ytr

• (b) ŷ(m) = ŷ(m−1) + θ̂mzm , where
θ̂m = 〈zm, Ytr〉 / 〈zm, zm〉 shows the regression of Ytr
on partial directions zm

• (c) x(m)
j = x

(m−1)
j −p̂mjzm, j = 1, 2, ..., P , where p̂mj =〈

zm, x
(m−1)
j

〉
/ 〈zm, zm〉 shows the regression of xjtr on

partial directions zm

As the number of partial directions increases, the average er-
ror decreases asymptotically to a minimum level. As shown
in Fig.2a, before all partial directions be added to the model,
the error reaches to a minimum point, which could be used to
choose the proper number of partial directions. The predic-
tion or test algorithm is also iterative and uses the trained pa-
rameters θ̂m, ϕ̂m, p̂m. The following steps should be repeated
for the selected number of partial direction zm:

• (a) zm =
∑P
j=1 ϕ̂mjx

(m−1)
jts

• (b) x(m+1)
j = xmj − p̂mjzm

• (c)ŷ(m+1) = ŷ(m) + θ̂mzm

3.5. Lasso

The lasso is a sparse shrinkage method. The lasso penalty is
L1 norm:

β̂lasso = argminβ

1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

|βj |


(3)

The β̂lasso could be calculated using the LAR method just
by a simple modification. In lasso path, if a non-zero coef-
ficient hits zero, its variable should be dropped out from the

(a) The errors in PLS (b) The errors in Lasso

Fig. 2: The average error versus number of partial directions for PLS over
5 folds CV. of milk SLS data (a) The Lasso training and test errors versus
step numbers in 5 fold CV. of milk SLS data (b).

active set of variables and be treated like other zero coeffi-
cients. The plot of average training and test errors versus step
numbers are shown in Fig.2b. In addition, the average num-
ber of non-zero coefficients in each step is plotted. Like in
LAR, the training error reduces as the steps increase, while
after some steps, the error increases in case of the test set.

3.6. Elastic-Net

Elastic-net is in fact a compromise between lasso and ridge.
Each regression coefficient is calculated as a weighted com-
bination of ridge and lasso. The elastic-net selects variables
like lasso, and shrinks together the coefficients of correlated
predictors like ridge. This will reduce the variance, but, at the
same time the bias is not as much as it is in lasso.

β̂en = λ

p∑
j=1

((1− α) |βj |+ αβ2
j ) (4)

3.7. Local Smoothing of the Regression Output

For smoothing the output, further post processing techniques
could be employed to reduce the variation of the output and
improve the results. We propose the use of local regression
function “Loess” for the estimated viscosity.

Loess, applies a local smoothing procedure which means
that each smoothed value is determined as a weighted combi-
nation of its neighboring data points defined within a span. In
each span, a regression weight shown in Equ.5 is calculated
for each point inside the span.

wi =

(
1−

∣∣∣∣x− xid(x)

∣∣∣∣3
)3

(5)

where x is the data point and xi are the neighbors in the
span. d(x) is the distance to the most distant point inside
the span. Then a weighted linear regression using a quadratic
polynomial is performed to estimate the new value for smooth
curve.



Table 1: Comparison of the results for different regression methods

R-Square
NonZeroCoeff.

Original Smoothed

OLS 71.6970 77.4572 55

Ridge 79.3328 84.5143 55

LAR 72.0458 74.2769 55

Sparse-LAR 80.2842 80.9357 12

PCR 76.0871 77.0668 55

PLS 79.5066 84.5439 55

LASSO 89.0863 92.2666 12

EN 83.7776 84.8672 35

Fig. 3: Comparison of the regression and smooth regression Results for
lasso

4. EXPERIMENTAL RESULTS

At DTU food laboratories, the SLS imaging experiments have
been performed during milk acidification process. In these
experiments, the GDL acidification technique has been used.
In each experiment, the feature matrix includes N = 22501

observations in P = 54 different wavelength from the slope of
the SLS profile. These features cover the whole acidification
process. Also, the viscosity vector is measured and has the
same length of each feature vector 22501×1. We have used two
sets as training and one as test. Although the regression plots
of these 3 sets show similar behavior, they are not numerically
consistent. This means that we should expect error in our
estimations.

The different regression methods have been implemented
and applied on the training data, using the leave-one-out 5
fold cross validation. We have used some solutions from [7].
Cross validation is used to estimate the expected prediction
error, from which, it could be possible to choose the best pa-
rameters for the regression model from the minimum error
point. The Loess smoothing method with a span of 30%, has
been applied on the output results from the test data.

R-square measure has been used for evaluation of the re-
sults. It is a statistical measure of how well a regression line
approximates real data points; an R-squared of 1.0 (100%)
indicates a perfect fit. It is calculated based on the Residual

Sum of Squares (RSS) and Total Sum of Squares (TSS):

RSS =

N∑
i=1

(yi − ŷi)2, TSS =

N∑
i=1

(yi − Ȳ )2 (6)

R2 = (1−
RSS

TSS
)× 100 (7)

Table 1 shows the R-Square results for the test sets before
and after smoothing. Fig.3 shows the results for the lasso
method which yields the best R-square. Therefore, the vision
system could have just 12 spectral bands instead of 54 which
is more efficient.

5. CONCLUSION

In this paper, different regression and sparse regression meth-
ods have been applied on the hyper-spectral SLS features
from milk acidification process to estimate the viscosity level
of the acid milk. In addition, the local smoothing method,
Loess has been used for the purpose of smoothing and varia-
tion reduction of the estimated output. Comparison of the
experimental results of different methods, show that the
sparse lasso regression yields the highest R-square values.
Because of the sparse nature of lasso, we can conclude that,
the vision system could have only 12 spectral bands, instead
of 54 which is more efficient.
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