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Summary

Electrical relay based interlocking systems are widely used by Banedanmark
to ensure safe operation of trains at stations in Denmark. These systems are
documented by diagrams showing the electrical circuitry, physical track layout
of the stations and train route tables.

The safety of each station is currently verified by inspecting the diagrams by
hand. This process is time consuming and possibly error-prone. Therefore
Banedanmark wishes to automate the process.

Our goal is to develop a method for automated model and safety property
generation of the external part of a particular type of relay interlocking system,
the DSB type 1954. This is then to be combined with the already developed
model of the internal system and verified as a whole.

We specified a data model for interlocking plans, developed a behavioural model
of external events and formalised safety properties which, among other things,
assert that trains do not collide and do not derail. We then developed an
executable specification of a generator that, given an interlocking plan, can
generate a model of the external events. This model can then be combined with
the model of the internal events and model checked.

The entire process was applied to the small Danish railway station Stenstrup,
which uses the DSB type 1954 relay interlocking system. The result is that all
generated safety properties are satisfied for the combined model of the interlocking
system at Stenstrup.
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Resumé

Elektriske relæbaserede sikringsanlæg er bredt anvendt af Banedanmark til at
sikre togdriften p̊a stationer i Danmark. Disse systemer er dokumenteret med
diagrammer der viser det elektriske kredsløb, den fysiske sporgeografi af stationen
og togvejstabellen.

Sikkerheden for hver station verificeres i dag i h̊anden, ved at inspicere diagram-
merne. Denne proces er tidskrævende og potentielt fejlbehæftet. Derfor ønsker
Banedanmark at automatisere processen.

Vores m̊al er, at udvikle en fremgangsm̊ade til automatiseret model- og sikkerhed-
segenskabsgenerering af den eksterne del af en bestemt type relæsikringsanlæg,
DSB type 1954. Dette skal derefter kombineres med den allerede udviklede model
af det interne system og verificeres som helhed.

Vi angav en datamodel for sikringplaner, udviklede en model af eksterne begi-
venheder og formaliserede sikkerhedsegenskaber, som blandt andet forsikrer, at
togene ikke kolliderer og ikke afsporer. Vi udviklede en eksekverbar specifikation
af en generator, der, givet en sikringsplan, kan generere en model af de ekster-
ne hændelser. Denne model kan derefter kombineres med modellen af interne
hændelser og modeltjekkes.

Hele processen blev anvendt p̊a den lille danske station Stenstrup, der anvender
et DSB type 1954 relæsikringsanlæg. Resultatet er, at alle genererede sikker-
hedsegenskaber er opfyldt for den kombinerede model af sikringsanlægget p̊a
Stenstrup.
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Versions

1.3 May 2013 Fixed error in enter station rule.
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and 4.3.9.

• Replaced the term “reserved route” with the correct term “locked
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Chapter 1

Introduction

This chapter gives an introduction to the overarching problem we seek to solve,
present the related work and precisely define what we are trying to achieve.

Section 1.1 will introduce and justify the problem we are trying to solve.

Section 1.2 will explain what has been done before and what to choose to build
upon and what we wish to improve.

Section 1.3 will explain the problem in greater detail, followed by a brief sketch
of how we plan to solve it.

Section 1.4 will state some assumptions about the reader.

Lastly, section 1.5 will shortly describe each chapter in the thesis.

Throughout this chapter, terms and notions, that have not yet been explained,
are used. Please refer to the domain description in chapter 2 for definitions and
explanations.



2 Introduction

1.1 Motivation

More than 170 million passengers and about 15 million tonnes of freight are
transported on Banedanmarks railway network on a yearly basis. With about
40.000 train movements per day, reliability and safety are top priorities1.

The safety at the stations is ensured by interlocking systems, which control the
track side equipment like signals, points and level crossings. Many stations on
the Danish railway are still secured by old relay based electrical interlocking
systems.

The relay based interlocking systems are documented by the station documenta-
tion, which is a collection of diagrams of the layout of the track side equipment,
the electrical circuitry and the train route table.

The interlocking systems are verified by manually inspecting the diagrams and
drawing conclusions about the safety. Due to the high number of diagrams and
their mutual correlation, this process is complex, time consuming (and thus
expensive) and possibly error prone, which is not satisfactory for a safety critical
system.

Furthermore, the process has to be repeated whenever changes are made to the
system, e.g. changes to the physical layout of the station or direct changes to
the relay circuits.

1.1.1 Vision

Banedanmark is interested in a tool that automates this process. A solution to
the problem is illustrated on figure 1.1.

Station Documentation

Physical DigitalTool assisted
conversion

Simulation

Results of validation

Model and Properties Results of model 
checking

Model
Checker

Generator

Validator

Simulator

Figure 1.1: Station interlocking editing, simulation and verification tool.

1Key figures from Banedanmark at http://www.bane.dk/visArtikel.asp?artikelID=136

http://www.bane.dk/visArtikel.asp?artikelID=136
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The physical station documentation is digitalised using a graphical user interface.
Here the diagrams of the circuitry and station layout are drawn and the train
route table is created. When all the documentation is created, the system can
be simulated, so the engineer can observe how changes affect the system.

Once the engineer is satisfied with the system, the tool should then be able to
automatically verify that the system he (or she) designed, satisfies the safety
properties required of such a system. This is done by generating a model of the
interlocking system and the safety properties.

1.2 Related Work

Relay based interlocking system has been a subject of research at DTU. As
described by Haxthausen [9], it was proposed to chose model checking as the
verification approach to allow full automation. This automated verification
process can be divided into two steps, as illustrated on figure 1.2. The first step
involves generators to automatically create a RSL-SAL representation of:

• a behavioural state transition model of the relay interlocking system,

• a behavioural state transition model of the environment (train movement,
points, and operator buttons),

• conditions about the behaviour of the system expressed in the form of
formal assertions.

Digital Representation
RSL-SAL Representation

Station Documentation
Behavioural Model of Interlocking System
Behavioural Model of Environment
Conditions

SAL 
RepresentationTranslate to SAL

Figure 1.2: The generation step can be divided into distinct subproblems:
Generating the behavioural model of the interlocking system (relay circuitry),
the behavioural model of the environment (train movements) and conditions.

This generated RSL-SAL [11] representation is an extension of the RAISE
specification language [8] allowing the construction of the state transition systems
of the behavioural model of the relay interlocking system, and the model of the
environment. Additionally, the desired properties about the behaviour of the
system can be defined in the form of assertions using temporal logic LTL.
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The RSL-SAL representation can then, as part of the second step, be translated
to the SAL language [6] using the RAISE tool set [1], which allows the SAL model
checker to check the validity of the two behavioural state transition systems with
the desired conditions.

In the next section (1.2.1) we will introduce the current state of the tool that
has been presented, and discuss which parts of the automatic verification process
that is complete. Also, parts of the automatic verification process is, however,
not complete which will be discussed.

1.2.1 Current State of the Tool

Over time several contributors have participated to create parts of the tool to
fulfil the vision stated in 1.1.1. The contributed work consists of:

Graphical Editor and Simulator : Eriksen and Pedersen [7] developed a graphical
relay circuitry editor and simulator. It allows the system designer to reproduce
the static physical circuit diagrams, and thereafter simulate the propagation
of a current through the circuit, and observe as the state of the components
change dynamically. Furthermore, they implemented an editor to create a simple
operator’s panel as well as support for occupying and freeing track sections
through the simulator. The rest of the system would then react to these events.
Finally, they implemented an export feature to store the system in a XML file.

Verification Method of Relay Interlocking System: A part of the proposed tool
has been developed by Kjær and Le Bliguet [2]. Specified in RSL and imple-
mented in Java, they are able to take relay diagrams in XML format as input
and automatically generate a RSL-SAL model of the internal behaviour of the
interlocking system and associated confidence conditions. Furthermore, they
have suggested a model of the environment for Stenstrup station and safety
properties, and shown that the system satisfies the properties they stated.

Unfortunately, there is a missing link between the two parts since the exported
XML file created by the editor is not of same format required by the verification
of the interlocking system component.

Figure 1.3 illustrates the work that has been done (in grey) and which components
needed to be automated.
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RSL-SALStation Documentation

Circuit Diagrams

Station Layout

Train Route Table

Auto Generation

Manual Generation

Manual Generation

Internal Behaviour
Confidence Conditions

External Behaviour

Safety Properties

Translation to SAL SAL files

SAL Model Checker

Results

Editor

Manual Generation

XML XML

Figure 1.3: Current state of the tool. Automatic generator of external behaviour
and safety properties is needed.

Internal behaviour This is a model of the behaviour of the internal work-
ings of the relay based interlocking system. Requires
the circuit diagrams.

External behaviour This is a model of the behaviour of the external
events, to which the internal part of the interlock-
ing system responds. Requires the station layout
diagram.

Safety Properties This is the conditions that is used to verify that
the system behave as desired. Requires the station
layout and the train route table.

1.3 Goal

Our goal is to investigate a method for automated model and safety property
generation of the external part of a particular type of relay interlocking system,
the DSB type 1954. This is then to be combined with the already developed
model of the internal system and verified as a whole.

This project can be seen as an extension of the work mentioned in section 1.2 and
we will therefore continue the research on the DSB type 1954 relay interlocking
system and use Stenstrup as case study.

If successful, this would allow Banedanmark to save time on verifying and
eliminate the possibility of human error.
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Results
Auto Generation

Model Check

Station Documentation

Digital Format
Tool Assisted

Generation

Physical Diagrams

Models and Conditions

RSL-SAL SAL
Translation

Figure 1.4: Overview of the intended validation process.

1.4 Prerequisites

The reader is expected to have knowledge of the following.

• Common features in the RAISE specification language (RSL).

• Common expressions in Linear Temporal Logic (LTL).

• State space based model checking in general.

1.5 Chapter Overview

This thesis contains following chapters.

Chapter 2 will introduce the domain, describing concepts and terms used
throughout this thesis.

Chapter 3 will give an overview of the method used to approach the stated
problem.

Chapter 4 will introduce the data models.

Chapter 5 will introduce the behavioural model of the internal system.

Chapter 6 will discuss approaches to modelling a representation of train and
train behaviour. Using a suitable approach a model of train movement is
constructed.

Chapter 7 will present external behaviours of buttons and points.

Chapter 8 will introduce associations to create mappings of physical station
elements with the internal model.
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Chapter 9 will describe requirements to ensure that the interaction between
the model of train movement and the internal relay system behaves as expected.

Chapter 10 will present the safety properties that are requirements to the
system to ensure safe train operation.

Chapter 11 will introduce a generator, which facilitates the generation of the
train movements discussed in chapter 6. The generator will also introduce the
generation of the state space and assertions.

Chapter 12 will introduce a test strategy and show a thorough test of one of
the data models.

Chapter 13 will show a case study of Stenstrup station.

Chapter 14 will conclude the work that have been conducted. And also
presenting future work.

Appendix A contains a word list from english to danish.

Appendix B contains documentation of Stenstrup station.

Appendix C contains a user guide of the application.

Appendex D contains a modelling approach mentioned in chapter 6.

Appendex E contains the complete specifications introduced in chapter 4 and
11.
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Chapter 2

Domain Description

In this chapter, concepts and terms of the Danish railway domain, which is
deemed to have relevance for this project, will be introduced.

Section 2.1 gives a general description of the Danish Railways and introduces
the components it consists of.

Section 2.2 defines what a train is.

Section 2.3 introduces both the signalling equipment and the meaning of the
signals.

Section 2.4 describes the safety properties of train operation in the railway domain.
Several approaches to enforcing the safety properties will also be introduced.

Section 2.5 introduces the different kinds of interlocking systems used in Denmark
and explains the relay based interlocking systems in greater detail.

Section 2.6 introduces the interlocking plan, which is part of the station docu-
mentation. The diagrams shown are of Stenstrup station, which will be used as
case study throughout this thesis.
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2.1 Railway Network

The Danish railway network can be divided into two distinct parts, the open line1

and stations. The stations are interconnected by the line. The line is defined as
the part of the track network, which is outside the station limits [5].

The technical definition of a railway station, used by Banedanmark is a railway
stop, which participates in the safety operation of the train service [5]. Railway
stops that does not have its own interlocking system, is secured as part of the
line block interlocking system, which is a separate system from the station
interlocking system.

In this work, only station interlocking systems are considered.

2.1.1 Track Sections

A railway network consists of rails that can be divided into sections. These
sections are of different types, such as linears, points and level crossings.

Linear track sections are connected to either one or two other sections, while
points sections are able to direct traffic in one of two direction. Level crossings
are intersections between the railway and a road, but are not considered for this
project.

Figure 2.1 describes the correlation of the track elements.

Points

Section

Linear

Figure 2.1: Definition of track sections.

1Just “line” for short.
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Linear sections must have at least one neighbour and at most two neighbours,
where each neighbour of that section must be unique. A section can only have
one neighbour at each end. Hence illegal configurations includes cases such as
a linear section being neighbour with itself or two distinct linear sections are
neighbours with each other on both ends (fig. 2.2).

a

b
a b

c

a

Figure 2.2: Illegal configurations.

2.1.1.1 Points Sections

A points section consists of a stem end and a branch end. The stem end has
one neighbour, while the branch end has two. The least curved track on the
branch end is called the plus branch and the most curved track is called the
minus branch2 (fig. 2.3).

BranchStem

Plus

Minus

Figure 2.3: A points section has a stem end and a branch end. The least curved
track on the branch end is called plus, while the most curved is called minus.

Movement from the stem end to the branch end is called a facing move, while
movement from the branch end to the stem end is called a trailing move [12]
as illustrated on figure 2.4. When performing a facing move, the destination
depends on the position of the points section. If the points section is locked into
the minus position, the train will travel onto the minus branch and vice versa. If
the points have not been locked, the train runs the risk of derailing.

An illegal train movement on a points section is travelling from the plus branch to
the minus branch or vice versa on the same points section. Figure 2.5 illustrates
this movement.

2This convention is no longer used by Banedanmark on newer documentation. The current
convention states that the right branch, as seen from the stem, is plus, while the left branch
is minus. Since the documentation of Stenstrup uses the old definition, so will we to avoid
confusion.
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BranchStem

Facing Move

Trailing Move

Figure 2.4: A facing move is a move on a points section from the stem side to
the branch side. A trailing move is a move from the branch side to the stem side.

Train

Figure 2.5: Illegal train movement on a points section.

Points must have three unique neighbours. Figure 2.6 shows some illegal connec-
tions of points.

Figure 2.6: Illegal points section connections

A points section can be in one of three positions, plus, minus or intermediate
(fig. 2.7). While in the plus position, the points section allow trains to traverse
the section through the track on the plus branch and correspondingly with the
minus position. The points section is in the intermediate position, when it is in
the act of changing from plus to minus or vice versa.

Point Machine The position of the points section is controlled by a point
machine. A point machine has three functions:
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Plus

Intermediate

Minus

Figure 2.7: The different states of a points section. When in the plus position, it
allows movements by the plus branch and likewise with the minus position. The
points section is in the intermediate position when it is not locked in either plus
or minus.

Switching points The point machine is responsible for physically
switching the points.

Locking points The point machine is responsible for physically lock-
ing the points, once they are in position.

Supervising points The point machine must communicate the status
of the points, i.e. the position of the points and
whether they are locked or not.

