
IMM - DTU

Real-time Scattering

Abstract i

ABSTRACT

For a long time, real-time computer graphics have been limited to simulating local illumination with the

only completely dynamic global illumination effect being shadows. Recent work is producing results

allowing more and more global illumination effects to become plausible. Especially diffuse interreflection

and light passing through scattering media is receiving a lot of attention.

This thesis aims to analyze and implement solutions for various aspects of light scattering calculations. Both

participating media, and subsurface scattering has been evaluated, and different solutions have been

implemented.

Erik Rune Skals Livermore

s042572

28. February 2012

Table of contents ii

TABLE OF CONTENTS

Abstract ... i

Table of contents .. ii

Table of figures .. iii

Acknowledgements ... 1

1 Introduction ... 2

1.1 Focus of the thesis ... 2

1.2 Report structure .. 4

2 Background... 5

2.1 Surface reflectance .. 5

2.2 The rendering equation ... 8

2.3 Local vs. global illumination .. 9

2.4 The radiative transfer equation ... 9

2.5 Skin rendering .. 11

3 Previous work ... 13

3.1 Shadows ... 13

3.2 Participating media .. 15

3.3 Subsurface scattering .. 21

4 Analysis and implementation ... 25

4.1 Deferred shading and the Light pre-pass renderer ... 25

4.2 Participating media .. 26

4.3 Subsurface scattering .. 33

5 Results .. 43

5.1 Participating media .. 43

5.2 Subsurface scattering .. 52

5.3 Skin rendering .. 53

6 Conclusion .. 58

6.1 Participating media rendering ... 58

6.2 Subsurface scattering .. 58

6.3 Skin rendering .. 58

6.4 Improvements and future work .. 59

Bibliography ... 61

Table of figures iii

TABLE OF FIGURES

Figure 1 – Light-surface interaction in BRDF (left) and BSSRDF (right). Image from [Jensen et al. 2001] 5

Figure 2 - Illustration of different BRDFs. From left to right: Pure diffuse reflection; Pure specular reflection

and glossy reflection. Image from [Web - Lebedev] ... 6

Figure 3 - Illustration of BSDF being the combination of BRDF and BTDF. Image from [Wikipedia - BSDF] 7

Figure 4 - Fresnel reflectance for different materials as a function of the viewing angle. Image from

[Akenine-Möller et al. 2008].. 8

Figure 5 - Images of a brick taken at different angles, split into diffuse and specular components. Image

from [Web - Hable] .. 8

Figure 6 - Illustration of the rendering equation ... 9

Figure 7 - Single scattering calculation. Image from [Engelhardt and Dachsbacher 2010]............................. 11

Figure 8 - The structure of skin as a multi-layered model. Image from [d'Eon and Luebke 2007] 12

Figure 9 - The subsurface scattering of skin. Image from [d'Eon and Luebke 2007] 12

Figure 10 - Using shadows to visually place objects in space (from [Freiburg 2007]) 13

Figure 11 - Shadow from an area light source... 14

Figure 12 - How shadow mapping works (picture from The Cg Tutorial book, chapter 9) 14

Figure 13 - Scattering from Mist and water rendered using path tracing ... 15

Figure 14 - Examples of scattering from [Sun et al. 2005] (left) and from Rain-sample by nvidia (right) 16

Figure 15 - Extruding light volumes from a shadow map. From [Billeter et al. 2010] 16

Figure 16 - Slicing scheme from [Mitchell 2004] ... 17

Figure 17 - Screen-space sun shafts from [Mitchell 2007] .. 17

Figure 18 - Radial blur used as a mask for screen-space god rays (from [Sousa 2008]) 18

Figure 20 - Technique and results from [Wyman and Ramsey 2008] ... 19

Figure 21 - Sampling pattern (left) and final result (right) from [Gautron et al. 2009] 19

Figure 19 - Ray marching illustrated .. 19

Figure 22 - Result from [NVIDIA 2008] .. 20

Figure 23 - Crisp shadow boundaries using epipolar sampling ... 20

Figure 24 - Results achieved by [Barré-Brisebois and Bouchard 2011] ... 21

Figure 25 - Examples of skin rendering from movies (left from [Wikipedia - Gollum] and right from [Web -

Benjamin Button]) ... 22

Figure 26 - Texture space diffusion in The Matrix Reloaded (from [Borshukov and Lewis 2003]) 22

Figure 27 - Resulting image from [d'Eon and Luebke 2007] ... 23

Figure 28 - Comparison of texture space diffusion methods. Top: 5-pass from [d'Eon and Luebke 2007].

Bottom: 12-tap single pass from [Hable et al. 2009] (image from [Hable 2010]) 23

Figure 29 - Diffuse (center), regular 2D blur (left) and CBF-approximation (right) (Figure from [Mikkelsen

2010]) .. 24

Figure 30 - G-buffer layout of CryEngine 3. From left: Depth, normals and specular power (from [Mittring

2009]) .. 25

Figure 31 - The use of a bounding volume for lighting calculations (from [Hargreaves 2004]) 26

Figure 32 - Edge-aliasing caused by low resolution fog calculations without up-sampling (left) and with

(right) ... 27

file:///C:/Users/Public/Documents/Speciale/Specialerapport/MedButtinasRettelser.docx%23_Toc318297321

Table of figures iv

Figure 33 - Banding from too few samples (left). Jittering added (middle). NEighbor sampling blur (right) . 28

Figure 34 - Adding a colored texture to the spot light .. 29

Figure 35 - The Henyey-Greenstein phase function (red) and the Schlick approximation (blue). Schlick is

plotted with k inversed for comparison .. 30

Figure 36 - The Schlick phase function (left) estimated with the isotropic phase function, and an 'artist'-

multiplier of 20 .. 31

Figure 37 - Underwater rendering ... 32

Figure 38 - Ray-marching in screenspace. The effect has been enhanced to make for a better screenshot . 33

Figure 39 - General algorithm from [Ki 2009] ... 34

Figure 40 - Table of material properties from [Jensen et al. 2001] ... 34

Figure 41 - Subsurface scattering using material properties for skim milk ... 35

Figure 42 - Subsurface scattering using material properties for ketchup. Note that the light intensity has

been increased to brighten up the screenshot ... 35

Figure 43 - Blurring the subsurface scattering contribution (right) removes noise from under-sampling (left)

 ... 36

Figure 44 - Diffusion profile for skin. Image from [d'Eon and Luebke 2007] .. 36

Figure 45 - Gaussian blur kernels and weights (from [d'Eon and Luebke 2007]) .. 37

Figure 46 - Illustration of separable blurring. Image from [Engel 2003] ... 37

Figure 47 - Difference between specular component of Phong (left) and Kelemen/Szirmay-Kalos (right) 38

Figure 48 - The blurred light maps resulting from Gaussian blurring with the weights from Figure 41.

Variance increasing from left to right .. 40

Figure 49 - Weighted blurred lightmaps rendered on to the model. From left to right, top to bottom,

weighted according to the values in Figure 41 .. 40

Figure 50 - Final rendering of 5-pass blurred texture space diffusion .. 41

Figure 51 - Simple Gaussian weights for screen-space diffusion .. 42

Figure 52 - Volumetric shadows in fog .. 43

Figure 53 - A blue light source casting beams of light through fog ... 44

Figure 54 - Under some conditions, volumetric scattering is a very subtle effect .. 45

Figure 55 - Same as above, but with a scattering coefficient of 0.2 ... 46

Figure 56 - Adding a textured light source can give a powerful effect ... 47

Figure 57 - Absorption coefficient changed to simulate underwater rendering .. 48

Figure 58 - Simple Perlin noise added to emulate heterogeneous media .. 49

Figure 59 - Screenspace God rays in the CryTek Sponza scene ... 50

Figure 60 - Sunset behind skyscrapers .. 51

Figure 61 - Sunrise behind mountains ... 51

Figure 62 - Subsurface scattering through ketchup .. 52

Figure 63 - Subsurface scattering through skim milk .. 53

Figure 64 - Skin rendering with simple Lambertian diffuse reflection .. 54

Figure 65 - Skin rendering with full 5-pass texture space blur .. 55

Figure 66 - Skin rendering with a single combined blur .. 56

Figure 67 - Skin rendering with screenspace blur ... 57

Acknowledgements 1

ACKNOWLEDGEMENTS

First and foremost I would like to thank Niels Jørgen Christensen for all the tutelage and advice through my

time at DTU. I have really enjoyed learning computer graphics from him, and would not have made it here,

were it not for him.

And thank you to Simon Tobiasen, Mikkel Hempel and Anders Rong for great friendship and mutual help

and support through all the graphics courses at DTU. It has been an absolute pleasure.

Also a thank you to all the teachers I have had in all the different computer graphics related courses. Thank

you to Andreas Bærentzen, Jeppe Revall Frisvad, Bent Dalgaard Larsen and Anders Wang Kristensen.

Last but definitely not least, my thanks go to my wife, Bettina. Her continuous belief in me and support

through the process has been astonishing and I can truly say I would not have made it without her.

Introduction 2

1 INTRODUCTION

As the performance of graphics hardware and the quality and speed of real-time rendering algorithms

increases, the quality of real-time computer graphics is increasing exponentially. More and more lighting

effects, that used to be limited to movies and still images, are making their way into games and other

interactive applications.

Lately, a lot of research has been going into adding fully dynamic indirect illumination. It has even gone so

far as to being defined as ‘global illumination’ many places. While it is a very important effect when

reaching for real-time photo realism, it is certainly not the only global illumination effect currently lacking.

Another important visual effect with regard to global illumination, is volumetric scattering effects occurring

when light travels through participating media. Movies and TV-shows use smoke, thick fog, dust and deep

water to great extent, when trying to achieve certain moods: Ancient churches and abandoned warehouses

only lit by single beams of sunlight streaming in through stained glass windows; the silhouette of a guard

outlined by the light flooding the dark, dusty cellar; the murky bottle-green depths the submarine sees

when searching a sunken ship deep underwater.

