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Summary

This thesis presents methods for assessing and estimating the intracranial vol-
ume in children with unicoronal synostosis, on the basis of 3D CT images. Ob-
taining such a measurements provides the opportunity to compare the intracra-
nial volume in these children with i.a. to normal data, in order to comment on
possible deviations between such two groups. Furthermore, it provides a tool
for a possible surgery evaluation, given as pre- and post measurements.

To solve this problem, two deformable models have been chosen; an image reg-
istration, and a graph cut based algorithm. The image registration model
transforms a template image into a given reference, especially by means of a
B-spline transformation. By extracting the transformation parameters and ap-
plying them to a manual segmented mask, derived from the template image, an
estimation of the volume of interest is obtained. The graph cut model takes a
gradient based approach to the problem, and based on construction of a weighted
graph, consisting of nodes and edges, it finds the optimum cut i.e. the segmen-
tation. The true challenge for this model, lies within the construction of this
framework, i.e. establishing the proper weights and neighborhood connections.

The performance of the two models is validated on the basis of a voxel deviation
found between the model based segmentation and a semi-automatic segmenta-
tion, performed with manual editing. Furthermore, visual interpretation of the
segmentation surfaces has been performed. Both models showed great results,
and presented a good foundation for further applicability.
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Resumé

Denne afhandling præsenterer to metoder til at vurdere og estimere det in-
trakranielle volumen hos børn med unicoronal synostosis. Begge metoder er
baseret på 3D CT billeder. Et mål for det intrakranielle volumen, vil give mu-
lighed for at sammenligne volumener hos børn med craniosynostosis med textit
i.a. normal data med henblik på, at vurdere eventuelle afvigelser mellem så-
danne to grupper. Desuden vil det give mulighed for at evaluere effekten af
operationer ud fra en før og efter måling.

For at løse dette problem, er to deformerbare modeller valgt; en billedereg-
istreringsmodel, samt en graf cut baseret algoritme. Billedregistreringsmodellen
omdanner et templatebillede til en valgt reference. Denne omdannelse er her
fortaget primært ud fra en B-spline transformation. Ved at udtage de fundne
transformations parametre og påføre dem til en manuel segmenteret maske,
fundet udfra templatebilledet, opnås et estimat af det intrakranielle volumen
af referencen. Graf cut modellen benytter en gradientbaseret metode, samt en
konstruktion af en vægtet graf bestående af knuder med dertilhørende vægte, for
at finde det optimale cut, der vil definere segmenteringen. Selve opbygningen
af denne konstruktion, er den store udfordring med denne model.

De to modeller er valideret på grundlag af en udregnet voxel afvigelse, fundet
mellem den modelbaseret segmentering og en semi-automatisk segmentering,
hvor den sidstnævnte er udarbejdet under indflydelse af manuel editering. End-
videre er segmenteringsresultaterne evalueret på baggrund af en både 2D og 3D
visualisering. Begge modeller viste gode resultater, og er set at udgøre et godt
grundlag for fremtidig anvendelighed indenfor dette felt.
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Chapter 1

Introduction

1.1 Project Description

The purpose of this thesis work is to implement an automatic segmentation
model for estimation of the intracranial volume in children with craniosynostosis.
Craniosynostosis is a condition where one or more sutures between the cranial
bones have fused at a too early state, restricting skull growth and thereby leading
to cranial dysmorphology. Moreover, it possibly entails a reduced intracranial
volume, with the risk of development of increased intracranial pressure. In the
Western world, almost all children born with craniosynostosis undergo surgery,
in order to correct and adjust the deformity, and to secure adequate space for the
growing bones. Estimating the intracranial volume in these children is from a
medical point of view of high interest, in order to see how or if their volumes differ
from normal values. Currently, applications for intracranial volume estimation
are available; however, most of these are designed for MR images. MR scans
of small children will require that they are under anesthesia, due to the noise
level and long image acquisition time. Therefore, MR imaging is not always the
preferred scan modality. Furthermore, most surgeries are based on a detailed
3D CT scan, where it is possible to obtain a good overview of the cranial bones,
due to the contrast in this scan modality. The goal is therefore to find and
implement a model that can be applied to CT scans. In the clinical aspect, the
goal is to have a high speed intracranial volume application, with high precision



2 Introduction

and acceptable costs.

Two approaches have been chosen for investigation in this thesis, both chosen
on the hypothesis of their ability to overcome the lack of cranial bone informa-
tion. The first is an image registration algorithm, where the volume is estimated
by registering the image to a template. Together with the template image, a
manual segmentation of its intracranial volume, referred to as volume mask, is
available. The registration is performed between the template image and the
image of interest, by applying two 3D transformation types; an affine followed
by a B-spline transformation, to the template image. The transformations allow
the template image to deform, such that a high similarity between the trans-
formed template and the image of interest is established. The success of the
transformation is evaluated based on a cost function, defined as the intensity
differences in the two images. When a satisfying registration is found, the trans-
formation parameters are extracted and applied to the intracranial volume mask
obtained from the manual template segmentation, i.e. the mask undergoes the
same deformation as the template image. In this way a mask corresponding to
the intracranial volume of the image of interest is constructed. However, this
model has the disadvantage of needing a template image, which should have a
good and trustworthy volume estimate. Furthermore, by using such a model,
the final result will unfortunately be biased against the chosen template image.

In order to mitigate these issues, a graph cut model, is investigated. This is
a model, which over the last couple of years, has been seen as an increasingly
popular technique for medical image segmentation. The model is an attractive
model for surface segmentation, due to its guaranteed convergence to the global
minimum. However, the true challenge is to construct this framework. Graph
cut is based upon the construction of a weighted graph, which is built based
on a set of nodes, corresponding to voxels, and edges, specifying the cost of a
connection between a neighborhood of nodes. In order to construct this setup,
the segmentation problem is transformed from its original image space into a
terrain-like surface, hence a graph space, by performing a spherical resampling.
Additional nodes are added to the graph setup, referred to as source and sink,
specifying each side of a sought segmentation. The neighborhood connection is
then defined together with the edge costs, which consist of both intra and inter
column edge costs. The intra column costs are based on the image gradient,
while the inter column cost is a constant, seen as a separation penalty restricting
a smoother surface, hence a smoother cut. A minimum cut/maximum flow
algorithm is used in order to find the ”cheapest” cut of the graph. In order to
evaluate the cut, the segmentation, the problem is transformed back from the
spherical coordinates to Cartesian image coordinates.

The idea for the image registration model is found in [26], where the approach
was used to compute mouse atlases, for analyzing craniofacial dysmorphology in
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Crouzon mice, on the basis of 3D micro CT scans. In 2008, an image registration
software package was implemented by Martin Vester-Christensen, which kindly
was passed on to be used in this project. The idea for the graph cut model is
derived from [37], where the model was used for segmenting the respiratory tree
based on a 3D CT dataset. The algorithm uses the minimum cut/maximum
algorithm introduced in [7], which builds on the Ford-Fulkersons augmenting
path.

Motivation

Information concerning size, shape and volume of the brain and skull has been
of high interest for many years. First of all, it provides basic anatomical know-
ledge, but it also provides the opportunity to examine how e.g. genetic and
environment affect the cranial growth and development. Medically, knowledge
about the cranial growth and development provides the opportunity to ana-
lyze crania with abnormal growth patterns and malformations, as e.g. found in
craniosynostosis. As prior mentioned, an estimate of the intracranial volume in
these children is, from a medical point of view, of high interest. Both to form an
impression of whether the volume in these children differs from the values found
in unaffected children or in between the different classes of craniosynostosis, and
finally to be able to evaluate the effect of surgery.

Data processed in this thesis, are all 3D CT image scans from children with uni-
coronal synostosis (UCS) . The scans have been obtained from children between
approximately 6 to 18 months of age.

Main Objective

The main aim is an implementation and investigation of two different 3D seg-
mentation models, which can establish a satisfactory estimation of the intracra-
nial volume from CT images in children with craniosynostosis. The evaluation
of a satisfactory estimate is based on a comparison between a semi-manual and
the model based segmentation.

Part Objectives

• Compare the performance of the two segmentation models.

• Evaluate the veracity of the manual segmentations.
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• Compare the obtained segmented volumes with normative data.

External collaborators

The project was performed in collaboration with Research Engineer, MSc., PhD,
Tron Darvann, Professor, dr. odont, PhD, Sven Kreiborg, Associate Professor,
PhD, Nuno Hermann and Research Engineer, MSc. Eng., Per Larsen, who are
affiliated with the 3D Craniofacial Image Research Laboratory (School of Den-
tistry, University of Copenhagen; Copenhagen University Hospital Rigshospi-
talet; and DTU Informatics, Technical University of Denmark)(3D-Laboratory),
Copenhagen, Denmark. They have provided data and assisted in discussion
throughout this thesis.

1.2 Previous Work

Estimation of the intracranial volume in children with craniosynostosis has been
of interest in many years, and different segmentation approaches have been tried,
in order to reach a satisfying result. Within the field of MR imaging automatic
segmentation forms exist, but these segmentation forms are not optimal for in-
tracranial volume estimation, in craniosynostotic cases. In order to get the best
possible evaluation of the cranial bones, CT scans are preferred. Furthermore,
CT scans are the most common used image modality to obtain information for
diagnosis and surgery planning, and are therefore, the preferable basis for vol-
ume estimation. Unfortunately, the methods are still limited within the field of
CT imaging. Today, the most used method is a semi-automated segmentation
process, based on a threshold and a seed-expansion technique. However, this
method needs manual editing in the various foramina in the skull base, but more
critically, manual editing is also necessary in regions where craniosynostosis or
late suture fusion have caused gabs between the cranial bone plates. A number
of studies [4, 41, 42] have been performed with this estimation method. The
physician Sgouros has performed research studies regarding volume estimation
in both normal children and children with craniosynostosis, [41, 42]. The study
included 68 healthy children, in the age range from 1 to 187 months of age,
and 84 children in the age range from 1 to 84 months of age with craniosyno-
stosis. The children were affected with different types of craniosynostosis, both
non-syndromic cases, including sagittal, unicoronal, bicoronal and metopic syn-
ostosis, but also a small number of syndromic cases were included. In this thesis
the volume estimations [41] are extracted and used as a reference foundation for
a normal population.
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1.3 Thesis Overview

Throughout the work of this thesis two different models have been processed.
Initially, the main focus should have been on the graph cut model, and the im-
age registration model just utilized for comparison foundation. Unfortunately,
an old version of the image registration software was first distributed, which
required significantly more time and deeper examination of the software, than
first expected. Both models have therefore received the same amount of focus on
their theoretical parts. Subsequently, the main focus is leveled at the implemen-
tation and optimization of the graph cut model. The theory, implementation
and results of the two models will be given concurrent throughout the paper.
However, first an introduction to the anatomy and physiology behind normal
cranial growth is provided in Chapter 2. This is in the same chapter followed
by the definition of different types of craniosynostosis, together with the clinical
aspects concerning the condition. In Chapter 3 a glance is taken at the volume
estimation methods tried out through the last couple of decades up until today.
Today’s methods are evaluated and a pros and cons comparison between CT
and MR imaging techniques concerning craniosynostosis is conducted. Chap-
ter 4 provides the reader with data information and a description of how data
dimensions are referred to throughout the thesis.

Both methods are validated against a semi-manually performed segmentation,
which is described in Chapter 5. In Chapter 6 and Chapter 7 the theory behind
the two models is presented. Chapter 6 describes the image registration process,
including the used transformation types, the cost function and the optimization
process. In the final section a short description of the multilevel approach taken
for this model, is given. Chapter 7 provides information of the graph cut model,
including a description of the minimum cut/maximum flow algorithm and the
constellation of neighborliness and edge weights.

From Chapter 8, a description of the actual processing of data starts taking
place. Chapter 8 describes the preprocessing, including standard orientation
and noise removal, which is common for both methods. Afterwards the im-
plementation and optimization of the image registration, and graph cut model
are given in Chapter 9 and Chapter 10, respectively. Chapter 11 presents the
results obtained from the two models, while Chapter 12 provides a discussion of
these, together with an evaluation of the advantages and limitations of the two
models. Chapter 13 provides thoughts and ideas for future work and prospects
for this thesis, while a final conclusion is found in Chapter 14.
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Chapter 2

Cranial Growth

The aim of this thesis is to implement a segmentation model, which can give a
satisfactory estimation of the intracranial volume. The data processed in this
thesis are obtained from children with craniosynostosis, so this chapter provides
an introduction to the condition. However, first a short description of the normal
cranial growth pattern is given in Section 2.1. Hereafter, the different types of
craniosynostosis is described in Section 2.2, comprising clinical manifestation
and treatment consisting of surgery.

2.1 Normal Cranial Growth

When we are born, the cranium consists of primarily five separate bones; paired
frontals bones, paired parietal bones and the occipital bone. These bones are
held together by strong elastic tissues called sutures, and two ”soft spots” called
fontanelles, the anterior and posterior, respectively, [34]. The anatomy is out-
lined in Figure 2.1.

During birth the sutures and fontanelles provide flexibility to the skull, allowing
the cranial bones to overlap, hence enabling the head of the child to pass through
the birth canal. After birth, the sutures remain open, where they serve as growth
zones between the cranial bones, allowing the cranium to expand to follow the
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Figure 2.1: The normal skull of a newborn with identification of the sutures and
fontanelles. From [2].

growing brain. Cranial growth results from increased osteoblast activity at the
edges of the cranial bones. Sutures are, therefore, not seen as profound growth
zones, but they provide a place for bone deposition, [39, 19].

The growth of the brain is not linear during its time of development, but it can,
however, be seen partly linear during given time periods, e.g. during the first
couple of years. In this period, the brain is seen to have its most significant
expansion, as seen in Figure 2.2, which results in an increase of the brain size
from approximately 60 cm3 and 90 cm3 to 1000 cm3 and 1150 cm3, for girls
and boys, respectively. This means, that the brain is approximately 80 % of
its full size at the age of two, [41, 40]. The growth of the brain still continuous
throughout the next decade, but with a significant slower growth rate, [34].

2.2 Craniosynostosis

The brain has its most significant growth during the early years of life, as seen
in Figure 2.2. A fusion of one or more of the cranial bones in this period
will, therefore, have severe consequences for the development of the cranium,
thus the growing brain. Premature fusion of cranial sutures is referred to as
craniosynostosis (CS) , and is estimated to affect 1 in 2100-2900 newborns,
[22, 30].
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Figure 2.2: Brain growth (percentage of adult brain weight) as a function of time. It
should be noted that the figure depicts brain weight and not brain volume. From [21].

CS can be divided into syndromic and non-syndromic cases, of which non-
syndromic is by far the most common form. Looking at non-syndromic cases,
these can be further divided into a number of types, depending on the location
of the closed suture. Depending on the involved suture, the head develops a
characteristic shape, due to dysplastic and compensatory growth. The differ-
ent types and their prevalence are briefly outlined in Table 2.1, together with
a short description of the skull deformity involved. The most common form is
sagittal synostosis, characterized by a long and narrow head shape, as can be
seen in Figure 2.3(b). In some cases, 4–8 %, two or multiple sutures are affected,
[22, 38], but these cases are not addressed further in this context.

Syndromic craniosynostosis is less common than non-syndromic craniosynosto-
sis. It arises from known disorders causing malformations. Today more than 130
different syndromes are identified to cause these synostotic malformations, [30].
Some of the most common are the Crouzon and Apert syndromes, which both
are estimated to have a prevalence of around 15 in 1,000,000 – Crouzon though
slightly more prevalent, [22]. Syndromic synostosis may be present in only a
single cranial suture, but typically multiple sutures are involved. Dysmorphol-
ogy is therefore expressed with a high variability, which is seen pronounced also
within each syndromic type. This variability is caused by a complex interaction
between a number of factors e.g. genetic factors, cellular events and local forces,
which all affect the normal growth and pattern of development, [17].

2.2.1 Clinical Manifestations and Craniotomy

As stated above, CS can be expressed in many different forms, and with a high
degree of variability, but symptoms in one or the other form will always be
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Table 2.1: Classification of the four most common forms of non-syndromic cranio-
synostosis, based on [22, 38].

Suture Abbreviation Prevalence Deformity description
Sagittal SS 50 – 60 % Long and narrow skull, often

referred to as boat-shaped
Coronal
Unilateral RUCS (right)

LUCS (left)
∼ 20 % Flat lateral forehead over

the suture involved, which in
compensation often results in
a more prominent forehead on
the opposite side

Bilateral BCS ∼ 10 % Broad and tall skull (anterior-
posterior distance is re-
stricted)

Metopic MS 5 – 10 % Narrow and flattened frontal
bone, which gives the skull a
triangular shape

present. This is due to the fact, that the development and growth of the brain
will persist, regardless the restriction caused by the fused sutures. If brain
growth is limited in a given direction it will compensate and expand in another
possible direction, hence where fusion of the suture has not yet taken place. In
Figure 2.3 three different examples of craniosynostosis are shown; unicoronal,
sagittal and metopic, respectively. In all three cases, dysplastic compensatory
growth is seen, but due to the different locations of the closed sutures, the com-
pensatory effect is manifested differently in each case. If no sutures are open
(worst case scenario), the cranium can still remodel by performing bone resorp-
tion on the inner surface of the skull (osteoclast activity), and bone apposition
on the outer surface (osteblast activity). This is a common mechanism, which
also takes place in normal cranial growth in order to provide the right cranial
curvatures. However, this mechanism will, in cases with severe craniosynostosis,
serve as a compensatory remodeling process, which leads to cranial and facial
dysmorphology, [34].

Besides the obvious malformation in craniofacial shape, CS can manifest itself
with a high number of different consequences. Craniofacial deformity, which is
the most pronounced one, can be seen in both severe and mild cases. In some
situations, especially in the syndromic cases, it can lead to nasal breathing
problems, which for some children can give rise to sleep apnea. Sleep apnea
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(a) Unicoronal (b) Sagittal (c) Metopic

Figure 2.3: Three characteristic manifestations, caused by different types of cranio-
synostosis. From[25].

can, if lasting over a longer period, affect the growth pattern, speech ability, and
cognitive functions, [23]. All together, these effects will often cause a reduced
ability or desire for social involvement, from which a consequence often is lack
of personal development. It must be noted, that these complications only most
often are seen in severe cases.

Another aspect in CS is the intracranial volume (ICV). A decrease in the ICV
may cause a physical constriction on the growing brain, leading to increased
intracranial pressure (ICP). A number of studies have therefore been conducted
in order to get an impression of the ICV measure in children with craniosynosto-
sis. When exploring the field concerning ICV estimation in children with UCS,
no consistent conclusion is, however, made on the topic, but in [8], the conclu-
sions of a number of studies have been collected. However, here some indicate
a decreased ICV, whereas others conclude a small increase. In [40], a decreased
volume is indicated until an age of 6 months, after which there is no significant
difference between children with UCS and unaffected children. Furthermore,
studies concerning the ICP give very tenuous results, so no evident conclusion
is made concerning the relationship between the ICV and ICP.

To recapitulate, CS does not only manifest itself with craniofacial deformities,
but also other and maybe more severe complications can be seen. Surgery is,
therefore, in the Western world, functional performed in, more or less, all cases
of CS, in order to provide the best possible conditions for these children. In
some mild situations surgery can be performed by endoscopic repair. By means
of two or more small incisions made near the fused suture, small portions of bone
are removed and the suture is reopened. This type of surgery can, however, only
be performed in mild cases of CS and only in children younger than 6 months,
[13]. More comprehensive surgery, which involves craniotomy and remodeling
of bone, is performed in more severe cases. Before surgery, an overall evaluation
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of the cranial growth has to be established. Even though only one suture is
involved, the involvement can be of high complexity, due to the compensatory
growth in the other sutures [22, 30]. In general, each skull must be treated in its
own way, in order to compensate for the malformations and functional problems
present in the specific case.

In these cases of surgery, medical imaging plays an important role. Today
magnetic resonance (MR) imaging and computed tomography (CT) are the
standard imaging techniques for these cases, each of them having its own pros
and cons, as later discussed in Section 3.2.1. For preoperative evaluation, CT
scanning is the preferred modality, due to the clear outlining of sutures and
synchondroses. MR imaging is often only used in more complex cases, where
the brain and cerebrospinal fluid must be evaluated, [30].