2.2 Trains

The technical definition of a train is rolling stock that performs a train movement,
i.e. travels from one station to another3 [10]. Rolling stock is any vehicle that
drives on a railway, which corresponds to the everyday notion of a train.

Trains have a long braking distance due to the low friction between wheel and
rail. Combined with the weight of a freight train or the speed of a passenger train,
trains often cannot stop within the sighting distance of the driver. Therefore
railway operations rely on interlocking systems to ensure that the track within
braking distance in front of the train is clear.

A shunting movement, on the other hand, is movement of rolling stock within
the limits of a station. Due to the nature of shunting movements, other (less
restrictive) safety rules apply to shunting movements.

3The definition of a train varies slightly around the world.
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2.3 Signalling

Signalling is a method of communication used in the railway domain to indicate
the state of the track ahead. The method of signalling varies from country to
country, but the main objective is to notify the train driver whether to stop or
proceed.

Regardless of the method of signalling (see section 2.3.2), a signal is a way of
communicating a certain indication.

2.3.1 Indication

An indication is the meaning of a signal. Different signals can have the same in-
dication. The following describes certain indications, which are used in Denmark
and relevant for this project.

Stop The train may not proceed past the signal.

Stop and proceed The train must stop at the signal and may then care-
fully proceed past the signal to the next signal.

Proceed The train may proceed past the signal and prepare
to stop at the next signal.

Proceed through The train may proceed past the signal and the next,
which will show proceed or proceed through.

2.3.2 Signals

Signals are signalling devices. Banedanmark uses combinations of coloured lights
to form aspects. Multiple aspects may have the same indication. Not every signal
is able to show every aspect, since they have fewer lights. This explains why
there are multiple aspects for certain indications.

Table 2.1 shows some of the aspects used in Denmark and their indication
(meaning of which is given in section 2.3.1). R means the red lamp is lit, Y
means the yellow lamp is lit and G means the green lamp is lit. “/” means over,
e.g. Y/R means yellow over red. f means flashing and is always used as a prefix
for a colour, e.g. fG for flashing green.
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Aspect Indication

R Y/R Stop

fR Y/fR Stop and proceed

Y/G Proceed (at limited speed)

G Proceed

fG G/G Proceed through

Table 2.1: Aspects of main signals and their indication

In this work, we are only interested in stopping and moving trains, ignoring speed
limitations. Disregarding the signalling variants of stopping and proceeding the
aspects has been reduced to the stop and proceed aspects. Table 2.2 denotes the
aspects used throughout this thesis.

Aspect Indication

R Stop
G Proceed

Table 2.2: Aspects

2.4 Safety

In this section the safety properties of the railway network are described as
well as how it is enforced to ensure the safety of passengers and trains. These
properties is a set of requirements to the system that needs to be maintained
at all time. Furthermore, safety approaches are introduced, which are different
kinds of implementations to maintain these safety properties.
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2.4.1 Safety Properties

In the previous sections we have introduced the elements to construct a working
railway network. The interaction between all these objects constitute the safety
of the train operations. These interactions needs to follow a set of rules to fulfil
the basic safety requirements, namely [4]:

• Trains/shunt movements must not collide.

• Trains/shunt movements must not derail.

• Train/shunt movements must not collide with vehicles or humans crossing
the railway at authorised crossings.

• Protect railway employees from trains.

For this thesis we do not consider shunting movements, level crossings and
railway employees. Therefore the basic safety requirements can be reduced to
the following subset of the basic safety requirements:

• Trains must not collide.

• Trains must not derail.

Henceforth, any reference to the basic safety requirements will be to the above
subset.

In the following sections it will be explained how the events of collision and
derailing can occur, and later how to avoid them.

2.4.1.1 Collision

A collision is an unintended contact between trains. Combining trains is an
example of intended contact between trains. High speed collisions, on the other
hand, are likely to have catastrophic consequences.

We consider any situation where two or more trains occupy the same track
section a collision. This situation will not necessarily result in a collision, but
the potential is there and that is enough for it to be considered a collision.
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2.4.1.2 Derailing

Derailment can be caused by many things. Broken rails, traversing curves at
too high speed, as a result of collision, travelling beyond the end of line, hitting
obstacles, travelling on unlocked points and so on.

Many of these situations are out of the scope for this project. In fact, they can
be reduced to travelling on unlocked points. Figure 2.8 show situations that can
result in a derailing on a points section.

Train

Train

Train

Train

A B C D

Figure 2.8: Possibility of derailing

Train

Train TrainTrain

A B C D

Figure 2.9: No derailing

2.4.2 Safety Approaches

Banedanmark uses two methods of securing train movements:

Route based The entire intended path of a train movement is locked for
use by a single train only. The route is not released until
the train has reached the end of the route. This principle is
used by Banedanmark at stations.

Block based The railway is divided into blocks. When a train enters a
block, no other train is allowed to enter that block, until
the first train is out of the block again. This principle is
used by Banedanmark on the open line.
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2.4.2.1 Train Route

A train route is a secured path from one point4 (called the start point) to
another (called the end point) in a railway network. These points are normally
signals [10].

The following describes the concepts associated with train routes.

Safety overlap The safety overlap is an extension of a train route, intended
to provide additional clear track in case the train fails to stop at the end point,
e.g. the driver misjudges the braking distance.

Conflicting train routes Train routes are considered conflicting if they share
points in their paths, incl. the safety overlap. Conflicting train routes are
mutually exclusive and may not be locked at the same time. However, it is
possible to extend a route with another by replacing the safety overlap with
another route.

Flank protection Flank protection is protecting a train route from conflicting
movements. The interlocking system achieves this first and foremost, by not
allowing conflicting routes. This protects against train movements, but not
against roll away vehicles. Therefore, further measures are taken, such as locking
points, that are not part of the route, into positions that direct traffic away from
the route in question

Locking train route A train route can be locked manually by pressing buttons
on the operator’s panel or automatically when the system detects an approaching
train.

A train route can be locked if the track sections, that constitutes the route, are
all clear, the points sections on the route are locked in proper position and the
desired route is not in conflict with any other currently locked route.

A train route stays locked until it is released. The objects, which were part of
the released train route, can then be used to form new train routes.

4This does not refer to points sections.
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Release of train route A train route can be released in one of two ways,
either automatically or manually.

Automatic release is performed by the interlocking system and happens once a
train has completed its train movement.

Manual release is performed from the operator’s panel. It can be performed
even if a train is already on the route, but then the train no longer has the same
measure of protection. Manual release of train routes is not considered.

2.5 Interlocking System

An interlocking system is a mechanical, electrical, electronic or hybrid system
that controls physical objects, such as signals and points, in a limited area [10].

The Danish railway network is controlled by several different generations of
interlocking systems, ranging from the very old mechanical, over the electrical
relay based systems of the ’50s and ’60s to the newer computer based electronic
systems.

This work considers the 54 type relay based interlocking system, since this is the
type that is used at Stenstrup.

The interlocking system has three major fundamental tasks, which is to control,
supervise and ensure safety.

Control Manuel or automatic operation of points, signals etc.

Supervision Continual supervision of the state of points, signals,
isolation etc.

Ensuring Safety Preventing points, signals etc. to be operated in such a
way that it allows conflicting train movements.

2.5.1 Relay Based Interlocking

In a relay based interlocking system, the rules of the interlocking system is
implemented in electrical circuits. A circuit consists of components, such as
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relays, contacts and buttons, that are connected by wires and powered by a
power supply.

2.5.1.1 Relays

A relay is an electrical component that can be in two states, drawn (symbolised
with ↑) and dropped (↓).

When power is supplied, the relay will be energised. This activates the electro-
magnet, which draws the armature so that the upper contacts become connected
while the lower become disconnected (fig. 2.10a).

When the power is cut, the magnetic field will disappear and gravity will cause
the armature to drop. This again switches the active connections (fig. 2.10b).
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(a) Relay drawn
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(b) Relay dropped

Figure 2.10: When a current energises a relay, its electromagnet is activated.
This pulls the armature, which creates a connection with the upper contacts (a).
Without power, the armature is dropped, which creates a connection with the
lower contacts instead (b).

Other types of relays exists, for example steel core relays, which are able to
retain their state even after losing power.

2.5.1.2 Logic of Relay Based Interlocking Systems

The state of the physical objects can be captured by relays. By assigning a relay
(and sometimes multiple replays) to each physical object on the station, the
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state of the entire station is captured. This can then be use to control the train
movements in a safe manner.

Each track section has a relay associated (called a track relay), which is drawn
when the track is considered vacant.

Each points section has two additional relays associated. One is drawn when
the points section is locked in the plus position and the other is drawn when the
points section is locked in the minus position.

In addition there are relays capturing the state of route locking, route releasing,
each lamp on each signal etc.

Buttons can be pushed and released. When a button is pushed, the current is
allowed to flow through, while the connection is cut when the button is released.

A relay based interlocking system consists of two parts, the internal system and
the external system. The internal system is the relay circuitry that is controlled
by the interlocking system, e.g. the signal relays. The external system on the
other hand, consists of the circuitry that is controlled by the environment, e.g.
points relays, and train detection relays.

The logic of the system is created by arranging the connections of the components
in a certain way. Serial connections create conjunctions, while parallel connections
create disjunctions, as the current will follow whichever path it is allowed (fig.
2.11).

The situation on fig. 2.11a can be translated to the following boolean expression
L = A ∧B, where L is true when the lamp is turned on and A and B are true
when the respective button is pressed. Similarly the situation on fig. 2.11b can
be translated to L = A ∨B, meaning either button A or B must be pressed for
the lamp to turn on.

Circuit Diagrams The circuit system is documented in circuit diagrams as
part of the station documentation. The diagrams are divided by functionality,
such that one diagram may show the route locking, while another shows the
route release. The diagrams always shows the system in the normal state. The
normal state is the state the system is in when every track section is vacant, no
train routes are locked, the points are in their initial position and so on.

The system is operated from the operator’s panel.
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(a) Conjunction

A B
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(b) Disjunction

Figure 2.11: Serial connecting components create a conjunctive relationship
between them, as seen in (a) where buttons A and B are serial connected to
the lamp L. When both buttons are pressed, the current will be able to pass
through and turn on the lamp. (b) shows a situation where buttons A and B
are connected in parallel to the lamp L. The lamp will turn on if either A or B
is pressed.

2.5.1.3 Operator’s Panel

The operator’s panel shows the layout of the station and is equipped with buttons
and lamps. Some buttons are used to switch the position of the points, some are
used to lock routes (fig. 2.12), while others again have different purposes. The
lamps indicate the state of track sections and points.

Figure 2.12: Diagram of operator’s panel for Stenstrup station.

Switching Points The position of a points section is switched by pressing and
holding the + or − button next to the points section. When the position has been
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locked in either the plus or minus position a lamp will lit on the corresponding
branch.

Locking Routes A route is locked by holding the button for the start point
and the end point. The buttons are marked I, U and T. Button I is used to
indicate the start of an entry route, while button U is used to indicate the start
of an exit route. U or I must be pressed in combination with a T button, which
indicates the end of the route.

2.5.2 Train Detection Equipment

Different methods of track detection are adopted throughout the world. Bane-
danmark uses track circuits.

2.5.2.1 Track Circuit

A track circuit is a device that detects the absence of trains.

Each rail is connected to a power supply in one end and a relay in the other end.
Since the rails are conductive, the relay will be energised by the current running
through the rails (fig. 2.13a). Since train wheels and axles are conductive as well,
a train on the track section will cause a short circuit, thus cutting the power to
the relay. Without power, gravity will cause the relay to drop (fig. 2.13b).

+
-

Current Flow

(a) Relay drawn

+
-

(b) Relay dropped

Figure 2.13: As long as the track section is clear, the current can travel through
the rails and energise the relay (a). A train on tracks, on the other hand, will
cause a short circuit, preventing power to reach the relay, which will drop (b).
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As a consequence of this design, the relay will drop in case of power outage as
well. This fail-safe feature contributes to the popularity of this method of train
detection.

The track sections are isolated so that each section forms it own circuit. In this
way the location of trains can be detected in discrete units.

2.6 Interlocking Plan

Part of the station documentation is the interlocking plan. It consists of a station
layout diagram, which shows the geography of the station and a train route table,
which shows the interlocking rules on a per route basis.

2.6.1 Station Layout

A station layout diagram is an illustration of the physical objects on a station
and their relation.

Since it is easier to explain a diagram to someone who is looking at it, let us
consider the station layout diagram of Stenstrup station as seen in fig. 2.14.

2.6.1.1 Station Limit

Below signals A and B we see a circle with ST written in it. This marks the
station limit. Everything between those marks are part of the station.

As seen there are physical objects outside the station limit which are under the
station interlocking systems control. In this case it is the the two distant signals
a and b, Ovk 82 (level crossing 82). Neither distant signals nor level crossings
are considered in this project.

2.6.1.2 Tracks

We see that the station has 6 named track sections, drawn by a thick line. These
track section can be identified as four linears (A12, 02, 04 and B12) and two
points sections (01 and 03).
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Figure 2.14: Station Layout Diagram of Stenstrup Station.
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The thick line extends past the station limit. The part outside the station limits
is the open line.

Furthermore there are unnamed two points sections (with point machines S1
and S2) and an unnamed linear section, which are connected to track section 02.
These track are not used in the normal operation of the station and are therefore
disregarded.

Point machines Note that the point machine on section 01 is called 01, but
the point machine on section 03 is called 02.

2.6.1.3 Signals

Apart from the distant signals already discussed, the station has two entry signals
(A and B) and four exit signals (E, F, G and H).

The direction the signal is facing can be read from the diagram. The signal can
be read if travelling from the direction which has the foot of the signal.

Example: Signal A can be read when travelling from Odense to section A12.

2.6.1.4 Miscellaneous

The large 1 on track section 02 and the 2 on track section 04 are the station
track numbers. These are used in the train route table, which is introduced in
section 2.6.2.

The rest of the information is not relevant for this project.

2.6.2 Train Route Table

The train route table describes the required functionality of the train route based
interlocking system.

Figure 2.15 shows the train route table of Stenstrup station. This is the original
table in Danish. The English terms are used below, but have the Danish word
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as reference at the first occurrence as well. The notes used in the train route
table, are shown in figure 2.16, where they have been translated to English.

The following will describe how to read a train route table. Empty fields means
that there are no requirement to the given object in that route.

2.6.2.1 Train Routes (Togveje)

This section identifies the train routes and their purpose.

no (nr) The identifier of the train route.

Track (spor) Which station track the train route uses (not used in this project).

Overlap (forløb) Describes the end point of the overlap. If the field is empty,
there is no overlap for that route. On the train route table of Stenstrup
some of the routes have “strækn” under overlap. This means that the
overlap extends from the end point of the route all the way to the open
line.

2.6.2.2 Signals (Signaler)

The Signals part of the table describes the aspect each signal must show when
the route has been locked and all the track sections in the route are vacant.
If other rules require it, the signals may show other aspects, when the track
sections are occupied (see section 2.6.2.5).

gr means green, gu mean yellow and rø is red.

The entry may also contain a note, either 1, 4 or 5 from figure 2.16. Notes 4 and
5 are about proceed through, which was reduced away in section 2.3.2, so they
can be ignored. However, note 1 is important. It allows a signal to show proceed
if another route, with G as the start point, has been locked.