As in movies, the effects can be used in much the same ways in video games, and are therefore very

interesting, when trying to improve the graphical fidelity and overall mood of a game. This makes it a good

case area to analyze and incorporate in the context of a modern 3D graphics engine.

Light scattering is also a necessity when rendering human skin. Light passes through the top layers of the

skin, bounces around, and exits. This gives skin an inherently soft look, which cannot truly be reproduced

without taking sub-surface scattering into account. Most current and future high-end video games have

many human characters in them, thus making rendering skin efficiently and realistically a very hot research

area.

Other materials, such as marble, jade or milk also require sub-surface scattering effects to be rendered

believably. Light passes through objects of these materials, but not before being scattered heavily. Light is

scattered differently according to its wavelength, and colors bleed around the point of entry.

1.1 FOCUS OF THE THESIS
This thesis aims to analyze and evaluate different real-time approaches to important aspects of light

scattering effects. Based on the analysis, dynamic interactive methods will be implemented that combine

speed and image quality to allow for the use of scattering effects in the context of a modern graphics

engine.

1.1.1 THE FOLLOWING AREAS WILL BE COVERED

Participating media rendering enables effects like Crepuscular rays, or ‘God rays’. These appear in many

different situations, and are a powerful visual tool when trying to create an engaging and evocative

atmosphere in a game.

Introduction 3

For a long time, graphics hardware has been able to render distance fog. This is the effect seen when

viewing objects at great distances, and is caused by light traveling through the atmosphere. This works well

enough for fading out distant objects, but the simplicity of the model renders it useless for more complex

foggy scenes. Analytical approaches have been made that improve on the lack of light scattering in the

hardware solution. While these are simple and fast, they lack the shadows cast by objects in the path of a

light beam, that are very important when creating more complex effects like god rays.

One very common way of solving differential equations on a computer is using numerical integration. In the

case of the radiative transfer equation, this translates to tracing light rays through the medium, taking small

steps along the ray (ray-marching). Currently most graphics engines implement some sort of deferred

lighting scheme, which gives easy access to scene depth. This, together with the use of geometric objects

for lighting calculations, makes ray-marching an obvious and preferable solution.

The biggest focus of current research in the field of real-time crepuscular rays is optimizing the number of

samples, and the distribution of these samples to focus computations in areas where the lighting varies the

most. Methods using shadow volumes, interleaved sampling and the theory of epipolar geometry will be

discussed.

The work presented in this report is focused on analyzing the aforementioned ray-marching solutions, and

combining their strengths to give the best results with respect to image quality and rendering speed.

Subsurface scattering and especially skin rendering is becoming an increasingly important research area in

real-time graphics. As games move closer and closer towards movies in production values and realism, the

need for rendering believable humans is increasing rapidly. Modeling light behavior as it enters and exits

the skin is a widely studied topic, and computer generated characters in games are rapidly becoming more

and more lifelike.

The physics of subsurface scattering makes it a complex and computationally expensive effect to simulate,

but different approaches aim to simplify the solution, making it feasible to render in real-time.

Different approaches to participating media rendering and subsurface scattering will be implemented in

this thesis, in the context of a modern graphics engine with the goal of allowing these effects in current

generation computer games (i.e. games for Xbox 360, PlayStation 3 and high-end PCs).

1.1.2 RESTRICTIONS

When including multiple scattering, the radiative transfer equation is an integro-differential equation. The

most common way of solving this type of equation on a computer, is by using Monte Carlo methods. These

methods are very time consuming, and have yet to be feasible in a real-time context. If multiple scattering

is ignored, the equation simplifies to a differential equation which in turn is a much more realistic target for

real-time rendering. Therefore, only single scattering media are considered for this project. This will be

discussed further later in the report, but is a limitation in the presented implementations.

This project will not cover the rendering of heterogeneous and emitting media (i.e. smoke or fire). These

effects are closely related to efficient solving of the Navier-Stokes equations for fluid dynamics (like in

Introduction 4

[Crane et al. 2007]), which is an area large enough to deserve a complete project of its own, and is beyond

the scope of this thesis. Simple simulation of heterogeneous media using Perlin noise will be presented.

1.2 REPORT STRUCTURE
Chapter 2 will introduce the theory behind light scattering and discuss the physics and mathematics

needed to render the aforementioned effects in a real-time graphics engine

Chapter 3 will present previous work in the field of volumetric light scattering with a focus on the research

done in real-time methods. This includes simplifications and limitations when approaching the

problem from a real-time perspective

Chapter 4 will analyze and discuss the previous methods. Based on this analysis, implementation will be

described, discussing choices and limitations

Chapter 5 will show and discuss the results reached through the work done in this project

Chapter 6 will draw conclusions based on the results. This chapter also includes thoughts on improvements

and future work

Background 5

2 BACKGROUND

This chapter covers the background theory of different basic concepts of computer graphics. Different

mathematical aspects of light scattering are also covered.

2.1 SURFACE REFLECTANCE
When rendering realistic images, one very important aspect is how light is reflected off different materials.

Some materials like polished metal and glossy plastic reflect light very well, while materials like rough wood

and fabrics look very matte because of their limited reflective attributes.

When light hits an object, it does not simply bounce back off - it enters the object; bounces around a bit;

some of it might be absorbed, and then exits again. This interaction is what gives materials their colors.

When white light hits a blue sweater, what actually happens is, that the light enters the fabric; the fabric

absorbs all non-blue wavelengths of the light, and blue light exits the sweater again giving it the blue

appearance.

Describing this interaction mathematically is quite complex. The Bidirectional Surface Scattering

Reflectance Distribution Function, or BSSRDF, was developed to describe light transport between any two

rays hitting a given surface. The complexity of this, made it necessary to find a simpler model for surface

reflection.

The concept of a Bidirectional Reflectance Distribution Function, BRDF, was introduced in [Nicodemus et al.

1977] as an approximation to the full BSSRDF where subsurface scattering is ignored. This makes it possible

to calculate a realistic light-surface interaction much faster, but the lack of subsurface scattering has

inherent limitations. A BRDF assumes that light enters and exits the same spot on a surface, which in most

cases is incorrect, and makes it impossible to model materials such as jade or milk, but is less important for

other materials like metal or plastic. A comparison of light-surface interaction using BRDFs and BSSRDFs can

be seen in Figure 1.

FIGURE 1 – LIGHT-SURFACE INTERACTION IN BRDF (LEFT) AND BSSRDF (RIGHT). IMAGE FROM [JENSEN ET AL. 2001]

2.1.1 COMMONLY USED BRDFS

There exist a number of different BRDFs, each with their own strengths and weaknesses. The most common

way of simulating the subsurface interaction found in a full BSSRDF is by using a Lambertian component.

Background 6

This component is a pure diffuse reflective BRDF (Figure 2 – left) and can be described by the following

formula:

Lambertian reflectance, or pure diffuse reflection, is calculated as the dot product of the surface normal, ,

at the point that is being shaded, and a normalized vector, , from the point in the direction of the light

source. This model is used in most computer games for calculating the diffuse term of other BRDFs.

FIGURE 2 - ILLUSTRATION OF DIFFERENT BRDFS. FROM LEFT TO RIGHT: PURE DIFFUSE REFLECTION; PURE SPECULAR REFLECTION AND GLOSSY

REFLECTION. IMAGE FROM [WEB - LEBEDEV]

One very commonly used model is the Phong BRDF. This model uses the diffuse reflectance from the

Lambert BRDF but adds specular reflection. This part is calculated using the reflected vector of the

incoming eye-vector reflected around the surface normal:

To speed up the computation of the specular term, [Blinn 1977] developed what is known as the Blinn-

Phong model. This is the most common specular BRDF in use in video games today, as more physically

based solutions are still very computationally heavy. The equation is:

The Blinn-Phong BRDF uses the half-vector between the light-vector and the eye-vector, and is especially

fast when using a directional light source, since the half-vector will be the same for all surfaces, as it is

independent of surface curvature.

Materials like glass or water, where light passes through, need yet another model to describe the

interaction with light. For this purpose, the BTDF and BSDF were developed. BTDF functions are like BRDF,

but is for light exiting an object, and BSDF refers to the combination of BRDF and BTDF (see Figure 3)

Background 7

FIGURE 3 - ILLUSTRATION OF BSDF BEING THE COMBINATION OF BRDF AND BTDF. IMAGE FROM [WIKIPEDIA - BSDF]

2.1.2 FRESNEL

When trying to simulate specular materials like metallic surfaces or glass, the reflected light depends very

much on the incident viewing angle. Therefore the Fresnel equations are needed, which formulate the

amount of reflecting light based on viewing angle. These equations are quite complex, and Christophe

Schlick’s approximation is used almost entirely in computer graphics. It is formulated as:

Where is half the angle between the incoming and outgoing light vectors, and is the Fresnel term at

 . This approximation serves most purposes just fine, and is allowing for Fresnel reflectance to be

integrated with more and more surface models. The following diagram shows how light is reflected of

different materials based on incident angle.

Background 8

FIGURE 4 - FRESNEL REFLECTANCE FOR DIFFERENT MATERIALS AS A FUNCTION OF THE VIEWING ANGLE. IMAGE FROM [AKENINE-MÖLLER ET AL.

2008]

While Fresnel was originally only used for metallic surfaces, it is now being used increasingly in computer

games in physically based BRDFs for most materials. John Hable shows how specular most materials

actually are in [Web - Hable] and how the reflectance change with the viewing angle. The specularity of an

otherwise very lambertian brick is illustrated below.

FIGURE 5 - IMAGES OF A BRICK TAKEN AT DIFFERENT ANGLES, SPLIT INTO DIFFUSE AND SPECULAR COMPONENTS. IMAGE FROM [WEB - HABLE]

2.2 THE RENDERING EQUATION
The basic idea for the rendering equation is that outgoing light at any point can be calculated as the sum of

emitted and reflected light:

Background 9

Emitted light includes radiance emitted from fluorescent objects like light bulbs, or phosphorescent

materials like glow-in-the-dark toys. Surface properties of a material determine the amount and color of

reflected light as described by the BRDF.

