
HSI 2012, MAY 2012 1

Optimal Class Separation in Hyperspectral Image
Data: Iterated Canonical Discriminant Analysis

Allan Aasbjerg Nielsen and Andreas Müller

Abstract—This paper describes canonical discriminant analysis
and sketches an iterative version which is then applied to obtain
optimal separation between a region, here examplified by either
“water” or “wood/trees” and the rest of a HyMap image. We
show that the iterative version greatly enhances the separation
between the regions.

Index Terms—Two-class discrimination, HyMap.

I. INTRODUCTION

THIS paper in Section II describes the established multi-
variate statistical technique canonical discriminant ana-

lysis [1], [2] and sketches an iterative improvement.
Section III shows the application of the iterative version to

the separation between 1) “water” and “everything else”, and
2) “wood/trees” and “everything else” to 126-band HyMap [3]
data covering a small agricultural area in Germany. Section IV
gives conclusions.

II. THEORY

Here we describe canonical discriminant analysis (CDA) for
optimal separation between k groups or classes of multi- or
hypervariate observations. In our application we use CDA for
two classes only, k = 2.

Also, we sketch an iterative extension of CDA and mention
a method for automatic thresholding as a part of the iterative
scheme.

A. Canonical Discriminant Analysis

The idea in CDA is to find projections in multi- or hyper-
variate feature space which give maximal separation between
groups (or classes or populations) of the data.

Consider k groups with n1, . . . , nk multivariate (p-
dimensional) observations {xij}, where i is the group index
and the j is the (multivariate) observation number. The group
means are denoted x̄1, . . . , x̄k and the overall mean is denoted
x̄, i.e.,

x̄i =
1

ni

ni∑
j=1

xij , i = 1, . . . , k

and

x̄ =
1

N

k∑
i=1

ni∑
j=1

xij with N =

k∑
i=1

ni.
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As in a one-way analysis of variance the “total” sum of squares
matrix is

T =
k∑

i=1

ni∑
j=1

(xij − x̄)(xij − x̄)T .

We define the “among groups” (sometimes termed the “be-
tween groups”) matrix as

A =
k∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T

and the “within groups” matrix as

W =
k∑

i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
T .

With these definitions we have

T = A+W

or in words: the total variation can be written as a sum of the
variation of the group means around the overall mean and the
variation around the group means.

We are looking for projections of the original data Y =
dT (xij − x̄) called canonical variates (CVs) which maximize
the ratio between variation among groups and variation within
groups; the latter can be considered as the natural level of
variance of the variables xij . The idea of maximizing this ratio
is due to Fisher [1]. This ratio equals the Rayleigh quotient
dTAd/dTWd = λℓ, i.e., the transformation is defined by the
conjugate eigenvectors dℓ of A with respect to W

Adℓ = λℓWdℓ.

We norm dℓ to unit length, dT
ℓ dℓ = 1. The higher values

we obtain for λℓ the higher the discriminatory power of the
canonical variates. The new variates are

Yℓ = dT
ℓ (xij − x̄).

The first CV defined by d1 is the affine transformation of the
original variables that gives the best discrimination between
the k groups. A higher order CV is the affine transformation
of the original variables that gives the best discrimination
between the k groups subject to the constraint that it is
orthogonal (with respect to A and W ) to the lower order CVs.
Note, that the number of CVs is given by rank considerations
for A and W . If A and W have full rank this number equals
min(k − 1, p).

We define the canonical correlation coefficients Rℓ by their
squares, R2

ℓ = dT
ℓ Adℓ/d

T
ℓ Tdℓ which is a measure in the
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interval from 0 to 1 of the discriminatory power of the
canonical variates. The relation between the eigenvalues λℓ
and the squared canonical correlations R2 is

R2
ℓ =

λℓ
λℓ + 1

.

In general, scatter plots of the first few CVs give a good
visual impression of the separability of the observations.

In our application we use CDA for two classes only, k = 2;
this means that we have one CV only (since the rank of A is
1). In this case we need not solve the eigenvalue problem, we
can find the desired projection direction d1 from

d1 = T−1(x̄1 − x̄2)

and norming to unit variance.
It turns out, that in this case with two classes only, the

canonical method gives the same solution as ordinary linear
discriminant analysis.