Consider train route 2 on Stenstrup. Signal A must indicate proceed, while F
and G must show stop (F flank protects and the route stops at G). G may show
proceed if route 9 has been locked. There is no requirement for signals B, E and
H.
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Figure 2.15: Train Route Table for Stenstrup Station
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1) Displays proceed if an exit route has already been locked.

2) Prevented from switching for 44 sec after track circuit ↓ 03.

3) Prevented from switching for 43 sec after track circuit ↓ 01.

4) Displays proceed through if an exit route, from track 1 in the same direction,
has already been locked.

5) Displays proceed through if the entry signal displays proceed through.

Figure 2.16: The translated notes of the train route table for Stenstrup (fig.
2.15).

2.6.2.3 Points (Sporskifter)

The column marked Points, explains which position the points must be locked
in (if any) before the train route can be locked (The points must remain locked
while the train route is locked).

The + symbol means that the given points section must be locked in the plus
position, while a − would mean that the points section must be locked in the
minus position.

Consider train route 2. Both points 01 and 02 (notice that it refers to the point
machines and not the track sections) must be locked in the plus position. Points
section 03 (with point machine 02) is not on the route, but is used as part of the
safety overlap.

2.6.2.4 Track Sections (Sporisolationer)

The track sections column lists every track section on the station. The field
shows which state the track section relay must be in before the route can be
locked. Recall that the track section relay will be in the drawn position (↑) when
the track is clear.

Consider train route 2. The route can only be locked when all the track sections
are vacant. Track sections 03 and B12 are used as part of the safety overlap.



30 Domain Description

2.6.2.5 Level Crossings (Ovk)

If the field is filled with “Ja” (Yes), then the level crossing must be secured.

2.6.2.6 Signal Release (Stop fald)

When the track section given in the lower part of the field is in the state given at
the same location, the signal given at the upper part of the field should change
to the stop aspect.

The fields must not be empty.

Consider train route 2. When track section A12 becomes occupied, signal A
must change to the stop aspect.

2.6.2.7 Train Route Release (Togvejsopl.)

This describes the sequence that must occur before the train route can be released.
“Indl” (Initiation) states the sequence of positions the track relays must have to
begin the train route release sequence. “Opl” (Release) gives the sequence of
track relay states that most occur for the train route release sequence to end.

The fields must not be empty.

Consider train route 2. The train route can be released when track section 01 is
occupied and track section 02 is vacant followed by 02 being occupied and 01
being vacant. This means that the back end of the train has fully left 01 and is
fully on 02.

Example Let us consider table 2.3 that specifies the train route release for a
route on figure 2.17. The table denotes a release sequence that has to be satisfied
to release the train route.

Train Route Release
(Togvejsopl.)

Indl Opl
↓ A ↓ B
↑ B ↑ A

Table 2.3: Train route release for a route on figure 2.17.
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The figure shows three linear track sections, A, B, and C, where the up arrow
(↑) beneath the tracks denotes that the track section relay is drawn, and the
down arrow (↓) denotes that the track section relay is dropped.

At the first state the train route covering track section A and B is locked. At the
second state a train enters section A changing the state of the relay associated
with A to drop. At this point the first condition of initiation (Indl) is satisfied
(A is dropped and B is drawn). The train then continues occupying both A and
B and then finally stops at B. The second train route release condition (Opl)
has been satisfied, by drawing A and dropping B, resulting in the train route is
released at the fifth state.

Train

Locked Train Route Overlap

Locked Train Route Overlap

Locked Train Route Overlap

Train

Train

Train

Train Route Released

Locked Train Route Overlap

1. State

2. State

3. State

4. State

5. State

A B C

Figure 2.17: Release of train route after the train route release sequence.

2.6.2.8 Mutual Exclusions (Gensidige spærringer)

If a circle is present, the routes must not be locked at the same time.

Consider train route 2. Only train route 9 can be locked at the same time as
train route 2. Train route 9 happens to be the exit route from station track 1 in
the same direction as train route 2 is the entry route to station track 1. This
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means that a combined route through the station can be locked for a train from
Odense.



Chapter 3

Method Description

This chapter will describe the method used to reach the goal and explain why
this method was used.

Section 3.2 introduces the steps we made in solving the problem.

3.1 Approach

Our goal is develop a method of generating a model of external events, from
station documentation, which can be combined with the already developed model
of internal events. The model of internal events is generated as a RSL-SAL
transition system. Targeting the model of external events to RSL-SAL as well,
means the models would be compatible. With the RSL to SAL translator,
developed by Perna [11], the model of the entire interlocking system, acquired by
combining the two models, can then be translated to a SAL and model checked
(fig. 3.1).

The RSL-SAL model of the interlocking system is to be generated from the station
documentation. This means a generator tool is to be developed. By specifying
both the station documentation and the generator in RSL, the entire product is
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Model 
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Figure 3.1: A model in RSL-SAL can be translated to SAL automatically.

kept in a single language, by specifying the generator in the translatable subset
of RSL. (fig. 3.2).
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Figure 3.2: An RSL-SAL model can be auto-generated from station documenta-
tion, using an executable specification of the generator.

The physical representation of the station documentation is manually converted
to the RSL representation and we supply verification checks that helps ensuring
the integrity of the documentation.
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Documentation

RSL

GenerateStation 
Documentation

Physical Representation

Creation

Figure 3.3: The physical representation of the station documentation is manually
converted to the RSL representation.

3.2 Suggested Method

First a suitable data representation of the station documentation needs to be
developed. Since we decided to use RSL, data models of station layout diagrams,
train route tables and the RSL-SAL transition system are specified in chapter 4.
Part of the specification is the well-formedness constrains. These eliminate
certain illegal configurations, by specifying not what type of content is allowed,
but which specific values or combinations of values.

Next the behavioural model of the external events are modelled. This is divided
into developing a model of train movements (chapter 6) and other external events,
i.e. the behaviour of points sections and buttons on the operator’s panel 7.

Some relations are not captured by either the interlocking plan or the circuit
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diagrams. Chapter 8 present a structure that associates variables in the state
space of the models with the physical objects of the station.

In order to verify that the model of train movements interact correctly with the
model of the interlocking system, consistency conditions have been formulated
in chapter 9.

The main goals of this thesis is to develop a method for automated verification
of interlocking systems. A big part of this is to identify and formalise the safety
properties of an interlocking system. This is done in chapter 10.

Up until this point, everything needed to create a model of the external events
have been presented. Chapter 11 shows how the process can be automated by
presenting an executable specification of a generation tool.

Chapter 12 will present a test suite that verify that the well-formedness expressions
capture the intended properties.

Finally the developed method is applied to a model of Stenstrup (chapter 13).
The chapter goes through the entire process of validation, from creating a digital
representation of the interlocking plan, to combining the generated model of
external events with the model of the internal events and model checking it. It
will also present the result of the model check.
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Chapter 4

Data Models

This chapter will describe the chosen data model of interlocking plans, which was
introduced in section 2.6 and the chosen data model of RSL-SAL transition sys-
tems and assertions. Furthermore, well-formedness expressions are defined, which
are used to constrain the model so that certain configurations are disallowed.

First a formal RSL specification is presented and then the data model is applied
to Stenstrup as a concrete example of how the data model is intended to be
used. The entire specification of all the data models can be found in appendix
E.1. The specification introduced in this chapter is slightly simplified in order to
better present the important information.

The data model of interlocking plans is introduced in section 4.1. Then data
models of station layout diagrams and train route tables are given in sections 4.2
and 4.3 respectively. Lastly, the specification of transition systems is presented
in section 4.4.

4.1 Interlocking Plan

An interlocking plan consists of a station layout diagram and a train route table.
See section E.1.2 for complete specification.
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type
InterlockingPlan ::

sld : Diagram
trt : TrainRouteTable

The interlocking plan is well-formed if both the station layout diagram and the
train route table are well-formed.

value
isWfInterlockingPlan : InterlockingPlan → Bool
isWfInterlockingPlan(ip) ≡

let d = sld(ip),
trt = trt(ip)

in isWfDiagram(d) ∧ isWfTrainRouteTable(trt, d)
end

The specification of station layout diagrams and train route tables are presented
next.

4.2 Station Layout Diagram

A data model of station layout diagrams is introduced in this section. The
complete specification is written in the file StationLayout.rsl, which can be found
in the appendix section E.1.3.

4.2.1 Identifiers

As described in section 2.6.1 a station layout diagram shows how a collection
of physical objects are connected in a certain configuration. Each physical
object has its own unique identifier, which is represented as text. The physical
objects considered in this project are track sections, point machines and signals,
identifiers of which are called TrackId, PointMachineId and SignalId respectively.

type
TrackId = Text,
PointMachineId = Text,
SignalId = Text
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Each object in each category must have an unique identifier. This is ensured by
storing them in a set structure as described in sections 4.2.4, 4.2.5 and 4.2.7.

4.2.2 Diagram

The station layout diagram is represented as a record type, which consist of sets
of identifiers for the different physical objects and structures that captures their
mutual relations. Each of the constituents will be explained in the following
sections.

type
Diagram ::

line : TrackId
allLinears : TrackId-set
allPoints : TrackId-set
allSignals : SignalId-set
neighbours : (TrackId × TrackId)-set
branchNeighbours : (TrackId × TrackId) →m Branch
pointMachineTrack : PointMachineId →m TrackId
trackPointMachine : TrackId →m PointMachineId
signalLocations : (TrackId × TrackId) →m SignalId

where Branch is a subtype of PointsState. Recall that a points section can be in
either the plus, minus or intermediate position:

type
PointsState == plus | minus | arbitrary,
Branch = {| ps : PointsState • ps 6= arbitrary |},

Not every value contained in the types described above forms a valid station.
The well-formedness expressions that constrains the data type to disallow certain
invalid configurations are shown below:

value
isWfDiagram : Diagram → Bool
isWfDiagram(d) ≡

isWfIdentifiers(d) ∧
isWfNeighbours(d) ∧
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isWfBranchNeighbours(d) ∧
isWfPointMachines(d) ∧
isWfSignalLocations(d)

A track section cannot be both a linear section and a points section.

value
isWfIdentifiers : Diagram → Bool
isWfIdentifiers(d) ≡

allLinears(d) ∩ allPoints(d) = {}

The rest of the well-formedness expressions will be explained in the following
sections, when the structure they are related to, is explained.

4.2.3 Line

The line is modelled as a single track section.

value
line : TrackId = ′′line′′

The line is not part of a station as such. However, entry signals are placed on
the line at the station limits. As will be explained in further detail in section
4.2.7, signals are placed between pairs of track sections, thus the line is needed
as a track section to model signal location is this way.

Alternately, one could choose not to include it at all and model signal placement
differently or make a more elaborate solution where the line is unique for each
station exit, e.g. ”Odense” and ”Svendborg” for Stenstrup.

4.2.4 Track Sections

Each track section on a station has a unique identifier. The identifier of each
linear section is stored in one set and the identifier of each points section is stored
in another set. This is not strictly necessary, but it makes it easy to find, for
example, all the points.
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value
allLinears : TrackId-set,
allPoints : TrackId-set

From the station layout diagram of Stenstrup (fig. 2.14), we see a total of six
track sections, whereof two are points (01 and 03) and four are linears (A12, 02,
04 and B12):

value
allLinears : TrackId-set = {′′A12′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints : TrackId-set = {′′01′′, ′′03′′}

The railway track of the station is modelled as a directed graph, where the track
sections are nodes and the edges denote which track sections are connected (fig.
4.1).

Line LineA12 B1201 02 03

04

Figure 4.1: The track layout is modelled as a graph, where the track sections
are nodes and the edges denote neighbour relations.

The graph structure is captured by the neighbours relation, which is modelled
as a set of pairs of track identifiers.

value
neighbours : (TrackId × TrackId)-set

This set representation is preferred over, for example, an adjacency matrix due
to the sparse number of edges.

For Stenstrup station the neighbour relation is:

value
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neighbours : (TrackId × TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) }

Note that the neighbours tuple contains the relationship between (tId1, tId2),
but not (tId2, tId1). Doing so is to avoid having both (tId1, tId2) and (tId2, tId1)
as entries, which is redundant. Instead the areNeighbours function is introduced
to maintain the symmetrical entries by looking up a neighbouring relationship
both ways.

value
areNeighbours : TrackId × TrackId × Diagram → Bool
areNeighbours(tId1, tId2, d) ≡

(tId1, tId2) ∈ neighbours(d) ∨
(tId2, tId1) ∈ neighbours(d)

If areNeighbours does not find the neighbour pair (tId1, tId2) it simply looks
for the pair (tId2, tId1) instead. If neither pair is in the set, then the two given
track sections are not neighbours.

4.2.4.1 Well-formedness of neighbour relation

The following describes the validation checks performed on the data to ensure
the data model is correct.

value
isWfNeighbours : Diagram → Bool
isWfNeighbours(d) ≡

neighbours OnlySections(d) ∧
neighbours EverySection(d) ∧
neighbours Irreflexive(d) ∧
neighbours Antisymmetrical(d) ∧
linears 1or2Neighbours(d) ∧
points 3Neighbours(d) ∧
pointsNotNeighbours(d)
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1. Contains Only Track Sections The neighbour relation should contain
only track sections.

value
neighbours OnlySections : Diagram → Bool
neighbours OnlySections(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ⇒
isSection(tId1, d) ∧ isSection(tId2, d) )

2. Contains Every Track Section The neighbour relation should contain
every track section on the station.

value
neighbours EverySection : Diagram → Bool
neighbours EverySection(d) ≡

( ∀ tId : TrackId • tId ∈ allSections(d) ⇒
( ∃ nb : TrackId • nb ∈ allSections(d) ∧

areNeighbours(tId, nb, d)) ),

where isSection is a function that returns true if the given track section is in
the given diagram, i.e. the track section is either the line, in allLinears or in
allPoints.

value
isSection : TrackId × Diagram → Bool
isSection(tId, d) ≡ tId ∈ allSections(d),

allSections : Diagram → TrackId-set
allSections(d) ≡

allLinears(d) ∪ allPoints(d) ∪ {line(d)},

3. Irreflexive No track section may be neighbour with itself.

value
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neighbours Irreflexive : Diagram → Bool
neighbours Irreflexive(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ⇒
tId1 6= tId2 )

4. Anti-symmetric Symmetrical entries are not allowed as they are not re-
quired and simply clutter the set, which decreases the readability.

value
neighbours Antisymmetrical : Diagram → Bool
neighbours Antisymmetrical(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ⇒
(tId2, tId1) 6∈ neighbours(d) )

5. Number of Neighbours - Linears Linear track sections must have at
least one neighbour and at most two.

value
linears 1or2Neighbours : Diagram → Bool
linears 1or2Neighbours(d) ≡

(∀ tId : TrackId •

tId ∈ allLinears(d) ⇒
let n = card getNeighboursOf(tId, d)
in n ≥ 1 ∧ n ≤ 2
end)

where getNeighboursOf is a function that returns the set of all the given track
sections neighbours in the given diagram.