[Kajiya 1986] formalized this into what is called the rendering equation:

Where is the outgoing light from the point in the direction and is any emitted light. The integral

over the hemisphere around the surface normal, , sums up all incoming light, and the BRDF, , calculates

the amount of that incoming light which is reflected. The term attenuates the incoming light with

regard to the outgoing (viewing) direction. The elements of the rendering equation are illustrated below.

FIGURE 6 - ILLUSTRATION OF THE RENDERING EQUATION

The rendering equation in itself is not that complex, but the complexity grows when the incoming light

increases. Correct multiple light bounces and indirect illumination is still reserved for offline rendering

although many real-time approaches include some form of pre-computed lighting simulating the more

complex lighting scenarios.

2.3 LOCAL VS. GLOBAL ILLUMINATION
In computer graphics you generally distinguish between local and global illumination effects. Local

illumination refers to any lighting calculations done on a single point, without additional knowledge of the

surrounding geometry. Local illumination primarily covers the shading of materials using BRDFs. No matter

how advanced the rendering model is otherwise, it looks bad if the light-material interaction is off.

Any lighting effects that require more scene knowledge than what can be found in a single point, are

known as global illumination effects. These include shadows cast by other objects in the scene, light

reflecting off a surface before hitting the point in consideration, light focused through a refractive object

causing caustics.

2.4 THE RADIATIVE TRANSFER EQUATION
One limitation of the rendering equation is, that it describes light transport in a vacuum. In reality, this is

never the case, but the scattering caused by air is minimal enough for it to be ignored. When moving

Background 10

toward more physically correct renderings, and when trying to render light in media other than thin air, the

limitations are not acceptable. Therefore we require a more complex model for these scenarios.

The theory governing the radiation field in a participating medium was first described by Subrahmanyan

Chandrasekhar in his book Radiative Transfer in 1950 [Chandrasekhar 1950]. He defines the following

equation for describing the directed radiation at a single point in a medium that scatters, absorbs and emits

radiation. The Radiative Transfer Equation (RTE) is given as:

Where is the radiance at the point in the direction . The aforementioned scattering and

absorption is handled by the scattering coefficient , absorption coefficient and extinction coefficient

 . is any emitted radiance and the phase function describes how the scattered radiation is

distributed.

As mentioned in section 1.1.2, this thesis does not cover emissive media, which means that and can

be removed from the equation.

Parameterizing the RTE denoting the distance traveled by a light ray through the medium as and omitting

the emissive contribution in the equation, it can be rewritten to:

Where is the vector describing the path at the distance . This linear first-order differential equation

can be solved by using an integration factor. In this case, we use:

The integral in the integration factor is known as the optical thickness, :

Using this integration factor, the equation can be written as follows:

The next step is to integrate for to which gives the following equation:

The first term on the right hand side of this equation is called the direct transmission term. For

homogeneous media, the optical thickness making the direct transmission:

Background 11

,which is easily calculable.

As mentioned in section 1.1.2, the solution presented in this thesis limits itself to single scattering. This

simplifies the equation further, making it possible to solve the second term of the right hand side of the

equation by use of a finite Riemann summation. The resulting equation is:

Where is the distance from the current point to the light source, is the intensity of the light source and

 is the distance to the current point from the camera. is the light intensity at the distance ,

which is the intensity of the light source attenuated by the optical thickness from the light source to the

point. The algorithm is illustrated in Figure 7 although notation is a bit different.

FIGURE 7 - SINGLE SCATTERING CALCULATION. IMAGE FROM [ENGELHARDT AND DACHSBACHER 2010]

2.5 SKIN RENDERING
Human skin has always been one of the most difficult materials to render. We as humans are very sensitive

to the appearance of skin, and even close approximations will look very wrong to most people until they

are very realistic. On the surface, skin has thousands of small pores and wrinkles, which are noticeable

immediately if missing. Light is scattered under the surface of the skin in different amounts for different

wavelengths of light, giving it a very smooth look. Therefore, more advanced specular and diffuse reflection

models are needed. The following figure illustrates the multilayered skin model:

Background 12

FIGURE 8 - THE STRUCTURE OF SKIN AS A MULTI-LAYERED MODEL. IMAGE FROM [D'EON AND LUEBKE 2007]

The thin oily layer and the epidermis do reflect an amount of light directly off the surface without coloring

it. This specular reflection is more complex than can be modeled by the Blinn-Phong BRDF, and a more

advanced, physically based BRDF is required. [Kelemen and Szirmay-Kalos 2001] presented a BRDF that has

been shown to give very realistic specular reflections for skin rendering.

The light not reflected off the surface of the skin, penetrates the top-most layers, and is scattered within

the dermis before exiting again (see Figure 9). This scattering cannot be simulated by a simple Lambertian

diffuse model which renders the skin looking dry an unrealistic.

FIGURE 9 - THE SUBSURFACE SCATTERING OF SKIN. IMAGE FROM [D'EON AND LUEBKE 2007]

One aspect of skin, is that light entering the lower layers, quickly becomes very diffuse and scattered in all

directions. This means that light doesn’t travel very far through skin, and this is a property that will be

exploited in the implementation described in section 4.3.1.

Previous work 13

3 PREVIOUS WORK

Since scattering effects add a lot to computer generated images, a lot of research and work has been made

in the field. Both offline and in real-time, scattering effects add a lot to an image, and is an important global

illumination effect. This section of the thesis will go through the different approaches to rendering

scattering media.

Another very important aspect of global illumination is shadows, and shadows are also needed for realistic

rendering of scattering media.

3.1 SHADOWS
When trying to visually place an object in space in an image, one very important visual clue is where the

object casts a shadow. It can be very difficult to see if an object is floating or stationary without a guiding

shadow as shown in Figure 10. The same objects are rendered, but with different shadows, illustrating how

much of a difference it makes. Shadows are among the very first global illumination effects to be rendered

in computer graphics, and many different approaches have been made in both offline and real-time

rendering.

FIGURE 10 - USING SHADOWS TO VISUALLY PLACE OBJECTS IN SPACE (FROM [FREIBURG 2007])

In ray tracing, shadows can be implemented quite easily by casting additional rays from intersected objects.

These shadow rays are cast towards all light sources, and tell whether or not a point is lit by that light

source or in shadow, if the ray hits an object before reaching the light source. When using area light

sources, these have an expansion, and therefore multiple shadow rays are needed. This gives realistic soft

shadows with both umbra and penumbra as illustrated in Figure 11 and is highly sought after in real-time

rendering.

Previous work 14

FIGURE 11 - SHADOW FROM AN AREA LIGHT SOURCE

Correct soft shadows are the holy grail of real-time shadow rendering. The problem exists because the area

light source has not yet found its way to real-time rendering. When doing shading on a graphics card, you

generally can only have one direction from a scene point to a light source. This means a vector from the

scene point to either a point light source or spot light, or a general direction for directional light sources

(usually the sun). Also there is no additional scene information available.

The most common way of including shadows in real-time graphics, is by way of a Shadow Map. The idea is

to first render the scene as seen from the light source, storing the depth buffer in a render target. After

that, the point of view is switched to the the camera, and the scene is rendered again, this time looking

every point up in the shadow map to see if the light source has seen something closer to itself than the

point in question. If this is the case, the given point must be in shadow. The technique is illustrated in

Figure 12.

FIGURE 12 - HOW SHADOW MAPPING WORKS (PICTURE FROM THE CG TUTORIAL BOOK, CHAPTER 9)

Many different approaches have been made toward softening the edges of shadows in real-time rendering.

Percentage-closer filtering (PCF) works by sampling the shadow map several times around the point being

calculated, and averaging over the visibility of all nearby texels. This gives a decreasing shadow value closer

to the edge of a cast shadow. This is a very easy method, but it lacks the sharpening of shadow edges that

appear close to the shadow casting object.

Occluder

Umbra – fully shadowed Penumbra – partially shadowed

Light source

Previous work 15

3.2 PARTICIPATING MEDIA
In offline rendering, participating media rendering has been studied for a long time. [Pharr and Humphreys

2004] describe a solution based on ray-marching within the scattering medium, using Monte Carlo

techniques for modeling the scattering of particles. Renderings of mist and water using path tracing can be

seen in Figure 13. Path tracing through volumetric scattering media is extremely time consuming, and

converges very slowly to a visually pleasant solution. Images need very long computation times, if you wish

to avoid grainy and noise-filled results. [Jensen and Christensen 1998] developed the very commonly used

method of volumetric photon maps, which greatly speeds up rendering time when ray tracing through

participating media. This method has been improved in [Jarosz et al. 2008] and there is much research in

the area, as it is still a slow and noise-prone aspect of rendering.

FIGURE 13 - SCATTERING FROM MIST AND WATER RENDERED USING PATH TRACING

These offline methods are not nearly fast enough when moving to the realm of real-time graphics, but

there have been different approaches to the rendering of participating media in real-time. Most of them

limit themselves to the rendering of single scattering, as this gives convincing results in most cases, while

still being plausible in real-time.

[Sun et al. 2005] developed a particularly fast analytical solution which allows for realistic light scattering in

foggy or hazy scenes. This model is simple and fast for effects like the corona around street lamps on a

foggy night (Figure 14), but has inherent limitations in not taking visibility into account. Their solution does

include a good scattering model, which will be discussed later.