In Figure 2.4, before and after surgery pictures are presented of a case of left
unicoronal craniosynostosis. The two images to the left are preoperative, the
middle and right hand images are postoperative, taken in ages of 6 and 15
months, respectively.

Figure 2.4: Left unicoronal craniosynostosis before and after surgery. The two images
to the left are preoperative, the middle and right hand images are postoperative, taken
in the age of 6 and 15 month, respectively. From [35].
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In order to establish a better foundation for analyzing craniosynostotic cases, an
estimation of the intracranial volume is, as mentioned above, of high interest.
Such estimations have been attempted throughout the last century, but today
difficulties are still seen among some of the applications. A historical review
concerning application approaches are given in Chapter 3.
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Chapter 3
Volume Estimations up until

Today

Information concerning size, shape and volume of the brain has been of high
interest for many years. First of all, it provides basic anatomical knowledge, but
it also provides the opportunity to compare crania from different populations,
and examine how geography, race, gender, ethnicity etc. influence the cranial
growth and development. Medically, knowledge about the cranial growth and
development provides the opportunity to analyze crania with abnormal growth
patterns and malformations. In Section 3.1 a short flashback to earlier methods
and studies are given, followed by currently used methods in Section 3.2.

3.1 Historical Flashback

Studies trying to estimate the ICV have been performed for more than ten
decades, where various approaches have been taken into use. In the following
a brief introduction to different approaches is given. It should be noted that
results and uncertainties are not elaborated on. The aim is only to give a
description of the development in the field.

The first attempts were made on dry skulls, mostly with different filling tech-
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niques. One of the first scientists, who came up with a method, was a German
student in 1896 [29]. The idea was to lower a balloon into the cranial capacity
and fill it with water. However, the method was not satisfactory. When using
thin rubber balloons, these tended to rupture before a measurement could be
made. When using thicker rubber material, air filled holes were seen between
the balloon and the skull, which caused erroneous results. Other filling materi-
als e.g. gunpowder, paraffin wax, millet and mustard seeds were subsequently
tried. In the beginning, filling was performed manually, but in the end of the
1920s a cranial capacity machine was developed by M.S. Goldstein, which should
eliminate the human errors, [29].

In 1901, a more mathematical method was also developed by Lee and Pearson,
who designed a linear equation, based on three cranial measures; maximum
anterior-posterior length, maximum width and cranial height. The measures
were found with simple measuring equipment and were in the beginning still
found on dry skulls, [29].

In the 1950s, the x-ray machine had made its entry, and made it possible to
perform volume estimations on internal measures, instead of external. In the
beginning, volume estimations were still based on length, width and height,
but in 1972 the x-ray was combined with tomography. A brain scan could
now consists of six slices, where the volume of each slice was found by taking
the average of the two planes bounding it, and multiplying with the distance
between them, [29]. Lee-Pearsons equation, which had been modified a number
of times over the last couple of decades, was further modified to incorporate
the thickness of the skull, calculated from x-ray. In 1977, a large study on
ICV estimation was conducted on more than a thousand living Caucasians in
different age groups, and has been used as reference materials for other studies
in the years to come, [12].

With the development within the field of CT imaging, more slices and a better
resolution has been obtained. This has lead to semi-automatic slice wise volume
estimation techniques, as described in Chapter 5. Also, a fast development
was seen within the field of MR imaging. Similar to CT, slice and resolution
improved significantly for MR imaging, and slice wise volume estimation can now
be performed for this modality as well. Furthermore, automatic segmentation
processes can be applied for MR images as outlined in the following section.
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3.2 Current Methods for Automatic Segmenta-
tion

At the moment no fully automatic CT-based application for segmentation of
the intracranial volume is accessible. However, applications used within others
areas, e.g. for segmentation of the lung tree, are available, and inspiration has
been found in these. A various segmentation methods have been developed for
MR images, and the following will give a short introduction to some of the
existing methods. These automatic MR applicable methods are considered in
order to see whether a direct transfer to a CT application can be made.

Today’s MR techniques have evolved significantly, and the assessment of the
brain volume is a well-known and often used feature for multiple purposes.
Many software packages for automatic estimation of the brain volume exist.
Note the notation brain volume instead of intracranial volume. This is due to,
that most MR applications has an interest in assessing brain volume instead of
ICV. In the following two MR imaging software packages are briefly described
below; Statistical Parametric Mapping (SPM) and Functional MR Imaging of
the Brain Software Library (FSL).

SPM is a software package designed for analysis and hypotheses testing of func-
tional imaging. It handles data from a variety of brain imaging sequences,
inter alia functional MR imaging (fMRI) and positron emission tomog-
raphy. In the preprocessing of fMRI data, it is possible to segment the
different matters of brain, for e.g. subsequent facilitation of co-registration
in between subjects. The estimation of the volume is primarily based on
segmentation of the brain into cerebrospinal fluid, gray matter and white
matter, using voxel intensities and a prior tissue probability map, see Fig-
ure 3.1. The resulting segmentation map is an estimation of the probability
distribution for each of the tissue clusters, found from a maximization of
the posteriori solution, [6, 36]. In the study performed by Pengas et al.
[36] the intracranial volume is estimated by summing the number of vox-
els, with high enough probability of belonging to one of the tree classes,
and multiplying with the volume of one voxel. The volume segmentation
is thereby not performed on the basis of information of the skull.

FSL is an analysis library for fMRI and MR brain imaging data. FSL has a 3D
brain/non-brain incorporated, which "uses a deformable model that evolves
to fit the brain’s surface by the application of a set of locally adaptive model
forces", [43]. The algorithm, called Brain Extraction Tool (BET), works
with a spherical surface, constructed with a triangular tessellation, and
expands until the local intensity structure changes and the brain edge is
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reached. Depending on the model forces the algorithm could find the brain
surface or the surface of the skull, [43]. The initial spherical surface, and
final brain/non-brain surface is seen in Figure 3.2.

Figure 3.1: Prior probability maps for gray (A) and white matter (C), and the
resulting segmentation (B and D). Modified from [6].

The two brain matter based segmentation is not directly applicable to CT images
due to their low contrast between soft tissues, but an algorithm like the BET
could, with modification, be considered for CT. Other algorithms suitable for
both modalities could be e.g. graph cut or an image registration approach as
implemented for CT in this thesis. In Section 3.2.1 the pros and cons for volume
estimation in CT versus MR are briefly outlined.

3.2.1 Considerations of MR Versus CT in Volume Esti-
mation

When considering both MR and CT imaging for estimation of the intracranial
volume in children with craniosynostosis, a variety of considerations must be
taken. In Table 3.1 and Table 3.2 a brief overview of the pros and cons for
estimating the intracranial volume with MR and CT is provided.

Evaluating the pros and cons, the key points are, that CT scans are the corner-
stone for diagnosis and surgery planning, [30]. Especially the possibility for easy
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(a) (b)

Figure 3.2: Illustration of the initial spherical surface (a) and the resulting brain/non-
brain surface (b) for the BET algorithm. Modified from [43].

Table 3.1: Pros and cons for ICV estimation using MR.

Pros - MR Cons - MR
Primarily based on brain matter

and not the skull

Well-known methods and
packages exist

Distortions and bias field
variations give a higher risk of
error - mainly peripheral, i.e.

near the skull

No biological hazards A bit more expensive (compared
to CT)

Easier to overcome foramina, if
using brain matter instead of

bone for segmentations

Noisy and time consuming,
which will require newborns to

be under anesthesia

No simple preoperative
evaluation of the bone and

sutures

thresholding and surface rendering makes CT preferable for 3D bone visualiza-
tion. Furthermore, CT imaging provides a faster and cheaper imaging tool than
MR imaging, but it must be emphasized that a CT scan holds risk in the form
of radiation. Another key aspect is the MR scan time and noise level, which
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Table 3.2: Pros and cons for ICV estimation using CT

Pros - CT Cons - CT

Clear illustration of the skull -
also in 3D

Hard to incorporate new or
existing MR segmentation

techniques

No peripheral distortion Harmful due to radiation

Currently used for surgery
planning

Harder to overcome the lack of
information in some part of the
skull of a newborn. See Figure

3.3

Cheaper and faster

requires that small children must be under anesthetic, in order to obtain avoid
movement artifacts. By using CT, this can in some cases be avoided. However,
other difficulties will arise, when automatic intracranial volume segmentation
should be based on CT images. One of the most profound challenges is to over-
come the foramina and lack of skull information, as seen in Figure 3.3. This is
one of the aspects investigated in this thesis, by applying an image registration
and graph-based segmentation on CT data.
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(a) (b)

Figure 3.3: 3D surface rendering from dataset #6, showing a thresholded CT image
of a child with unilateral synostosis. (a) depicts the full skull, and a severe gap between
the cranial bones is seen. In (b) the skull base is viewed from the top. The foramen
magnum is seen at the bottom of the image.
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Chapter 4
Data Information and

Definitions

3D CT head scans were provided by the 3D Laboratory. Data were recorded for
the prospect of surgery planning, and collected by the 3D-Laboratory with the
prospect of further research in the field of craniosynostosis. Data processed in
this thesis, were primarily provided by Copenhagen University Hospital Rigshos-
pitalet, with the exception of dataset #7, which was acquired from Helsinki
University Central Hospital1. All data were obtained from CT scans of children
in the age range from a half to one and a half years of age, all diagnosed with
either RUCS and LUCS. In Table 4.1 the place of origin for the datasets in use
is provided, together with the diagnosis, sex and age at the scanning.

The voxel dimensions are seen to differ between datasets, but the number of
voxels are seen to have been held constant at 512 in the x- and y-direction. The
number of voxels in the z-direction, however, is seen to vary significantly among
datasets. An overview of the data resolution is provided in Table 4.22.

1Data has kindly been provided by: Jyri Hukki, Professor, MD, Cleft Palate and Cranio-
facial Center, Helsinki University Central Hospital, Helsinki, Finland.

2It is noted that dataset #1 had a shift in its intensity range. This has been corrected
before application of segmentation algorithms
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Table 4.1: Data information, including place of origin and patient information.

Age at Scan
# Origin Diag. Sex (days [months])
1 Copenhagen LUCS M 129 [4.5]
2 Copenhagen RUCS M 127 [4.5]
3 Copenhagen RUCS F 306 [10.2]
4 Copenhagen LUCS M 257 [8.5]
5 Copenhagen LUCS F 413 [13.8]
6 Copenhagen RUCS M 136 [4.5]
7 Helsinki RUCS F 437 [14.5]
8 Copenhagen RUCS M 162 [5.4]
9 Copenhagen RUCS M 130 [4.3]
10 Copenhagen LUCS M 289 [9.6]
11 Copenhagen LUCS F 159 [5.3]
12 Copenhagen LUCS F 157 [5.3]
13 Copenhagen LUCS F 483 [16.1]
14 Copenhagen RUCS F 444 [14.8]
15 Copenhagen LUCS F 206 [6.8]

Table 4.2: Data and image information.

Resolution [mm]
# x y z Voxels in z
1 0.37 0.37 1 178
2 0.36 0.36 1 167
3 0.43 0.43 0.65 289
4 0.43 0.43 0.6 325
5 0.43 0.43 1 184
6 0.39 0.39 0.8 241
7 0.45 0.45 0.6 313
8 0.39 0.39 0.9 189
9 0.34 0.34 0.8 247
10 0.39 0.39 0.8 251
11 0.39 0.39 1 178
12 0.49 0.49 0.8 226
13 0.47 0.47 0.8 226
14 0.39 0.39 0.6 350
15 0.37 0.37 1 311
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4.1 Dimension Terms

A brief introduction to the different dimension terms is provided in the following.
When data were acquired, all subjects were equally placed in the scanner, which
gives the possibility to globally define the three directions -or dimensions. In
Figure 4.1 a simple illustration of a patient in a ”scanner” is seen. The cube
indicates the CT image that is obtained, with the defined directions, x, y and
z. Here x defines the image rows, y the image columns, and z the image slices.
In the image registration process, these parameters are referred to as x1,x2 and
x3, respectively, and the entire cube, i.e. the image, is referred to as X.

Figure 4.1: Simple illustration, defining the three scan directions.

In addition to the terms outlined above, 3D images are often viewed or evaluated
in 2D, i.e. a slice viewed in a given plane. In medical imaging these planes
are globally defined, as coronal, sagittal and transversal, as in Figure 4.2. An
example of a 2D slice in each plane is seen in Figure 4.3.

4.2 Multilevel

All images are analyzed with the two deformable models; image registration
and graph cut. Since both models demand a relatively large setup, it can be
difficult to process the images with their original resolution, due to limitations
in time and capacity. All images have therefore been downsampled. In fact
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Figure 4.2: Definition of image planes. Modified from [14].

(a) Coronal (b) Sagittal

(c) Transversal

Figure 4.3: Examples of 2D images in the three image planes; coronal, transversal
and sagittal.
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an image pyramid approach is taken, mainly for the use of scale space in the
image registration. An image pyramid is a multilevel representation of the same
image, where each level represents the image with a lower resolution. The higher
the level, the lower the resolution. An image pyramid consisting of four levels is
constructed, as seen in Figure 4.4. L0 defines the original image and thereby the
finest level, and L3 the coarsest level. The lower levels are achieved by applying
a low-pass filter to the previous level, in the form of an Gaussian kernel with a
size of 3×3×3 voxels and a standard deviation of 0.8, and thereafter extracting
every other voxel. The filtering is performed in order to minimize the loss of
information by smoothing the image.

The four levels are defined in Table 4.3, together with the resulting image size
and mean voxel dimensions, found from the 15 datasets in Table 4.2. m3 defines
the slice number which varies between datasets (the notation originates from
Chapter 6). It should be noted that the voxel size of the Gaussian kernel is
maintained through the levels. However, the size is modified to each level, in
consequence of the change in voxel dimensions.

Table 4.3: Definition of the four levels defining the image pyramid. L0 gives the
image with its original size and resolution, followed by the coarser levels. For each
downsampled level, the size is reduced, which entails in larger voxel dimensions. m3

defines the slice number, which varies between the datasets.

Level Size [Voxel] Mean Voxel Dimensions [mm]
L0 512× 512×m3 0.40× 0.40× 0.86
L1 256× 256×m3/2 0.79× 0.79× 1.73
L2 128× 128×m3/22 1.58× 1.58× 3.45
L3 64× 64×m3/23 3.17× 3.17× 6.90
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(a) Image pyramid

(b) L0 (c) L1

(d) L2 (e) L3

Figure 4.4: Illustration of the four level image pyramid. In (a) the idea of the image
pyramid is outlined, with the original image, L0, with full resolution in front, followed
by the lower downsampled levels. In (b)-(e) a slice image from each level is shown.
The voxel size is increased for each level, giving a resolution that at level L3 results in
a clearly blurred image presentation.
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Manual Segmentation

In order to validate the two segmentation methods all images have been manu-
ally segmented and their calculated volume used as a reference for the two model
based segmentations. The manual segmentation is actually a semi-automatic
method, based on a user chosen intensity threshold in Hounsfield Unit (HU),
and a seed unifying algorithm. This segmentation form will throughout this
thesis be referred to as manual segmentation. Two programs were involved in
the process; the intensity threshold was chosen in Landmarker, based on the
best possible bone segmentation and the actual intracranial segmentation was
performed in Analyze. The two programs and their use are described in Section
5.1 and 5.2, respectively.

5.1 Landmarker

Landmarker is a visualization program for volumetric data, with a graphical
user interface for landmark placing as its main functionality. Furthermore, it
holds very good visualization and inspection possibilities, both regarding slices
and 3D surfaces. Landmarker is public accessible through the homepage of the
3D-Laboratory, [11], and is used for 3D surface rendering throughout this thesis.

Before the segmentation process, an image is loaded into the program and an
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intensity threshold is chosen. The threshold is decided by the user, based on
the best achievable bone segmentation, hence allowing as much bone as possible
without inducing noise artifacts in the image, as e.g. information from ears
or brain structures. Especially ears and pupils have been used as indicators
for choosing an appropriate threshold. In Figure 5.1, three images with differ-
ent thresholds are presented. In (a) and (b) examples of the consequences of
choosing a too low or a too high threshold, respectively, is seen. In (a) noise
components from e.g. the eyes can clearly be seen, whereas in (b) the bone
structure is seen incomplete. In (c) an image with a threshold providing a rea-
sonable result is depicted. No significant noise artifacts are present and the
bone structure is kept intact. When a satisfactory intensity threshold is chosen,
a polygonal surface rendering is constructed as seen in Figure 5.2, where it is
possible to inspect and evaluate the result. Also here, the orbits are used to
validate the result. The orbits can, due to their very thin bone line, give a good
indication of a reasonable intensity threshold, e.g a too high threshold will cause
small gaps in the orbits. When a satisfactory result is achieved the threshold
is noted, and Landmarker is closed and the image is loaded into Analyze. The
chosen intensity thresholds for the processed datasets are seen in Table 5.1.

(a) Too low threshold (b) Too high threshold (c) Reasonable threshold

Figure 5.1: Same axial slice of a dataset presented with three different thresholds.
In (a) a too low threshold is seen, which induces a lot of noise components. The image
in (b) has a too high threshold, meaning that some of the wanted information of the
cranial bones is lost. In (c) a threshold in between the two previous was selected,
which entails that the noise components are removed, while the cranial bones are still
remained, more or less, unaffected.
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Figure 5.2: Surface reconstruction of the image, when using the threshold found in
5.1(c). The surface can in Figure Landmarker be rotated and seen from all angles and
thereby give the user a good possibility to evaluate the result. Here an angle is chosen,
where the orbits clearly can be seen, showing no holes in that area.

Table 5.1: User chosen intensity thresholds for all datasets.

# 1 2 3 4 5 6 7 8 9
Threshold [HU] 129 139 100 120 216 105 105 114 105

# 10 11 12 13 14 15
Threshold [HU] 135 109 100 109 124 230

5.2 Analyze

Analyze is a program developed for medical volumetric data, and is used for
analysis, processing and visualization. Furthermore, Analyze enables a segmen-
tation process based upon thresholding and/or morphology. The following will
be a walk-through of the steps used in the segmentation process. It should be
noted, that all illustrations do not possess the right anatomical scaling, due to
these are obtained as screen dumps from the segmentation process.
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When an image is loaded, a volume render function is chosen. Subsequently
the threshold found in Landmarker is specified to the program. A slice editor
is chosen which gives the user the possibility of running through all slices in all
three planes; transversal, coronal and sagittal. Furthermore, it is possible for the
user to adjust the contrast window and level such that the best possible image
contrast is achieved. A sagittal slice in the beginning of the left or right side
of the cranium is chosen, preferably where the intracranial volume is properly
bounded. In this slice a seed is manually placed inside the volume of interest,
and is given the properties of unifying all voxels having intensities lower than
the specified threshold found previously in Landmarker. A curve then marks the
prescribed area, as seen in Figure 5.3(a). If the area is satisfactory, i.e. proper
bounded, the area is filled as seen in Figure 5.3(b) and the next slice is chosen.
As long as the intracranial volume is properly bounded, the program segments
the area of interest in each slice, but as soon as a small breach appears, the
segmentation is out of bound.

(a) Outline (b) Filling

Figure 5.3: A sagittal slice showing the seed, given by the green cross, and found
outlining illustrated with the pink line (a). In (b) the region inside the line is filled
with pink color.

Gaps between bones will however be present, due to uneven growth caused by
craniosynostosis or in some cases due to a normal late closure of the skull bones.
Breaches will also appear in the cranial floor, due to the natural foramina to
e.g. the brain stem. When a slice holds one or more breaches, the thresholded
segmentation fails. In Figure 5.4, two examples of such failures are illustrated.
In these situations it is up to the user to manually edit the segmentation and
outline the cranial boundary in the necessary regions. Editing is performed
best possible, but errors can and will be introduced, e.g. due to different in-
terpretations of the anatomical map, especially in the cranial floor. Note that
the process in Landmarker and Analyze in total takes approximately two hours,
which has resulted in the sparse number of data processed in this thesis.
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Figure 5.4: Two situations where the thresholded segmentation must be manually
corrected. Manual corrections are visualized in green.