6. Number of Neighbours - Points Points sections must have three neigh-
bours.

value
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points 3Neighbours : Diagram → Bool
points 3Neighbours(d) ≡

(∀ tId : TrackId • tId ∈ allPoints(d) ⇒
card getNeighboursOf(tId, d) = 3)

7. Points sections may not be neighbours Two points sections may not
be neighbours.

value
pointsNotNeighbours : Diagram → Bool
pointsNotNeighbours(d) ≡
∼( ∃ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ∧
isPoints(tId1, d) ∧ isPoints(tId2, d) )

4.2.5 Points

The neighbour relation models the neighbour relationship of all track sections,
but it does not give any information about which branch of a point section a
given neighbour is connected to. Therefore, an additional data structure, called
branchNeighbours, is introduced.

value
branchNeighbours : (TrackId × TrackId) →m Branch

The idea is to label the edges between points sections and their neighbours on
the branch end. The label denotes which branch the points section and the
neighbour is connected on (fig. 4.2).

The map branchNeighbours takes a pair of track ids as key and holds the branch
that they are neighbours on as value. The first track id of the key of the pair is
the id of the points section and the other is one of its neighbours on the branch
side.

value
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Line LineA12 B1201 02 03

04

minus minus

plus plus

Figure 4.2: The branchNeighbours data structure adds information to the edges
of the neighbours relation about which branch the neighbours of a points section
are on.

branchNeighbours : (TrackId × TrackId) →m Branch =
[ (′′01′′, ′′02′′) 7→ plus,

(′′01′′, ′′04′′) 7→ minus,
(′′03′′, ′′02′′) 7→ plus,
(′′03′′, ′′04′′) 7→ minus ]

For example, points section 01 has linear section 02 as neighbour on the plus
branch.

4.2.5.1 Well-formedness of branchNeighbours

The branchNeigbours map is well-formed if:

1. Each pair of track sections in the domain are neighbours.

2. The first track section of the pair, is a points section.

3. There are two entries for each points section on the station.

4. The points section is not neighbour with the same track section on both
branches.

value
isWfBranchNeighbours : Diagram → Bool
isWfBranchNeighbours(d) ≡

branchNeighbours areNeighbours(d) ∧
branchNeighbours FirstIsPoints(d) ∧
branchNeighbours everyPoints 2branchNbs(d) ∧
branchNeighbours diffNbsOnBranch(d),
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1. Pairs are neighbours Since branchNeighbours is supposed to label edges
that denote neighbour-ship between the connected nodes, that edge must exist,
i.e. all pairs of track sections in domain of the map must be neighbours.

value
branchNeighbours areNeighbours : Diagram → Bool
branchNeighbours areNeighbours(d) ≡

( ∀ (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ dom branchNeighbours(d) ⇒
areNeighbours(tId1, tId2, d) )

2. First track section is a points section The first track section in each
pair of the domain of the map, must be a points section.

value
branchNeighbours FirstIsPoints : Diagram → Bool
branchNeighbours FirstIsPoints(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ dom branchNeighbours(d) ⇒
isPoints(tId1,d) )

3. Each points section have two branch side neighbours A points sec-
tion must have three neighbours, one on the stem side and two on the branch
side. Therefore, each points section must have a neighbour connected to each
branch.

value
branchNeighbours everyPoints 2branchNbs : Diagram → Bool
branchNeighbours everyPoints 2branchNbs(d) ≡

(∀ p : TrackId • p ∈ allPoints(d) ⇒
(∃ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ dom branchNeighbours(d) ∧
p = tId1 ∧
(∃ (tId1′, tId2′) : TrackId × TrackId •

(tId1′, tId2′) ∈ dom branchNeighbours(d) ∧
p = tId1′ ∧ tId2 6= tId2′)

)
)



48 Data Models

4. The branch side neighbours are unique The neighbour on each branch
must be unique.

value
branchNeighbours diffNbsOnBranch : Diagram → Bool
branchNeighbours diffNbsOnBranch(d) ≡

(∀ (p, tId1) : TrackId × TrackId •

(p, tId1) ∈ branchNeighbours(d) ⇒
(∀ (p′, tId2) : TrackId × TrackId •

(p′, tId2) ∈ branchNeighbours(d) ⇒
(p = p′ ∧ tId1 6= tId2 ⇒

(branchNeighbours(d)(p, tId1) = plus ∧
branchNeighbours(d)(p, tId2) = minus) ∨

(branchNeighbours(d)(p, tId1) = minus ∧
branchNeighbours(d)(p, tId2) = plus))))

4.2.6 Point Machines

Each points section has a point machine that control and supervise the points
section. The point machine is a distinct entity from the points section. It has its
own identifier and has its own relays associated.

The relation of points sections and point machines are modelled with two map-
pings. One from point machine ids to track ids and one the other way.

type
pointMachineTrack : PointMachineId →m TrackId
trackPointMachine : TrackId →m PointMachineId

Strictly, just one of the maps is sufficient, but look ups, in either directions, are
performed frequently enough that this data redundancy is acceptable.

Stenstrup has two points sections 01 and 03 with a point machine each, 01 and
02 respectively.

value
pointMachineTrack : PointMachineId →m TrackId =

[ ′′01′′ 7→ ′′01′′,
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′′02′′ 7→ ′′03′′ ],

trackPointMachine : TrackId →m PointMachineId =
[ ′′01′′ 7→ ′′01′′,
′′03′′ 7→ ′′02′′ ],

4.2.6.1 Well-formedness of Point Machines

The maps of point machines are well-formed if

1. The maps are symmetrical.

2. The track sections referred to in the maps are points sections and every
points section is referred to.

value
isWfPointMachines : Diagram → Bool
isWfPointMachines(d) ≡

areSymmetrical(pointMachineTrack(d), trackPointMachine(d)) ∧
pointsSectionsExists(d)

1. Symmetrical Any mapping val1 7→ val2 in one map, must appear as the
mapping val2 7→ val1 in the other map.

value
areSymmetrical : (PointMachineId →m TrackId) ×

(TrackId →m PointMachineId) → Bool
areSymmetrical(pmt, tpm) ≡

dom pmt = rng tpm ∧
dom tpm = rng pmt ∧
( ∀ pmId : PointMachineId • pmId ∈ dom pmt ⇒

let tId = pmt(pmId)
in pmId = tpm(tId)
end ) ∧

( ∀ tId : TrackId • tId ∈ dom tpm ⇒
let pmId = tpm(tId)
in tId = pmt(pmId)
end )
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Notice the lines:

dom pmt = rng tpm ∧
dom tpm = rng pmt

They provide graceful error handling in our specific implementation in SML.
Without them SML will throw an exception, instead of returning false, if a value
exist in one map, but not the other.

2. Existing track sections. The ids of track sections referred to in the maps,
must be ids of points sections. Furthermore all points sections must have a point
machine associated.

value
pointsSectionsExists : Diagram → Bool
pointsSectionsExists(d) ≡

dom trackPointMachine(d) = allPoints(d)

4.2.7 Signals

Each signal has a unique identifier, the specification of which has already been
given at the start of this chapter. Since the range of aspects have been reduced
to just proceed and stop (section 2.3.2), there is no need to distinguish between
the signal types.

value
allSignals : SignalId-set,

The signals are placed between track sections1, i.e. on the edges of the graph (fig.
4.3). Therefore, the location of signals is represented as a map from a neighbour
pair to a signal id. This explains the need for the line construction. Without the
line, the track sections on the station border would only have one neighbour. As
a result there would be no edge to put the entrance signal on.

1Actually, the signals are placed just before the separation to the signals facing side, such
that a train will have to pass the signal in order to enter the following section.
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Line LineA12 B1201 02 03

04

A
E

G
B

H
F

Figure 4.3: The signals are located at the directed edges such that they can be
read when travelling in the direction indicated by the arrow.

value
signalLocations : (TrackId × TrackId) →m SignalId

From the station layout diagram of Stenstrup (fig. 2.14), we see that the station
has eight signals in total. The two distant signals (a and b) are not to be
modelled, but the two entrance signals (A and B) and four exit signals (E, F, G
and H) are. The entrance and exit signals are added to the set of all signals.

value
allSignals : SignalId-set = {′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

Signals are located between track sections and is only readable from one direction.
Therefore they can be placed on the appropriate edge on the graph. The signal
can be read when travelling in the direction indicated by the arrow.

value
signalLocations : (TrackId × TrackId) →m SignalId =

[ (′′line′′,′′A12′′) 7→ ′′A′′, (′′line′′,′′B12′′) 7→ ′′B′′,
(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ],

In the example above, signal A is located between the line and A12 and readable
when travelling from line to A12.
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4.2.7.1 Signal Location Well-formedness

The signal location map is well-formed if the signals used in the map are the same
as the ones on the station and they are placed on edges between neighbours.

value
isWfSignalLocations : Diagram → Bool
isWfSignalLocations(d) ≡

signalLocationUsesExistingSignals(d) ∧
signalsArePlacedAtValidNeighbours(d)

1. Every signal is given a location. Every signal on the station is given a
location and only existing signals are given a location.

value
signalLocationUsesExistingSignals : Diagram → Bool
signalLocationUsesExistingSignals(d) ≡

rng signalLocations(d) = allSignals(d)

2. Signals are placed on valid edges. The signals must be placed between
track sections, i.e. on edges that is given by the neighbours relation.

value
signalsArePlacedAtValidNeighbours : Diagram → Bool
signalsArePlacedAtValidNeighbours(d) ≡

( ∀ (id1, id2) : (TrackId × TrackId) •

(id1, id2) ∈ dom signalLocations(d) ⇒
areNeighbours(id1, id2, d) )

4.3 Train Route Table

A data model of the train route table is introduced in this section. The complete
specification is given in the file TrainRouteTable.rsl, which can be found in
the appendix section E.1.4.
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The train route table is modelled as a mapping between train routes and the
data the row contains.

type
TrainRouteTable = TrainRouteId →m DataRow

The train route identifier is specified in the usual way:

type
TrainRouteId = Text

and DataRow is specified in section 4.3.2.

The train route table of Stenstrup (fig. 2.15) shows eight routes, numbered
2, 3, 5, 6, 7, 8, 9 and 10. For each train route a DataRow is created. An example
of this is given after the specification in section 4.3.2.

value
stenstrupTRT : TrainRouteTable =

[ ′′2′′ 7→ dataRow2, ′′3′′ 7→ dataRow3,
′′5′′ 7→ dataRow5, ′′6′′ 7→ dataRow6,
′′7′′ 7→ dataRow7, ′′8′′ 7→ dataRow8,
′′9′′ 7→ dataRow9, ′′10′′ 7→ dataRow10 ]

4.3.1 Well-formedness of Train Route Table

A train route table is well-formed if every data row it contains is well-formed.
Also, the train route ids in the domain should be mutually distinct, but the map
structure ensures this property.

value
isWfTrainRouteTable : TrainRouteTable × Diagram → Bool
isWfTrainRouteTable(trt, d) ≡

(∀ trId : TrainRouteId • trId ∈ dom trt ⇒
isWfDataRow(trId, d, trt)),
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4.3.2 DataRow

The data in each row is stored in a record type called DataRow. Each part of the
train route table gets its own entry and are described in detail in the following
sections.

type
DataRow ::

overlap : TrackId-set
signals : SignalId →m Aspect
points : PointMachineId →m PointsState
trainDetection : TrackId →m Bool
signalRelease : SignalId × TrackId
trainRouteRelease : ReleaseSequence
mutuallyBlocking : TrainRouteId →m Bool,

As an example, consider train route 2 on Stenstrup. The creation of each of
the constituents are shown separately in the following sections to improve the
readability.

value
dataRow2 : DataRow =

mk DataRow(
overlap2,
signals2,
points2,
trainDetection2,
signalRelease2,
trainRouteRelease2,
mutuallyBlocking2

),

4.3.2.1 Well-formedness of DataRow

A data row is well-formed if each of its constituents are well-formed.

value
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isWfDataRow : TrainRouteId × Diagram × TrainRouteTable → Bool
isWfDataRow(trId, d, trt) ≡

let dr = trt(trId)
in isWfOverlap(dr, d) ∧

isWfSignals(dr, d) ∧
isWfPoints(dr, d) ∧
isWfTrainDetection(trainDetection(dr), d) ∧
isWfSignalRelease(signalRelease(dr), d) ∧
isWfTrainRouteRelease(trainRouteRelease(dr), d) ∧
isWfMutuallyBlocking(trId, trt)

end

4.3.3 Overlap

Overlap is modelled as a set of track ids.

value
overlap : TrackId-set

If there is no overlap, then the set is empty. Otherwise the set consist of the
ids of the track sections that are part of the overlap. This varies slightly from
the paper table, where it is either “strækn” or empty. It is changed for a few
reasons.

First of all, the information is static. It only changes if the layout of the station
or the routes are changed. If something is changed, then the interlocking plan
should be updated accordingly anyway, so the details about the overlap could
be changed at that point as well.

Secondly, since the data is static, it seems needless to compute it every single
time it is used. Even if computed only once and saved in an appropriate structure,
“stræk” would then redundant. Besides computing the overlap is difficult, since
the train route table does not explicitly state the start and end points of routes.

Consider the overlap of route 2 on Stenstrup. The stretch from the end point of
route 2 to the line is track sections 03 and B12 and hence they are added as a
set to the overlap entry.

value
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overlap2 : TrackId-set = {′′03′′, ′′B12′′}

4.3.3.1 Well-formnedess of Overlap

If the following hold, the overlap is considered well-formed.

1. If there is an overlap for a given route, then the track sections of the overlap
must be vacant when the route is locked.