Previous work 16

FIGURE 14 - EXAMPLES OF SCATTERING FROM [SUN ET AL. 2005] (LEFT) AND FROM RAIN-SAMPLE BY NVIDIA (RIGHT)

The most visually important features of participating media-rendering, including light shafts, require

visibility calculations. There are several general approaches to this problem, and these approaches can

roughly be split into four groups:

SHADOW VOLUMES

[Biri et al. 2006], [James 2003] and [Mech 2001] all use shadow volumes to calculate shadowed areas of the

participating medium. Shadow volumes are currently not used very much as they add additional geometry

to the rendering, where games are already pushing the limits. On top of that, they all require some sorting

of the shadow planes, making them less useful. [Billeter et al. 2010] extrude light volumes from a shadow

map instead of shadow volumes, but similar limitations exist. Their algorithm is illustrated in Figure 15

FIGURE 15 - EXTRUDING LIGHT VOLUMES FROM A SHADOW MAP. FROM [BILLETER ET AL. 2010]

Previous work 17

SLICING TECHNIQUES

[Dobashi et al. 2002] and [Mitchell 2004] have used slicing techniques known from volume rendering to

render light shafts with shadows. Quads parallel to the view plane are rendered, sampling a shadow map

for visibility. These quads are then rendered back to front, and blending them together additively. This

approach suffers from aliasing issues, and a large number of planes are required for smooth results. This

problem was addressed by [Imagire et al. 2007] where sampling is averaged over nearby slices. This

reduces the number of required planes, and works as anti-aliasing of the result. This approach resembles

ray-marching which will be covered shortly.An illustration of the basics of the slicing scheme can be seen in

Figure 16

FIGURE 16 - SLICING SCHEME FROM [MITCHELL 2004]

POST-PROCESS EFFECT

[Mitchell 2007] developed a very fast screen-space effect. It works by ray-marching in screen-space from a

given point to the location of the light source. It sums up all samples where no geometry was encountered,

and attenuates them, by simulating volumetric scattering, giving the effect of sun shafts (Figure 17).

FIGURE 17 - SCREEN-SPACE SUN SHAFTS FROM [MITCHELL 2007]

[Sousa 2008] extended this method to use a radial blur, centered on the position of the sun in screen-space

coordinates, on the depth buffer as a mask for the God rays (Figure 18). This works very well with deferred

rendering approaches where a depth buffer is readily available.

Previous work 18

FIGURE 18 - RADIAL BLUR USED AS A MASK FOR SCREEN-SPACE GOD RAYS (FROM [SOUSA 2008])

These methods allow for believable shadows from geometry, but their simplicity means they are quite

error-prone. As all geometry has the same effect on the shadows, objects behind the light source as well as

objects very close to the camera will affect shadows as much as ‘correct’ shadow casters, which can be

undesired. The effect works well as long as the light source (most often the sun) is visible on screen.

Regardless of its shortcomings, it is a very useful approach for large outdoor scenes, where light sources are

very far away (like the sun in Figure 18). Here the speed it offers, as compared to ray-marching solutions,

easily makes up for the limitations.

RAY-MARCHING

Solutions based on ray-marching have become the most common. They are straight forward to implement,

and most current research go into optimizing the required number of samples and the location of these

samples.

Ray marching is done as a full-screen pass, where a pixel shader steps through the scene from the camera

to the depth buffer, accumulating samples at every step. Each step is visibility tested using a shadow map,

and calculations are made for points not in shadow (see Figure 19). Raw ray marching needs quite a lot of

samples to give decent results, but many optimizations exist.

Previous work 19

[Wyman and Ramsey 2008] propose, using shadow volumes, to store depth-values for the nearest and

furthest shadowed areas, ray-marching only between these planes. This approach also allows them to find

pixels that don’t encounter any shadows, and use the analytical approach from [Sun et al. 2005] without

needing to ray-march. They also include the use of textured spot lights, but in that case, their optimizations

are less useful. The technique and results are shown in Figure 20.

FIGURE 20 - TECHNIQUE AND RESULTS FROM [WYMAN AND RAMSEY 2008]

When sampling textured spot lights, regular ray-marching in view-space or world-space can have problems

retaining details of the projected image. [Gautron et al. 2009] have addressed this issue by doing their

sampling in shadow map-space, evenly spacing their samples over the projected texture. They also include

an optimization that is linked to deferred lighting where spot lights are often rendered as cones, allowing

them to find entry and exit points of the camera-ray with regards to shadow map-space (see Figure 21).

FIGURE 21 - SAMPLING PATTERN (LEFT) AND FINAL RESULT (RIGHT) FROM [GAUTRON ET AL. 2009]

FIGURE 19 - RAY MARCHING ILLUSTRATED

Previous work 20

[NVIDIA 2008] optimize ray-marching by creating a mipmap pyramid for the shadow map, storing min and

max depths. This reduces the number of required visibility samples, and allows them to take larger steps in

many cases. Sample-aliasing is reduced by jittering the starting point for each ray. This paper also includes a

Sobel-filter approach to up-sampling, which allows them to render the volumetric lighting at a lower

resolution, while still keeping smooth edges (see Figure 22). Like NVIDIA, [Tóth and Umenhoffer 2009] also

jitter the samples. They use interleaved sampling ([Keller and Heidrich 2001]) in screen-space and average

over neighboring pixels.

FIGURE 22 - RESULT FROM [NVIDIA 2008]

[Engelhardt and Dachsbacher 2010] observed that inscattered light varies smoothly (most of the time)

along the light shafts. They use the theory of epipolar geometry to focus the samples on lines emanating

from the light source in screen-space, and smoothly interpolate between these samples along the epipolar

lines. Depth discontinuities are found and sampling is focused around these points. Figure 23 shows how

this sampling pattern leads to very crisp light shafts.

FIGURE 23 - CRISP SHADOW BOUNDARIES USING EPIPOLAR SAMPLING

The theory of epipolar geometry lends itself very nicely to rendering of participating media. [Wyman 2011]

creates voxelized shadow volumes in epipolar space, and [Chen et al. 2011] create a 1D heightmap in

epipolar space, they traverse to find shadowed areas.

Lately, [Kaplanyan and Dachsbacher 2010] presented work in real-time indirect illumination where light is

propagated through a voxel-grid. This has given results, where participating media rendering is easily

integrated and this method has been extended to allow for interactive rendering of multiple scattering in

Previous work 21

heterogeneous media as well [Engelhardt et al. 2010]. This way of having lighting in a voxel-grid is even

more integrated in the graphics engine used for the game LittleBigPlanet 2. Here the scene is ‘voxelized’

every frame and all lighting calculations are done by sampling the resulting grid. This allows for easy

volumetric shadows, but the sharpness and quality is quite limited on current hardware [Evans and

Kirczenow 2011].

3.3 SUBSURFACE SCATTERING
Estimating subsurface scattering in real-time is very complex, and the most realistic approaches are still too

expensive for use in video games. Simpler methods are gaining popularity as subsurface scattering adds a

lot to scenes in many scenarios.

[Dachsbacher and Stamminger 2003] expand on the idea of shadow maps to include more information. This

information is then used to calculate an approximation of how much radiance has flown though the model.

The same approach was made by [Chang et al. 2008] and [Ki 2009] extended this algorithm with very good

results.

[Sousa 2008] use a very simple approach to scattering through leaves, where their artists paint a

‘subsurface texture map’ giving them a factor indicating how much light passes through the leaf at any

given point. This factor is simply multiplied by double-sided lighting for a quick and dirty approach to

subsurface scattering.

[Barré-Brisebois and Bouchard 2011] expand this concept to more voluminous models, by adding a texture

to each model, where they have stored ambient occlusion calculations for the inside of the model. They flip

all normals, and do regular ambient occlusion calculations. This gives them a rough estimate of local

thickness of the model, which is then used to attenuate a translucency factor. Results from this method are

shown in Figure 24

FIGURE 24 - RESULTS ACHIEVED BY [BARRÉ-BRISEBOIS AND BOUCHARD 2011]

3.3.1 SKIN RENDERING

In computer graphics, human skin is a very complex and difficult material to render. [Jensen et al. 2001]

developed an approximation to full BSSRDF rendering, which enabled (and still enables) movies to include

Previous work 22

increasingly realistic computer generated humans (and human-like creatures). Before this, rendering had

focused on simulating the simpler BRDF, because it was too costly to go beyond this. Offline rendering has

come very far (see Figure 25), and the most realistic real-time simulations are still very costly, limiting their

usability.

FIGURE 25 - EXAMPLES OF SKIN RENDERING FROM MOVIES (LEFT FROM [WIKIPEDIA - GOLLUM] AND RIGHT FROM [WEB - BENJAMIN BUTTON])

Based on the observation that skin has quite limited scattering distance and limited curvature, [Borshukov

and Lewis 2003] developed what is known as Texture Space Diffussion. This technique works by rendering

lighting into a light map in the models texture coordinates, and performed a custom blur on this texture to

simulate light scattering (see Figure 26). The blur is separate in red, green and blue, simulating the

difference in light scattering for different wavelengths.

FIGURE 26 - TEXTURE SPACE DIFFUSION IN THE MATRIX RELOADED (FROM [BORSHUKOV AND LEWIS 2003])

In [Green 2004] and [Gosselin 2004] the notion of texture space diffusion was used, but with a simpler 2-

pass Gaussian blur. The still gold standard in real-time skin rendering came in [d'Eon and Luebke 2007]

where texture space diffusion was coupled with a sum of Gaussians approximations. These Gaussian blurs

were fit from real measured data for skin and, together with a very detailed model, gave very convincing

results (see Figure 27). Further details of this method will be described in section 4.3.1.

Previous work 23

FIGURE 27 - RESULTING IMAGE FROM [D'EON AND LUEBKE 2007]

[Hable et al. 2009] kept the blurring in texture-space, but developed a custom 12-tap blur instead of the

five blur-passes needed for [d'Eon and Luebke 2007]. It is not as correct, but much faster and the results

are comparable. Figure 28 illustrates the different approaches. Implementation details of this method will

also be covered in section 4.3.1.