Breaches in the cranial ceiling can be of either mild or severe form. The mild
cases are relatively easy to get past, due to the natural curvature of the cra-
nial ceiling. Unfortunately, in some severe cases the breaches are of such size,
that the user is left with a relatively demanding task of drawing a smooth and
anatomically correct curve, see Figure 5.5. Furthermore, it must be noted that
all drawings are performed by use of a mouse as the drawing tool. All together,
these uncertainties will induce a certain error to the manually segmented vol-
ume, caused by the person performing the segmentation. The extent of this
is further examined in Section 11.1. When the entire process is conducted a
segmentation as presented in Figure 5.6 is obtained.

Figure 5.5: Examples of situations where manual editing for larger regions is neces-
sary.
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Figure 5.6: Example of a segmented mask seen as the red surface superimposed on
its corresponding bone surface.
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Image Registration

Image registration is a process, which can transform different data into a com-
mon coordinate system. This chapter provides a description of the processes
needed to obtain this alignment. However, before going into the actual process
a short description on image representation is given in Section 6.1. In Section
6.2 an introduction to image transformation is outlined, followed by the two
transformation forms used in this thesis; the affine and the B-spline transforma-
tion. The effect of the transformations are evaluated based on a dissimilarity
measure described in Section 6.3. A short description of the regularizer linked
to the B-spline transformation is given in Section 6.4. Lastly the multilevel
approach used for this model is described in Section 6.5.

Image registration has become an important tool within medical diagnostic.
It enables comparison of features of interest, e.g. to follow organ growth or
shrinkage in patients. Furthermore, it enables comparison between different
image modalities or comparison in between patients. It also gives the opportu-
nity to compare a patient to a known image, or even to an atlas. An atlas is
typically represented by a high resolution image and is obtained as a mean of
many aligned and adjusted images. In order to perform these prior mentioned
comparisons the images must be aligned best possible to each other. From this
it follows that transformation of one of the images is a necessity, and finding
the optimal transformation is exactly the goal behind image registration.
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Image registration involves two images, a known template image e.g. an atlas
and a reference image, which is the image of interest. The registration problem
can then be phrased as by Jan Modersitzki [33], "Find a reasonable transforma-
tion such that a transformed version of a template image is similar to a reference
image". The success of the transformation is often evaluated by a cost function,
also referred to as an object function or dissimilarity measure, which can be
based on different properties, dependent on the modality and appearance of the
images.

6.1 Image Representation

Before going closer into image registration, a short description of image acqui-
sition is necessary. Even in cases where images have been acquired with the
same modality, as the ones used in this thesis, differences are seen, due to the
acquisition settings of the used scanners. An important feature, which makes
image comparison difficult, and therefore must be taken into consideration, is
the voxel dimensions. Looking at images, these can be seen as sampled in a D
dimensional grid, where a grid point xi is defined as in Equation 6.1 and each
image dimension can be grouped into a vector as in Equation 6.2. A superscript
notation is in the following used for accessing higher dimension arrays, d = 1...D.
x1 represents the coordinates for the image rows, x2 the image columns and x3

the image slices, as described in Section 4.1. N defines the number of voxels in
the image.

xi = [x1
i x

2
i x

3
i ] for i = 1...N ; (6.1)

x1 = (x1
1...x

1
i )>

x2 = (x2
1...x

2
i )> for i = 1...N ;

x3 = (x3
1...x

3
i )>

(6.2)

Together, the three vectors define the 3D grid X, of voxel coordinates.

X = [x1> x2> x3>]> (6.3)

Each point defines a cell in the regular 3D grid of sizem = [m1 m2 m3]; for which
a simple illustration is seen in Figure 6.1. Note that one row in X corresponds
to one voxel xi = [x1

i x2
i x3

i ].
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Figure 6.1: 3D grid illustration. The dots specify the center of each cell. Modified
from [5].

However, as mentioned previously, images are often recorded with different voxel
dimensions, which means that the voxel size in each dimension must be taken
into consideration, in order to obtain the actual physical coordinates, hence the
actual voxel grid. A simple 2D illustration can be seen in Figure 6.2, where the
grid consist of the interval Ω = (ω1, ω2)× (ω3, ω4). The superscriptions are here
defined as (ω2d−1, ω2d) for d = 1...D. In order to access the center of the cells,
the grid points from Equation 6.2 must be modified according to the voxel size
in each dimension, found from δd = (ω2d − ω2d−1)/md, [33].

Figure 6.2: Simple 2D grid illustration. Modified from [33].
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6.2 Transformation

With the image representation in place, the focus can now be returned to image
registration and transformation forms. A registration example is illustrated in
Figure 6.3, where the square in the top left figure is the template image and
the circle in the top right, the reference. A transformation of the square to the
circle can be found from Equation 6.4.

Y(X; ·) = X + u(X; ·) (6.4)

X forms the identity part represented by the grid points defined in Equation
6.3, and u(X; ·) the deformation part, represented by the deformation vectors,
all illustrated in Figure 6.3 left middle. The · represent the actual deformation,
which is a number of parameters found from a chosen transformation form.
When the deformation vectors are applied to the underlying grid, the grid will
deform as seen in the right middle, which will result in a transformed version of
the grid, Y(X; ·), as seen in the bottom image. Difficulties are though seen for
the corners of the square, which still is slightly present in the transformed image.
However, the transformation of a square to a circle is a relative demanding task,
even though they have simple shapes, and errors are therefore expected. The
transformation is always applied to the template image, due to the fact that
the reference image is the one of interest and all information in that image is
wished kept unchanged.

To perform a transformation, as the one seen in Figure 6.3, a non-rigid trans-
formation is necessary, in order to transform the linear lines of the square to
the curvature of the circle. This will be the same case in this thesis, where
the transformation must be able to adjust for non-rigid dissimilarities, between
two images. First an affine transformation is applied. This transformation form
can correct for differences in position, orientation and general size of the head,
and thereby provide a rough alignment of the two images. Afterwards another
non-linear transformation, based on B-splines is applied, which can correct for
curvatures and finer differences. The two transformation forms are described in
Section 6.2.1 and 6.2.2.

6.2.1 Affine Transformation

The affine transformation is a geometric transformation, which transforms an
image by use of translation, rotation, anisotropic scaling and shear. The affine
transformation is non-linear due to the opportunity of translation, and non-rigid
due to the induction of shear. It preserves the straightness and parallelism of
lines, equal to its similar rigid transformation forms, but facilitates a rotation
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Figure 6.3: The two top images show the template and reference image, respectively.
The template represented by the square and the reference as the circle. The aim is
now to transform the square to the circle. In the two images below, the initial grid
point with the deformation vectors is seen to the left and to the right the resulting
warped grid is shown. The bottom image shows the transformed template image,
which is obtained when applying the warp grid to the original template image. A
high similarity is now seen between the initial reference image and the transformed
template. Modified from [27].

between the otherwise perpendicular lines. This can be beneficial, especially
in CT images, where the gantry angle can be incorrectly recorded, which can
induce skew into the images, [15].
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According to [27], the affine transformation can in its short form be written
as in Equation 6.5, where the rotation, shear and scaling parameters can be
derived from A and the translation directly from t. yi defines the transformed
grid point. Further it can be written in its matrix form as seen in Equation 6.6,
where the matrix A and the vector t is compiled in one matrix,

yi(xi; A, t) = Axi + t (6.5)

y1
i

y2
i

y3
i

 =

a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3



x1

i

x2
i

x3
i

1

 (6.6)

In order to solve the system in a universal equation system, the matrix system
is rewritten and expressed in Equation 6.7, [44],

y1
i = x1

i +
4∑

j=1
w1

j qj(xi)

y2
i = x2

i +
4∑

j=1
w2

j qj(xi)

y3
i = x3

i +
4∑

j=1
w3

j qj(xi)

(6.7)

where q denotes the very simple basis function q(xi) = [x1
i x

2
i x

2
i 1]T and wd

denotes the weight parameter [ad1 − 1 ad2 ad3 td]. This can be gathered in a
single equation system,

Y = X +

Q 0 0
0 Q 0
0 0 Q

w = X + I3 ⊗Qw = X + Qw (6.8)

where Y gives the transformed grid, X denotes the initial grid, and Q a matrix
formed by compiling all row vectors q(xi) = [x1

i x
2
i x

2
i 1]T and w is a vector

holding the affine parameters. Together Q and w corresponds to the deformation
part, which in Equation 6.4 was defined as u(X; ·), where w constitute the
transformation parameters and takes the place of ·. Note that ⊗ denotes the
Kronecker product.
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6.2.2 B-Spline Transformation

By the use of the affine transformation the template image has been aligned and
scaled to match the reference best possible. However, since the affine transfor-
mation holds the straightness of lines, deformations regarding curvatures have
not been taken into consideration. A way to introduce such non-linearity into
the transformation is by use of splines. Splines are piecewise polynomial basis
functions of degree Df defined over a knot sequence ξ with P knots, and where
each basis function covers a subinterval of knot sequence. The most common
used spline is the cubic spline, which is given when Df = 3. When working
with optimization of image registration the cubic basic-spline (B-spline) is pre-
ferred, since one of its main features is local support. This means that it is
possible to make changes that only affect a local neighborhood. Moreover, for
higher dimensional purpose the B-spline model has the advantage that it can
be constructed from a number of 1D cubic splines, [27].

The 1D cubic B-spline with P = 4 can be described by the mother function,
b(xi) in Equation 6.9, [44], which gives the curve illustrated in Figure 6.4. The
B-spline is twice differentiable and has the property of only being active in a
four neighboring knot interval, which gives the B-spline its important feature of
providing local support, [28].

b(xi) =



(2 + xi)3 for −2 ≤ xi < −1;
−(3xi + 6)x2

i + 4 for −1 ≤ xi < 0;
(3xi − 6)x2

i + 4 for 0 ≤ xi < 1;
(2− xi)3 for 1 ≤ xi < 2;
0 otherwise

(6.9)

At each knot point a B-spline is centered, and a knot interval is thereby covered
by shifting the mother function in Equation 6.9. The B-splines will overlap such
that when the influence of one function declines, another function will increase
its influence, as seen in Figure 6.5. A point can however never be influenced by
more than four B-splines. Furthermore, each basis function is associated with a
weight wp, which determines the influence of the given function. The B-splines
can be implemented with either free or fixed boundaries. Free boundaries can
be obtained by placing three additional knots equidistantly outside the image
boundary, while three knots on top of each boundary knot, will force zeros
outside the image, hence giving a fixed boundary.

The B-splines illustrated in Figure 6.5 are shown for only one dimension. Since
the data used in this thesis is in 3D, similar basis functions will be seen in all
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Figure 6.4: The cubic spline basis functions given for −2 ≤ x < 2.

three dimensions. The extended 3D transformation can therefore be written as
a product of B-spline functions, as seen in Equation 6.10, where p1, p2, and p3
defines the knots in the three dimensions, p = 1...P1P2P3, and ξd defines the
knot sequence in the dimension d. In this way new basis and weight functions are
created similar to Equation 6.7, which entails that the transformed coordinates
can be found based on Equation 6.11, [44].

qp(xi, ξ
1, ξ2, ξ3) = bp1(x1, ξ1)bp2(x2, ξ2)bp3(x3, ξ3) (6.10)

y1
i = x1

i +
4∑

p1=1

4∑
p2=1

4∑
p3=1

bp1(x1
i ) · bp2(x2

i ) · bp3(x3
i ) · w1

p1p2p3

y2
i = x2

i +
4∑

p1=1

4∑
p2=1

4∑
p3=1

bp1(x1
i ) · bp2(x2

i ) · bp3(x3
i ) · w2

p1p2p3

y3
i = x3

i +
4∑

p1=1

4∑
p2=1

4∑
p3=1

bp1(x1
i ) · bp2(x2

i ) · bp3(x3
i ) · w3

p1p2p3

(6.11)

The 3D basis functions for a given point can now be defined by a long vector,
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Figure 6.5: Distribution of shifted B-splines in one dimension.

q(xi), holding all basis functions pronounced in that given point. Since all
tensor B-spline basis functions are given as functions of individual coordinates,
the q vector can be parted into three vectors, each holding one dimension, as in
Equation 6.12.

q(xi) =


q1(xi)
q2(xi)

...
qP1P2P3 (xi)



q(xi) =

 b1(x3
i ; ξ3)
...

bP3(x3
i ; ξ3)

⊗
 b1(x2

i ; ξ2)
...

bP2(x2
i ; ξ2)

⊗
 b1(x1

i ; ξ1)
...

bP1(x1
i ; ξ1)

 (6.12)

The entire basis functions, Q, can now for all coordinates be written as

Q = Q3 ⊗Q2 ⊗Q1 (6.13)

The transformation can then be written, similar to the affine transformation, as

Y = X +

Q 0 0
0 Q 0
0 0 Q

w = X + I3 ⊗Qw = X + Qw (6.14)
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6.3 Minimization of the Dissimilarity Measure

Two transformation forms, which both contribute to minimizing the cost func-
tion, D, have now been outlined. The cost function can be obtained based on dif-
ferent features, e.g. mutual information, cross-correlation or the sum-of-squared
differences. In this thesis, where the images to be registered all are obtained
from CT scans, it is assumed that proper calibration has been performed, and
as a consequence, attenuation, hence voxel intensities can be directly compared
from data set to data set. The sum-of-squared-differences (SSD), which calcu-
lates the Euclidean distance between intensities of corresponding voxels in the
two images, is therefore a valid dissimilarity measure for this problem. The SSD
dissimilarity measure (DSSD) can now be written as in Equation 6.15, [27, 31],
where T (Y) is the transformed template image, R(X) the reference image, and
w represents the transformation parameters. It is noted that in the following
section the weights are referred to as w, but corresponds to the bold w written
in the previous sections.

DSSD(w) = 1
2
∑
i∈N

(T (y(xi;w))−R(xi))2

= 1
2‖T (Y))−R(X))‖2 (6.15)

6.3.1 Gauss-Newton

In order to find the best possible registration the DSSD (from now on denoted
D) can be seen as a minimization problem, where the solution is to find the
values for the weights w that provide the lowest possible value. The solution
can be found iteratively by use of the Gauss-Newton algorithm. The Gauss-
Newton algorithm takes point of origin in the residual function, r(w), and its
derivative, the Jacobian J(w). The residual function can be found by re-writing
the cost function in Equation 6.15 to Equation 6.16 [28, 33].

D(w) = 1
2‖r(w)‖2 = 1

2r(w)T r(w) (6.16)

Finding the first order Taylor approximation of Equation 6.16 gives

r(w + h) = r(w) + J(w)h (6.17)

where h yields the descent direction.
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By inserting the Taylor approximation in Equation 6.16 the equation system
will give the descent direction, h, which minimizes the specified cost function,
[28].

D(w + h) = 1
2 · (r(w) + J(w) · h)T (r(w) + J(w) · h) (6.18)

By finding the first derivative of Equation 6.18 and setting it to zero, the descent
direction h can be found. For more profound explanation and derivation the
reader is referred to [28].

∇D(w + h) = J(w)T · r(w) + J(w)T · J(w) · h = 0
⇔ J(w)T · J(w) · h = −J(w)T · r(w)

⇔ h = −(J(w)T · J(w))−1 · J(w)T · r(w) (6.19)

The Jacobian is here formed by

J(w) = ∇T ·Q (6.20)

where Q = I3⊗Q1⊗Q2⊗Q3 contains all basis functions and∇T = [∇T 1∇T 2∇T 3]
is given by a large matrix constructed of the image gradients for each dimen-
sion, e.g. ∇T 1 holds all image gradients with respect to the first dimension in
its diagonal. Both ∇T and Q are of such size, that a multiplication, hence a
formation of J(w) in many cases will be impossible in practice. If one could
succeed to form J(w), an inversion, as needed in Equation 6.19, will definitively
rule out a possible calculation. Since a solution to this system then only exists
in theory, an approximation of the system must therefore be applied in practice.
This is done by use of the Truncated Gauss-Newton system, which can be solved
by a conjugated gradient method. The approach of this method is to go back
a step in Equation 6.19 and find an approximated solution to h on the basis
of Equation 6.21, [28]. Iteratively, the Truncated Gauss-Newton algorithm will
search for a minimum, in order to find the optimal h.

J(w)T · J(w) · h = −J(w)T · r(w) (6.21)

In the algorithm for finding the optimal descent direction, h, a number of stop-
ping criteria are often specified, in order to prevent the algorithm from keeping
running, when no proper progress is seen. When e.g. the variation of the cost
function between two iterations is small enough the process is forced to stop.
However, a safe guard is always included, to ensure that the algorithm will
terminate, if not sooner, than after a user defined number of iterations.
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6.3.2 Line Search

When the descent direction has been determined, the step size, α, in that given
direction must be decided. To estimate the step size, a line search method is
used, which evaluates the cost function, D, along the defined descent direction,
h. This is defined by the ”line” function, ϕ(α), below.

ϕ(α) = D(w + αh), α > 0 (6.22)

Solving the line search problem exactly can be rather computational costly. The
solution to these kinds of problems are therefore often approximated, by mini-
mizing the function ϕ(α). The most simple condition which must be satisfied
is,

ϕ(αk+1) < ϕ(α). (6.23)

Unfortunately, this is often not sufficient to produce a proper line search, since
this does not prevent the step size of being either very large nor very small, as
illustrated in Figure 6.6. The decrease in the cost function could therefore not
be satisfactory and a proper convergence can be difficult to reach, [28, 1].

(a) (b)

Figure 6.6: Line Search with a too large step size in(a) and a too small step in (b).
Idea from [20].

6.3.2.1 Armijo Backtracking Line Search

To find a more suitable way to solve the problem, a new condition is taken
into consideration. The condition is often referred to as the Armijo condition
and is defined in Equation 6.24, [28, 20, 1]. The Armijo condition takes in
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the gradient, calculated from the initial condition, ∇ϕ(0), and forms a linear
function, as illustrated in Figure 6.7 as the dotted line. α values must be found
under that line, in order to be accepted as an applicable step size.

D(w + αh) ≤ D(w) + β1∇D(w)hα

⇔ ϕ(α) ≤ ϕ(0) + β1∇ϕ(0)α (6.24)

where β1 is a constant given in the interval [0 1], controlling the influence of
the initial gradient.

Figure 6.7: Illustration of the Armijo condition. The blue curve indicates the cost
function, while the dotted line defines the gradient. When the cost function lies below
the gradient, the corresponding α values are accepted. Modified from [1].

For each iteration where the Armijo condition is not fulfilled, the value is divided
by two. The algorithm runs until a value meeting the criteria, in Equation 6.24
is found. However, in order to prevent the algorithm from running without
reaching an acceptable value, a stopping criterion of a maximum number of
iterations is also given here.

It must be noted, that the Armijo condition does not prevent the line search
to result in a very small step size, which will cause a rather slowly progress
of finding the minimum. This can however be prevented by adding a further
condition, called the curvature condition. A disadvantage is increased calcula-
tion time, since the gradient must be calculated for each new α value, but the
implementation of this criteria will, however, often lead to fewer iterations in
the minimization process. For more profound information the reader is referred
to e.g. [1], since only the Armijo condition is applied in this thesis.



48 Image Registration

6.4 Regularization

Often when working with non-linear transformations, the registration problem
is ill-conditioned, hence a solution cannot be found uniquely. Furthermore no
constrains are linked to the deformation field, which entails that the deforma-
tion field can work freely and thereby introduce foldings into the resulting field.
To accommodate for these problems it can be an advantage to be able to control
the degree of deformation, hence ensuring that the grid formation is kept. This
is done by adding a regularization term S(w) to the dissimilarity measure in
Equation 6.15. Different regularizers exist, but in this problem a diffusion regu-
larizer is used, which has the ability to enforce a smooth deformation field. The
diffusion regularizer defined in Equation 6.25, where U denotes the deformation
field, Qw, is therefore often also referred to as the smoothness regularizer.

S(w) =
∑ 3∑

d=1
( ∂U
∂xd

)2

=
∑

( ∂U
∂x1 )2 + ( ∂U

∂x2 )2 + ( ∂U
∂x3 )2

(6.25)

How much impact the regularizer should have on the problem can be controlled
by a weight parameter λ. In this specific problem it is seen that, when going to
a finer level, hence introducing more B-splines, the λ value must be increased in
order to avoid foldings in the deformation field. It is noted that this effect not
necessarily can be transferred to other problems. The dissimilarity measure is
now in its full form defined as in Equation 6.26.