B. Iterative Extension and Automatic Thresholding

In our application we first use CDA based on a manually
selected training area which then constitutes one of the two
classes; the rest of the image is the other class. This gives
rise to a potential problem: the rest of the image may contain
regions which actually belong to the first class. To identify
such regions and to update the training area, in a series of
iterations new training areas for the CDA are selected by
automatically thresholding the CV calculated in the previous
iteration. Iterations stop when the canonical correlation R
stops improving.

The method used to automatically threshold the canonical
variate is based on [4]. This method is in itself a univariate
version of CDA.

III. CASE: HYMAP DATA

We show two examples based on HyMap data, one where
we separate “water” from “everything else” and one slightly
more difficult example where we separate “wood/trees” from
“everything else”.

HyMap is an airborne, hyperspectral instrument which
records 126 spectral bands covering most of the wavelength
region from 438 to 2483 nm with 15-20 nm spacing. In this
case study we use data acquired on 30 June 2003 at 8:43
UTC covering an agricultural area near Lake Waging-Taching
in Bavaria, Germany. The image consists of 400 rows by 270
columns with 5 meter pixels. The same data have been used
previously in change detection studies by means of related
methods in for example [5], [6], see also [7].

Figure 1 shows HyMap bands 27 (828 nm), 81 (1648 nm)
and 16 (662 nm) as RGB.

A. Water Mask

Figure 2 shows the (16.) iterated canonical variate stretched
linearly excluding the 2% extreme observations. This CV gives
the optimal separation between the two classes “water” and
“everything else”; there is a good separation between the very
bright water pixels and land.

Fig. 1. HyMap bands 27 (828 nm), 81 (1648 nm) and 16 (662 nm) as RGB.

Fig. 2. Iterated canonical variate, optimal separation.

Figure 3 shows the initial hand drawn water mask and the
corresponding CV stretched linearly between minimum and
maximum. Figure 4 shows the water mask after 16 iterations
and the corresponding CV, again stretched linearly between
minimum and maximum. Note, that we seem to get all the
water at the cost of a few erroneous pixels on land.

Figure 5 shows the histogram of the CV based on the
hand drawn mask (and the corresponding squared canonical
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Fig. 3. Hand drawn water mask and corresponding CV.

Fig. 4. Water mask, 16. iteration and corresponding iterated CV.

correlation). Figure 6 shows the histogram of the 16. iterated
CV and the 16 corresponding squared canonical correlations.
From the two histograms we see that a much better separation
between water and land is obtained after iterations. From the
plot of the canonical correlations we see that the first iteration
is by far the most important one.

B. Wood/Trees Mask

Figure 7 shows the initial hand drawn wood/tree mask and
the corresponding CV stretched linearly between minimum
and maximum. Figure 8 shows the wood/tree mask after 20
iterations and the corresponding CV again stretched linearly
between minimum and maximum. Note, that we seem to get
all the wooded regions including individual trees.

Figure 9 shows the histogram of the CV based on the
hand drawn mask (and the corresponding squared canonical
correlation). Figure 10 shows the histogram of the 20. iterated
CV and the 20 corresponding squared canonical correlations.
From the two histograms we see that a much better separation
between wood/trees and “everything else” is obtained after
iterations. Again, we see that the first iteration is by far the
most important one.
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Fig. 5. Histogram for CV and squared canonical correlation, hand drawn
water mask.
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Fig. 6. Histogram for the 16. iteration CV and the 16 squared canonical
correlations.

IV. CONCLUSIONS

An iterated version of canonical discriminant analysis is
applied to perform optimal separation between two classes in
126-band HyMap data in two cases, 1) “water” vs “every-
thing else” and 2) “wood/trees” vs “everything else”. In the
wood/trees case we get lower canonical correlations than in the
water case showing that we obtain a better separation in the
water case. We do however seem to pick up even individual
trees in the more challenging wood/tree case. In these cases
with two classes only, the canonical method gives the same
solution as ordinary linear discriminant analysis.

A natural extension of the method is kernelization, see [6],
[8], [9].
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Fig. 7. Hand drawn wood mask and corresponding CV.

Fig. 8. Wood/tree mask, 20. iteration and corresponding iterated CV.
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Fig. 9. Histogram for CV and squared canonical correlation, hand drawn
wood mask.
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Fig. 10. Histogram for the 20. iteration CV and the 20 squared canonical
correlations.
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