FIGURE 28 - COMPARISON OF TEXTURE SPACE DIFFUSION METHODS. TOP: 5-PASS FROM [D'EON AND LUEBKE 2007]. BOTTOM: 12-TAP SINGLE

PASS FROM [HABLE ET AL. 2009] (IMAGE FROM [HABLE 2010])

While the texture-space methods work very well, they require a light map per texture, which can be

expensive if multiple characters are on-screen. Another issue can arise when it is not a head but something

smaller, like for example a hand. Here, textures will often not be as detailed, or could be part of a bigger

texture which can lead to difficulties. [Jimenez et al. 2009] move the blur-pass to screen-space. This

technique has the advantage of working equally well no matter how texture coordinates and textures are

laid out and it also has a fixed cost which is more predictable. It does require a light map as seen from the

camera, and therefore works best in conjunction with a light pre-pass renderer. This method has a problem

in determining curvature and blurring over non-adjoining areas like from nose to cheek for example. This

issue was handled in [Mikkelsen 2010] by use of a pseudo-separable cross bilateral filter, giving very decent

results that are much faster than texture space diffusion. Figure 29 illustrates the difference between a

regular screenspace blur, and the technique developed by [Mikkelsen 2010].

Previous work 24

FIGURE 29 - DIFFUSE (CENTER), REGULAR 2D BLUR (LEFT) AND CBF-APPROXIMATION (RIGHT) (FIGURE FROM [MIKKELSEN 2010])

Recent work in subsurface scattering has used light propagation volumes (from [Kaplanyan and

Dachsbacher 2010]) to estimate the flow of light through heterogeneous materials in real-time [Børlum et

al. 2011].

Analysis and implementation 25

4 ANALYSIS AND IMPLEMENTATION

This chapter will cover analysis and implementation decisions for each of the covered areas of scattering,

and discuss any related topics such as render engine design.

4.1 DEFERRED SHADING AND THE LIGHT PRE-PASS RENDERER
As realism in real-time computer graphics improves, so does the need for more realistic scenes. One

limitation that has been around for a long time is the lack of a good solution to having many lights in a

scene. When looking around the real world, there is usually any number of light sources affecting what you

see, and in computer generated scenes, light sources can be a powerful artistic tool when setting the mood

of a scene. Additional light sources can also be used to simulate other effects, like indirect illumination and

particle based effects like fire. This problem has been addressed in most modern graphics engines by some

form of deferred rendering scheme.

The idea of deferred shading started with [Hargreaves 2004] as a possible solution to the many-lights

problem in regular forward rendering. When rendering lit objects in the usual way, each object is rendered,

applying all lights in a single shader. This works fine for scenes with very few lights (outside, lit only by

sunlight for example), but as the number of lights increases, the complexity grows exponentially, and

shader instruction limitations are suddenly a limitation. Deferred shading handles this by decoupling the

lighting from the geometry rendering. All objects are rendered, filling render targets with scene depth,

normals, diffuse color and any other material properties needed for lighting. This is called the geometry

buffer or G-buffer. Afterwards, all lights are applied as 2D postprocess, reading necessary information from

the render targets from the G-buffer. World-space position is computed from the stored depth, and

normals and specular strength combine for shading calculations. Diffuse texture colors are read, and a final

color can be output. This greatly simplifies scenarios where many lights affect scene-objects, and means

that there is little or no difference in the cost of rendering many small lights or few larger.

The drawback of this method is the memory needed for multiple large render targets, and the many reads

from these needed for lighting calculations. As a response to this problem, [Engel 2009] came up with the

concept of a Light pre-pass renderer. Here, the geometry is first rendered to a much smaller G-buffer of

only two render targets. Scene depth, normals and specular reflection is usually stored (see Figure 30).

After this, the lighting is performed in the same way as in deferred shading, but without diffuse albedo.

Finally the scene geometry is rendered again, this time applying the lighting from the light pass as simple

screen-space look-ups in a texture.

FIGURE 30 - G-BUFFER LAYOUT OF CRYENGINE 3. FROM LEFT: DEPTH, NORMALS AND SPECULAR POWER (FROM [MITTRING 2009])

When doing lighting in a deferred renderer, the number of calculations can be reduced by rendering

bounding objects for each light source. For example a sphere can be used for point lights and a cone for

Analysis and implementation 26

spot lights. This means that lighting calculations are only done for pixels that could actually be reached by

the light source (see Figure 31). Newer implementations like [Andersson 2011] use the Compute Shader in

DirectX 11 (shader model 5.0) and tile based calculations to limit overdraw when many lights overlap in

large scenes. This is a very interesting approach, but is beyond the scope of this thesis.

FIGURE 31 - THE USE OF A BOUNDING VOLUME FOR LIGHTING CALCULATIONS (FROM [HARGREAVES 2004])

One very useful feature about these approaches to rendering engines is that you gain access to a depth

buffer in every frame. This comes in very handy when doing different forms of participating media

rendering as will be covered later.

Both methods have their strengths and weaknesses, and both methods are used in high-end graphics

engines. Examples include deferred shading in the Frostbite 2-engine used for Battlefield 3 ([Andersson

2011]) and Light pre-pass rendering in CryEngine 3 used for Crysis 2 ([Mittring 2009]).

As the goal of this thesis is to implement scattering effects in the context of a current game engine, I have

chosen to implement a simple light pre-pass renderer. It allows for more flexibility than regular forward

rendering, and serves the needs of this thesis very well.

I have chosen a simple G-buffer layout with only scene depth, and normals. This comes down to the focus

of the thesis being volumetric scattering, and simple lambertian shading is sufficient to illustrate these

effects, which means that other material parameters can be ignored (except for skin shading, but this will

be discussed later).

4.2 PARTICIPATING MEDIA
The first implemented effect is volumetric single scattering media. This is a visually powerful effect, and one

that is just beginning to enter computer games and graphics engines, as it is still computationally hard. It

can really add a lot to a scene, and is therefore an interesting area to cover.

To get the best result when rendering scattering media, the analytical method proposed by [Sun et al.

2005] just doesn’t cut it. The lack of volumetric shadows is very clear, and is noticed immediately by the

viewer. The speed gained from using this method is noticeable enough that whenever you can guarantee

no shadows will be cast, or that they will be unnoticeable, this is definitely preferable. A good example is

car headlights and lamps in slightly misty or foggy weather. These lights are not powerful enough combined

with the subtle nature of slight mist that they cast noticeable shadows. For light shafts coming in through a

Analysis and implementation 27

window in a dark room, it is very noticeable though. If there are no shadows in these, it can be very difficult

to place them, and it simply looks wrong.

The optimal solution is obviously to use the analytical method for all pixels where there are no shadows,

and only ray-march where this is necessary. [Wyman and Ramsey 2008] solve this by storing depth values

for the frontmost and backmost shadow polygons, and can then check when they are not defined. This

method relies on shadow volumes, which is not desirable as they are bound by geometric scene

complexity, and can introduce many additional polygons to an already heavy scene.

I have chosen a ray-marching approach for my implementation, as it can give very good results, close to

ground truth. Since I have chosen to use a light pre-pass renderer as the basis of my solution and use

bounding cones for spot lights, the first optimization I have made is to limit sampling to within the

boundaries of the light cone. This is done by first rendering front faces of the cone to a depth buffer. Then

for the main ray-marching pass, back faces are rendered and the front face depth for the pixel is read from

the stored buffer. This allows for tighter sampling, and no samples are wasted on areas where the light

source doesn’t hit anyway.

The second optimization I have chosen is to render the scattering pass to a lower resolution buffer, and

then up-sampling it for the final image. This approach results in the shadow edges become a bit blurry, but

this is in reality one of the effects additional effect for modeling multiple scattering as well, and is not a

huge drawback. The resolution is halved in both and resulting in only one fourth as many pixels needing

calculation. This approach requires extra up-sampling to avoid edge-aliasing as shown in Figure 32.

FIGURE 32 - EDGE-ALIASING CAUSED BY LOW RESOLUTION FOG CALCULATIONS WITHOUT UP-SAMPLING (LEFT) AND WITH (RIGHT)

When trying to reduce the number of required samples, one effective optimization is to jitter the starting

points of the ray-marching. Jittering can either be done by interleaved sampling ([Tóth and Umenhoffer

2009]) or by sampling a random noise texture ([NVIDIA 2008]). I found that the best results are achieved by

random jitter, and have implemented creation of a noise texture, and sampling of this when starting each

ray-march. The up-sampling done to remove edge aliasing, also works as a blur pass, improving the jittered

sampling Figure 33 illustrates what is gained by jittering.

Analysis and implementation 28

FIGURE 33 - BANDING FROM TOO FEW SAMPLES (LEFT). JITTERING ADDED (MIDDLE). NEIGHBOR SAMPLING BLUR (RIGHT)

One common technique when rendering participating media is to add a texture to the spot light to simulate

a stained glass window. This texture is sampled in the same way as the shadow map is sampled, and the

scattering contribution color is multiplied by the stored color. This technique can give some very pleasant

effects shown in Figure 34.

Analysis and implementation 29

FIGURE 34 - ADDING A COLORED TEXTURE TO THE SPOT LIGHT

The scattering equation includes a phase function. This phase function describes how light is scattered

through the media, and three functions have been implemented in this thesis: Isotropic scattering, the

Henyey-Greenstein model, and the approximation to the Henyey-Greenstein function developed by Schlick.

The isotropic scattering function is simply:

Which means that light is scattered evenly in all directions. This phase function results in very subtle

scattering of light.

The Henyey-Greenstein model is defines as:

Analysis and implementation 30

Where is the angle between a vector from the eye to the light, and a vector from the eye to the point

being calculated. is a constant that defines how light is scattered through the medium. for back

scattering. for forward scattering, and when the phase function reduces to the isotropic

scattering function.