2. If there is an overlap, the track sections of the overlap must form a connected
path.

3. If there is an overlap, then it must be an extension of the route, i.e. only
one section of the overlap may be neighbour with a section from the route.

value
isWfOverlap : DataRow × Diagram → Bool
isWfOverlap(dr, d) ≡

let overlap = overlap(dr)
in card overlap > 0 ⇒

overlapCovered(overlap, trainDetection(dr)) ∧
overlapIsConnected(overlap, d) ∧
endOfRoute(dr, d)

end

1. Overlap Sections in Train Detection Track sections which are part of
the overlap, must be covered by the route.

value
overlapCovered : TrackId-set × (TrackId →m Bool) → Bool
overlapCovered(overlap, trainDetection) ≡

overlap ⊆ coveredSections(trainDetection)

where the covered track sections, are the sections that are required to be vacant,
when the route is locked.
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value
coveredSections : (TrackId →m Bool) → TrackId-set
coveredSections(trainDetection) ≡
{ tId | tId : TrackId • tId ∈ dom trainDetection ∧

trainDetection(tId)},

2. Overlap is connected Any non-empty overlap, must form a connected
path.

value
overlapIsConnected : TrackId-set × Diagram → Bool
overlapIsConnected(overlap, d) ≡

areConnected(overlap, d)

where is a function that attempts to create a connected path through the set of
track sections it is given, using the neighbour relation from the station layout
diagram it is given as input.

value
areConnected : TrackId-set × Diagram → Bool
areConnected(sections, d) ≡

if sections = {} then true else
let s = hd sections, sections′ = sections \ {s}
in findConnected({s}, {s}, sections, d) = sections
end

end,

findConnected : TrackId-set × TrackId-set ×
TrackId-set × Diagram → TrackId-set

findConnected(queue, visited, sectionsInRoute, d) ≡
if queue = {} then visited else

let q = hd queue,
nbs = getNeighboursOf(q, d) ∩ sectionsInRoute,
queue′ = (queue \ {q}) ∪ (nbs \ visited),
visited′ = visited ∪ {q}

in findConnected(queue′, visited′, sectionsInRoute, d)
end

end
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3. Overlap is extension The overlap must be an extension of the route, i.e.
there is only a single track section from the overlap, which is neighbour with a
track section from the route.

value
endOfRoute : DataRow × Diagram → Bool
endOfRoute(dr, d) ≡

let overlap = overlap(dr),
coveredSections = coveredSections(trainDetection(dr)),
route = coveredSections \ overlap

in ( ∃! tId : TrackId • tId ∈ overlap ∧
let nbs = getNeighboursOf(tId, d),

nbsInOverlap = nbs ∩ route
in card nbsInOverlap ≥ 1
end

)
end

4.3.4 Signals

The signals section is specified as a mapping from each signal on the station to
required aspect.

value
signals : SignalId →m Aspect

Recall from section 2.3.2 that the possible aspects has been reduced to proceed
and stop. These are modelled as gr and re respectively. If there is no requirement
to the aspect, arbitrary can written.

type
Aspect == gr | re | arbitrary,

Consider the signals part for train route 2 on Stenstrup. We see that signal A
is required to show proceed, while F and G should show stop. There are no
requirements about the aspect of the rest of the signals.
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value
signals2 : SignalId →m Aspect =

[ ′′A′′ 7→ gr, ′′B′′ 7→ arbitrary, ′′E′′ 7→ arbitrary,
′′F′′ 7→ re, ′′G′′ 7→ re, ′′H′′ 7→ arbitrary ]

4.3.4.1 Well-formedness of Signals

Every signal on the station must be present as keys to the map structure.
Furthermore the entry signal must show proceed aspect.

value
isWfSignals : DataRow × Diagram → Bool
isWfSignals(dr, d) ≡

let signals = signals(dr)
in existingSignals(signals, d) ∧

proceedEntry(getEntrySignal(dr), signals)
end

where the entry signal is extracted from the signal release entry.

value
getEntrySignal : DataRow → SignalId
getEntrySignal(dr) ≡

let (sId, tId) = signalRelease(dr) in sId end

1. Existing Signals

value
existingSignals : (SignalId →m Aspect) × Diagram → Bool
existingSignals(signals, d) ≡

dom signals = allSignals(d)
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2. Entry Signal Shows Proceed

value
proceedEntry : SignalId × (SignalId →m Aspect) → Bool
proceedEntry(entrySignal, signals) ≡

signals(entrySignal) = gr

4.3.5 Points

The part of the train route table called Points is modelled as a map from the id
of each point machine to the required position of the points section, if any.

value
points : PointMachineId →m PointsState

where PointsState is defined as

type
PointsState == plus | minus | arbitrary

Consider train route 2 on Stenstrup. Both points must be set to plus.

value
points : PointMachineId →m PointsState = [ ′′01′′ 7→ plus, ′′02′′ 7→ plus ]

4.3.5.1 Well-formedness of Points

The points part of the train route table is well-formed if:

1. Any track section associated with a point machine is part of the station.

2. For every points section, its associated point machine is in points.

3. Every points section on the route has a required position.
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4. The point position matches the route.

value
isWfPoints : DataRow × Diagram → Bool
isWfPoints(dr, d) ≡

let points = points(dr)
in pointMachinesExist(dom points, d) ∧

pointMachinesInTRT(dr, d) ∧
pointsInRouteLocked(dr, d) ∧
correctPos(dr, d)

end

1. Point machines exist The point machines in the train route table are also
defined in the station layout diagram.

value
pointMachinesExist : PointMachineId-set × Diagram → Bool
pointMachinesExist(points, d) ≡

( ∀ pId : PointMachineId • pId ∈ points ⇒
pId ∈ dom pointMachineTrack(d) ∧
let tId = pointMachineTrack(d)(pId)
in tId ∈ allPoints(d)
end )

2. Point machine given The point machine associated with each points
section of the station, must be in the points section of the train route table.

value
pointMachinesInTRT : DataRow × Diagram → Bool
pointMachinesInTRT(dr, d) ≡

( ∀ tId : TrackId •

tId ∈ dom trainDetection(dr) ⇒
isPoints(tId, d) ⇒

let pmId = trackPointMachine(d)(tId)
in pmId ∈ dom points(dr)
end ),
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3. Covered points sections are required to be locked Each points section,
which is part of a route, must be required to be locked in either plus or minus.

value
pointsInRouteLocked : DataRow × Diagram → Bool
pointsInRouteLocked(dr, d) ≡

( ∀ pId : PointMachineId • pId ∈ points(dr) ⇒
let pos = points(dr)(pId),

tId = pointMachineTrack(d)(pId)
in tId ∈ coveredSections(trainDetection(dr)) ⇒

(pos = plus ∨ pos = minus)
end ),

4. The point position matches the route Every points section, which is
part of the route and has a neighbour on the branch side, which is also part
of the route, must be locked into the position that allows movement to that
neighbour.

value
correctPos : DataRow × Diagram → Bool
correctPos(dr, d) ≡

( ∀ pId : TrackId •

pId ∈ coveredSections(trainDetection(dr)) ∩
allPoints(d) ⇒

( ∀ nb : TrackId •

nb ∈ getNeighboursOf(pId, d) ∩
coveredSections(trainDetection(dr)) ⇒

isBranchNb(pId, nb, d) ⇒
points(dr)(trackPointMachine(d)(pId)) =
branchNeighbours(d)(pId, nb) ))

4.3.6 Train Detection

Train detection is a mapping from track ids to a boolean value. The value is
true if the track is required to be vacant and false if not.

value
trainDetection : TrackId →m Bool
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In order to lock train route 2 on Stenstrup, every track section, except 04, must
be vacant.

value
trainDetection : TrackId →m Bool =

[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,
′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ]

4.3.6.1 Well-formedness of Train Detection

1. The domain of the map must contain every track section on the station

2. At least one track section must be part of the route.

3. The track sections that are part of the route, must form a connected path.

4. The path may not cover both branches of a points section.

value
isWfTrainDetection : (TrackId →m Bool) × Diagram → Bool
isWfTrainDetection(trainDetection, d) ≡

existingTrackSections(dom trainDetection, d) ∧
atLeastOneSectionInRoute(trainDetection) ∧
connectedRoute(trainDetection, d) ∧
justOneBranchNeighbour(trainDetection, d)

1. Existing Track Sections The track sections in train detection must also
be defined in the station layout diagram.

value
existingTrackSections : TrackId-set × Diagram → Bool
existingTrackSections(sections, d) ≡

sections = allLinears(d) ∪ allPoints(d),
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2. At Least One Section In Route At least one of the track sections in
train detection must be part of the route.

value
atLeastOneSectionInRoute : (TrackId →m Bool) → Bool
atLeastOneSectionInRoute(trainDetection) ≡

(∃ b : Bool • b ∈ rng trainDetection ∧ b)

3. Connected The track sections in the route, must form a connected path.

value
connectedRoute : (TrackId →m Bool) × Diagram → Bool
connectedRoute(trainDetection, d) ≡

areConnected(coveredSections(trainDetection), d)

4. No path over both branches A train cannot travel from one branch to
the other on a points section. Therefore routes may not have this configuration
either.

value
justOneBranchNeighbour :

(TrackId →m Bool) × Diagram → Bool
justOneBranchNeighbour(trainDetection, d) ≡

( ∀ tId : TrackId •

tId ∈ coveredSections(trainDetection) ⇒
/∗ Only interrested in points sections ∗/
isPoints(tId, d) ⇒

/∗ Does not have two branch side neighbour ∗/
∼( ∃ bNb1 : TrackId •

bNb1 ∈ coveredSections(trainDetection) ∧
isBranchNb(tId, bNb1, d) ∧
( ∃ bNb2 : TrackId •

bNb2 ∈ coveredSections(trainDetection) ∧
isBranchNb(tId, bNb2, d) ∧
bNb1 6= bNb2 )

)
)
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4.3.7 Signal Release

Signal release is modelled as a pair of a signal id and a track id.

value
signalRelease : SignalId × TrackId

When the given track becomes occupied, the given signal will be forced to release
back to stop. The down arrow shown in the train route table is not modelled, as
it is always the case that it is dropped when the track section is occupied.

In train route 2 on Stenstrup, signal A should release back to stop when track
section A12 becomes occupied.

value
signalRelease : SignalId × TrackId = ( ′′A′′, ′′A12′′ )

4.3.7.1 Well-formedness of Signal Release

The given signal id must match a signal on the station and the track section must
be part of the station. Furthermore, that signal must be on an edge between
that track section and another and must be readable when travelling from the
track section to its neighbour.

value
isWfSignalRelease : (SignalId × TrackId) × Diagram → Bool
isWfSignalRelease((sId, tId), d) ≡

sId ∈ allSignals(d) ∧
tId ∈ allLinears(d) ∪ allPoints(d) ∧
signalFollowedByTrackSection(sId, tId, d),

where the given track section ts is directly after the signal if there exist another
track section ts′ such that the given signal is located on the edge going from ts′

to ts.
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value
signalFollowedByTrackSection : SignalId × TrackId × Diagram → Bool
signalFollowedByTrackSection(sId, tId, d) ≡

(∃ tId2 : TrackId • tId2 ∈ allSections(d) ∧
(tId2, tId) ∈ dom signalLocations(d) ∧

signalLocations(d)(tId2, tId) = sId
)

4.3.8 Train Route Release

Train Route Release is modelled as a pair of release condition pairs.

value
trainRouteRelease : ReleaseSequence

type
ReleaseSequence = ReleaseCond × ReleaseCond,
ReleaseCond = (TrackId × RelayState) × (TrackId × RelayState)

A release condition pair consists of a track id and a relay state, which can be
either drawn or dropped.

type
RelayState == drawn | dropped,

Consider train route 2 on Stenstrup. The route is released when track section 01
is occupied, while track section 02 is vacant, followed by 01 being vacant and 02
occupied.

value
trainRouteRelease : ReleaseSequence =

( ((′′01′′, dropped), (′′02′′, drawn)),
((′′02′′, dropped), (′′01′′, drawn)) )
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4.3.8.1 Well-formedness of Train Route Release

The release sequence follow a strict pattern. First the first track section of the
release sequence must occupied, while the second is vacant. Then the second
track section must be occupied, while the first is vacant.

value
isWfTrainRouteRelease : DataRow × Diagram → Bool
isWfTrainRouteRelease(dr, d) ≡

let (indl, opl) = trainRouteRelease(dr),
((tId1, rs1), (tId2, rs2)) = indl,
((tId3, rs3), (tId4, rs4)) = opl

in reverseTrackSections(tId1, tId2, tId3, tId4) ∧
reverseRelayState(rs1, rs2, rs3, rs4) ∧
trackSectionPartOfRoute(tId1, dr) ∧
trackSectionPartOfRoute(tId2, dr) ∧
properRelayState(rs1, rs2) ∧
areNeighbours(tId1, tId2, d)

end

Therefore, for the sequence to be well-formed, the track sections in the first
release condition, must be same as in the second condition.

value
reverseTrackSections : TrackId × TrackId ×

TrackId × TrackId → Bool
reverseTrackSections(tId1, tId2, tId3, tId4) ≡

tId1 = tId4 ∧ tId2 = tId3

The track sections must be part of the route.

value
trackSectionPartOfRoute : TrackId × DataRow → Bool
trackSectionPartOfRoute(tId, dr) ≡

tId ∈ sectionsInRoute(trainDetection(dr)),

The state of the relays must follow the pattern dropped, drawn, dropped, drawn.
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value
reverseRelayState : RelayState × RelayState ×

RelayState × RelayState → Bool
reverseRelayState(rs1, rs2, rs3, rs4) ≡

rs1 = rs3 ∧ rs2 = rs4,

properRelayState : RelayState × RelayState → Bool
properRelayState(rs1, rs2) ≡

rs1 = dropped ∧ rs2 = drawn

4.3.9 Mutually Blocking

Mutually blocking is a mapping from train route ids to a boolean value. If the
value is true, then the routes are conflicting with each other.

value
mutuallyBlocking : TrainRouteId →m Bool

Train route 2 on Stenstrup conflicts with every other train route except for route
9.

value
mutuallyBlocking : TrainRouteId →m Bool =
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ true ]

Well-formedness of Mutually Blocking Mutually Blocking is well-formed
if:

1. Must have an entry for every train route and no other.

2. If two routes share at least one track section, which is in neither routes
overlap, then the two routes are conflicting.

3. If two routes require different positioning of a points section, then the two
routes are conflicting.
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value
isWfMutuallyBlocking : TrainRouteId × TrainRouteTable → Bool
isWfMutuallyBlocking(trId, trt) ≡

let dr = trt(trId)
in entryForEveryRoute(mutuallyBlocking(dr), trt) ∧

conflictingWhenShareSection(trId, trt) ∧
conflictingWhenDifferentPos(trId, trt)

end

1. Every train route has an entry The domain of the mutually blocking
mapping, must be exactly the set of train routes in the train route table.

value
entryForEveryRoute : (TrainRouteId →m Bool) ×

TrainRouteTable → Bool
entryForEveryRoute(mutuallyBlocking, trt) ≡

dom mutuallyBlocking ⊆ dom trt ∧
dom mutuallyBlocking ⊇ dom trt

2. Conflicting Routes When Sharing Sections If two routes share a track
section, then they must be conflicting.

value
conflictingWhenShareSection : TrainRouteId × TrainRouteId ×

TrainRouteTable → Bool
conflictingWhenShareSection(route1, route2, trt) ≡

let - - Route 1
dr1 = trt(route1),
sections1 = coveredSections(trainDetection(dr1)),
overlap1 = overlap(dr1),
sectionsNoOverlap1 = sections1 \ overlap1,
- - Route 2
dr2 = trt(route2),
sections2 = coveredSections(trainDetection(dr2)),
overlap2 = overlap(dr2),
sectionsNoOverlap2 = sections2 \ overlap2

in card (sectionsNoOverlap1 ∩ sectionsNoOverlap2) > 0 ⇒
mutuallyBlocking(dr1)(route2)

end
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This must hold for every combination of routes:

value
conflictingWhenShareSection : TrainRouteId ×

TrainRouteTable → Bool
conflictingWhenShareSection(route1, trt) ≡

let routes = dom trt
in conflictingWhenShareSection(route1, routes, trt)
end,

conflictingWhenShareSection : TrainRouteId ×
TrainRouteId-set × TrainRouteTable → Bool

conflictingWhenShareSection(route1, routes, trt) ≡
if routes = {} then true else

let route2 = hd routes, routes′ = routes \ {route2}
in conflictingWhenShareSection(route1, route2, trt) ∧

conflictingWhenShareSection(route1, routes′, trt) - - Recursive Call
end

end

3. Conflicting if different position Two routes which require different pos-
itioning of a points sections are conflicting.

value
conflictingWhenDifferentPos : TrainRouteId × TrainRouteId ×

TrainRouteTable → Bool
conflictingWhenDifferentPos(route1, route2, trt) ≡

let - - Route 1
dr1 = trt(route1),
points1 = points(trt(route1)),
- - Route 2
dr2 = trt(route2),
points2 = points(dr2)

in ( ∃ pmId : SL.PointMachineId •

pmId ∈ dom points1 ∧
pmId ∈ dom points2 ∧
points1(pmId) 6= T.arbitrary ∧
points2(pmId) 6= T.arbitrary ∧
points1(pmId) 6= points2(pmId)

) ⇒ mutuallyBlocking(dr1)(route2)
end
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This must hold for every combination of routes:

value
conflictingWhenDifferentPos : TrainRouteId × TrainRouteTable → Bool
conflictingWhenDifferentPos(route1, trt) ≡

let routes = dom trt
in conflictingWhenDifferentPos(route1, routes, trt)
end,

conflictingWhenDifferentPos : TrainRouteId ×
TrainRouteId-set × TrainRouteTable → Bool

conflictingWhenDifferentPos(route1, routes, trt) ≡
if routes = {} then true else

let route2 = hd routes,
routes′ = routes \ {route2}

in conflictingWhenDifferentPos(route1, route2, trt) ∧
conflictingWhenDifferentPos(route1, routes′, trt) - - Recursive Call

end
end

4.4 Transition System

The data model of the RSL-SAL transition system is introduced in this section.
It is an extension of the structure introduced by Kjær and Le Bliguet [2]. The
complete specification is written in the file TransitionSystem.rsl, which can
be found in appendix section E.1.5.