DSSD(w) = 1
2
∑
i∈N

(T (y(xi;w))−R(xi))2 + λS(w) (6.26)

6.5 Multilevel Image Registration

Since some level of noise will be present in medical images, the cost function
will have a risk of getting caught in a local minimum in the minimization pro-
cess. This problem can, to some degree, be avoided by introducing a multi-level
solution approach. The idea of a multilevel approach is to downsample the
images, often to several levels, and thereby obtain coarser levels of the same
image, cf. Section 4.2. By doing this, noise components are strongly reduced,
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i.e. smoothed, which will give significantly fewer local minima, as seen in the
illustration in Figure 6.8.

Figure 6.8: Three curves illustrating a multilevel problem with three levels. Green
= coarsest level, Blue = coarse level and Red = fine level. It is seen that the coarser
the level is, the less fluctuating the curve and a significant decrease in the number of
local minima is seen. Modified from [32].

By using the multilevel approach to solve the image registration problem, three
favourable advantages are presented. First of all, the registration is much easier
to solve on a coarse level, giving fewer iterations, and thereby strongly reduces
the computation time. Secondly, the image details are decreased, which reduces
the risk of getting caught in a local minimum, as mentioned earlier. Thirdly, the
optimization result found on a coarser level can be used as an initial condition
to the next level, which can reduce the number of iteration on the following
level, [31].

The images processed within this thesis are all of the size 512×512×m3, where
m3 defines the number of slices in a given image. These are all downsampled
to a four level problem, as described in Section 4.2, where L3 defines the most
coarse level with a resolution of 64×64× m3

23 and L0 the finest level holding the
original resolution.

As stated in Section 6.2, two different transformation forms are used, where the
multilevel approach can be used. However the parameter transfer to the next
level must be taken into consideration in the two situations. Due to the fact
that affine transformation is solved by using the actual physical coordinates, the
optimization parameters can directly be transferred to the next level. It is a little
different for the B-spline transformation, where the optimization parameters are
found based on a number of basic functions. On the coarsest level a number of
B-splines are defined. These are at the next level increased, and again further
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increased at the last level. This implies that the parameters cannot directly be
transferred to the next level, but must be resampled to fit the next level.

The substantial cornerstones for image registration have now been outlined.
Further implementation and optimization are discussed in Chapter 9.



Chapter 7

Graph Cut

In image segmentation, surface detection is of high significance - especially in
volumetric data where a 3D surface is sought. For an optimal surface segmen-
tation, graph-based algorithms are highly utilized due to their relatively easy
extension to 3D, and due to the guaranteed convergence to the global optimiza-
tion. Graph-based algorithms divide nodes of a graph into two subsets, and the
following chapter will describe the theory behind graph cuts and the algorithm
in use. In Section 7.1, the background and graph construction is specified. Sec-
tion 7.2 is based upon the algorithm used to partition a graph - the so called
min-cut/max-flow algorithm by Boykov et al. [7]. Finally, graph construction is
further considered, Section 7.3, in terms of edge weights for the topic in concern.
This chapter provides a basic foundation for understanding the implementation
of the graph-based segmentation in Chapter 10.

7.1 Background

Graph-based procedures use (among others) max-flow algorithms to minimize
an energy problem. Through time they have been used on a variety of vision
problems, e.g. image restoration and image segmentation. The history of graph
cut algorithm goes back to the first min-cut/max-flow algorithm by Greid et al.
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[18], where the energy framework was used to maximize a posterior of Markov
Random Fields in order to restore binary images.

Graph construction procedures are based upon the construction of a weighted
graph, G = (V,E), with a set of nodes and edges, V and E, respectively. The
nodes, or vertices, v ∈ V , correspond to e.g. voxels of an image, or of resampled
versions of this. The edges, or weights, specify the cost of the connections
between a neighborhood of nodes, see Figure 7.1(a) and Figure 7.3 for a simple
visualization of a graph setup. Two additional nodes, called terminal nodes, are
added to indicate the labels of the cut. The terminal nodes are referred to as a
source, s, and sink, t, respectively, specifying each side of the segmentation, i.e.
each side of the sought surface. The edges also have a similar classification into
subgroups: t-links (to terminal nodes) and n-links (edges in between nodes).
The structure of the n-links can moreover specify the graph type. A graph is
said to be undirected when two nodes only have one connection, and directed
when the nodes have two opposite edges with different costs associated. See
Figure 7.1(a) (undirected) and Figure 7.3 (directed) for visualization of this and
the following definitions.

The reference to a graph cut, the so called s-t cut, refers to the division of
the graph into an S and a T part, i.e. nodes belonging to the source and the
sink, respectively. Since this framework is to be minimized, the term minimum
cut is used for the optimal solution. This corresponds to the cut with the
minimum cost among all possible deviations of the nodes. A theorem by Ford
and Fulkerson [16] states that the minimum cut can be found at the edges
saturated by the maximum flow. Consequently, the min-cut and max-flow are
two solutions to the same problem.

In order to propose a figurative easy interpretation of the max-flow, a pipe-
line analogy is usually chosen. Visualize a pipe structure as in Figure 7.1(a).
Here the cost of the edges correspond to the capacity (i.e. width) of the pipes,
and the nodes are distribution stations. The maximum flow that can be pushed
through from the source to the sink is thereby limited by the different capacities
of the pipes. Algorithms that finds the maximum flow of such a system are
primarily divided into two subgroups - augmenting path algorithms and push-
relabel algorithms. This thesis is based on an algorithm using augmenting path,
and the focus in the following will therefore be kept to this type of approach.
The concept behind the augmenting path is based on the simple formula: "Find
a Residual Path, decrease Residual Flow and repeat". This is visualized in Figure
7.1(a) - (e), where the maximum flow iteratively is pushed through the shortest
path with the highest possible flow from s to t. This is repeated until saturated
edges (dotted lines) are restricting further flow. The maximum flow that can
be pushed from the source to the sink is found to be (16 − 4) + (13 − 2) =
12+4+7 = 23 (calculated based on the maximum flow from the source or the cost
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of the edges being cut, respectively). The edges that are saturated restrict this
maximum flow, and as stated by the theorem, the minimum cut will therefore
separate node 1, 2 and 4 from node 3. In the pipe analogy, the minimum cut
can be seen as the s-t cut where the least amount of ”water” is wasted when the
pipes are cut off. This is a simple, however not fully comprehensive introduction
to the concept of augmented path. The reader is referred to the work by e.g.
[16, 7] for further explanations.

Figure 7.1: The concept behind the augmenting path. (a) The initial graph setup.
The terminal nodes from the source set the maximum possible flow to 29. (b) The
shortest path from the source to the sink with the highest possible flow is found and
marked in red. The residual flow is then decreased by the cost of the edge that is
saturated, here 12. (c) Repetition of the procedure results in at least one new edge
saturation and a decrease of the residual flow by 7. (d) A new path is now necessary
in order to saturate an edge. The flow thereby decreases by 4. (e) No further flow can
be pushed through from the source to the sink due to the saturated edges. From the
Ford and Fulkerson theorem the minimum cut is therefore found at these saturated
edges. Idea from [9].
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7.2 The Min-Cut/Max-Flow Algorithm

In [7] Boykov et al. presents a min-cut/max-flow algorithm based on augmenting
path, but optimized in speed due to the introduction of a new building technique
for the search trees, i.e. a path between the source and sink. One search tree
is built from the source and one is built from the sink, visualized in Figure 7.2
in red and blue, respectively. In the following Figure 7.2 will be the base on a
short overview of the algorithm and its terminology.

The two search trees are treated systematically and consists of so called active
and passive nodes, labeled by A and P in the figure. Nodes with no tree con-
nection are called free nodes. Active nodes have the possibility to grow to a free
node, whereas passive nodes cannot grow, since they are blocked by other nodes
from the same tree. For the growth process the terminology is expanded with so
called parents and children, where the naming is based on the saturation of the
edges. Even though two search trees are used, the flow is still considered to flow
from the source to the sink, and therefore the naming differs in the two trees:
A parent in S has a non-saturated edge to its children, while the non-saturated
edge in T goes from a child to its parent.

Figure 7.2: Search tree setup for a short overview of the min-cut/max-flow algorithm
and its terminology. Red nodes, S, are connected to the search tree with root in the
source, whereas blue nodes, T , belong to the sink. The labeling with A and P specifies
the active and passive nodes, respectively. The free nodes are marked with black. The
found path from the source, s, to the sink, t, at the end of a growth stage is marked
with yellow. Edited from [7].
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The iterative process of the algorithm consists of the following. Keep in mind
that the stages are treated systemically for both trees.

Growth stage Active nodes grow by converting free nodes to active children
of the tree. Meanwhile active nodes are converted to passive nodes if
all their neighbors have been explored and no further growth is possible.
If an active node, in its growth, encounters a node from the other tree
the growth state is terminated, since a path from s to t has been formed
(marked in yellow in Figure 7.2).

Augmentation stage The found path is now augmented by pushing the high-
est possible flow through the path. Naturally this entails a saturation of
at least one of the edges in the path. If the saturation thereby splits a
child from its parent, the child is said to be an orphan.

Adoption stage As indicated by the name, the adoption stage will assign any
orphans to a new parent (through a new non-saturated edge) or assign the
orphan as free node if no adoption is possible. When assigning an orphan
as free, all its children are considered orphans as well and must be set up
for the adoption procedure. The adoption stage is terminated when all
orphans have been re-assigned.

The algorithm now returns to the growth stage and the trees are thereby ex-
panded anew. This assures that the search trees never are built from their
initial roots and entails the attractive cornerstone of the speed optimization.
The algorithm terminates when no active nodes are available, the minimum cut
is thereby found between the two search trees.

7.3 Edge weights

Returning to the graph construction, the edges can furthermore be divided
into intra and inter column weights, which specifies the different edge costs in
the neighborhood. The extent of the neighborhood depends on the number of
links made to the nearest inter column nodes. The reader is again referred to
Figure 7.3 for the definitions of the edges. A column, or flow line, is a direct
path through intra column nodes from the source to the sink, where the sought
surface must be cut at least once. The inter column edges specify connections
to nodes in another nearby column. The flow (pipe-analogy) from node to node
within a column is controlled by the data term edges, Edata, based on an image
or e.g. gradient values, cf. Section 10.5. In order to ensure a unidirectional flow
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in the column and to avoid multiple cuts within a column, the cost of the edges
opposite the data edges are set to infinity, E∞. Considering the inter column
edges, Einter, these edge costs can be seen as separation penalties, enforcing a
smoother surface solution. This effect is simply visualized in Figure 7.4, where
(a) shows the cut (blue line) when the inter column weights are low and (b)
the cut forced by a higher inter column edge cost. Thick black lines indicate
high data term edges, whereas the dashed thin lines have a low edge cost. For
the purpose of this simple illustration, a value of 10 and 1 is assigned to the
high and low data term edges, respectively. In subfigure (a) the dark purple
inter column weights are set to 1, whereas they in (b) are set to 2. The two
minimum cuts that could be considered are superimposed on the two figures,
and referred to as path 1 and path 2, respectively. With an inter column cost
of 1, the maximum flow for path 1 is 13, whereas it for path 2 is 16. Path 1
is therefore the minimum cut for the graph in (a). If the inter column cost is
increased to 2, the maximum flow for path 1 is 21, whereas it for path 2 is 18.
A higher inter column edge cost has therefore enforced a smoother cut as seen
in (b).

Figure 7.3: Nodes and edges in an s-t cut. The terminology of links and edges are
explained with different line types. The t-links are edges to terminal nodes (thick lines),
whereas n-links connect the nodes (thin lines). Intra column edges link the direct flow
from the source to the sink (full and dotted lines), whereas the inter column edges
connect to nodes in another column (dot-dash lines). Data term edges have costs
based on the data set (full lines), and infinity cost edges facing backwards are applied
to ensure a unidirectional flow from s to t (dotted lines). With these two opposite
edges, the graph is said to be a directed graph.
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Figure 7.4: The effect of the inter column weights. For the purpose of illustration,
a value of 10 and 1 is assigned to the high (thick black lines) and low (black dashed
lines) data term edges, respectively. In subfigure (a) the dark purple inter column
weights are set to 1, whereas they in (b) are set to 2. The two optimal minimum cuts
are superimposed on the two figures. A smoother cut is seen to be enforced in (b) due
to the higher inter column cost. The nodes marked with a red contour are thereby
assigned to the source.

To recap, the cost function for the edges consist of the energies specified in
Equation 7.1. It should be noted that the construction of the edge cost and
framework is inspired by Pedersen et al. [37]. For further consideration about
the implementation of a graph cut segmentation algorithm, cf. Chapter 10.

E = Edata ∪ E∞ ∪ Einter (7.1)
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Chapter 8

Preprocessing

The images processed in this thesis were all made available by the 3D-Laboratory.
All images were raw images, which means that they can be rather hard to an-
alyze directly, due to different noise components present in the images, as seen
in Figure 8.1. In order to solve this problem all images have been preprocessed
by the 3D-Laboratory, in order to make them easier to interpret and process
further by the two segmentation models. This has been done by performing two
preprocessing steps, where the images have been oriented to a standard orienta-
tion and the noise components, i.e. everything else than the head region, have
been removed or strongly reduced. The steps performed by the 3D-Laboratory
are briefly described in Section 8.1 and Section 8.2. Furthermore, in an attempt
to optimize the initial condition for the models, the images have been aligned
as described in Section 8.3.

8.1 Standard Orientation

The orientation to a standard orientation is performed in the program Land-
marker, where a rotation of the head based on four landmarks is performed.
The four landmarks are placed on the following locations: right ear, left ear, the
nasion and the tip of the nose, as illustrated in Figure 8.2.
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Figure 8.1: An example of a transversal slice of the original data. The head is seen in
the middle in light gray. The darker gray circle indicates the actual scan tube, wherein
two slightly visible gray areas at each side of the head is stabilizing objects. The lines
in the bottom indicate the scan bed.

Figure 8.2: An illustration of the landmark locations (red dots). The landmarks are
superimposed on a polygonal surface rendering based on the HU value of skin.

A transformation is calculated, which rotates the data to the standard orien-
tation. This is conducted through a coordinate system incorporated in Land-
marker. More profound information about the rotational calculation, can be
found on the homepage for the 3D-Laboratory, [3].

8.2 Removal of Noise Components

A lot of components, e.g. scan bed, scan tube and headrest, as seen in Figure
8.1, can distract the analyzer from the actual area of interest. These components
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are therefore removed best possible through a procedure performed by the 3D-
Laboratory. The following steps, including the illustration in Figure 8.3(f), are
based on a mail correspondence with Tron Darvann, from the 3D-Laboratory.

• A threshold, based on the original image, Figure 8.3(a), corresponding
approximately to the value of the skin, is applied to the image. This gives
a binary image where the background, corresponding to air, has the value
zero, and everything else is represented with the value 1, Figure 8.3(b).

• A seed is placed in the center of the head, and a region search in 3D is
applied, which collects all voxels having the same value as the seed. In
this way the head is found, except a few holes, which are air filled regions
in the head, Figure 8.3(c).

• A seed is then placed in the corner of each 2D slice and a similar search
is conducted. Since the seed is not connected to the air filled holes in the
head, the head is now given as one interconnected area, Figure 8.3(d).

• The head region is dilated a bit, to ensure that the entire area of interest
is presented in the final image, Figure 8.3(e).

• Every value outside the filled area are given a constant value - here the
minimum value from the original image. This value is in fact found outside
the actual scan area (black area in Figure 8.1). It could be argued, that a
more correct value would have been the value corresponding to air, which
is found in the dark gray area in the same figure.

• Finally, the areas within the dilated head, are filled with image values
gained from the spatially corresponding voxels in the original image. Small
noise components can still be seen present in the image, due to the dilation.
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(a) Original (b) Threshold (c) 3D region search

(d) 2D region search (e) Dilation and change
of background value

(f) Final result

Figure 8.3: Preprocessing steps in removal of background noise. The steps are further
elaborated in the text.
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8.3 Optimizing the Initial Condition

For both segmentation models, a good initial condition is important. For the
image registration, a good initial condition is for the two images to lie around
the same center, since a certain overlap is necessary. This will give the trans-
formation algorithm the best possible conditions, and the chance of obtaining
a satisfactory result within reasonable time frame, increases. For the graph cut
model, a similar initial condition for all images will be an advantage, since this
will simplify the placement of the sink and source. In order to obtain such a
condition, the principal axis transformation, described in Section 8.3.1 was im-
plemented and evaluated. This transformation was however replaced by a more
simple linear transformation described in Section 8.3.2.

8.3.1 Principal Axis Transformation

The principal axis transformation (PAT) is a similarity transformation, which
uses translation, rotation and anisotropic scaling to align two images, a tem-
plate and a reference, respectively. These parameters are based on the center
of mass and the co-variance of the images, which are calculated from voxel in-
tensities. The difference between the two centers of mass gives the translation
parameters. From the co-variance matrix the eigenvalues and their correspond-
ing eigenvectors are found. The eigenvectors compose the principal axes of the
images, by finding the difference between the two corresponding matrices of
eigenvectors, the rotation matrix, hence the rotation parameters can be found.
Lastly, by comparing the size of the coupled eigenvectors, the scaling factors
can be established.

A 2D example is illustrated in 8.4(a), where the reference image (green) is shown
together with the template image (red). It is clear to see that a better alignment
of the two images is possible. PAT is therefore applied, the principal axes and
the center of masses are found for the two images, as seen on Figure 8.5. Based
on the found information, the translation, rotation and scaling parameters are
applied to the template image and the result can be seen in Figure 8.4(b), where
an improved alignment is achieved.

Unfortunately, a problem however arises in the alignment process, due to the
direction of the found eigenvectors. The eigenvectors defining the principal
axes can be given as a positive or a negative direction. This entails that if the
eigenvectors for the template image are found to be in the positive directions and
one or both eigenvectors for the reference image are found to be in the negative
direction, a rotation. A simple illustration is given in Figure 8.6, where (a) and
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(a) Original Position (b) Position after applying the
principal axis transformation

Figure 8.4: Two transversal CT slices from two different datasets. The reference
(green) and template image (red) seen before and after application of the parameters
from the principal axis transformation. The RGB image space is used in order to
visualize both images concurrently.

(a) (b)

Figure 8.5: Reference and template image, with principal axis and center of mass
(blue dot). The first principal axis is visualized in red and the second in green.

(b) show the reference and template image, respectively, together with its found
principal axes. The corresponding vectors resulting from the first principal axis
are seen to be found with opposite operation sign, which entails the 180 degree
rotation around seen in (c).



8.3 Optimizing the Initial Condition 65

(a) Reference

(b) Template

→

(c) Transformed template

Figure 8.6: Simple illustration of a reference (a) and template (b) image, where the
first principal axis for the reference image is found in the negative direction, hence
opposite its corresponding vector from the template image. This will give a 180 degree
rotation as seen in (c).

The problem can be solved by evaluating the angle between the corresponding
vectors. Based on a priori knowledge concerning object placement in the scan-
ner, and due to the preprocessing part concerning standard orientation, it is
presumed that an angle above 100 degrees between corresponding vectors, only
will be seen in cases where opposite operation signs are present. Therefore, if
an angle is found above 100 degrees, one of the eigenvectors is multiplied by
minus one, which gives a change in direction, as seen in Figure 8.7, and thereby
prevents a rotation of the image.

Unfortunately, when expanding the PAT to the 3D problem of this thesis, more
difficulties arise. Due to the abnormal head shapes of these children it is no
longer given that the principal axes are found in the same order for all images.
If example the principal axes for two images are found as stated in Table 8.1,
a transformation with these underlying eigenvectors will induce a erroneous
rotation around the z-axis. In addition to the vector direction problem addressed
in the 2D case, a problem concerning the order of the principal axes is now also
introduced. The transformation has been applied on several images, in order to
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Figure 8.7: T1 and R1 defines the principal axis of a template and reference, respec-
tively. The angle β between the two vectors is seen to be above 100 degrees, and the R1
vector is therefore multiplied by minus one, which gives the vector R1New illustrated
with the dotted arrow. The rotation angle between T1 and R1New will now provide a
correct alignment.

create an overview regarding the extent of the problem. However, due to the
variation seen among these children, a simple solution to address this problem
has not been established. Instead the principal axis transformation is discarded
and a new, more simple approach, described in Section 8.3.2, is used.