The 1.5-exponent in the Henyey-Greenstein model is quite costly, which made Schlick develop an

approximation to this function. It is defined as:

This approximation uses the equation of an ellipse to estimate the Henyey-Greenstein function, and is quite

cheaper. Here is similar to in the previous model, except with the opposite sign. Plots of the two

functions are shown in Figure 35

FIGURE 35 - THE HENYEY-GREENSTEIN PHASE FUNCTION (RED) AND THE SCHLICK APPROXIMATION (BLUE). SCHLICK IS PLOTTED WITH K

INVERSED FOR COMPARISON

Light scattering is a quite subtle effect in reality, but when used for effect in computer games or movies,

you typically want it to be very visible. Luckily, the ray marching approach is very flexible. I have

implemented a simple ‘artist’-factor which is multiplied on to each scattering calculation. This is obviously

not physically correct in any way, but can enhance the mood you are trying to create in the scene. It can

also be used to emulate the more expensive phase functions while simply using the isotropic, as shown in

Figure 36

Analysis and implementation 31

FIGURE 36 - THE SCHLICK PHASE FUNCTION (LEFT) ESTIMATED WITH THE ISOTROPIC PHASE FUNCTION, AND AN 'ARTIST'-MULTIPLIER OF 20

One additional implementation is to add support for various media. The screenshots shown so far have all

been for fog, but another relevant medium is water. The difference between these two media is their

scattering and absorption coefficients. I have used a three dimensional absorption coefficient to allow for

varying absorption of different wavelengths of light. For fog, I have used and for

water: giving water a blue tint. The scattering coefficient is set to in all

screenshots in this section, but can be varied as will be shown in section 5.1.

Analysis and implementation 32

FIGURE 37 - UNDERWATER RENDERING

4.2.1 SCREENSPACE APPROACH

While the ray-marching solution works very well for closed spaces, it becomes very expensive when moving

to wide open areas. Here, God Rays are quite limited, but can add a lot towards setting the mood in a

scene. This has led to the development of the screenspace approach from [Mitchell 2007] which gives very

nice looking results while being very cheap. It is a fast approximation, but physically quite incorrect.

Implemented using the atmospheric scattering code found at [Web - Urbano Álvarez] which is based on the

work presented by CryTek in [Wenzel 2006] where the model from [Nishita et al. 1993] is solved in a two-

pass fashion where the scattering texture is updated using the graphics card, and the second pass uses the

scattering texture as a look-up-table to render the atmospheric scattering.

My implementation works as a fullscreen pass. I march along the vector from the current pixel to the

position of the sun in screenspace-coordinates. At every point the scene depth map is sampled first. If there

is nothing occluding the sky, that is if the scene depth equals 1.0, the sky texture is sampled. This is done

several times, stepping along the vector and adding up the un-occluded samples. These samples are

attenuated based on the distance from the sun. The resulting God ray-image is then superimposed over the

regular scene rendering as shown in Figure 38.

Analysis and implementation 33

FIGURE 38 - RAY-MARCHING IN SCREENSPACE. THE EFFECT HAS BEEN ENHANCED TO MAKE FOR A BETTER SCREENSHOT

It is worth noting that a cosine factor is multiplied on to avoid God rays when looking directly away from

the sun. In this case, the sun will have the same and coordinates in screenspace. This cosine factor can

also be altered to make the God rays more visible when looking directly at the sun, which seems more

realistic.

4.3 SUBSURFACE SCATTERING
For general subsurface scattering, I have implemented the method presented in [Ki 2009] as it works well

with the deferred approach to lighting. An extended shadow map is rendered from the point of view of the

light source, containing (in addition to scene depth) the surface normal; the irradiance entering the model

(that is the light intensity attenuated by distance and by the Fresnel function) and finally the world-space

position. A material ID can also be included to allow for scenes with multiple materials, but is not relevant

for my sample program.

Analysis and implementation 34

FIGURE 39 - GENERAL ALGORITHM FROM [KI 2009]

The algorithm shown in Figure 39 works by ray-marching through the model along the outgoing path
 and

computing the subsurface intersection . This point is then transformed to light space coordinates to find

the surface point . The information stored in the Subsurface Scatter Map can then be used to calculate

giving a good approximation to
 .

The method uses scattering coefficients found in the table in Figure 40 and examples can be seen in Figure

41 and Figure 42 for skim milk and ketchup respectively

FIGURE 40 - TABLE OF MATERIAL PROPERTIES FROM [JENSEN ET AL. 2001]

Analysis and implementation 35

FIGURE 41 - SUBSURFACE SCATTERING USING MATERIAL PROPERTIES FOR SKIM MILK

FIGURE 42 - SUBSURFACE SCATTERING USING MATERIAL PROPERTIES FOR KETCHUP. NOTE THAT THE LIGHT INTENSITY HAS BEEN INCREASED TO

BRIGHTEN UP THE SCREENSHOT

I have implemented a simple Gaussian blur of the scattered part of the lighting, as it exhibits noise artifacts

from under-sampling. Subsurface scattering also has an inherently smooth look, which is enhanced by the

blurring. The effect of blurring is shown in Figure 43.

Analysis and implementation 36

FIGURE 43 - BLURRING THE SUBSURFACE SCATTERING CONTRIBUTION (RIGHT) REMOVES NOISE FROM UNDER-SAMPLING (LEFT)

4.3.1 SKIN RENDERING

For my skin rendering solution, I have implemented the algorithm from [d'Eon and Luebke 2007] as it is

widely acknowledged as being the very best, when it comes to image quality.

When modeling multi-layered materials like skin, the notion of light entering and exiting the same spot on a

surface, is not exact enough. Light enters the material, scatters and exits a different place. This scattering is

different for different wavelengths of light, and is illustrated in Figure 44 for human skin.

FIGURE 44 - DIFFUSION PROFILE FOR SKIN. IMAGE FROM [D'EON AND LUEBKE 2007]

[d'Eon and Luebke 2007] found that they could almost match the diffusion profiles with the common

Gaussian function

, which is very simple to calculate in computer graphics. The Gaussian function

doesn’t match it precisely, but when expanded to a sum of Gaussians, the result is very close. They have

arrived at the following values, when trying to match the three-layer skin model from [Donner and Jensen

2005]:

Analysis and implementation 37

FIGURE 45 - GAUSSIAN BLUR KERNELS AND WEIGHTS (FROM [D'EON AND LUEBKE 2007])

Gaussian blur functions are used for many things in real-time graphics because of their simplicity and

speed. The function is separable in and allowing for even faster calculation with a two-pass approach

(see Figure 46). This is done by first rendering the horizontal blur to an intermediate render target. And

then blurring this intermediate render target vertically, outputting the final result.

FIGURE 46 - ILLUSTRATION OF SEPARABLE BLURRING. IMAGE FROM [ENGEL 2003]

In most real-time computer graphics, the Phong reflectance model is the BRDF of choice. While it is fast,

more complex materials such as skin require a more advanced BRDF. For skin rendering, the physically

based Kelemen/Szirmay-Kalos BRDF has shown to give very pleasing results. This is the shader code used to

calculate the BRDF based on surface normal, light vector, eye vector, roughness and specular power. The

Fresnel reflectance calculation is done by using the Schlick approximation.

Analysis and implementation 38

float KS_specular(float3 N, // Surface normal

 float3 L, // point-to-light vector

 float3 V, // Point-to-eye vector

 float m, // roughness

 float rho_s) // specular brightness

{

 float result = 0.0;

 float ndotl = dot(N, L);

 if(ndotl > 0.0)

 {

 float3 h = L + V; // Unnormalized half-way vector

 float3 H = normalize(h);

 float ndoth = dot(N, H);

 float alpha = acos(ndoth);

 float ta = tan(alpha);

 float PH = 1.0/(m*m*pow(ndoth,4.0))*exp(-(ta*ta)/(m*m));

 float F = FresnelReflectance(H, V, 0.028);

 float frSpec = max((PH * F) / dot(h, h), 0);

 result = ndotl * rho_s * frSpec;

 }

 return result;

}

This BRDF is more complex to calculate, but the results are much better than what can be achieved with

the standard Phong BRDF:

FIGURE 47 - DIFFERENCE BETWEEN SPECULAR COMPONENT OF PHONG (LEFT) AND KELEMEN/SZIRMAY-KALOS (RIGHT)

The steps of the algorithm are as follows:

Analysis and implementation 39

The first step is to render a depth map as seen from the light source for shadow mapping

The second step is to render a light map as seen from the camera, but drawn to a render target using the

texture coordinates of the model.

Steps 3 through 7 are blurs of the light map using a Gaussian blur kernel with increasing variance. Each

result is stored in a texture

Analysis and implementation 40

FIGURE 48 - THE BLURRED LIGHT MAPS RESULTING FROM GAUSSIAN BLURRING WITH THE WEIGHTS FROM FIGURE 45. VARIANCE INCREASING

FROM LEFT TO RIGHT

Step 8 is combining these blurred light maps, where each texture is weighted separately in the red, green

and blue channels as illustrated in Figure 45

FIGURE 49 - WEIGHTED BLURRED LIGHTMAPS RENDERED ON TO THE MODEL. FROM LEFT TO RIGHT, TOP TO BOTTOM, WEIGHTED ACCORDING

TO THE VALUES IN FIGURE 45

And finally step 9 is combining the blurred light maps and using them to illuminate the diffuse texture.

Finally, specular highlights are added.

Analysis and implementation 41

FIGURE 50 - FINAL RENDERING OF 5-PASS BLURRED TEXTURE SPACE DIFFUSION

As can be seen in Figure 50, this method gives very pleasing results, but the price is very high. The 5-pass

Gaussian blurring is very computationally heavy, and the technique is still out of reach for current graphics

hardware, if the scene is more complex.

With the major hurdle being the 5-pass blur, the technique presented in [Hable et al. 2009] was the next

algorithm implemented. Here the light map is rendered to texture space as in the previous method, but

instead of doing the multiple blur passes, the blurring is done when rendering the final pass.