A transition system has a name and consists of a state space, a set of transitions
and a set of assertions.

type
TransitionSystem ::

name : Text
state : Var-set
transitionRules : TransitionRule-set
assertions : Assertion-set

Assertions are not generally considered to be part of a transition system. Normally
one would supply a model checker with a system model (the transition system)
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and a property specification (assertions). However, we wanted to be able to
generate both the transition system and the assertions with a single call to
the generator. With assertions as part of the transition system, the generator
can pass both the transition system and the assertions directly to the unparser.
Alternatively, a wrapper structure that contains the transition system and the
assertions could solve the same problem.

A transition system is well-formed if the name, the state space, the transitions
and the assertions are all well-formed.

value
isWfTransitionSystem : TransitionSystem → Bool
isWfTransitionSystem(ts) ≡

isWfName(name(ts)) ∧
isWfState(state(ts)) ∧
isWfTransitionRules(ts) ∧
isWfAssertions(assertions(ts))

4.4.1 Transition System Name

The transition system may not have the empty string as name.

value
isWfName : Text → Bool
isWfName(name) ≡

name 6= ′′′′

4.4.2 State Space

The state space is a set of variables. A variable have an identifier and a value.

type
Var ::

id : VarId
val : Val
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where the id of the variable is modelled as text:

type
VarId = Text

and the value can be either of type boolean or natural number.

Val == mk BoolVal(b : Bool) | mk NatVal(n : Nat)

These are the value types used in the behavioural model, which is introduced in
section 6.2. Additional could be added if needed.

4.4.2.1 Well-formedness of State Space

The state space is well-formed if each variable has a unique id and the id of each
variable is valid.

value
isWfState : Var-set → Bool
isWfState(vars) ≡ uniqueIds(vars) ∧ validIds(vars)

1. Unique Ids An id is unique if there does not exist another variable in the
same state space with the same id.

value
uniqueIds : Var-set → Bool
uniqueIds(vars) ≡

( ∀ var1 : Var • var1 ∈ vars ⇒
∼( ∃ var2 : Var • var2 ∈ vars ∧

id(var1) = id(var2) ∧ var1 6= var2)
)
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2. Valid Ids The id is not allowed to begin with a number and may not be
the empty string.

value
validIds : Var-set → Bool
validIds(vars) ≡

( ∀ var : Var • var ∈ vars ⇒
id(var) 6= ′′′′ ∧
let char = hd id(var)
in char 6= ′0′ ∧ char 6= ′1′ ∧

char 6= ′2′ ∧ char 6= ′3′ ∧
char 6= ′4′ ∧ char 6= ′5′ ∧
char 6= ′6′ ∧ char 6= ′7′ ∧
char 6= ′8′ ∧ char 6= ′9′

end )

4.4.3 Transition Rules

Transition rules are the transitions in the transition system. Each transition
has a name, a guard and an assignment2. The guard limits the states a given
transition can be taken from, while the assignment changes the state by assigning
different values to the variables in the state space.

type
TransitionRule ::

name : Text
guard : BooleanExp
assignments : MultipleAssignment

where a boolean expression is defined in the following way:

type
BooleanExp ==

and(a : BooleanExp-set) |
or(o : BooleanExp-set) |
neg(n : BooleanExp) |
2Sometimes called update.
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lessthan(ArithmeticExp, ArithmeticExp) |
greaterthan(ArithmeticExp, ArithmeticExp) |
geq(ArithmeticExp, ArithmeticExp) | /∗ greater than equal∗/
equals(ArithmeticExp, ArithmeticExp) |
literal(id : VarId) |
bool(b : Bool)

using the following definition of arithmetic expressions:

type
ArithmeticExp ==

add(a : ArithmeticExp-set) |
sub(s : ArithmeticExp-set) |
literal(l : VarId),

The update part of a transition rule consists of a set of assignments as well:

type
MultipleAssignment = Assignment-set,

Assignment ::
id : VarId
assign : AssignExp,

AssignExp == BoolAssign(ba : Bool) |
NatAssign(na : Nat) |
AddAssign(aa : Nat) |
SubAssign(sa : Nat) ,

4.4.3.1 Well-formedness of Transition Rules

The following must hold for transitions.

1. Names must be valid.

2. Names must be unique.

3. Value assignments to existing variables.
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4. Variables in guard must be part of the state space.

5. At least one assignment in update.

6. Each variable may only be updated once.

value
isWfTransitionRules : TransitionSystem → Bool
isWfTransitionRules(ts) ≡

let state = state(ts),
trs = transitionRules(ts)

in validNames(trs) ∧
uniqueNames(trs) ∧
assignmentToExistingIds(ts) ∧
idsInGuardMustBeInState(state, trs) ∧
nonemptyAssignment(trs) ∧
idUpdOnlyOnce(trs)

end

1. Names must be nonempty The empty string is not a valid name for a
transition rule.

value
validNames : TransitionRule-set → Bool
validNames(trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
∼isEmptyString(name(tr))

)

2. Names must be unique Two transitions with the same name may not
exist.

value
uniqueNames : TransitionRule-set → Bool
uniqueNames(trs) ≡

( ∀ tr1 : TransitionRule • tr1 ∈ trs ⇒
∼( ∃ tr2 : TransitionRule • tr2 ∈ trs ∧

tr1 6= tr2 ∧ name(tr1) = name(tr2) )
)
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3. Value assignments to existing variables Any value assignment in a
transition rule, must be to a variable in the state space of the same transition
system.

value
assignmentToExistingIds : TransitionSystem → Bool
assignmentToExistingIds(ts) ≡

( ∀ tr : TransitionRule • tr ∈ transitionRules(ts) ⇒
( ∀ assign : Assignment • assign ∈ assignments(tr) ⇒

( ∃ var : Var • var ∈ state(ts) ∧
id(assign) = id(var) )

)
)

4. Variables in guard must be part of the state space The variables
used in each guard, must be part of the state space.

value
idsInGuardMustBeInState : Var-set × TransitionRule-set → Bool
idsInGuardMustBeInState(state, trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
( ∀ id : VarId • id ∈ idsInBoolExp(guard(tr)) ⇒

( ∃ var : Var • var ∈ state ∧
id = id(var) )

)
)

5. At least one assignment in update The empty assignment is not allowed.

value
nonemptyAssignment : TransitionRule-set → Bool
nonemptyAssignment(trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
assignments(tr) 6= {}

)
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6. Each variable may only be updated once Each variable may only be
updated once in any transition rule.

value
idUpdOnlyOnce : TransitionRule-set → Bool
idUpdOnlyOnce(trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
let ma = assignments(tr)
in ( ∀ assign : Assignment • assign ∈ ma ⇒
∼( ∃ assign2 : Assignment • assign2 ∈ ma ∧

assign 6= assign2 ∧ id(assign) = id(assign2) )
)

end
)

4.4.4 Assertions

An assertion consists of a name and a LTL formula.

type
Assertion = Text × LTLformula

where an LTL formula has been defined in the following way.

type
LTLformula ==

b(bExp : BooleanExp) |
ltrl(l : Text) | /∗ Literal ∗/
conj(LTLformula-set) | /∗ Conjunction ∗/
disj(LTLformula-set) | /∗ Disjunction ∗/
paren(LTLformula) | /∗ Parenthesis ∗/
neg(LTLformula) | /∗ Negation ∗/
impl(LTLformula, LTLformula) | /∗ Implication ∗/
x(LTLformula) | /∗ Next ∗/
g(LTLformula) | /∗ Globally ∗/
f(LTLformula) | /∗ Finally ∗/
u(LTLformula, LTLformula) /∗ Until ∗/
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This differs from the syntax used by Kjær and Le Bliguet [2] and thus some
work is required here, if the specifications are to be merged. The reason for the
change is that they only allow LTL operators at the outer levels. As will be seen
in section 10.8, expressions like ♦(A ∧©B) will be needed.

The definition of the LTL syntax consists of a subset of the above defined
LTLformula of temporal and logical operators. Most of them are derived from
the fundamental definitions described by Baier and Katoen [3]. The scope for this
project is not to derive the grammar, but use the LTL formulae to generate the
expressions. Thus, for convenience all the needed temporal and logical operators
used in generating the assertions are defined in the LTLformula type.

4.4.4.1 Well-formedness of Assertions

An assertion is well-formed if its name is unique among the assertions in the
transition system and the name is non-empty. Furthermore, any variables in the
LTL formula must exist in the state space.

value
isWfAssertions : TransitionSystem → Bool
isWfAssertions(ts) ≡

let state = state(ts),
assertions = assertions(ts)

in nonemptyNames(assertions) ∧
uniqueNames(assertions) ∧
existingVars(state, assertions)

end

1. Valid name Assertion name must be non-empty.

value
nonemptyNames : Assertion-set → Bool
nonemptyNames(assertions) ≡

( ∀ (name, ltl) : Assertion • (name, ltl) ∈ assertions ⇒
name 6= ′′′′ )

Assertion name must be unique.
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value
uniqueNames : Assertion-set → Bool
uniqueNames(assertions) ≡

( ∀ (name, ltl) : Assertion • (name, ltl) ∈ assertions ⇒
∼( ∃ (name2, ltl2) : Assertion •

(name2, ltl2) ∈ assertions ∧
(name, ltl) 6= (name2, ltl2) ∧
name = name2 )

)

2. Existing variables The variables used in the LTL expression must be part
of the state space of the transition system.

value
existingVars : Var-set × Assertion-set → Bool
existingVars(state, assertions) ≡

( ∀ (name, ltl) : Assertion • (name, ltl) ∈ assertions ⇒
( ∀ id : T.VarId • id ∈ idsInLTL(ltl) ⇒

isIdInState(id, state) )
)



Chapter 5

Behavioural Model of the
Internal System

This chapter will describe the behavioural model of the internal part of the
interlocking system.

This model was developed by Kjær and Le Bliguet [2]. The model will be
described briefly, with an emphasis on the concrete model of Stenstrup that they
created using their generator tool. For a deeper understanding of the model and
choices made in creating it, we refer to their thesis.

Section 5.1 introduces the state space. Here the relevant variables will be
explained and associated with entities from the station documentation.

Section 5.2 will briefly the transition rules of the internal system. These are not
as relevant for this work, as the external environment does not interact with the
transitions, but rather the variables of the state space.

Lastly, section 5.3 will describe how time is modelled. This section is highly
relevant, as it affects every external event.
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5.1 State Space

The state of the model of the internal interlocking system contains a boolean
variable for each relay and each button. The variable is true when the relay is
drawn or button is pushed respectively and false when the relay is dropped or
button is released respectively.

The initial value of the variables are the state of the relay/button in the normal
state.

5.1.1 State Space of Stenstrup

Table 5.1 shows the relevant subset of the 60 boolean variables created by the
generator of the internal system, when Stenstrup station is given as input.

Type Variable State

Track a12, t01, t02, t03, t04, b12 False when the related track sec-
tion is occupied.

Points plus01, minus01, plus02,
minus02

True when the related points
section is locked into the given
position.

Signals aGreen, aRed, bGreen, bRed,
eGreen, eRed, fGreen, fRed,
gGreen, gRed, hGreen, hRed

True when the given light, of
the related signal, is on.

Locking ia, ib, ua, ub False when the related train
route is locked.

Buttons b00406, b00606, b03106,
b03306

True when the related but-
ton on the operator’s panel is
pressed. Used to lock routes.

Table 5.1: Variables used in the internal model of the relay interlocking system
at Stenstrup station.

Table 5.2 shows the relation between each track section on Stenstrup and the
generated track relay variables, which models the corresponding track section’s
track relay.

Each point machine has two point detection relays, one for the plus position
and one for the minus position. Table 5.3 shows the relation between the point
machines on Stenstrup and the generated point detection relay variables.



5.1 State Space 83

Track Variable

A12 a12
01 t01
02 t02
03 t03
04 t04

B12 b12

Table 5.2: Shows the relation between the track sections and the variables that
models their associated track relay.

Point Machine Plus Minus

01 plus01 minus01
02 plus02 minus02

Table 5.3: Shows the relation between point machines and the point locking
relay variables associated with them.

Each signals is controlled by as many signal lamp relays, as the signal has lamps.
In this thesis only the red and green lamp are considered, so each signal needs
to be associated with two signal lamp relays. Table 5.4 shows this relation for
Stenstrup with the generated variables.

Signal Green Red

A aGreen aRed
B bGreen bRed
E eGreen eRed
F fGreen fRed
G gGreen gRed
H hGreen hRed

Table 5.4: Shows the names of the signal lamp relay variables for each signal on
Stenstrup.

Table 5.5 shows which train routes the locking relays and buttons relate to. Note
that several routes may share a locking relay1. In those cases, both the state of
the train route locking relay and the state of the point detection relays needs to
be known in order to identify which of the shared routes are locked.

Consider train routes 2 and 3 on Stenstrup. Table 5.5 shows that they share the

1This is done to reduce cost.
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Train Routes Locking Relay Button

2, 3 ia b00606
5, 6 ib b03106
7, 8 ua b00406
9, 10 ub b03306

Table 5.5: Shows which locking relays and which buttons on the operators panel
relate to which train routes.

same train route locking relay. However, train route 2 require the point machines
01 and 02 to be locking in the plus position, while train route 3 require the point
machines to be locking in the minus position. Since the points must be locked
into position before a train route can be locked, the state of the points determine
which route is locked, when pressing button b00606.

5.2 Transition Rules

Two transition rules are generated for each relay. One allows the relay to be
drawn, while the other allows the relay to be dropped.

The guards are inferred from the logic of the circuitry and can thus be very long.
The update on the other hand is always quite simple. It just switches the state
of the relay.

5.3 The Timing Issue

SAL uses LTL as its property specification language, but LTL does not offer an
explicit notion of time. Time in LTL is abstracted to a series of discrete events
that happens in a linear manner. This means that LTL can express properties
about the relative order of events, but not the precise timing. Therefore, it can
be expressed that a button is released after it has been pressed, but not that the
button is released 1 second after being pressed.

In the electrical relay circuitry the current would (likely) propagate through
the closed contact of the pressed button faster than the operator can release
the button again. This means that the internal events that the current triggers,
should occur prior to the external event that the button is released. This leads
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to the assumption that internal events happen so quickly, in relation to external
events, that any possible internal event should be allowed to happen before the
next external event can occur.

5.3.1 Idle and Busy States

This issue is resolved by introducing the concept of idle and busy states of the
system. The system is busy if internal events are possible and idle if not (fig.
5.1).