Table 8.1: Example of the directions principal axes found in two 3D images.

Image 1 Image 2
1. principal axis z z
2. principal axis y x
3. principal axis x y

8.3.2 Linear Translation

Instead of aligning one image to the other, all images are now moved to a
common center, here chosen as the geometrical center of the image. The region
of interest is then centered by applying a simple linear transformation, where
only translation is present. The center of mass is found, but only the center
of masses for the first two dimension, x and y are used. The datasets are seen
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to differ significantly in their z dimension, not only in the number of slices and
resolution, but more importantly in their scan area, hence e.g. the amount
of shoulder present in the image. As a consequence the center of mass in that
direction cannot be used directly, the translation in z is therefore neglected, and
addressed as zero. The center of mass in the other two dimensions can also be
slightly biased by the shoulder region, but assuming symmetry in that area, this
is left out of account. The translation parameters for the two needed dimensions
are then found as the difference between the center of mass and the geometrical
center of the image. By applying the found translation to the image, the region
of interest is moved to the geometrical center in the x-y direction. The images
are now ready for the segmentations described in Chapter 9 and Chapter 10.
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Chapter 9

Implementation and
Optimization - 3D Image
Registration Based Model

The image registration was performed by use of a software package, called
RegLab4matlab, developed by Martin Vester-Christensen [44], which takes point
of origin in a similar software program called FAIR,1 produced by Jan Moder-
sitzki, [33]. Both programs are built on the theory described in Chapter 6. The
software package has furthermore been used by Hildur Ólafsdottír, who has
added a couple of files, which have been helpful during the work of this thesis.
In order to have the software running on this data, modifications of some of
the files were though necessary. The software is enclosed in the attached CD.
The main program files were extended with explanatory comments, which were
added through the acquaintance and review of the program. Since the soft-
ware is based on object based programming, no overview of the program files is
supplied.

In Section 9.1 the implementation process is briefly outlined. Since an already
existing software package was utilized for this model, the implementation de-
scription is kept on a basic level, providing the reader with a general introduction

1Flexible Algorithms for Image Registration
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to the model. In Section 9.2, the results and considerations regarding the dif-
ferent optimization attempts, concerning levels and regularization parameters,
are described.

9.1 Implementation

9.1.1 Background Correction

Before the images could run with the available software, a correction of the
intensity of the background voxels, was necessary. In the preprocessing the noise
components were removed from all images, and in that process the background
values were set to the minimum value found in the original image, which was
seen to lie between -7000 and -1500 HU in between the datasets. This induced
problems in the image registration process, as the large difference between the
background voxels for the two images, was seen as registration errors, due to a
high squared errors for these calculations. The background values are therefore
corrected to a value of -1000 HU, which approximately correspond to the air
value in CT scans.

Difficulties were though still present in the first transformation process, where
no proper convergence was seen. The extent of the problem differed dependent
on the size and the transversal placement of the reference image, compared to
the template. A correction of an equal background value to -1000 HU was seen
insufficient, in order to obtain an alignment. The squared error in a boundary
region could e.g. be calculated between a voxel containing air (-1000 HU) and
a voxel containing soft tissue (∼ 30 HU). This might be the most ”correct”
match, but the squared error would indicate differently. In order to solve the
problem, all background values were further adjusted to a value of 0 HU, which
would lower the difference between the background and object voxels, hence
lowering the squared error. This adjustment was seen to yield significant better
conditions for the registration process.

Another approach could have been to apply a mask to the registration problem,
such that all values under a certain constant were neglected in the calculation
of minimizing the cost function. In this way, adjusting background voxels could
have been avoided.
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9.1.2 Software Description

The main aim in image registration is to find the optimal transformation pa-
rameters, which can provide the best possible registration of the two images.
However, it must be remembered, that in this thesis the main aim was to es-
timate the intracranial volume of the reference image. In order to reach that
goal, a template image with a known intracranial volume must exist, cf. Chapter
5. A template with a reasonable manual segmentation, but more importantly
with a high resolution, was selected among the 15 available segmented datasets.
Dataset #14 was selected, and its intracranial volume segmentation, found from
the manual segmentation, can be seen in Figure 9.1.

Figure 9.1: 3D surface rendering of the template image, dataset #14, with its in-
tracranial volume found from manual segmentation.

The process for obtaining an estimation of the desired volume mask for the
reference image is in a simple manner illustrated in Figure 9.2. Image registra-
tion was first performed between the preprocessed CT images for the template
and reference image. The registration was performed by transforming the tem-
plate image by finding a set of transformation parameters w, as described in
Section 6.2.1 and Section 6.2.2, and illustrated in (b) and (c). The parameters
were found by iteratively solving the minimization problem outlined in Equation
6.26. When the process reached an acceptable minimum, e.g. when the change
in the cost function was under a certain level, the process was said to have
found its solution. The parameters providing the final transformation, referred
to as the optimal weights, wopt, was then extracted and applied to the volume
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mask of the template. In this way the volume mask from the template was
equally transformed, which provided an estimation of the volume mask of the
reference image. This last step is illustrated in (d) and (e). By multiplying the
new volume mask with the voxel size from the reference image, an estimation
of intracranial volume of the reference image was obtained.

9.2 Optimization

In image registration a number of parameters can be adjusted, both regarding
the transformation forms, where the weights controlling the regularization might
be the most significant parameter. However, also the initial condition for the
line search, choice of line search method and stopping criteria can affect the
result. In this situation the line search method and the stopping criteria were
kept as in the original software package. The initial condition for the line search
was seen to provide satisfactory results so no adjustment of that parameter was
conducted. Instead, due to the size of the images, the calculation time was seen
very high and relatively demanding, when the transformation was applied on all
levels. A simple test was therefore conducted in order to see whether it would be
possible to eliminate some of the level steps. Furthermore, adjustments of the
weight parameters controlling the regularization of the B-spline transformation
were performed. The optimization was evaluated against the resulted voxel
deviation, found as the amount of voxel differences between the manual and
model based segmentations.

9.2.1 Levels

The transformation conducted in the image registration software, is built as a
two step constellation. First, the affine transformation is conducted on the levels
specified by the user. 12 parameters are obtained for each level, which all are
saved in a matrix constellation. Subsequently, the B-spline transformation is
conducted, again on the user specified levels for this transformation form. The
parameters found from the affine transformation were given as an input to the
B-spline, where they are used as initial conditions for the deformation grid.

Affine Transformation

The purpose of the affine transformation was to align the template and reference
image best possible by use of translation, rotation, shear and scale. This is a
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(a) Reference - Volume esti-
mation wanted

(b) Template - Known image

T (y[X;w])→

(c) Transformed template

(d) Template mask - Known
volume

T (y[X;wopt])→

(e) Estimated reference
mask from which the volume

can be calculated

Figure 9.2: Illustration of an image registration procedure. The top image shows
the reference image, for which intracranial volume information is wanted. In order to
obtain the wanted information, a known template image is registered to the reference.
This is conducted by iteratively minimizing the sum-of-squared differences between
the template and the reference image. For each iterative step a parameter set, w, is
obtained, providing the information for the given transformation. When the process
reaches its minimum, hence its optimal solution, defined on the basis of a number of
stopping criteria, the parameters providing the final transformation are referred to as
optimal, wopt. These parameters are extracted, and by applying wopt to the mask of
the template, which is known, the intracranial volume for the reference image is found.
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relatively simple transformation, where reasonable results can be expected on
relatively coarse images. A study of the effect of the affine transformation
on the different levels was therefore performed, in order to examine whether
it was possible to eliminate some of these transformations levels. The study
was performed on five different level situations, where the results, defined by
means of the percentage voxel deviation, are seen in Figure 9.3. When more
levels are specified, e.g. L3-L1 the transformation was applied according to the
multilevel approach described in Section 6.5, starting with the coarsest level.
Five randomly chosen datasets constitute to the stated voxel deviations, and
the test results are therefore only an indication of a global effect. Furthermore,
the calculation times in Table 9.1 are presented as a mean of the five datasets.
It should be noted that the first three situations, hence L3, L2 and L3-L2 were
run on a 64-bit laptop with a 2GHz Intel Dual Core i7 processor and 6 GB
RAM. This was seen inadequate when working with higher levels. L1 and L3-
L1, are therefore run on the the Sun Fire X4600 M2 high memory server at IMM,
consisting of eight 2.3 GHz CPUs (Quad-core AMD OpteronT M processor 8356)
and a memory capacity of 256 GB RAM (64 blocks Samsung DDR2 Synchronous
333 MHz). The processing times are therefore not directly comparable.

Figure 9.3: Illustration of voxel deviation after affine transformation as a function
of five level situations.

Table 9.1: Mean time consumption for the five level situations when applying the
affine transformation.

L3 L2 L3 − L2 L1 L3-L1

Mean time [s] 7.13 56.26 65.15 1595.16 1609.83

Based on the results from Figure 9.3 a decrease is seen for all five datasets when
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going form L3 to L2. However, the voxel deviation has no significant decrease
when conducting the affine transformation on the finest level L1. Similar, the
voxel deviation is not seen to decrease significantly, when running on several
levels. Another aspect which can be taken into consideration is the fact that
conducting the affine transformation on a finer level will demand a powerful com-
puter with a large amount of RAM. Moreover, the calculation time, presented
in Table 9.1 increases significantly for finer levels. Based on these observations,
the affine transformation was limited to be conducted only on L2.

9.2.1.1 B-spline Transformation

The B-spline transformation is a transformation with the ability to correct for
even small local dissimilarities between the template and reference image. Since
the images on their coarser levels will contain fewer details, and thereby appear
more ”smooth”, than their finer levels, cf. Section 6.5, a similar level limitation,
as seen for the affine transformation, is not expected to be possible. However,
a small study was conducted to investigate how the change in voxel deviation
depends on the levels chosen for the B-spline transformation. The results are
seen in Figure 9.4 together with mean calculation times in Table 9.2. It is
noted that an affine transformation on L2 was applied prior to the B-spline
transformation, and that the boundaries for the B-splines are free.

Figure 9.4: Illustration of voxel deviation after B-spline transformation as a function
of five level situations. An affine transformation on L2 has been applied to all cases
prior to the B-spline transformation.

Based on these results, it is evident, that in order to reach the best result, the B-
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Table 9.2: Mean time consumption for the five level situations run with the B-spline
transformation.

L3 L2 L3 − L2 L1 L3-L1

Mean time [s] 6.82 32.57 41.47 694.00 613.37

spline transformation must be conducted on all three levels, hence L3-L1. This
entails that all datasets are processed with an affine transformation conducted
on L2 followed by the B-spline transformation conducted on the three levels, L3-
L1, where the affine parameters from L2 are given as input to all three levels. It
is noted that L0 was not included in the studies due very long processing times
and no certain improvement in performance. Future studies could, however,
assess this applicability.

9.2.2 Regularization Parameters

The B-spline transformation was applied to the registration problem by adding
a number of B-splines equally distributed over the voxel grid. The density of
the spline distribution differs depending on the levels, i.e. the sampling density.
In order to have the same distribution in each image, the density distribution
of B-splines was made independent of the voxel dimensions, by defining the
distribution in millimeter. The millimeter distribution for the three levels was
20 mm, 10 mm and 3 mm from coarse to fine level, respectively2. A regularizer
controlling the degree of flexibility of these deformation grids was added to the
cost function. How much weight the regularizer on the given levels is assigned,
can have an impact on the final result, e.g. if too much flexibility is allowed,
foldings can appear in the image and introduce errors.

In order to have the B-splines work as effective as possible, an ”optimal” weight
for the regularizer for each level must be established. The two above studies were
performed with a set of weight parameters for the three levels, at 100, 6000 and
103, respectively, found from a quick study based on only two datasets. A more
thorough study was therefore performed, involving the five dataset and the level
setup established from the two above studies. The weight parameters were found
one at a time, starting with the one controlling the coarsest level. Nine different
parameters, [50 75 100 150 200 250 300 400 500] were tried and evaluated
based on their resulted voxel deviation. The results for the nine parameters,
for the five dataset, are outlined in Figure 9.5, where no unison minimum can

2Based upon inspiration and conversation with PhD student, Mark Lyksborg and MSc.
Eng., PhD, Hildur Ólafsdottír
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be established. In order to examine the results closer, the deformation grids
were evaluated, which showed no warp for the nine tried weights. A low weight,
at 150, was therefore chosen in order to allow a relatively flexible grid on this
coarse level. Similar studies were conducted for L2 and L1. First step was
to find the weight level, where no warp was present, and then examine values
in that area. Similar to the results from the first level, minor changes in the
voxel deviations were seen, but no unison minimum could be established. The
weights for L2 and L1 were therefore chosen as low as possible, where no warp
was detected, which resulted in the following regularizers; 2.5 · 103 and 5 · 104.
An illustration of the resulting deformation grids on the three levels, together
with the transformed template, is seen in Figure 9.6. Whether these weight
parameters should have been established before the level test, could be argued.
However, since no significant changes were seen in the voxel deviations among
the examined weights, this was not further investigated.

Figure 9.5: Voxel deviation after affine transformation on L2 followed by the B-
spline transformation performed on L3-L1 as a function of nine different regularization
parameters for five different datasets.
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(a) Coarsest level L3 (b) Finer level L2

(c) Finest level L1

Figure 9.6: Deformation grids for the B-spline transformation on the three levels.
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Implementation and
Optimization - 3D Graph

Based Model

The following chapter will provide an insight to the implementation of the seg-
mentation process built upon the graph cut algorithm described in Chapter 7.
Section 10.1 describes the preprocessing specific for this graph cut procedure.
Note that a simple walk through of the graph cut based segmentation algorithm
is seen in Figure 10.1. The figure is used throughout this chapter for reference
and overview. Section 10.2 states the construction of the source and sink, seen
in Figure 10.1(b)-(c), and in Section 10.3 the radial gradient is defined (Figure
10.1(e)). The used spherical resampling is defined in Section 10.4, which re-
sults in the resampled gradient in Figure 10.1(f). The setup for the graph cut
algorithm is defined in Section 10.5 and Section 10.6, where the weights and
connections are investigated. This entails the graph cut in spherical coordinates
as seen in Figure 10.1(g). Finally, the conversion back to Cartesian coordinates
is defined in Section 10.7, allowing the final segmentation to be made, as in (h).
The found segmentation can now be held up against the manual segmentation
and evaluated as in Figure 10.1(i). The code written in Matlab version 7.13
is provided in the enclosed CD. Note that in order to process 3D CT data with
a resolution of 256×256×m3 (corresponding to L1 of the downsampled dataset,
see Section 4.2), the algorithm must be executed on a high memory server. All
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calculation were performed on the Sun Fire X4600 M2 high memory server at
IMM, consisting of eight 2.3 GHz CPUs (Quad-core AMD OpteronT M proces-
sor 8356) and a memory capacity of 256 GB RAM (64 blocks Samsung DDR2
Synchronous 333 MHz).

Figure 10.1: Walk through of the graph cut implementation. (a) 3D surface visual-
ization based on the HU bone value. (b)-(c) Collapsed image with the source and sink
superimposed in red. (d) Transversal slice of the head. (e) Transversal slice from the
3D radial gradient. Only positive gradient values are of interest. (f) Resampled ver-
sion of the radial gradient in spherical coordinates. (g) The cut found in the spherical
coordinates. (h) Resulting graph-based segmentation. (i) Manual segmentation with
superimposed closest point deviation [mm] found between the manual and graph-based
segmentation.

10.1 Preprocessing

As described in Section 8.3.2 the heads are linearly transformed in the x − y
direction. For the purpose of graph cut, this translation is performed in order
to facilitate an easy placement of the source, the sink, and the center of the
sampling grid. The segmentation is performed on images downsampled once,
i.e. with a dimension of 256×256×m3, where m3 is the variable number of
slices. The downsampling is necessary, in order to decrease the memory capacity
required to create the extensive weight matrix. It should furthermore be noted
that the images are windowed for HU values below 20, since no gradients in
these regions are of any interest.
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10.2 Construction of the Source and Sink

The source and the sink are chosen as ellipsoids in order to mimic the sought
surface best possible, with the simplest possible shape. The source must be
placed inside the skull and the sink on the outside, facilitating the minimum
cut to encapsulate the entire skull. Since the preprocessing, i.e. the linear
transformation, only provides a suitable center for the source and the sink in
the x−y dimension, the center in the third dimension must be manually selected.
The segmentation is no longer fully automatic, but a user-specified z-center is
necessary due to the difference in scan area of the datasets. The user must
moreover specify the radius of both the source and the sink, and verify that
the placement is correct in all dimensions. By creating terminal weights with
infinitely high weights outside these boundaries (and zero in between), the cut
is forced to lie between the two boundaries. It should be noted that the radius
specified by the user is set in an isotropic image, but when converting to the
anisotropic voxel size, the source and sink are seen as ellipsoids. It was decided
to place the source and the sink on the basis of a collapsed version of the CT
image, to facilitate an easy interpretation of the anatomical placement of the
boundaries, cf. Figure 10.1(b)-(c). Another way would be to place the source
and the sink based on the spherical resampled visualizations.

Due to the incorporation of the manual input, the effect and placement variation
dependency has been tested. This was done on a test set created as a simple 3D
double ellipsoid, in order to simply mimic the craniofacial anatomy, see Figure
10.2. The test data consists of an inner ellipsoid with an assigned HU value at 30,
and an outer ellipsoid band with a HU value of 900, which should be interpreted
as the brain and the skull, respectively. The background values are furthermore
set to the HU value for air. The voxel size is defined isotropic, which will lead to
a spherical sink and source. Together with the elliptic shape of the test set, the
algorithm will still be challenged, since the sought cut is a non-plane surface.
The placement and spread of the source and the sink was varied and the effect
on the segmentation was evaluated compared to the true known boundary of
the ellipsoid. No significant change in the error value was seen when expanding
the spread of the source. The location can however be placed too close to an
edge, which will cause the gradient unit vectors to be misleading. It is thereby
concluded, that as long as the z-location is placed around the center of the skull,
no crucial error will be induced by the user. Alternatively, a future feature could
be a quantitative evaluation of the correctness of the user specified center, or
a complete automatic center placement based on extracted skull dimensions.
Note that similar center dependent results were seen, when performing the test
on a real dataset.
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Figure 10.2: Surface representation of the 3D test set consisting of an inner (red)
and a outer (blue) ellipsoid.

10.3 Radial Gradient

The edge weights, Edata are found on the basis of the radial gradient image,
which in 3D is calculated from Equation 10.1, where r̂ is the radial unit vector,
with the geometrical image center in x and y, and the user specified center of z.
By multiplying with normalized radial vectors the gradient image is weighted
equally in all directions. The voxels of the dataset are an-isotropic, and the unit
vectors in the z-direction is therefore scaled by the dimension ratio, sca, as seen
in Equation 10.2.

∂I

∂r =

 ∂I
∂x
∂I
∂y
∂I
∂z

 · r̂ (10.1)

∂I

∂r = ∂I

∂x
· r̂x + ∂I

∂y
· r̂y + ∂I

∂z
· r̂z

sca
(10.2)

Due to the a priori knowledge of the skull structure, only positive radial gradients
are used in construction of the weights to find the inner surface of the skull. The
3D radial gradient, and the subsequent spherical resampling, are also chosen on
the basis of the a priori knowledge of the head shape. A transversal and sagittal
slice of the positive radial gradient are seen in Figure 10.3.
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(a) (b)

Figure 10.3: A transversal (a) and sagittal (b) slice of the positive 3D radial gradient.