The blurring is done by sampling the light map 12 times around the point in question. These 12 samples are

jittered around the current texel, and weighted accordingly. The texture coordinate offsets for all the

samples are:

float2 blurJitteredSamples[13] =

{

 { 0.000000, 0.000000 },

 { 1.633992, 0.036795 },

 { 0.177801, 1.717593 },

 { -0.194906, 0.091094 },

 { -0.239737, -0.220217 },

 { -0.003530, -0.118219 },

 { 1.320107, -0.181542 },

 { 5.970690, 0.253378 },

 { -1.089250, 4.958349 },

 { -4.015465, 4.156699 },

 { -4.063099, -4.110150 },

 { -0.638605, -6.297663 },

 { 2.542348, -3.245901 },

};

And the weighting of each sample with individual weights for each color are:

Analysis and implementation 42

float3 blurJitteredWeights[13] =

{

 { 0.220441, 0.437000, 0.635000 },

 { 0.076356, 0.064487, 0.039097 },

 { 0.116515, 0.103222, 0.064912 },

 { 0.064844, 0.086388, 0.062272 },

 { 0.131798, 0.151695, 0.103676 },

 { 0.025690, 0.042728, 0.033003 },

 { 0.048593, 0.064740, 0.046131 },

 { 0.048092, 0.003042, 0.000400 },

 { 0.048845, 0.005406, 0.001222 },

 { 0.051322, 0.006034, 0.001420 },

 { 0.061428, 0.009152, 0.002511 },

 { 0.030936, 0.002868, 0.000652 },

 { 0.073580, 0.023239, 0.009703 },

};

This method is a lot faster than the full 5-pass rendering, and gives very comparable results. They are not as

correct when studied very closely, but in real-time applications where the humans are merely part of a

larger scene, you will be hard pressed to notice the difference.

Looking to screen-space for further speed improvements, I chose a simple filter based roughly on the one

found in [d'Eon and Luebke 2007], but greatly simplified. The purpose of this was mainly to illustrate that

even a very simple weighted smoothing of the diffuse lighting adds a lot toward more natural looking skin.

The technique works by rendering the diffuse lighting contribution and storing it in a screen-space buffer as

in normal light pre-pass rendering. This light buffer is then passed through a two-pass separable Gaussian

blur filter, using the variance found in Figure 51. Then when combining the final image, the un-blurred light

map (blurred with variance 0) and the blurred light map are sampled using the weights shown in Figure 51,

and the specular term is calculated and added.

Variance (mm2) Red weight Green weight Blue weight

0 0.233 0.455 0.694

6 0.767 0.545 0.351
FIGURE 51 - SIMPLE GAUSSIAN WEIGHTS FOR SCREEN-SPACE DIFFUSION

While this method is obviously not physically correct, it goes to show that even a rough estimate makes

skin rendering much more pleasing to the human eye. A comparison to plain Lambertian diffuse shading

can be seen in the discussion of results in section 5.3.

The head model in this part of the thesis is from [Web - Infinite Realities]

Results 43

5 RESULTS

This chapter will show the results obtained in this thesis. All results are completely interactive and

properties can be changed on the fly.

5.1 PARTICIPATING MEDIA
This effect is still a bit expensive for current video games, but it is getting closer. With the ray marching

approach, there are so many different optimizations to implement, that it is increasingly feasible to include

in video games. Many of these optimizations work especially well under certain circumstances and others

well in different situations, making this a flexible and adaptable approach.

Images of the ray marching solution under various conditions:

FIGURE 52 - VOLUMETRIC SHADOWS IN FOG

Results 44

FIGURE 53 - A BLUE LIGHT SOURCE CASTING BEAMS OF LIGHT THROUGH FOG

Results 45

FIGURE 54 - UNDER SOME CONDITIONS, VOLUMETRIC SCATTERING IS A VERY SUBTLE EFFECT

Results 46

FIGURE 55 - SAME AS ABOVE, BUT WITH A SCATTERING COEFFICIENT OF 0.2

Results 47

FIGURE 56 - ADDING A TEXTURED LIGHT SOURCE CAN GIVE A POWERFUL EFFECT

Results 48

FIGURE 57 - ABSORPTION COEFFICIENT CHANGED TO SIMULATE UNDERWATER RENDERING

Results 49

FIGURE 58 - SIMPLE PERLIN NOISE ADDED TO EMULATE HETEROGENEOUS MEDIA

Many different effects can be achieved with this quite versatile technique.

5.1.1 SCREENSPACE APPROACH

The screenspace approach to God ray rendering is quite simple and fast. This is both a strength in some

cases, and a weakness in other cases.

Here are some results from my work:

Results 50

FIGURE 59 - SCREENSPACE GOD RAYS IN THE CRYTEK SPONZA SCENE

Results 51

FIGURE 60 - SUNSET BEHIND SKYSCRAPERS

FIGURE 61 - SUNRISE BEHIND MOUNTAINS

Results 52

As can be seen, adding God rays to a scene can be a powerful mood-enhancer.

While this approach works very well for these scenarios, the simplicity also has limitations. Objects right in

front of the camera will have a big effect on the God rays which can look very odd. Also if used on light

sources other than the sun, objects behind these light sources will also cast volumetric shadows.

5.2 SUBSURFACE SCATTERING
The method from [Ki 2009] has been implemented and tested for different material properties. While it can

give good results, it is quite expensive and therefore slow. It also has limitations when the geometry

becomes more complex. These are some results from my implementation:

FIGURE 62 - SUBSURFACE SCATTERING THROUGH KETCHUP

Results 53

FIGURE 63 - SUBSURFACE SCATTERING THROUGH SKIM MILK

5.3 SKIN RENDERING
All skin rendering results use the Kelemen/Szirmay-Kalos specular BRDF for comparison.

The first image is a rendering using simple Lambertian diffuse reflection for comparison. The skin looks

quite unnatural, and hard.

Results 54

FIGURE 64 - SKIN RENDERING WITH SIMPLE LAMBERTIAN DIFFUSE REFLECTION

Results 55

Next, the full 5-pass texture space diffusion model implemented after [d'Eon and Luebke 2007]. This model

is very complex, but the results are also very good. It has set a gold standard for skin rendering in real-time,

but is still too computationally heavy for high performance applications like games.

FIGURE 65 - SKIN RENDERING WITH FULL 5-PASS TEXTURE SPACE BLUR

The next image is after implementing [Hable et al. 2009]. This technique also blurs the diffuse light in

texture space, but this time using only a single blur, making it much faster. The results are clearly

comparable, and in most cases this technique will be preferred based on its greater speed.

Results 56

FIGURE 66 - SKIN RENDERING WITH A SINGLE COMBINED BLUR

And finally to show that even a little work helps a lot when rendering skin, a simple screenspace blur using

different weights for the different colors. This method is not physically based, but is very fast, and improves

a lot upon the standard Lambertian diffuse rendering.

Results 57

FIGURE 67 - SKIN RENDERING WITH SCREENSPACE BLUR

While the full 5-pass texture space diffusion still gives the best results, it is clear that you can come a long

way by just doing something. The one-pass texture space blur, or even a screenspace blur, will do wonders

compared to simple Lambertian shading.

Conclusion 58

6 CONCLUSION

This thesis set out to evaluate various approaches to real-time rendering of light scattering effects.

Methods in the areas of participating media rendering and subsurface scattering have been studied,

analyzed and implemented. This chapter summarizes what has been achieved, and covers what is next.

6.1 PARTICIPATING MEDIA RENDERING
A solution has been implementing using the ray-marching method for rendering of light and shadows

through single scattering media. Several optimizations have been analyzed and implemented based on

speed, image quality and technique.

Using ideas from various papers, a sample program has been implemented that simulates light scattering in

different media, and with different scattering parameters. It has been implemented with a modern graphics

engine in mind, and is based on deferred shading, taking advantage of the data available in such an engine.

The implementation supports fog and water, allowing the user to alter the scattering coefficient to emulate

any amount of scattering particles in the media. Different scattering models have been implemented

supporting primarily forward scattering, back scattering or isotropic scattering. The sample program has

support for textured spot lights which are common in deferred render engines. This allows emulation of

stained glass windows for example. A simple estimation of heterogeneous media is supported by sampling

a Perlin noise texture, giving the appearance of smoke. Finally I have added a multiplication factor allowing

the user to enhance the effect of scattering. This is because scattering is inherently a quite subtle effect,

and in many cases it will be useful to artificially boost the ‘foggyness’ of a scene.

6.1.1 SCREENSPACE APPROACH

A sample program has been developed implementing screenspace God rays. This method is based solely on

scene the scene depth buffer for shadows, and uses the background texture (in this case a real-time

implementation of the sky) for the God rays.

This approach is very simple, but the effect it can have on the overall look of an outdoor scene is quite

remarkable. It has several issues, but the computation price is very low, making it very useful when wanting

to set the mood of a scene at dawn or dusk for example.

6.2 SUBSURFACE SCATTERING
An interactive solution based on [Ki 2009] has been implemented with support for several different

material types. This method leads to very decent results, but is still quite computationally heavy. It is

flexible, and being physically based makes it easy to implement several different material types.

6.3 SKIN RENDERING
A sample program has been developed, implementing several approaches to real-time skin rendering. The

most realistic is still the one presented in [d'Eon and Luebke 2007], but optimizations from [Hable et al.

Conclusion 59

2009] give much greater speed while still keeping a very realistic looking skin shading. A screenspace

method has also been developed, using a simple diffusion profile. This method is not nearly as correct as

the texture space versions, but goes to show that even a little work in subsurface scattering goes a long

way towards rendering more believable human faces.

A physically based BRDF has also been implemented based on the Kelemen/Szirmay-Kalos BRDF giving

much more realistic specular reflectance than can be obtained by using Phong.

6.4 IMPROVEMENTS AND FUTURE WORK
While the solutions presented work very well, there is always room for improvements. Some simplifications

would be nice to eliminate, and some methods have inherent flaws that could be improved greatly.

6.4.1 LIGHT PROPAGATION VOLUMES

Recently a lot of work has been done in simulating real-time diffuse interreflection. The method developed

in [Kaplanyan and Dachsbacher 2010] has great potential for integrating diffuse interreflection with

participating media rendering. Another improvement based on light propagation volumes could be the

inclusion of multiple scattering and heterogeneous materials as presented in [Engelhardt et al. 2010].