Idle Busy

External Event

Internal Event

Busy Busy Idle Busy Busy Idle Idle Busy Idle

Figure 5.1: The initial state of the internal interlocking system is the idle state.
Here the system waits for external events to occur. When an external event
occurs, the system switches to the busy state, where only internal events may
occur. When no further internal events can occur, the system returns to the idle
state. [2]

Therefore, any external event must have the rule that:

• An external event can only occur if the interlocking system is in the idle
state.

In order to allow the relays to react to the external event, the system must be
set to being busy whenever an external event takes place:

• Any external event results in the system being busy.

The system is then busy as long as it is possible for an internal event to occur.
When this is no longer the case, the system becomes idle again:

• The system becomes idle once no internal event can occur.



86 Behavioural Model of the Internal System

On a practical level, this leads to the introduction of the artificial boolean variable
idle, which is true when the system is idle and false when the system is busy, and
the transition setIdle, which sets idle to true if no internal transition is available.

Idle is initialised to true, since no internal event can occur in the normal state.

5.3.2 Returning To the Idle State

The system can return to the idle state, when no further internal events can
occur. The generator of the internal system generates a transition rule called
setIdle, which has the signature:

[ setIdle ] ∼idle ∧ ∼<allInternalGuards> −→
idle′ = true

where 〈allInternalGuards〉 is the conjunction of all the guards of the internal
transitions.

The interlocking system includes a function that allows it to consider a pressed
button as released even though its not. This functionality activates if a button
is not released within a reasonable amount of time. This functionality is not
modelled in the internal system, but is instead simulated by the following update
to the setIdle transition, which is not generated by the generator of the internal
model. Therefore, it is necessary to manually replace the setIdle update with
the content shown below:

idle′ = ∼(b00406 ∨ b00606 ∨ b03106 ∨ b03306),
b00406′ = false,
b00606′ = false,
b03106′ = false,
b03306′ = false



Chapter 6

Behavioural Model of Train
Movements

The following chapter will briefly discuss approaches to modelling train move-
ments, where section 6.1 will introduce two models and discuss their differences,
and why one model is chosen over the other.

The chosen model of train movements consists of two parts. A model representa-
tion of trains discussed in section 6.2 and a model of the train movement rules
in section 6.3.

6.1 Approaches to Modelling Train Movement

The idea behind introducing new approaches is to solve the limitation of the
model of train movement used by Kjær and Le Bliguet [2].

Let us shortly recap their model. It uses a direction and location of trains
by assigning a boolean variable for each track section. For instance, consider
Stenstrup, if a train is at section a12 and heading towards Svendborg, the variable
a12 fwd would be true. If the train proceeds to 01 and therefore occupies both a12
and 01, a12 t01 fwd would be true. This requires a variable for each permutation
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of location, direction and train length. Avoiding a large state space they limited
the trains to have a maximum length of two sections.

All in all their model is excellent in its simplicity, but with the major limitation
that it is too specific, and therefore require a boolean variable for each possible
situation.

During the modelling phase of train movements two approaches were considered.
The first model can be found in appendix D. Recapping this approach, it uses a
location variable containing all the track sections a train occupies in a set and
a direction variable which points to a neighbouring track section the train is
heading towards. When the train is moving the location set is updated as well
as the direction variable.

Having this approach it eliminates the limitation of train length, and allows one
to dictate movement behaviour specific for each train, since trains are explicitly
created. Thus, creating several trains requires behaviours for each train. The
downside of this approach is, that the model checker is limited to the number of
defined trains.

In the early stages of modelling train movement there were conducted several
tests to compare the model of fixed train movement1 with the explicit model
and with the implicit model, which will be introduced in the following section.
The comparison was in terms of elapsed time and memory consumption when
model checking. The test showed, as illustrated on figure 6.1, that the implicit
model was slightly slower than the fixed train model, and faster than the two
cases compared with the explicit train model.

Measurements

Model Condition Time Memory (MB)

Fixed train length Basic safety 15 sec 76
TRT safety 2.36 min 121

Implict train Basic safety 16 sec 83
TRT safety 3.00 min 140

Explicit train Basic safety 21 sec 81
TRT safety 4.25 min 138

Table 6.1: Model checked train models showing the time spend and memory
consumption.

As mentioned earlier, the rest of this chapter will present the implicit model, that

1The model provided by Kjær and Le Bliguet
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eliminates the issues of train length, and introduces no upper limit of trains. This
allows the model checker to spawn unlimited trains, that the explicit modelling
approach cannot. It can be arguable how many trains are needed to verify the
case of Stenstrup station, but having a larger station would require more trains
making the following approach more elegant.

6.2 Model of Trains

Recall the definition of trains from section 2.2. A train is rolling stock that
performs a train movement, i.e. travels from one station to another.

Some of the following rules may apply for shunting movements as well, while
others will not.

The following properties are true about trains:

• Occupies a minimum of one track section, with no upper limit.

• Track sections occupied must form a path, i.e. a sequence of track sections,
where each track section is neighbour with the next track section in the
sequence.

Instead of the limitations of modelling train movement discussed in section 6.1
we will present a model to eliminate this.

A counter variable will be introduced to indicate how many trains currently
occupies a given track section, thus allowing an arbitrary number of trains. A
connection variable will be introduced, allowing a train to have a length with no
upper bound, and a direction variable to indicate the travelling movement.

Using solely the state of the track circuit relays, one is able to tell on which
track sections trains are located2. One cannot tell how many trains are on each
section, which direction they are heading or if several adjacent track sections are
occupied, whether it is by a single long train or several smaller.

The variables rely on the name of the track sections. Considering Stenstrup
station on figure 6.1, it can be of reference point when constructing the variable
names.

2assuming only trains short the track circuits, which is reasonable when model checking
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A12 01 02 03 B12

04

Figure 6.1: Track Layout of Stenstrup station.

6.2.1 Counter

A counter for each track section is introduced, which counts how many trains
are located on the associated track section. Shown on figure 6.2 each variable is
prefixed with cnt followed by the name of the track section to denote a counter
variable.

When a train enters a section, the counter is incremented and when a train leaves
the section, the counter is decremented.

cnt_A12 : Nat

cnt_04 : Nat

cnt_B12 : Natcnt_03 : Natcnt_02 : Natcnt_01 : Nat

Figure 6.2: Relation between the track sections and the counter variables.

The initial state of Stenstrup has no trains located on the station, hence all
counters are assigned with zero.

cnt A12 : Nat := 0,
cnt 01 : Nat := 0,
cnt 02 : Nat := 0,
cnt 04 : Nat := 0,
cnt 03 : Nat := 0,
cnt B12 : Nat := 0,

Example Let us consider a subset of Stenstrup station using track sections
A12, 01, 02 and 04. Train A and B each occupy track section A12 and 01, and
01 and 02, respectively. Hence the counters of A12 and 02 are both one. Having
both A and B occupy track section 02 the counter is two. Track section 04 is
unoccupied leaving the counter to zero.
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Train B

cnt_01 = 2 cnt_02 = 1

Train A

cnt_A12 = 1

cnt_04 = 0

Occupied Track Unoccupied Track

Figure 6.3: An example of trains A and B occupying track sections A12, 01 and
02 showing the counter variables.

6.2.2 Connection

A connection variable is introduced to distinguish different trains. Without a
connection variable it would be hard to tell whether two occupied tracks are by
two separate trains or a single train, that occupy both track sections.

This time a boolean variable is introduced for each border between track sections
shown on figure 6.4. The variables are true when the same train is located on
both the adjacent track sections.

Recall the neighbour relation from section 4.2.4. The variables are constructed
such that each pair of neighbours, excluding the line, are prefixed with con
followed by a track section, followed by an underscore and the neighbouring
track section.

con A12 01 : Bool := false,
con 01 02 : Bool := false,
con 01 04 : Bool := false,
con 02 03 : Bool := false,
con 03 04 : Bool := false,
con 03 B12 : Bool := false,

con_A12_01 : Bool con_01_02 : Bool con_02_03 : Bool con_03_B12 : Bool

con_01_04 : Bool con_04_03 : Bool

Figure 6.4: The connection variables are true if a single train occupy both
neighbouring track sections.
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Example Let us consider the same scenario on Stenstrup station in the example
in section 6.2.1. Figure 6.5 shows that train A occupies section A12 and 01,
hence con A12 01 is true. While train B occupies 01 and 02 hence con 01 02 is
true. There is no connection between 01 and 04 leaving con 01 04 false.

Using the connection variable in conjunction with the counter variable it can be
derived that there are two trains, since the counter for track section 01 is two.
Thus, one train connected with A12 and 01 and another connected with 01 and
02.

Train A

con_A12_01 = true con_01_02 = true

con_01_04 = false

Occupied Track Unoccupied Track

Train B

Figure 6.5: An example of train A and B occupying track sections A12, 01 and
02 showing the connection variables.

6.2.3 Direction

The direction variable denotes the travelling movement of trains. Each track
section has two direction variables prefixed with fwd and bwd followed by a
track name, where fwd is short for forward and bwd is short for backward. Figure
6.6 shows the complete set of direction variables for Stenstrup station.

Whenever one of the variables is true then a train on the associated track section
is heading in one direction, while the other is true when a train on the same
track section is heading the other way. They are false if there is no train on the
section or if no train on the section is heading in the given direction.

Moving from Odense to Svendborg denotes a travelling direction of forward and
moving from Svendborg to Odense is backward.

fwd A12 : Bool := false,
bwd A12 : Bool := false
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fwd_A12 : Bool fwd_01 : Bool fwd_02 : Bool
bwd_03 : Bool

fwd_B12 : Bool

fwd_04 : Bool

bwd_01 : Boolbwd_A12 : Bool

bwd_04 : Bool

bwd_02 : Bool
fwd_03 : Bool

bwd_B12 : Bool

Figure 6.6: Relation between track sections and direction variables.

Example Let us consider a subset of Stenstrup station using track sections
A12, 01, 02 and 04 shown on figure 6.7. Train A is moving backward towards
Odense, while train B is moving forward towards Svendborg. Nothing is moving
on track section 04 leaving both direction variables false.

Notice that train B is moving forward on track section 01 and 02, since it occupies
both tracks.

Train BTrain A

Occupied Track Unoccupied Track

fwd_A12 = false
bwd_A12 = true

fwd_01 = true
bwd_01 = false

fwd_02 = true
bwd_02 = false

Forward fwd_04 = false
bwd_04 = false

Figure 6.7: An example of train A and B travelling on track sections A12, 01
and 02 showing the direction variables.

6.3 Model of Train Movements

Regardless of how the trains are modelled, they must obey a set of general
movement rules, as discussed in the following sections.

The following properties are true about train movements:

• Respects signal aspects, i.e. only passes facing signals showing a proceed
aspect.

• Follows the tracks in its initial direction.

• Not allowed to change direction while traversing a train route.
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6.3.1 Enter Station

A train is allowed to enter a station at track section ts, if ts is at the station
limit and the entrance signal covering ts shows a proceed aspect.

The general rule for entering a station has the following form.

[ enter ts from line ] idle ∧ sGreen ∧ ∼sRed −→
idle′ = false, ts′ = false,
cnt ts′ = cnt ts + 1, dir ts′ = true

where ts is a track sections and dir is either fwd or bwd. sGreen and sRed are
signal relays for signal s.

In the example below a rule for entering a station will be constructed and
explained step by step showing the requirements before a train is allowed to
enter and which parameters that the train affects when doing so.

Example Let us consider the following case on Stenstrup station when entering
the station on track section A12 from the line. External events can happen
only when the system is idle, which is the first requirement for any external rule.
While any action that requires the internal system to respond on external events
the system is no longer idle.

Hence, this can be applied as a template for constructing a rule for entering
Stenstrup station.

[ enter A12 from line ] idle ∧ ... −→
idle′ = false, ...

The only requirement for a train to enter a station is that the entry signal shows
a proceed aspect. Again, using Stenstrup this requires that the entry signal A
must show proceed aspect and not stop aspect.

[ enter A12 from line ] idle ∧ aGreen ∧ ∼aRed −→
idle′ = false, ...
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When the train enters track section A12 the associated track relay is dropped.
Therefore the corresponding relay variable is set to false. The train movement
also needs to be updated, thus the counter for A12 is incremented, since there
has entered a train on the track section. Finally the train is given a direction
denoting the direction on track A12.

[ enter A12 from line ] idle ∧ aGreen ∧ ∼aRed −→
idle′ = false, a12′ = false,
cnt A12′ = cnt A12 + 1, fwd A12′ = true

6.3.2 Enter Track Sections

When the train is within the station limits, it must follow the tracks until it is
either out of the station again or sees a stop aspect. It is important that the
train is not forced to follow the intended route, but rather follows the physical
layout of the tracks.

The general rule for entering track sections has the following form.

[ enter ts1 from ts2 ] idle ∧ cnt ts2 = 1 ∧ dir ts2 ∧ ∼con ts1 ts2 ∧ . . .−→
idle′ = false, ts1′ = false,
cnt ts1′ = cnt ts1 + 1, dir ts1′ = true, con ts1 ts2′ = true

where ts1 and ts2 are neighbouring track sections and dir is the direction
needed to go from ts2 to ts1, which is either fwd or bwd. Finally, ∧... denotes
additional requirements to points and signals, which includes point positioning
and signal aspects.

The reason why cnt ts2 = 1 is required and not cnt ts2 ≥ 1 before entering is
that, if there exists more than one train on a track section ts2, then the system
is already in an unsafe state.

Train behaviour after an unsafe state is non-deterministic, and once the system
enters an unsafe state it is not of interest what happens afterwards. If the model
checker encounters an unsafe state it concludes that the system is faulty.

Consider figure 6.8 that shows an example of the state space of the model of
train movement. The train travels, and remains in a safe state until it reaches an
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State Space safe

safe

safe

safe

unsafe ?

Figure 6.8: State space of trains showing safe and unsafe states.

unsafe state. At this point the model checker evaluates a fault. Hence, modelling
behaviour after an unsafe state does not make sense.

In the running example below a rule for entering a track section within a station
will be constructed using the general form. It will be explained step by step
showing the requirements before a train is allowed to enter and which parameters
that the train affects when doing so.

Example Let us consider the following case on Stenstrup station. Like entering
a station the idle condition is required when entering track sections and as a
result of the transition, the interlocking system is set to busy. The associated
track relay is also dropped.

Only the front end of the train is allowed to enter a new track section. Therefore
it is checked, as part of the guard, that a train does not already extend onto the
next track section. This also ensures that the train cannot go through another
train. Consider a situation where train 1 is entirely on section A and train 2 is
on section A and B, which are neighbours. Train 1 now attempts to enter section
B, but since there is a connection (due to train 2), it is not allowed to enter. If
there is no connection then the train may enter, which results in a connection
between the track that it is coming from and entering indicating that the train
is occupying both tracks. Considering Stenstrup when entering section 02 from
01 we have the following.

[ enter 02 from 01 ]
idle ∧ ∼(con 01 02) ∧ ... −→
idle′ = false, t02′ = false,
con 01 02′ = true, ...
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A train may only enter a track section if it is already occupying the neighbouring
track it is coming from. Hence, the track counter of the neighbouring track
must be equal to one. This condition is to avoid the scenario where a train just
suddenly appear out of nowhere. Additionally the counter for the track that is
entered to is incremented by one to denote that a train is occupying the track.