10.4 Spherical Resampling

When constructing flow lines for graph cutting, the nature of the sought sur-
face must be considered in order to construct a multi-column set that is cut
only once for each column. In practice this limits the method to terrain-like
surfaces, but by deliberate resampling of the nodes, more complex surfaces can
be transformed into simple terrain-like surfaces as well. In order to transform
a volumetric closed surface, a spherical resampling is used, implying a sought
surface with star-shaped behavior. As a consequence it is assumed that all edge
points can be reached with a straight line from the center. This is the basis of
the multi-column construction, since each column cuts the surface exactly once.
A spherical resampling of a sphere is visualized in Figure 10.4. The source and
sink are created as spheres as well and are shown as the dark blue and dark red
grid. The resampling is based on a sampling grid with its center in the middle of
the source, and the sink and source are therefore represented as a plane surface
in the spherical coordinates. The sought surface is in contrast not plane due to
its displacement with respect to the center of the sampling grid. Reference is
furthermore made to Figure 10.1(g) where the spherical resampling of the 3D
gradient image is visualized in spherical coordinates.

The spherical resampling is based on the conversion of spherical coordinates to
Cartesian coordinates as seen in Equation 10.3, where r defines the radius from
the center to a sampling point, φ the rotation in the z-plane and θ the rotation
in the x-y-plane, cf. Figure 10.5. The creation of the sampling grid is further
explained in the following.
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(a) (b)

Figure 10.4: Spherical resampling of a sphere (a) and resulting terrain-like surface
(b). The dark red and dark blue surfaces represent the sink and the source, respectively.
Each point on the source has a corresponding point at the sink, and the line between
represents a column which cuts the surface only once.

Figure 10.5: Visualization of the definitions for converting spherical coordinates to
Cartesian coordinates and vice versa.

x = r · cos(φ) · cos(θ)
y = r · cos(φ) · sin(θ)

z = r · cos(φ)
(10.3)
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By varying r, φ and θ as follows r = ]0 : R], φ = ]−π/2 : π/2[ and θ = [−π : π[,
the spherical coordinates will create the sampling scheme, visualized in Figure
10.6. Note that R specifies the radial spread of the sampling.

The number of spherical points is controlled by an estimated radius of the
skull, meaning that the sampling density is adjusted to approximately one voxel
around the equatorial band of the skull. The radius is found by estimating the
volume of the intensity thresholded image in each slice, and by treating this
area as a circle, the radius in each slice is estimated. The slice with the greatest
radius is assumed as the equatorial band, and this radius is used to calculate
the sampling density for φ and θ. The sampling density for r corresponds to
the x-y dimension of a voxel, i.e. it is not dependent on the slice thickness. By
converting the spherical coordinates to Cartesian coordinates, the resampling
of the gradient image is possible. The resampling is performed by a trilinear
interpolation (3D interpolation) of the image grid, in order to estimate the
values for the spherical sampling points. Note that all processing of the image is
performed in physical coordinates, in order to accommodate all variable images
sizes.

Even though a sampling density of one in the equatorial band intuitively is
most correct, other sampling densities have been considered. Both the amount
of sampling points in a sampling sphere, ss, (cf. Figure 10.6) and the radial
density, rd, are varied. Again the test set, introduced in Section 10.2, is used
as a phantom and the results are assembled in Figure 10.7. From the figure
it is noted, that a variation of the sampling points in a sampling sphere has
no crucial effect on the voxel deviation, whereas a higher sampling density in
r, is seen to improve the performance. The voxel deviation is defined as the
percentage-wise difference of all erroneous voxels. No test was performed when
lowering rd, since preceding tests only gave results with higher voxel deviations.
However, it should be noted that the processing time is drastically increased with
an increased number of sampling points, so a trade-off is crucial. Even though
the same effect were seen for the real datasets, it was not possible to test the
performance with a doubling of the sampling spheres due to limitations in server
memory capacity. It was therefore decided to proceed with a sampling density
of one in the equatorial band, i.e. ss and rd equal one. Future studies, together
with the incorporation of a more memory and time efficient implementation,
could process with this information for inspiration and further analysis. It
should furthermore be noted that no masking with respect to the source and
sink is performed, which would be the first step in future time and memory
optimization (due to the high sampling rate around the center, as seen in Figure
10.6). This is further discussed in Chapter 12 and Chapter 13.
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Figure 10.6: The spherical scheme for resampling. Note that the sampling density
is exaggerated in order to visualize the sampling spheres created by varying φ and θ,
and their radius controlled by r. With this spherical sampling grid, the number of
sampling points is constant in each sampling sphere.

Figure 10.7: Investigation of the effect of the sampling density. ss controls the
sampling points in each sampling sphere, whereas rd controls the density of the spheres.
The performance is evaluated based upon the voxel deviation given in percentage.

10.4.1 Considerations Concerning the Creation of the Sam-
pling Grid

When a sampling grid, like the one specified above, is used, the sampling density
will not be uniform. As mentioned earlier the sampling density does only cor-
respond to a "uniform" voxel resolution near the equatorial band of the sphere.
The sampling density is drastically increased near the poles and in the middle
of the sampling grid, but decreases in the periphery. The advantage in this
construction is the easy and intuitive data handling in spherical coordinates.
The data matrix has direct flow lines from the center and out by varying r, and
thereby an easy construction and approach of neighboring nodes.
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An alternative, but more comprehensive procedure, would be to triangulate
the surface of the sphere with the estimated head radius, and thereby achieve
uniformly distributed sampling points on the surface. The radii, or flow lines,
from the centre of the sphere and through one triangulated point, would then
define the sampling points on the other sampling spheres, which still would be
spaced one voxel apart. The sampling density would thereby be more uniform
around the periphery of the whole sphere, but still higher in the center and
decreasing with higher radii. This constellation is still necessary in order to
construct straight flow lines for the purpose of graph cutting.

One could also consider a cylindrical resampling, i.e. a slice-wise polar re-
sampling, as in [24]. This could speed up the algorithm due to the decreased
sampling rate at the poles of the sampling spheres, but it would not be in ac-
cordance with the shape of the head. Intuitively this could lead to problems
especially in the top and bottom of the skull, and the spherical resampling is
therefore chosen instead.

10.5 Edge Weights

The data term of the vertex cost, described in Section 7.3, is based on the radial
gradient. For graph cutting the minimum cut is sought, and the data term in
the edge cost must therefore facilitate a low edge capacity in regions with high
positive gradients, i.e. the border line between brain matter and bone. The
edge cost, Edatal

, for the edge l, is therefore defined as in Equation 10.4, where
u defines the node from which the edge is linked, [24]. The radial gradient ∂I

∂r
is defined in Equation 10.2.

Edatal
= max

(
∂I

∂r

)
− ∂I (u)

∂r (10.4)

In order to remedy the effect of bias induced by the gradient filter, the placement
of the vertex cost from the data term is moved one sampling point back in the
direction of the radials. Even though a radial gradient is used, the gradient filter
can still be understood as a patch with [−1 | 1], and the placement of the real
gradient boundary will thereby be shifted a half voxel (in the radial direction).

As mentioned in Section 7.3, the opposite directed edges are set to infinity
in order to ensure a unidirectional flow. Hereby all intra column weights are
defined. The algorithm by Boykov [7] is applied to find the minimum cut, i.e.
the spherical segmentation.
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10.6 Node Connections and Inter ColumnWeights

The neighborhood of a node needs to be defined as well. The edge connection to
the next sampling point in the radial direction has, as mentioned, the data term
edge cost associated and infinity cost the opposite way. The other structural
closest 3D points are defined as the rest of the neighborhood, and have inter
column weights associated. Four kinds of neighborhoods are considered, and
visualized in Figure 10.8. The node in the middle of the structures are in all
cases the node of concern, and the formation refers to the matrix of the spherical
sampling grid, where φ is increasing from right to left, θ from top to bottom
and r increases from front to back. It should be noted that the structures in
Figure 10.8(c) and 10.8(d) are not symmetric, but have a wider spread in the
direction of the radial. This is done in order to facilitate possibility of a higher
dependency of variation in the direction of the radial gradient. It should be
noted that a thorough interpretation of the neighborhood connections is not fa-
cilitated in this study, and an advanced understanding and investigation of the
effect and influence is necessary in future work. Different neighborhoods could
have different effects for different applications, but for now the performance of
the algorithm is only seen to depend slightly on the extent of the neighborhood.
By testing the performance of the different neighborhoods, a reasonable neigh-
borhood setup for segmentation of craniofacial anatomy is chosen. The results
are seen in Figure 10.9 and discussed after the introduction of the inter column
weights.

(a) 18 connections (b) 26 connections (c) 28 connections (d) 36 connections

Figure 10.8: Number of connections associated with the sampling point in the center
of the structures. The structures are extracted from the spherical sampling matrix, so
the orientation is the same as in Figure 10.4. φ is increasing from right to left, θ from
top to bottom and r from front to back.

The inter column weights are set to be constant in the neighborhood. This
is done to facilitate an easier implementation, and due to the fact that no
x-y correspondence is intuitive in a spherical sampling grid. Note that even
a connection to a node in the radial direction has the inter column weight
associated, as long as it is not the one closest to the node of concern. The inter
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(a) (b)

(c)

Figure 10.9: Test of the influence of the smoothness factor (the inter column weight)
and the number of connection in the neighborhood. In (a) the performance is defined
by means of the mean voxel deviation in percentages compared to the manual segmen-
tation. (b) is a zoomed version of (a). (c) summarizes the mean processing time in
hours for the weight construction and graph cutting. Seven datasets contribute to the
results, and their individual results can be inspected in Appendix A.

column weights are to be tuned to restrict the smoothness of the surface. The
higher the weight, the fewer edges are cut, hence a smoother surface. The inter
column weight is therefore also referred to as a smoothness factor.

In Figure 10.9 the influence of the smoothness factor is investigated together
with the effect of the number of neighboring connections. The performance is
defined by means of the voxel deviation in percentage (Figure 10.9(b)), com-
pared to the manual segmentation. The results summaries the effect from a
seven dataset study, where the tests are run on level L1 in order to correspond
to the final implementation. The limited amount of data in the parameter test is
due to time limitation since one parameter test has a duration of approximately
three days, even on the high memory server. Note that all individual parame-
ter tests can be found in Appendix A. The parameter test was performed for a
smoothness factor of 1, 3, 5, 9, 12, 15 and 20, and the four neighborhoods defined
in Figure 10.8. The voxel deviation is seen to decrease for higher smoothness
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factors, but increases again for the highest factors. This increase could be due
to that the smoothness is too severe and information, compared to the manual
segmentation, could be lost. The effect of the neighborhood connections has
only a slight effect, but generally the neighborliness with 26 and 36 connections
outperforms results with 28 and 18 connections. The effect of the neighbor-
hood is furthermore considered in Chapter 12. Figure 10.9(c) summarizes the
mean processing time for the weight construction and graph cutting, and a clear
tendency is seen. The higher the smoothness factor and the higher the num-
ber of neighborhood connections, the higher the processing time. A trade-off
between the level of smoothness and neighborliness versus the processing time
must therefore be enforced. Based on these results, is was first decided to pro-
cess with a smoothness factor of 5 and a neighborliness with 18 connections for
all datasets. The decision was primary based upon the time factor, but more
optimal parameters could be chosen. In fact, results with a smoothness factor
of 9 and a neighborliness with 26 connections has one of the lowest mean voxel
deviations, and still a reasonable time trade-off. It was later in the process seen
necessary to change the parameters to these values, cf. Chapter 11, where both
results are investigated.

10.7 Conversion Back to Cartesian Coordinates

The binary mask is now obtained by graph cutting in spherical coordinates. In
order to validate the segmentation the spherical coordinates must be transferred
back to image coordinates. Each Cartesian grid point of the image is converted
to its corresponding spherical coordinate by Equation 10.5. Equation 10.5 uses
the same notation as in Figure 10.5 and Equation 10.3.

θ =atan2(y, x)
φ =atan2

(
z,
√
x2 + y2

)
r =

√
x2 + y2 + z2

(10.5)

The notation, atan2, is the four-quadrant inverse tangent (arctangent) of the
real parts of the two inputs.

A majority count of the eight grid points, from the spherical samplings scheme,
encapsulating the converted voxel, is then used to determine the mask value of
the Cartesian grid point, Figure 10.10(c). This is done for all Cartesian grid
points, by which the desired 3D mask is found, as seen in Figure 10.1(h). It
should be noted, that a variety of majority counts have been considered, see
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Figure 10.10, and through that different results could be obtained. In fact, a
slight decrease in error rates was seen when using a "majority count" only based
upon the nearest sampling point, Figure 10.10(a). Also (b) entails a decrease
compared to the majority count specified in (c). Why this effect is seen, is
not understood but could be due to an implementation error. It was however
decided to proceed with method (c) since it intuitively is the most correct, but
a further investigation would be prudent. Furthermore, it should be noted that
the implemented majority count was not distance weighted, which naturally
would be the most precise approach.

Figure 10.10: 2D visualization of the spherical sampling points on which the different
majority counts are performed. Note that the 2D visualization entails no sketch of the
sampling points when varying φ. The blue circles mark the transformed image voxel of
interest. (a) is a "majority count" only based on the nearest sampling point (red dot).
(b) is a majority count based on seven sampling points, where the closest sampling
point again is chosen together with its six neighbors. (c) is the majority count in use,
where the eight points that encapsulate the converted Cartesian grid points constitute
to the majority.
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Chapter 11

Results

All results have been validated against the manual segmentation performed
with the programs Landmarker and Analyze, cf. Chapter 5. Since these manual
segmentations were performed by different individuals, a small study was con-
ducted in order to evaluate the deviation in these performances, and the results
are presented in Section 11.1. Subsequently, results from the two segmentation
models are presented in Section 11.2, where they are evaluated on the basis of
the manual segmentations. In Section 11.3 the results from a small compari-
son study is presented, where the performance of the two models are compared
to each other. Furthermore the obtained volume estimations are compared to
normal data obtained from unaffected children.

11.1 Manual Segmentation

In order to get an impression of the error induced by the individual perform-
ing the segmentation, three datasets were segmented twice. Each of the three
dataset was segmented by a skilled user, hereafter referred to as U1, who was
familiar with the program, and an untrained user, hereafter referred to as U2,
for whom the program was new. The results are outlined in Table 11.1, where
the volume for the two segmentations is presented for each dataset, together
with the calculated voxel deviation given in percent. The maximum manual
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error is seen to be found at 1.74 %. An illustration of the extent and location
of the differences between the two segmentations for data #1 is seen in Figure
11.1, where the closest point difference is calculated between the surface created
by U1 and U2, where U1 is given as source. The extent of the voxel deviation
is presented in millimeter. The blue color indicates that U2 lies on the outside
of the source, whereas red indicates that U2 lies on the inside of the source
segmentation. Small deviations are seen around the entire skull arch, whereas
larger errors are seen in the cranial floor, around the foramen magnum and the
region above the eyes. It should be noted, that the calculated volumes and the
images seen in Figure 11.1 are from the original images, hence no downsampling
has been performed. In Figure 11.2 a histogram of the actual voxel deviations in
millimeter is presented. A slight bias of the voxel deviation is seen towards the
right in the histogram, indicating that the volume segmented by U1 is slighter
larger than the volume found by U2. It should also be noted that the histogram
is shown in a cropped version, in order to achieve a better visualization of the
variations in the histogram.

Table 11.1: Volume estimations from two individual segmentations and their appur-
tenant voxel deviation in percentage.

Volume
U1 [cm3] U2 [cm3] Voxel deviation [%]

#1 859.6 846.7 1.74
#5 1039.8 1046.8 0.79
#8 1076.9 1075.7 0.45
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(a) (b)

Figure 11.1: Error maps, illustrating the voxel deviations between the two users for
dataset #1, calculated as closest point difference with U1 as source. The deviations
are given in millimeter, where a green/blue color indicates that U2 lies on the outside
of the source, whereas a yellow/red color indicates that U2 lies on the inside of the
source segmentation. Deviations above 5 mm and under -5 mm are truncated to 5
mm and -5 mm, respectively. Further, it should be noted that (a) depicts the bone
surface, whereas (b) facilitate a view of the bottom of the segmentation mask (foramen
magnum is found in the bottom of the image.)

Figure 11.2: Histogram showing the frequency of point-to-point calculations as a
function of deviation between to two manual segmentations performed on data #1.
The histogram is presented in a cropped version to facilitate a better visualization.
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11.2 Model Based Segmentations

All images were segmented with both models, which give 15 results for the
graph cut approach, but only 14 for the image registration approach, where one
dataset was used as a template, and thereby left out as test data. Results for
all datasets are collected in Table 11.2, where the volume estimations for the
manual and the two model based segmentations are outlined, together with the
corresponding voxel deviations. The presented image registration results are
found based on the setup defined in Chapter 9, and the graph results with a
setup consisting of a neighborliness of 18 and a smoothness factor of 5. The
volumes for the image registrations are seen to range from lying slightly above
to slightly under the manual segmented values, while the volumes found based
on the graph cut approach all are seen to lie a bit above the manual values.

Furthermore, the voxel deviation between the manual segmentation and the two
models, are calculated and presented in percent. The mean voxel deviation for
the image registration model with the 14 datasets, was found to be 1.88 %,
while it for the graph cut model, with the 15 datasets, was found to be slightly
higher at 4.42 %. It is though noted that three outliers are seen for the graph cut
deviations, dataset #7, #14 and #15, respectively. By further examination, the
high deviations were seen caused by high gradients outside the area of interest
inducing significant segmentation deviations. An example is seen in Figure
11.4, where the segmentation boundary for dataset #7 is presented. Similar
segmentation deviations were seen for #14 and #15. If these three datasets are
disregarded, the mean voxel deviation for the graph cut method falls to 3.74 %.
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Table 11.2: Result overview, listing the volume estimations from the manual and the
two model based segmentations. The voxel deviation between the manual and the two
model based segmentations are furthermore presented.

Image Registration Graph Cut
Manual Model Model

# Volume [cm3] Volume [cm3] Dev. [%] Volume [cm3] Dev. [%]
1 859.6 852.3 2.32 868.0 2.71
2 824.8 826.5 2.80 840.0 3.17
3 921.2 912.5 2.39 947.2 3.81
4 938.6 953.5 2.34 977.3 4.45
5 1039.8 1040.9 1.69 1079.3 4.32
6 1066.4 1068.4 1.86 1094.0 3.54
7 1047.5 1065.7 2.40 1142.4 9.48
8 1076.9 1081.6 1.75 1100.2 2.97
9 888.7 899.6 2.01 920.3 4.07
10 1081.4 1083.2 1.51 1119.2 3.97
11 695.3 706.4 2.40 719.4 4.15
12 902.5 908.4 1.51 923.6 3.06
13 1101.3 1105.4 1.29 1149.4 4.68
14 1240.9 - - 1302.3 5.23
15 982.1 970.8 1.97 1042.6 6.64

The voxel deviations are seen insufficient to provide a proper evaluation of the
model based segmentations. The estimated segmentation boundary is therefore
viewed together with the manual segmented boundary, both superimposed on
the corresponding CT image, in order to locate the regions of errors. In Figure
11.3 the segmentation boundaries for the two models from dataset #1, are
viewed together with their corresponding manual segmentation, and shown in
both a sagittal and transversal view. In all illustrations the manual segmentation
is presented in red, and the model based in green. In (a) and (b) the results
obtained from the image registration are seen, whereas (c) and (d) show the
graph cut results. Both models are seen to provide reasonable segmentations,
only showing small deviation from the manual segmentation, in the area of
the foramen magnum and around the sphenoid sinuses, which are seen in the
transversal slices as the black areas in both side of the skull.
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(a) (b)

(c) (d)

Figure 11.3: Segmentation boundary for the manual (red line) and the model based
segmentation (green line) for data #1, superimposed on the corresponding CT image.
(a) and (b) present the results from the image registration, and (c) and (d) the graph
cut.
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Another example is seen in Figure 11.4, which provides illustrations of the seg-
mentation results from dataset #7. The graph cut segmentation is seen to result
in large errors in the cranial floor, which correlates with the high voxel devia-
tion seen in Table 11.2. These large deviations are seen to be forced by large
gradients at the teeth and spinal bones. However, ignoring these two deviation
areas, the remaining segmentation has a very high correlation with the manual
segmentation. The graph cut based segmentation is actually seen to provide
more precise, ignoring the two prior mentioned areas, than the segmentation
obtained from the image registration, which is seen to be fluctuating, especially
in the cranial arch.