6.4.2 CAUSTICS

Some work is currently being done in the field of real-time caustics, and it could be very interesting to

expand these ideas to include participating media. A few methods have been presented in [Liktor and

Dachsbacher 2010] and [Hu et al. 2010] but there is still room for improvements.

6.4.3 MULTIPLE SCATTERING AND ANISOTROPIC SCATTERING

One clear limitation in the work presented in this thesis is the lack of more complex participating media. It

could be very relevant to evolve the methods presented to include media like clouds, smoke and fire.

6.4.4 SKIN

In [d'Eon and Luebke 2007] the influence of linear space lighting and gamma correction are discussed. The

presented solution in this thesis does not include this, and it shows. This is an obvious next step for the

solution presented here.

The screenspace solution implemented in this thesis is quite simple, and [Mikkelsen 2010] have presented a

better solution using a cross bilateral filter to avoid blurring light over non-touching areas; from the nose to

the cheek for example. This is a problem with the presented work, and would be an obvious place to

improve.

6.4.5 SUBSURFACE

As the solution presented here is quite slow, it would be interesting to look to the solution presented in

[Barré-Brisebois and Bouchard 2011]. While this is a crude approximation, there is potential in combining

the technique with the screenspace scattering work done in [Mikkelsen 2010].

Conclusion 60

Bibliography 61

BIBLIOGRAPHY

Akenine-Möller, T., Haines, E. & Hoffman, N. 2008. Real-Time Rendering, (3rd ed.). A K Peters

Andersson, J. 2011. DirectX 11 Rendering in Battlefield 3, Game Developers Conference 2011

Barré-Brisebois, C. and Bouchard, M. 2011. Approximating Translucency for a Fast, Cheap and Convincing

Subsurface Scattering Look, Game Developers Conference 2011

Billeter, M., Sintorn, E. & Assarsson, U. 2010. Real Time Volumetric Shadows using Polygonal Light

Volumes, High Performance Graphics 2010

Biri, V., Arquès, D. & Michelin, S. 2006. Real Time Rendering of Atmospheric Scattering and Volumetric

Shadows. Journal of WSCG, Vol. 14 (1) pp65-72

Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures

Borshukov, G. and Lewis, J. P. 2003. Realistic Human Face Rendering for “The Matrix Reloaded”, SIGGRAPH

2003

Bruneton, E. and Neyret, F. 2008. Precomputed Atmospheric Scattering, Eurographics Symposium on

Rendering 2008

Børlum, J., Christensen, B. B., Kjeldsen, T. K., et al. 2011. SSLPV: Subsurface Light Propagation Volumes,

High-Performance Graphics 2011

Chandrasekhar, S. 1950. Radiative Transfer

Chang, C.W., Lin, W.C., Ho, T.C., et al. 2008. Real-Time Translucent Rendering Using GPU-based Texture

Space Importance Sampling, Eurographics 2008

Chen, J., Baran, I., Durand, F. & Jarosz, W. 2011. Real-Time Volumetric Shadows using 1D Min-Max

Mipmaps, Symposium on Interactive 3D Graphics and Games 2011

Crane, K., Llamas, I. & Tariq, S. 2007. Real-Time Simulation and Rendering of 3D Fluids. GPU Gems 3

Dachsbacher, C. and Stamminger, M. 2003. Translucent Shadow Maps

d'Eon, E. and Luebke, D. 2007. Advanced Techniques for Realistic Real-Time Skin Rendering. GPU Gems 3

Dobashi, Y., Yamamoto, T. & Nishita, T. 2002. Interactive Rendering of Atmospheric Scattering Effects

Using Graphics Hardware. Graphics Hardware (2002) pp1-10

Donner, C. and Jensen, H. W. 2005. Light Diffusion in Multi-Layered Translucent Materials, Proceedings of

SIGGRAPH 2005

Engel, W. 2009. Designing a Renderer for Multiple Lights: The Light Pre-Pass Renderer. ShaderX7: Advanced

Rendering Techniques pp655-666. Charles River Media

Bibliography 62

Engel, W. 2003. ShaderX2

Engelhardt, T. and Dachsbacher, C. 2010. Epipolar Sampling for Shadows and Crepuscular Rays in

Participating Media with Single Scattering, 2010 Symposium on Interactive 3D Graphics and Games

Engelhardt, T., Novak, J. & Dachsbacher, C. 2010. Instant Multiple Scattering for Interactive Rendering of

Heterogeneous Participating Media

Evans, A. and Kirczenow, A. 2011. Voxels in LittleBigPlanet 2, SIGGRAPH 2011

Freiburg 2007. Computer Graphics Shadow Algorithms, Freiburg University Course Notes

Gautron, P., Marvie, J.E. & François, G. 2009. Volumetric Shadow Mapping, SIGGRAPH 2009 Talks

Gosselin, D. 2004. Real Time Skin Rendering, Game Developers Conference 2004

Green, S. 2004. Real-Time Approximations to Subsurface Scattering, GPU Gems

Hable, J. 2010. Uncharted 2: Character Lighting and Shading, SIGGRAPH 2010

Hable, J., Borshukov, G. & Hejl, J. 2009. Fast Skin Shading. ShaderX7: Advanced Rendering Techniques

pp161-173. Charles River Media

Hargreaves, S. 2004. Deferred Shading, Game Developers Conference 2004

Hoffman, N. and Preetham, A. J. 2002. Rendering Outdoor Light Scattering in Real Time

Hu, W., Dong, Z., Ihrke, I., et al. 2010. Interactive Volume Caustics in Single-Scattering Media

Imagire, T., Johan, H., Tamura, N. & Nishita, T. 2007. Anti-Aliased and Real-Time Rendering of Scenes with

Light Scattering Effects

James, R. 2003. True Volumetric Shadows. Graphics Programming Methods pp353-366

Jarosz, W., Zwicker, M. & Jensen, H. W. 2008. The Beam Radiance Estimate for Volumetric Photon

Mapping

Jensen, H. W. and Christensen, P. H. 1998. Efficient simulation of light transport in scences with

participating media using photon maps, SIGGRAPH '98

Jensen, H. W., Marschner, S. R., Levoy, M. & Hanrahan, P. 2001. A Practical Model for Subsurface Light

Transport, SIGGRAPH '01

Jimenez, J., Sundstedt, V. & Gutierrez, D. 2009. Screen-Space Perceptual Rendering of Human Skin

Kajiya, J. T. 1986. The Rendering Equation. SIGGRAPH Comput. Graph., Vol. 20(4) pp143-150

Kaplanyan, A. and Dachsbacher, C. 2010. Cascaded Light Propagation Volumes for Real-Time Indirect

Illumination

Bibliography 63

Kelemen, C. and Szirmay-Kalos, L. 2001. A Microfacet Based Coupled Specular-Matte BRDF Model with

Importance Sampling, Eurographics 2001

Keller, A. and Heidrich, W. 2001. Interleaved Sampling

Ki, H. 2009. Real-Time Subsurface Scattering Using Shadow Maps. ShaderX 7 pp467-478

Liktor, G. and Dachsbacher, C. 2010. Real-Time Volumetric Caustics with Projected Light Beams

Mech, R. 2001. Hardware-Accelerated Real-Time Rendering of Gaseous Phenomena. Journal of Graphics,

GPU, and Game Tools, Vol. 6 (3) pp1-16

Mikkelsen, M. S. 2010. Skin Rendering by Pseudo-Separable Cross Bilateral Filtering, Naughty Dog Inc.

Mitchell, J. 2004. Light Shafts: Rendering Shadows in Participating Media, Game Developers Conference

2004 Presentations

Mitchell, K. 2007. Volumetric Light Scattering as a Post-Process. GPU Gems 3 pp275-285

Mittring, M. 2009. “A bit more Deferred” - CryEngine 3, Triangle Game Conference 2009

Nicodemus, F. E., Richmond, J. C., Hsia, J. J., et al. 1977. Geometrical Considerations and Nomenclature for

Reflectance

Nishita, T., Sirai, T., Tadamura, K. & Nakamae, E. 1993. Display of The Earth Taking into Account

Atmospheric Scattering, SIGGRAPH 1993

NVIDIA 2008. Volume Light

Pharr, M. and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan

Kaufmann Publishers Inc.

Sousa, T. 2008. Crysis Next Gen Effects, Game Developers Conference 2008 Presentations

Sousa, T. 2007. Vegetation Procedural Animation and Shading in Crysis. GPU Gems 3

Sun, B., Ramamoorthi, R., Narasimhan, S. G. & Nayar, S. K. 2005. A Practical Analytic Single Scattering

Model for Real Time Rendering

Tóth, B. and Umenhoffer, T. 2009. Real-time Volumetric Lighting in Participating Media, Eurographics 2009

Short Papers

Web - Benjamin Button, http://www.picknmixflix.com/c/benjamin_button.php, 26-02-2012.

Web - Hable, http://filmicgames.com/archives/557, 27-02-2012.

Web - Infinite Realities, http://www.ir-ltd.net/, 11-02-2012.

Web - Lebedev, http://lebedev.as/index.php?p=1_10_NEW-Articles, 26-02-2012.

Bibliography 64

Web - Urbano Álvarez, http://xnacommunity.codeplex.com/wikipage?title=Componente%20Scatter, 17-12-

2011.

Wenzel, C. 2006. Real-time Atmospheric Effects in Games, SIGGRAPH 2006

Wikipedia - BSDF, http://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function, 26-02-2012.

Wikipedia - Gollum, http://en.wikipedia.org/wiki/Gollum, 26-02-2012.

Wyman, C. 2011. Voxelized Shadow Volumes, High Performance Graphics 2011

Wyman, C. and Ramsey, S. 2008. Interactive Volumetric Shadows in Participating Media with Single-

Scattering