(a) (b)

(c) (d)

Figure 11.4: Segmentation boundary for the manual (red line) and the model based
segmentation (green line) for data #7, superimposed on the corresponding CT image.
(a) and (b) present the results from the image registration, and (c) and (d) the graph
cut.



100 Results

In order to evaluate the results more profound, a 3D rendering of the segmen-
tations is performed. The results are seen in Figure 11.5 and Figure 11.6 for
dataset #1 and #7, respectively. The manual segmentation shown as the red
surface, the image registration green, and the graph cut based segmentation in
blue. The extent of the fluctuations referred to for dataset #7 for the image
registration is in this illustration clearly seen.

(a) (b)

Figure 11.5: Surface rendering illustrating the difference between the manual seg-
mented mask (underlying red), and the image registration segmented mask (green) in
(a) and the graph cut segmented mask (blue) in (b) for dataset #1.

(a) (b)

Figure 11.6: Surface rendering illustrating the difference between the manual seg-
mented mask (underlying red), and the image registration segmented mask (green) in
(a) and the graph cut segmented mask (blue) in (b) for dataset #7
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Another evaluation method utilized in this thesis, was to generate movies of
all datasets, illustrating the segmentation is a semi-3D space. The movies were
generated based on a serie of slice based illustrations, as the ones seen in Figure
11.3 and Figure 11.4. Two movies were generated for each dataset, showing the
segmentation in a transversal and sagittal view. These are available for the all
datasets on the enclosed CD.

In order to evaluate the extent of the voxel deviation, the closest point differences
found between the surface of the manual and model based segmentations are
superimposed on a 3D rendering of the manual segmentation, similar to the
illustration shown in Figure 11.1. The extent of the deviations are shown in
millimeter, where a green/blue color indicate a model based segmentation lying
on the outside, whereas a yellow/red color indicate a model segmentation located
on the inside of the manual segmentation. Furthermore, it should be noted that
deviations above 5 mm and under -5 mm are truncated to 5 mm and -5 mm,
respectively.

The illustration of the location and the extent of the voxel deviation for the
two datasets examples are seen in Figure 11.7 and Figure 11.8, where (a) and
(b) is results from the image registration, and (c) and (d) from the graph cut.
For dataset #1, in Figure 11.7, the image based segmentation is seen equally
distributed between lying on the inside and the outside of the manual segmenta-
tion. Significant deviations are only seen in the top and bottom of the cranium,
where the image registration based segmentation in some places is seen to lie
more than 2-3 mm from the manual based segmentation. In the area of the fora-
men magnum the deviation is as high as 5 mm or more. The graph cut based
segmentation is primarily seen to lie on the outside of the manual segmentation,
but in general only with a small deviation. Similar to the image registration
based segmentation, larger deviations are seen in the top and bottom, where the
graph cut segmentation is seen to lie on the inside of the manually segmented
boundary, except in the region of the foramen magnum.

For dataset #7, illustrated in Figure 11.8, both models shown good performance,
by providing very nice segmentations. The image registration based segmenta-
tion is in the skull base seen slightly biased towards a segmentation lying on the
outside of the manual, which is opposite compared to dataset #1. The graph
cut based segmentation is seen to show significant deviations at 5 mm or more
in the bottom of the cranium, corresponding to the large boundary movements
caused by the teeth and spine gradients, seen in Figure 11.4(c). Disregarding
this deviation, the remaining segmentation is located slightly on the outside of
the manual segmentation, but equally distributed.
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(a) (b)

(c) (d)

Figure 11.7: Illustration of the extent and location of the voxel deviation for dataset
#1, given as the closest point differences found between the manual and model based
segmentation, superimposed on a 3D rendering of the manual segmentation. (a) and
(b) present the results from the image registration, and (c) and (d) the graph cut. The
extent of the deviations are shown in millimeter, where a green/blue color indicates a
model based segmentation lying on the outside, whereas a yellow/red color indicates a
model segmentation located on the inside of the manual segmentation. Furthermore,
it should be noted that deviation above -5 mm and below -5 mm are truncated to 5
mm and -5 mm, respectively.
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(a) (b)

(c) (d)

Figure 11.8: Illustration of the extent and location of the voxel deviation for dataset
#7, given as the closest point differences found between the manual and model based
segmentation, superimposed on a 3D rendering of the manual segmentation. (a) and
(b) present the results from the image registration, and (c) and (d) the graph cut. The
extent of the deviations are shown in millimeter, where a green/blue color indicates a
model based segmentation lying on the outside, whereas a yellow/red color indicates a
model segmentation located on the inside of the manual segmentation. Furthermore,
it should be noted that deviation above -5 mm and below -5 mm are truncated to 5
mm and -5 mm, respectively.
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Moreover, the frequency of point to point calculation for the two examples
are seen in the histograms plotted in Figure 11.9. (a) and (b) present the
results for dataset #1 for image registration and graph, respectively, and (c)
and (d) results from dataset #7. The majority of the deviations are seen to
lie within the interval of -2 to 2 mm. Furthermore, it is evident, that the
closets point differences found for the graph cut has a slight tendency towards
the negative values, corresponding to the previous results, where the main part
of the segmentation was seen to be found lying on the outside of the manual
segmentation. The closets point differences for the image registration is seen
to be more equally distributed around zero, which especially the histogram for
dataset #1 indicates.

(a) (b)

(c) (d)

Figure 11.9: Histograms showing the frequency amount of point-to-point calculations
as a function of deviation between the manual and the model based segmentations. (a)
and (b) show the frequency distribution for #1 for image registration and graph cut,
respectively, while (c) and (d) similarly show the distribution for #7. All histograms
are shown in a cropped version to facilitate a better visual interpretation.
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Considering the results in Figure 11.4(c) and (d), where the large gradients from
teeth and spine bone induce large segmentation errors, the graph cut setup is
reconsidered. The parameters for the graph cut, consisting of a neighborliness
of 18 and a smoothness factor of 5, was chosen on the basis of a time trade-off.
These parameters are for dataset #7 proven insufficient, wherefore a new setup
is evaluated. Based on the 10.9, the constellation of a neighborliness of 26 and
a smoothness factor of 9 provided the optimal setup, i.e. the minimal voxel
deviation. A graph cut model with this new setup is applied on dataset #7,
and the results are presented in 11.10 - Figure 11.12.

The large deviation in the jaw region, which was seen previously, is avoided,
while the deviation in the region of the foramen magnum is present. This
parameter change is seen to force a smoother segmentation surface, which results
in a decrease in voxel deviation for dataset # 7 from 9.48 % to 4.07 %, but a
significant increase in processing time is observed. As a consequence of this
result, an additional segmentation of all datasets is performed. The results of
volume estimations and voxel deviations are presented in Table 11.3, where the
mean voxel deviation is found of 3.46 %. Unfortunately, an increase in mean
processing time from 25 minutes and 7 seconds to 1 hour and 17 minutes is seen.
A summary of the time and voxel deviation for the two models are provided in
Table 11.4, where the results for both graph cut setups are provided. Noted
that IR refers to image registration, and CG to graph cut.

(a) (b)

Figure 11.10: Segmentation boundary for the manual (red line) and the graph cut
based segmentation (green line) for data #7, found with a neighborliness of 26 and a
smoothness factor of 9.
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Table 11.3: Result overview, listing the volume estimations from the graph cut seg-
mentation with a parameter setup consisting of a 26 neighborliness and a smoothness
factor of 9.

Manual Model
# Volume [cm3] Volume [cm3] Dev. [%]
1 859.6 866.4 2.61
2 824.8 834.4 3.43
3 921.2 942.3 3.32
4 938.6 971.4 3.82
5 1039.8 1072.0 3.70
6 1066.4 1084.1 2.79
7 1047.5 1085.5 4.07
8 1076.9 1091.6 2.81
9 888.7 914.9 3.64
10 1081.4 1135.5 3.52
11 695.3 711.5 3.18
12 902.5 918.4 2.52
13 1101.3 1146.8 4.44
14 1240.9 1297.1 4.82
15 982.1 1008.6 3.28

Figure 11.11: Surface rendering illustrating the difference between the manually
segmented mask (red) and the graph cut segmented mask (blue) for #7 with the new
setup.
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Table 11.4: Summary of the performance of the two models, image registration
(IR) and graph cut (GC), expressed in mean processing time and voxel deviation,
respectively. Results for both graph cut setups are presented, where the parameters
are given by smoothness factor/neighborliness.

IR GC 5/18 GC 9/26
Voxel Deviation [%] 1.88 4.22 3.46

Mean time 9 min 25 min 1 h 17 min

(a) (b)

Figure 11.12: Illustration of the extent and location of the voxel deviation for dataset
#7 with the new graph cut setup, given as the closest point differences found between
the manual and model based segmentation, superimposed on a 3D rendering of the
manual segmentation. The extent of the deviations are shown in millimeter, where a
green/blue color indicates a model based segmentation lying on the outside, whereas
a yellow/red color indicates a model segmentation located on the inside of the manual
segmentation. Furthermore, it should be noted that deviation above -5 mm and below
-5 mm are truncated to 5 mm and -5 mm, respectively.
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11.3 Model Comparison

In the following section the two models are examined in a small comparison
study, both according to each other, but also in correlation to normal volume
estimations. All results shown for the graph cut model is based on the setup
with a neighborliness of 26 and a smoothness factor of 9, i.e. all voxel deviations
are taken from Table 11.3.

A comparison of the voxel deviations obtained from the two model segmenta-
tions, is shown in Figure 11.13, where the image registration result are shown
in green and the graph cut results in blue. Additionally, the maximum manual
segmentation error found at 1.74 % based on the small study in Section 11.1,
is presented as the red line. The maximum manual segmentation error is ar-
bitrary set, due the sparsity of data in the preliminary study in Section 11.1.
The image registration based segmentations are seen to provide smaller voxel
deviations compared to the graph cut based segmentations, and in some situ-
ations the deviations from the image registration are observed lower than the
maximum segmentation error. However, the graph cut deviations are seen to lie
within a reasonable range from the image registration, only dataset #13 is seen
to deviate significantly. Dataset #14 is likewise seen to result in a high voxel
deviation, but for this dataset comparison is not possible, due to its figuration
as a template in the image registration process.

Figure 11.13: Voxel deviations in percent for all datasets processed with image
registration and graph cut, represented with green and blue bars, respectively. The
red line defines the maximum manual segmentation error found at 1.74 % based on
the small study in Section 11.1.
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In Figure 11.14 a scatter plot showing the volume results for the manual and the
two model based segmentations is shown together with a curve, illustrating the
normal cranial growth pattern for children up to 17 months. The normal curve
is based on data from [41], and produced as in the paper, by use of the Lowess
smoothing technique1, with a 50 % smoothing window and three iterations. The
results from the two model based segmentations; image registration and graph
cut, are illustrated with green triangles and blue squares, respectively, are seen
to lie close to the manual segmentations, illustrated by the red circles. It should
be noted, that for the dataset with a value above 1200 cm3, no value exist for
the image registration model, as this dataset figures as a template. The image
registration value is therefore set equal to the manually segmented volume. In
general the graph cut results are seen to have a tendency of lying slightly higher
than both the image registration and manual results. This is further visualized in
Figure 11.15, where the volumes from the two segmentation models are plotted
against each other, and the referred tendency easily is seen, as all marks are
placed above the mid-line.

The volume estimations are until the age of 6-7 months seen to be a bit increased
compared to the normal curve, where after they tend to move closer around the
curve. However, based on the number of data examined in this thesis, it is
statistically difficult to say, whether this is a general tendency. Even though no
unambiguous statement can be based on the results gained here, both models
show possibilities for further population studies.

1Uses piecewise 1D polynomial, cf. Matlab
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Figure 11.14: Scatter plot and curve showing the intracranial volume. The black
curve is based on 18 data points from [41] and is produced by use of the Lowess
smoothing technique, with a 50 % smoothing window and three iterations. The volume
estimations from the manual, image registration and graph cut segmentations are
represented with a red circle, green triangle and a blue square, respectively. The
vertical black lines connect the three results associated with the same dataset, and
are only present to ease the interpretation. For the dataset with a value above 1200
cm3 it should be noted that no value exist for the image registration model, as this
dataset figures as a template. The image registration value is set equal to the manually
segmented volume.

Figure 11.15: Visualization of the correspondence in estimated volumes between the
two model based segmentations. The dashed line illustrates the mid-line i.e. equal
estimation of the volume.
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Discussion

For the purpose of clarity, the discussion is divided into four sections, each
describing one of the main topics of concern. Section 12.1 discusses the veracity
and applicability of the manual segmentation as frame of reference. Section 12.2
treats the aspects of the image registration model, while Section 12.3 deals with
cornerstones of the graph cut model. Lastly, the possibility of the two models
serving as a foundation for population studies is assessed in Section 12.4.

12.1 Manual Segmentation

The manual segmentations, which throughout this thesis have been used as a
comparison foundation, and for validating the success of the two model based
segmentations, have to some extent been found inadequate. Different factors
are in evidence for this assessment. The user defined intensity threshold was
based on a simple visual interpretation, as seen in Figure 5.1, where it is hard
to establish the exact bone demarcation. An acceptable value for the intensity
threshold can therefore easily be chosen within a 10 HU interval. Choosing a
too high value will add the risk of removing useful bone information, which will
be seen in the form of a thinner bone demarcation, starting further from the
brain center than the actual truth. Choosing a too low value will induce the
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risk of creating a segmentation lying on the inside of the actual bone demar-
cation. Looking further into the segmentation process, additional sources of
errors were introduced due to the manual editing. As described in Chapter 5
manual editing was necessary in order to obtain proper bounding, both due to
cranial breaches caused by the craniosynostotic condition, but also due to the
natural foramina in the cranial base. First of all, the editing was performed as
freehand drawing by means off the computer mouse, which alone was a difficult
working tool. Subsequently, the estimation of the correct anatomical outlining,
especially in the cranial base, can be rather difficult to establish. Among the
15 segmentations performed for this thesis, great variation was seen, especially
at the outlining of the foramen magnum. Another aspect, which should be em-
phasized, is the aspect of human fatigue during the two hour processing time.
Several manual segmentations were seen to have small ridges in the midline of
the top of the cranium. These are most likely caused by small breaches in the
bone line, which were of such a size, that the user has found them insignificant,
and not performed any adjustments. Furthermore, the editing above the eye
cavity, were, in some cases, seen performed rather simple, with just a straight
line, easily seen on Figure 11.3. Summarized, these factors can contribute to a
significant error.

In order to obtain a higher similarity between the mask segmentations, general
guidelines must be established, especially concerning the anatomy in the cranial
base, but also in the choice of intensity threshold. First, one could question
the variation in the chosen intensity thresholds in between datasets. Since all
images were CT images presented in HU values, it would be assumed that a
global intensity threshold could be established and used on all images. However,
this was not seen possible. It has also been considered whether the intensity
threshold was based on age, hence the bone density, which is seen to increase
through age. Such a correlation was not found significant among the datasets
processed in this thesis. Furthermore, a study, [10], has shown, that a global
threshold for a single dataset might be inadequate.

In Section 11.1, Table 11.1, a difference in voxel deviation up to 1.74 % was seen
between two segmentations of the same dataset performed by two individuals.
This result was based on a very sparse study, which could be of interest to ex-
amine further, including a study of the individual variations. Consider Figure
11.1, which shows the closest point differences for the dataset with the highest
voxel deviation, dataset #1, it was seen that the deviation mainly was due to a
difference in the intensity threshold chosen for the two segmentations. Further-
more, voxel deviations were especially seen in the critical areas of the cranial
base, around the foramen magnum and the region above the eyes, caused by the
different handling of the manual editing. This was manifested in the histograms
in Figure 11.2, where the deviations were biased to the right in the histogram.
Taking all these considerations into account, it could be argued whether these
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manual segmentations can be used as proper validation foundation, or if they
in some cases serve more as an error contribution.

12.2 Image Registration

The image registration based segmentations were conducted by means of a soft-
ware package passed along to this project. The general registration setup was
therefore already established, and modifications were performed in order to ad-
just the program to this thesis. In general, the image registration process was
seen to perform very satisfactory and provided relatively low voxel deviations for
almost all data. The variation of voxel deviations around the cranial arch, were
unbiased towards neither side of the manual segmentation boundaries, which
were further manifested by the uniform distributed histograms. The main er-
rors were primarily seen in the cranial base, and some minor errors were located
in the cranial top, as seen in Figure 11.4(a), (b) and 11.6(a). Considering the
sphenoid sinuses, which were seen to be critical areas for the graph cut model,
the image registration model was seen to have a higher success rate around
these, although not infallible, as seen in Figure 11.3(b).

One of the main difficulties seen for the image registration model was caused
by the lack of anatomical consistency between the manual mask segmentations,
which induced complications in the mask transformations. The actual trans-
formation performed on the intensity based CT images was performed with a
high success, but the obtained transformation parameters were not adjustable
towards the variation of anatomical interpretation induced in the mask construc-
tion. This was especially pronounced in the region of the foramen magnum, and
can be seen in e.g. Figure B.3 in Appendix B. Another error of concern is
the actual registration process, where possible errors can be induced, due to
inadequate transformations. This was expressed as a slight tendency towards a
fluctuating segmentation surface, especially when larger differences were present
between the template and reference image. This could e.g. occur when gaps
exist between bone plates or in the cranial base, where high anatomical fluctu-
ations in general were seen.

Another aspect is the choice of template. Normally, when working with image
registration, the template image is often constructed as an atlas, i.e. a mean
of many images, instead of just a single image, as used in this thesis. It was
noted that the choice of template, especially its resolution, had a slight influence
on the results. The use of an atlas could therefore eliminate bias against the
template. However, depending on how the atlas is constructed, a slight bias
against the chosen images will still be present. In this case, where the processed
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images were obtained from craniosynosotic children, the head shapes can differ
significantly from child to child, and an atlas construction will therefore not
necessarily provide the best possible template. In the worst case scenario, an
obtained atlas would contain a small amount of all the different deformities and
thereby result in an image far from a useful template. However, it must be
noted, that since all data processed in this thesis, were gathered from children
with UCS, although both left and right sided, the deformities induced will not
be as varied, as if data was obtained from children belonging to different a
craniosynostotic type. Another approach could have been a construction of
an atlas based on images obtained from unaffected children. In this way the
introduction of different deformities to the template would be avoided. The
template will, however, has to align to the different UCS cases, but with the
choice of transformation, this is thought feasible for most cases.

12.3 Graph cut

In general the graph cut procedure produced excellent segmentations, especially
around the cranial arch. It was, however, noted that the segmentation boundary
often was found slightly on the outside of the manual (reflected as green color at
the closest point difference maps). This could be caused by the various intensity
thresholds used for the manual segmentations, and in particular if a threshold
was chosen too low. In many of the manual segmentation processes, the intensity
thresholded boundary was seen to lie on the inside of the visually highest radial
image gradient, as seen on Figure 5.3. Since the graph cut is gradient based,
the model based segmentation could therefore be expected to lie slightly on
the outside of the manual segmentation, which also manifests itself in the more
right-side weighted histograms. The visualization of small errors in the closest
point difference map is therefore not always an indication of an erroneous model
based segmentation, but could be due to a defective manual segmentation. If
the intensity threshold is the source of error, the image registration model will
not be affected to the same extent, as the registration is intensity based as well.

The slight difference around the cranial arch could possibly be regularized fur-
ther by adjusting the setup of the graph cut model. First of all, the segmentation
placement is dependent on the position of the sampling spheres, a doubling of
the sampling density of the spheres, as referred to in Section 10.4, could entail a
more precise cut, i.e. closer to the level of the highest gradient. Another aspect
is to consider on which edge side of a node, the corresponding weight is added.
In this thesis, a result improvement was seen when placing the edge cost on the
edge flowing towards the node. Moreover, the bias of the gradient could also
contribute to a minor displacement.
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One of the main reasons for choosing the graph cut algorithm for segmenting
the cranial volume in children with craniosynostosis was the possibility to over-
come breaches between cranial bones, without any prior arrangement. Gaps
between cranial bones were easily overcome due to the spherical smoothness
restriction incorporated in the graph cut model. Not many of the processed
datasets revealed major gaps, but a high breach in the cranial arch was seen for
e.g. dataset #6, cf. Figure 3.3. Even then, the graph cut algorithm followed the
curvature of the cranium, in fact even better that the manual segmentation, see
Figure B.1 in Appendix B, where the manual segmentation was seen to exceed
the natural non-existing bone demarcation. Minor fluctuations can, however,
be present in all surface areas, since the smoothness of the surface is dependent
on the sampling density and location in the given area; hence the success of the
majority count in the conversion back to Cartesian coordinates. These minor
fluctuations were, however, not presented in the resulting visualizations.

In the cranial base, the graph cut model has its limitations. The many differ-
ent curvatures, which can create obstructing folds, contradict the assumption
regarding a star-shaped object, cf. Figure 3.3(b). The algorithm was in these
areas insufficient, and will result in erroneous segmentations. Another difficulty
arose around the sphenoid sinuses. Since only a thin bone demarcation exists
between the sinus and the brain, the gradient of the thin demarcation was easily
exceeded by the high gradient arose from the transition from the air filled sinus
to the bone. One could consider gradient modifications for improved perfor-
mance, as described in Chapter 13. Another gradient based error that could
contribute to critical areas in the cranial base and in the region above the eyes,
is the direction of the gradient. Since the radial gradient uses the gradient com-
ponent in the direction of the radial, only transitions perpendicular to the radial
were highly emphasized. This is again conflicting with the high curvature of the
cranial base and around the eyes, where very low gradients were seen, see Figure
10.3.

Considering the cranial base, the area around the foramen magnum was an
area of great concern, i.a. due to gradient influence of spinal bones. The
extent differed in between patients, since slight variations of head posture were
present. This was manifested as different boundaries, restricting how much of
the spinal cord that was included in the segmentations. This variation was
a further source to the higher error rates for the graph cut model than for
the image registration; the image registration model was biased by the manual
segmentation, and it thereby holds a higher correlation towards the manual
decision of the boundary for foramen magnum. Unfortunately, the variation
around the foramen magnum is also high within the manual segmentations, and
a general agreement of its anatomical location should be established. In any
case, it is necessary to implement a more fixed boundary for the graph cut
model in order to oblige the variations that can arise both in between patients
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(for populations study), and within the same patient (for surgery evaluation).

Outliers, both seen as high error rates in Table 11.2 and Table 11.3, and as
large non-anatomical deviations on the scan slices, are caused by higher gradient
areas outside the skull. Cf. Figure 11.4(c), Figure B.36(c) and Figure B.33(c)
in Appendix B, where both the teeth, intubation pipe and bones of the spinal
column were seen to cause the graph cut model to deviate from its smooth
surface. As described in Section 7.3 a smoother surface can be restricted by a
higher inter column weight, i.e. a higher smoothness factor. These, and the
neighborliness of a node, were investigated in Figure 10.9. When considering
the results from dataset #7, a smoothness factor at 5 and a neighborliness of 18
were insufficient to restrict a smooth surface. The more optimal parameter set,
chosen based on Figure 10.9 (a smoothness factor of 9 and a neighborliness of
26), was on the contrary seen to generate the desired smooth surface. This was,
however, at the expense off a significant increase in processing time, as noted
in Table 11.4. As deduced from the figures in Appendix A, different datasets
have different optimal parameters. It should be noted that the optimal setup
could be found with a set of parameters not tested in this study, and a set of
parameters could therefore exist, for which all outliers would have a smoother
surface. In fact, for dataset #14, the parameter tests is seen in A.2 in Appendix
A, from which an optimum is a combination with a smoothness factor of 15 and
a neighborliness of 36. The higher smoothness factor was necessary in order to
oppose the high gradient of the intubation tube. The very high gradient was
present due to a transition from air (-1000 HU) to the tube edge (1000 HU)
relative perpendicular to the radials. Since all weights were based on Equation
10.4, this maximum positive gradient will furthermore cause the other gradients
around the skull to have less influence.

In further consideration of the parameter tests one could contemplate the effect
of the neighborhood. From the mean of seven dataset, Figure A.1 in Appendix
A, a neighborliness of 26 and 36 connections were seen to give very alike results
when varying the smoothness factor. This could be due to the fact, that these
connection types have links to nodes in the ”corner” around the node, cf. Figure
10.8. An addition of these nodes might therefore have more effect than an
extension in the direction of the radial (as with 28 and 36 connections). Another
noteworthy effect is the higher the neighborliness, the higher smoothness factor
was necessary to obtain the minimum result. Again it should be emphasized
that a more thorough understanding and investigation of the neighborliness of
a node must be established, in order to understand all aspects of its influence.
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12.4 Model Comparison

In Section 11.3 the results of a small comparison study of the models were
presented. Figure 11.13 summarizes the performance of the two algorithms,
evaluated based on the voxel deviation. As discussed above, the general ten-
dency was that the graph cut model provides slightly higher voxel deviations
compared to the image registration. This is among others, due to the fact, that
the graph cut model is not biased towards the manual segmentations. In some
cases, the image registration was seen to outperform the manual segmentation,
by providing voxel deviations lower than the maximum manual segmentation
error. As summarized in Table 11.4 the processing time was another aspect of
evaluating the usability of the models. It was noted that the graph cut model in
general has a high processing time, which furthermore increased when optimiz-
ing the parameters. Time optimization is, therefore an important future aspect
for the graph cut model, whereas the image registration might have reached
its optimal efficiency. It should be noted, that the graph cut model must be
processed on a high memory server, in order to apply the algorithm to an im-
age with a resolution of 256 × 256 times the number of slices. For now, with
the available possibilities, it was not possible to apply the model to a higher
resolution image.

Up until now, the performance of the models was evaluated based on visual
interpretation and voxel deviations. However, one of the main objectives was
estimation of the intracranial volume, including an evaluation of the prospective
of the models potential for population studies. The estimated volumes, for both
models, were therefore compared against a normal curve obtained from unaf-
fected children, depicted in Figure 11.14. Both models exhibited fine prospects
for volume estimation; the graph cut model was though seen to estimate slightly
higher volumes than those found based on the manual segmentations. Compar-
ing the UCS volumes to the normal growth curve, a slight tendency for increased
volume was seen in the early ages. Whether an increase or decrease in volumes
should be seen, is an aspect where no common agreement, among scientist in
the craniofacial field, yet is established. Several studies concerning children with
UCS show disparate results and some even shows that the volumes do not dif-
fer from normal volumes, [8, 40]. However, the results presented in this thesis
might have a slight tendency to shown increased volume until an age of 6-7
months, which is in contradiction with the results presented in [40]. It should
be emphasized that the study in this thesis only includes 15 subjects, which is
insufficient in order to serve as a proper statistical foundation. However, the
prospect for further population studies and statistical analysis is generated, both
regarding comparison to normal data, but also to children with other types of
craniosynostosis.
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The higher volumes for the graph cut model is further illustrated in Figure
11.15. As described previously, the increased volumes are caused by a slight
tendency of lying on the outside of the segmented surface and the difficulties in
the cranial base, especially the region of the foramen magnum and the sphenoid
sinuses.

All things considered, the models capability has been established, and even
though that the graph cut model has slightly higher voxel deviations, its poten-
tial for optimization and applicability must be ascertained.
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Future Work and Perspectives

As stated in the discussion, different approaches can be taken in order to improve
the process of volume estimation in children with craniosynostosis. First of all,
the manual segmentations, on which both models were validated, were seen to
have significant errors of concern. The intensity thresholds were established
based on a simple visual interpretation, and were seen to differ with a relative
large variation between datasets. It could therefore be of interest to see how
sensitivity the segmentation process, hence the volume estimation, is to the
choice of threshold, e.g. when segmenting a simple sphere with a diameter of
12 cm. A 1 mm displacement of the "cranial" boundary will cause in a 2.5 %
change in volume. Depending on the sensitivity to the threshold, it could be
argued whether the intensity threshold method should be replaced with a model
based on intensity gradients, e.g. as discussed in [10].

Considering the two model based segmentations, the image registration process,
was seen to provide fine results within reasonable time. This model, however,
has the disadvantage of being biased against the template image and the aspects
of future work is limiting. The graph cut model, which is gradient based, is on
the contrary unbiased, and has the advantage of providing a smooth segmen-
tation boundary, especially in the cranial arch. However, difficulties lie within
establishing the proper framework setup. To accommodate these difficulties a
number of initiatives can be taken, both regarding performance and time.
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The graph cut model shows great potential for volume estimation, but as de-
scribed in the discussion it has some problem areas, where further optimization
studies could be of interest in the hope of increasing its performance. One of the
main issues was the critical areas in the cranial base, where the radial gradient
was seen too low, and the segmentation boundary was thereby influenced by
the stronger gradient outside the area of interest. By moving the center for the
radial gradient closer to the cranial floor, hence forcing the radial to cross the
section in a more perpendicular angle, a stronger gradient might be achieved.
Another approach is to modify the gradient contribution, e.g. by applying a
gradient filter, such that closer lying gradients are emphasized. In this way, the
strong influence from e.g. teeth and intubation gradients might be softened. A
final attempt could be placing several gradient centers, and calculate the final
gradient image as a sum of these.

The long processing time and the large amount of memory needed for the graph
construction and cutting is also on area of great concern when considering the
graph cut model for volume estimation. A speed optimization is therefore needed
to compete against the image registration model. Since the graph was forced
to lie in between the source and the sink, it was a waste of time to construct
the graph, hence the node connections, in these areas. The first attempt would
therefore be to construct a masking by the source and the sink. A more extensive
masking by the source and the sink will furthermore remedy the high sampling
density in the center.

Inspired by the multilevel performance used for the image registration, and the
small test performed on varying the samplings density, a scale space analogy
could be considered. An initial sparse sampling density would result in coarse
representation of the desired transition. By subsequent performing a denser
sampling in the area of the transition, the boundary could be found more ac-
curately. A scale space approach could furthermore drastically decrease the
processing time without compromising the accuracy of the algorithm.

As mentioned in Section 10.4.1 another aspect of the speed optimization could
be to use a triangulation of a sphere in order to avoid the high sampling density
around the poles in the defined spherical sampling grid. All the above mentioned
optimization initiatives in both speed and performance could entail an algorithm
that could perform on images with a resolution of 512×512 times the number
of slices, within a reasonable time frame, and hopefully on a computer with a
standard capacity.

Both models were seen to have difficulties in the cranial base; the graph cut
model mainly due to low gradients and obstructing curves, and the image reg-
istration mainly due to variations in anatomical interpretations in the manual
segmentations. In order to remove the factor of the cranial base, it has been
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considered whether it would be possible to add an intersection in the cranial
base e.g. based upon a small number of anatomical landmarks. Unfortunately,
a landmark notation could entail some difficulties, due to the fact that crani-
ofacial anatomy can vary significantly. However, since both models have great
success in the segmentation outside these critical areas, a further study of the
cost-benefits of such an implementation might be of interest.

Another aspect in volume estimation for these children is the prospect of evalu-
ating the effect of surgery. Information of this can of course be obtained based
on the entire volume before and after surgery, but in some cases it might be of
higher interest to focus on a specific area, e.g. in cases of metopic synostosis,
an evaluation of the volume in the frontal part would be indicative. However,
as with the intersection in the cranial floor, an anatomical landmark based divi-
sion of the intracranial volume will be a demanding task, even within the same
patient.

The initial idea behind the segmentation was the assessment of the intracranial
volume, but another noteworthy application of the segmentations could be a tool
for 3D shape analysis of the intracranial volume. This is a medical aspect of al-
most greater concern than the intracranial volume, especially regarding children
with craniosynostosis. As in [26] shape analysis could facilitate a comparison of
various parameters for these children, and facilitates comprehensive population
studies.

After conversation with Professor, PhD, dr.odont. Sven Kreiborg, the medical
aspect of the copper beaten skull sign could be of high interest. The copper
beaten sign is the creation of an imprint of the gyri on the inside of the skull,
and is a result of a increased intracranial pressure, [30]. If one quantitatively
could estimate the level of the cobber beatenness, a potential tool for a higher
understanding of the effect could be established. Throughout this study it has,
however, not been possible to ascertain whether the models could facilitate such
a measure. Further considerations of such an application should therefore be
supplied. A quantitative measure would first of all imply that the models can
perform on the highest possible resolution, and that the imprint can be detected
by the algorithm. The quantitative measure should also involve an estimation
of the skull volume "without" the imprinting, which could be hard to obtain.
A thought could be to increase the smoothness factor of the graph cut model,
which could entail a smooth and non copper beaten surface.

As outlined throughout this chapter, many different prospects lie within opti-
mization of the graph cut model. It is believed, that by implementing some of
these consideration, the graph cut model has the potential to perform on equal
terms, if not better, as the image registration model.
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Chapter 14

Conclusion

Throughout this thesis two deformable models have been examined regarding
their prospects for intracranial volume estimation in children with unicoronal
synostosis. The two deformable models investigated, includes an image reg-
istration and a graph cut based algorithm. Both models were chosen on the
hypothesis of their ability to overcome the lack of cranial bone information,
which can be an issue in these cases of craniosynostosis. Throughout the work,
the capability of the two models was established, based on satisfactory segmen-
tation results, compared to manual based segmentations.

In previous craniofacial applications, the image registration model has been used
in order to access similar features of skull information. The same model was
therefore been utilized in this thesis. The disadvantage of this model is its bias
towards a template image, holding a manual segmentation, and as a consequence
the graph cut approach was investigated. This model has the advantage of being
unbiased, and holds the possibility of a gradient based approach to the problem.
An existing graph cut algorithm has been applied and customized to oblige the
problematic in this thesis.

The performance of the algorithms were validated by the means of a semi-
automatic segmentation including manual editing. An important aspect which
must be emphasized is that this model in itself induced a significant error into
the problematic. This entails that the foundation for comparison should be
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taken with some caution, especially due to the fact that the image registration
model is biased against the exact same segmentations. Based on the 15 datasets
(14 for the image registration) the mean voxel deviation for the two models
was found to be 1.88 % and 3.46 % for the image registration and graph cut
model, respectively. Another important aspect was the processing time for each
algorithm, found at 9 minutes and 1 hour and 17 minutes, respectively. Based on
these results the image registration approach appears to be the most favorable
method, however it should be remembered that this model holds a bias towards
the template. Since the graph cut application is a relatively new approach for
craniofacial segmentations, optimization in both performance and time duration
is therefore possible to a great extent.

To conclude, both models have the ability to serve as a tool for further popula-
tion studies concerning craniosynostosis. Thus the considered study of compar-
ing intracranial volumes in UCS affected children with normal data can easily
be extended, to comment on the possible deviations which might be between
these two groups. Intracranial volume estimations alone are, however, not al-
ways sufficient in order to quantify differences, but the obtained segmentations
can furthermore serve as a basis of a possible shape analysis.



Appendix A
Parameter test for optimizing

the GC model

Since Figure 10.9 only provides an overview of the mean effect of seven datasets,
the following will reveal all the individual parameter tests.

Subsequently, the parameters for dataset #14 were investigated, and the results
are seen in Figure A.2. It should be noted that the results from this dataset are
not included in the above-mentioned parameter test.
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(a) Dataset #2 (b) Dataset #3

(c) Dataset #5 (d) Dataset #6

(e) Dataset #8 (f) Dataset #11

(g) Dataset #12

Figure A.1: Test of the influence of the smoothness factor (the inter column weight)
and the number of connection in the neighborhood for seven datasets. The performance
is defined by means of the voxel deviation in percentages compared to the manual
segmentation. Note that the graphs are zoomed version.
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Figure A.2: Test of the influence of the smoothness factor (the inter column weight)
and the number of connection in the neighborhood for dataset #14. The performance
is defined by means of the voxel deviation in percentages compared to the manual
segmentation. Note that the graphs are zoomed version.



128 Appendix A



Appendix B

Results - Illustrations

In the following pages, the results from both segmentation models are shown
for all datasets, except the two, which have been shown in the result chapter in
this thesis. First 3D illustrations are presented in two view angles, showing the
voxel deviation found as the closest point distance (CPD) between the manual
and model based segmentation. These are throughout the appendix referred
to as error maps. The extent of the voxel deviations are shown in mm, where
green/blue colors indicate a model based segmentation lying on the outside,
whereas yellow/red colors indicate a model segmentation located on the inside
of the manual segmentation. Further, it must be noted that deviations above
5 mm and below -5 mm are truncated to 5 mm and -5 mm, respectively. It
should be noted, that these are presented with slightly different scaling, due
to a manual saving process. These are followed by a histogram showing the
frequency amount of point-to-point calculations as a function of the extent of
the deviation found in the CPD maps. These are all showed in a cropped version,
in order to get the best possible visual interpretation. Finally, the segmentation
boundaries superimposed on the corresponding CT image are shown in sagittal
and transversal plane, respectively.
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Dataset #2

(a) (b)

(c) (d)

Figure B.1: Error maps illustrating the extent and location of the voxel deviation
for dataset #2. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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(a) (b)

Figure B.2: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #2

(a) (b)

(c) (d)

Figure B.3: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #2
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Dataset #3

(a) (b)

(c) (d)

Figure B.4: Error maps illustrating the extent and location of the voxel deviation
for dataset #3. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.5: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #3

(a) (b)

(c) (d)

Figure B.6: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #3
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Dataset #4

(a) (b)

(c) (d)

Figure B.7: Error maps illustrating the extent and location of the voxel deviation
for dataset #4. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.8: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #4

(a) (b)

(c) (d)

Figure B.9: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #4



136 Appendix B

Dataset #5

(a) (b)

(c) (d)

Figure B.10: Error maps illustrating the extent and location of the voxel deviation
for dataset #5. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.11: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #5

(a) (b)

(c) (d)

Figure B.12: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #5
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Dataset #6

(a) (b)

(c) (d)

Figure B.13: Error maps illustrating the extent and location of the voxel deviation
for dataset #6. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.14: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #6

(a) (b)

(c) (d)

Figure B.15: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #6
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Dataset #8

(a) (b)

(c) (d)

Figure B.16: Error maps illustrating the extent and location of the voxel deviation
for dataset #8. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.17: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #8

(a) (b)

(c) (d)

Figure B.18: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #8
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Dataset #9

(a) (b)

(c) (d)

Figure B.19: Error maps illustrating the extent and location of the voxel deviation
for dataset #9. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.20: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #9

(a) (b)

(c) (d)

Figure B.21: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #9
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Dataset #10

(a) (b)

(c) (d)

Figure B.22: Error maps illustrating the extent and location of the voxel deviation
for dataset #10. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.23: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #10

(a) (b)

(c) (d)

Figure B.24: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #10
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Dataset #11

(a) (b)

(c) (d)

Figure B.25: Error maps illustrating the extent and location of the voxel deviation
for dataset #11. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.26: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #11

(a) (b)

(c) (d)

Figure B.27: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #11
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Dataset #12

(a) (b)

(c) (d)

Figure B.28: Error maps illustrating the extent and location of the voxel deviation
for dataset #12. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.29: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #12

(a) (b)

(c) (d)

Figure B.30: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #12
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Dataset #13

(a) (b)

(c) (d)

Figure B.31: Error maps illustrating the extent and location of the voxel deviation
for dataset #13. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.32: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #13

(a) (b)

(c) (d)

Figure B.33: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #13
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Dataset #14

(a) (b)

Figure B.34: Error maps illustrating the extent and location of the voxel deviation
for dataset #14. (a) and (b) represent the results from the graph cut model.
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Figure B.35: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the graph result, for
dataset #14

(c) (d)

Figure B.36: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from boundary
for the graph cut, for data #14
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Dataset #15

(a) (b)

(c) (d)

Figure B.37: Error maps illustrating the extent and location of the voxel deviation
for dataset #15. (a) and (b) represent the results from the image registration model,
whereas (c) and (d) hold the results from the graph cut model.
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Figure B.38: Histograms showing the frequency of point-to-point distances [mm]
between the manual and a model based segmentation. (a) holds the image registration
result, and (b) the graph cut result, for dataset #15

(a) (b)

(c) (d)

Figure B.39: Segmentation boundaries for the manual (red line) and the model based
segmentation (green line). (a) and (b) presents the boundary obtained from the image
registration, while (c) and (d) holds the boundary for the graph cut, for data #15
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