[ enter 02 from 01 ]
idle ∧ cnt 01 = 1 ∧ ∼(con 01 02) ∧ ... −→
idle′ = false, t02′ = false,
cnt 02′ = cnt 02 + 1, con 01 02′ = true, ...

When entering track section 02 from 01 the direction on track section 01 must
be forward. Resulting to the direction of 02 being forward as well.

[ enter 02 from 01 ]
idle ∧ cnt 01 = 1 ∧ fwd 01 ∧ ∼(con 01 02) ∧ ... −→
idle′ = false, t02′ = false,
cnt 02′ = cnt 02 + 1, fwd 02′ = true, con 01 02′ = true

It is only physical possible for a train to enter track section 02 if the positioning
of point 01 is in plus. Thus, the last requirement for entering track section 02 is
when the point positioning is set to plus.

[ enter 02 from 01 ]
idle ∧ cnt 01 = 1 ∧ fwd 01 ∧ ∼(con 01 02) ∧ plus01 −→
idle′ = false, t02′ = false,
cnt 02′ = cnt 02 + 1, fwd 02′ = true, con 01 02′ = true

Summarizing the above. A train may enter a track section ts if the front of the
train is at a neighbouring track section ts′ and the train is heading towards ts.
Additionally, if a signal s is located on ts′ and covers ts, the train may enter ts
only if the signal shows a proceed aspect.

sGreen ∧ ∼sRed

This requirement is added as a guard if there is a signal s covering a track section.
Additionally, rules for entering points sections depends on the trains entry point.
All these rules are explained in the following sections.
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6.3.2.1 Travelling on Points Sections

The entry point on a points section matters greatly, both in relation to where
the train ends up and in relation to safety. When entering from the stem side,
the train will travel by the plus branch if the points section is locked in the plus
position and likewise with the minus position. However, if the points section is
not locked into position, i.e. is in the intermediate position, then the train runs
the risk of derailing.

When entering from the branch side, the train risk derailing not only when
the points section is not locked, but also when it is locked in the other branch
position.

Recalling from figure 2.4 that showed the notion of a facing and a trailing move.
A facing move is when a train enters the stem side or leaves the branch, while a
trailing move is when a train enters the branch side or leaves the stem.

Facing Move - Stem Side A facing move onto a points section or a facing
move to the neighbour of a points section is treated the same way as moving on
linear sections.

Consider the following cases on Stenstrup. The following transition rule describes
the situation, where a train is entering the points section 01 from the linear
section A12.

[ enter 01 from A12 ] idle ∧ cnt A12 = 1 ∧ fwd A12 ∧ ∼con A12 01 −→
idle′ = false, t01′ = false,
cnt 01′ = cnt 01 + 1, con A12 01′ = true, fwd 01′ = true

Notice that it follows the same pattern as movement on linear track sections.
However, the same cannot be said about movements that involve the branch side
of a points section.

Facing Move - Branch Side When entering the neighbouring track section
from one of the branches of a points section, the position of the points has to be
considered. It is a regular enter rule except that it requires the points section to
be locked into position. Travelling from 01 to 02 requires the point to be locked
in the plus position, which directs the train towards track section 02.
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[ enter 02 from 01 ] idle ∧ cnt 01 = 1 ∧ fwd 01 ∧ ∼con 01 02 ∧ plus01 −→
idle′ = false, t02′ = false,
cnt 02′ = cnt 02 + 1, con 01 02′ = true, fwd 02′ = true

When a points section is in an intermediate state, while a train is in the act of a
facing move at the branch side the outcome is non-deterministic. The train may
risk a derailment or it may continue an unknown path, since the points are just
about to lock into a position, for instance. Referring back to figure 6.8 it is not
of interest what happens after an unsafe state, hence the case of an intermediate
points position will be left out.

Trailing Move - Stem Side A facing move at the stem side is similar to
a trailing move at the stem side. The following transition rule describes the
situation, where a train is entering the linear section A12 from the points section
01.

[ enter A12 from 01 ] idle ∧ cnt 01 = 1 ∧ bwd 01 ∧ ∼con A12 01 −→
idle′ = false, a12′ = false,
cnt A12′ = cnt A12 + 1, con A12 01′ = true, bwd A12′ = true

Notice once again, that it follows the same pattern as movement on linear track
sections.

Trailing Move - Branch Side Entering a points section on the branch side
requires two transition rules to cover the cases. If the correct branch is locked,
then the train will not derail and and proceed as normal. On the other hand, if
the points are in the intermediate position or locked to the wrong branch, then
the train will run the risk of derailing.

Consider the following rules for Stenstrup. A train enters to points section 01
from section 02. The rules follow the same pattern as before, but with an added
requirement about the position of the points. This ensures that the case where
the train travels without derailing is applied. Since there is located a signal
covering the points section, the proceed aspect requirement is added as well.

[ enter 01 from 02 no derail ] idle ∧ cnt 02 = 1 ∧ bwd 02 ∧
∼con 01 02 ∧ eGreen ∧ ∼eRed ∧ plus01 −→

idle′ = false, t01′ = false,
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cnt 01′ = cnt 01 + 1, con 01 02′ = true,
bwd 01′ = true,

The second case is when a train enters the same points section, but the points
positioning is not in plus i.e. either intermediate or minus.

[ enter 01 from 02 derail ] idle ∧ cnt 02 = 1 ∧ bwd 02 ∧
∼con 01 02 ∧ eGreen ∧ ∼eRed ∧ ∼plus01 −→

idle′ = false, t01′ = false,
cnt 01′ = cnt 01 + 1, con 01 02′ = true

Notice that the train is not assigned a direction when it derails3.

6.3.3 Leave Station

A train is allowed to leave a station if the back end of the train occupies a track
section ts, which is located at the station limit, and it is heading towards the
line.

The general rule for leaving a station has the following form.

[ leave ts to line ] idle ∧ cnt ts = 1 ∧ dir ts ∧ ∼con tsNeighbour ts −→
idle′ = false, ts′ = true,
cnt ts′ = 0, dir ts′ = false

where ts is a track section, tsNeighbour is the neighbouring track section to
ts.

In the following example, a transition rule for leaving Stenstrup will be construc-
ted. Again, explaining step by step the requirements before a train is allowed to
leave a station and which parameters that the train affects when doing so.

Example Let us consider a train leaving Stenstrup where the rear end of the
train is located at track section B12. First we shall begin by using idle which is
the first requirement before leaving.

3Derailed trains will stop.
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[ leave B12 to line ] idle ∧ ... −→
idle′ = false, ...

A train can leave section B12 towards the line only if there is a train at B12 and
it is heading towards the line. Furthermore it must be the back end of the train.

[ leave B12 to line ] idle ∧ cnt B12 = 1 ∧ fwd B12 ∧ ∼con 03 B12 −→
idle′ = false, ...

Since the model only allows movements in a safe state, only one train can occupy
each section when the transition is taken. Therefore the track relay variable
associated with the track that the train is leaving, can be set to true, i.e. the
track is vacant. Likewise the train movement variables (the counter and the
direction) can be set to 0 and false respectively, as the track is now empty and
nothing is no longer moving on track section B12.

[ leave B12 to line ] idle ∧ cnt B12 = 1 ∧ fwd B12 ∧ ∼con 03 B12 −→
idle′ = false, b12′ = true,
cnt B12′ = 0, fwd B12′ = false

6.3.4 Leave Track Section

A train can leave a track section ts, if the back end of the train occupies ts and
the neighbouring track section ts′ is occupied by the train as well. Furthermore
the back end of the train must be heading towards ts′.

The ends of a train is located by looking at the connection variables. If a train
is located at the linear section ts1, which is neighbour with ts0 in the backwards
direction and ts2 in the forward direction, then the train has an end at ts1 if
the connection variable between ts0 and ts1 is false. The back end of a train is
the end which is opposite of the movement direction.

The general rule for leaving track sections has the following form.

[ leave ts1 to ts2 ] idle ∧ cnt ts1 = 1 ∧ dir ts1 ∧
con ts1 ts2 ∧ ∼con ts0 ts1 ∧ . . .−→
idle′ = false, ts1′ = true,
cnt ts1′ = 0, dir ts1′ = false, con ts1 ts2′ = false



102 Behavioural Model of Train Movements

where ts0 and ts2 are neighbouring track sections to track section ts1 and dir

is the direction needed to go from ts1 to ts2, which is either fwd or bwd. Finally,
∧... denotes additional requirements to points positioning or train connections.

Note that ∼con ts0 ts1 checks that it is in fact the end of the moving train. If
the neighbour ts0 does not exist this requirement is excluded.

Again we will introduce an example below showing how a leave rule is constructed
using the general form.

Example Let us consider a case on Stenstrup station where the rear end of a
train is leaving track section 02 moving away from track section 01 i.e. the train
is travelling forward. The usual idle requirement is used to ensure the internal
system is not busy, and the track relay is updated to denote a vacant track.

[ leave 02 to 03 ] idle ∧ ∼(con 01 02) ∧ fwd 02 ∧ ... −→
idle′ = false, t02′ = true, ...

The end of the train must occupy track section 02 and be connected to track
section 03 to allow to leave. When leaving the counter is set to zero indicating
there no longer is a train on track section 02. The direction is set to false and
the connection between track section 02 and 03 is removed since the train has
left 02.

[ leave 02 to 03 ] con 02 03 ∧ cnt 02 = 1 ∧ idle ∧ ∼(con 01 02) ∧ fwd 02 −→
idle′ = false, t02′ = true,
cnt 02′ = 0, fwd 02′ = false, con 02 03′ = false

6.3.4.1 Travelling On Points Sections

While travelling on points sections there are certain cases where the general form
needs modification. In the following sections it will be described when this is
needed.

Moving Back End To a Points Section When moving the back end of a
train onto a points section, the normal rules, as described above, apply.
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Given here are two examples for Stenstrup. The first shows the rule concerning
moving the back end of the train to the branch side of a points section.

[ leave 02 to 01 ] idle ∧ cnt 02 = 1 ∧ bwd 02 ∧ con 01 02 ∧ ∼con 02 03 −→
idle′ = false, t02′ = true,
cnt 02′ = 0, bwd 02′ = false, con 01 02′ = false

The second example shows the rule for moving the back end of a train to the
stem side of a points section.

[ leave A12 to 01 ] idle ∧ cnt A12 = 1 ∧ fwd A12 ∧ con A12 01 −→
idle′ = false, a12′ = true,
cnt A12′ = 0, fwd A12′ = false, con A12 01′ = false,

Notice that this rules does not check whether the back end of the train is on
A12 or not. This is because A12 neighbours the line on the other end and no
line-to-section connection variable exist.

Leaving A Points Section At The Stem End When moving the back end
of a train away from a points section at the stem end, a special consideration
has to be made. Ensuring that the back end of the train is on the section is
normally done by ensuring that the connection variable on the other end is false,
i.e. the train does not extend further backwards.

In this situation, however, there are two possible paths the train could possibly
extend in. One solution could be to create a rule for each position of the points,
such that if the points are locked in plus, then we ensure that the connection
variable to the neighbour connected on the plus branch is false. However, this
does not accurately evaluate where the back end of the train really is. Imagine
that the points are switched while the mid section of the train is on it. If the
points then locks to the other branch, then the model would think that the back
end of the train indeed is on the points section, whereas the back end actually is
further down another path.

Instead we suggest a solution where only a single rule is needed. Regardless of
the position of the points, it is ensured that the train does not extend to any of
the neighbours connected to either branch.

[ leave 01 to A12 ] idle ∧ cnt 01 = 1 ∧ bwd 01 ∧
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con A12 01 ∧ ∼con 01 02 ∧ ∼con 01 04 −→
idle′ = false, t01′ = true,
cnt 01′ = 0, bwd 01′ = false, con A12 01′ = false

Leaving a Points Section At The Branch End This situation is similar
to the entering points section at branch end case. The entering scenario required
two rules to handle the situation properly, but in this case only one is needed.

If the branch is locked in the proper position in relation to the desired movement,
then anything is fine and the standard transition rule is used, with the added
requirement that the points is locked properly.

[ leave 01 to 02 ] idle ∧ cnt 01 = 1 ∧ fwd 01 ∧
con 01 02 ∧ ∼con A12 01 ∧ plus01 −→

idle′ = false, t01′ = true,
cnt 01′ = 0, fwd 01′ = false, con 01 02′ = false

However, if the points is not locked in the proper position, a rule to handle this
is not needed. To explain why let us consider a case where the points are in the
intermediate position while leaving, then the back end should derail. This means
that it is not able to move forward. The absence of a transition rule that covers
this case, ensures that the back end is not moved. If the points are locked in the
other position then the connection variable, between the points section and the
neighbouring section which is connected to the branch will be false. It can be
true only if another train is heading into the section from that branch, but in
that case the guard would disallow the movement as well, since it requires that
only a single train occupy the points section.

Therefore no additional rules are needed, since the back end of the train does
not move. In the case of entrance, the additional rule was needed to move the
train into the section, since it first derails at the switching area.

6.3.5 Change Direction

A train movement has a direction and the train is not allowed to change direction
during that movement. However two consecutive train movements can be in
opposite directions. Therefore, if a train is located between two train route start
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points, the train would be able to travel in either direction depending on which
route is locked.

This leads to the introduction of a rule that allows trains to “change direction”
in that the train can begin a train movement in the opposite direction of what it
is currently travelling (recall that the direction of a train in the model is only
removed if the train has derailed).

This does present an issue. We assign a direction to each section occupied
by a train. If the train is longer than a single section, then multiple direction
variables would have to be updated. Since the transition rules cannot dynamically
determine the length of the train and update each of the direction variables,
one would have to create a rule for each possibility. Instead we decide to limit
the rules to only allowing trains to change direction if the train occupies only a
single track section.

Such a rule shall now be constructed, using Stenstrup as case. A train is allowed
to change direction if it occupied just at single track section.

[ change direction at 02 towards 03 ]
idle ∧ cnt 02 = 1 ∧ ... ∧
∼(con 01 02) ∧ ∼(con 02 03) −→
...

Notice that since this transition does not affect the internal interlocking system,
the idle variable is not set to false.

Furthermore, the signal located opposite of the trains direction must show
proceed.

[ change direction at 02 towards 03 ]
idle ∧ cnt 02 = 1 ∧ bwd 02
gGreen ∧ ∼(gRed) ∧
∼(con 01 02) ∧ ∼(con 02 03) −→
bwd 02′ = false, fwd 02′ = true

The effect is that the direction of the train is changed to the opposite.

The train can then travel past the signal, if the enter 03 from 02 transition is
taken.
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6.4 Rubber Band Trains

Since the lengths of track sections and trains are not considered in this project,
trains gain a peculiar property. They act like rubber band. The model of train
movement allows an arbitrary length of trains, resulting in this rubber band
effect to take place when trains move. Depending on how the model checker is
evaluating the movement of a train, it may decide to move the front of the train
twice and then the end of the train once, for instance.

Let us consider an example on figure 6.9 showing seven states of a moving train
on four linear track sections. The train is initially located at section A, where
the model checker changes its state to move the front to section B, then C and
finally D at the fourth state.

The end of the train has remained at track section A making the train grow from
being one track section long to four track sections long. In the fifth state the
end of the train is removed from A, then B, then C and finally the train is once
again one track section long at the seventh state. Note that the model checker
does not move trains on four linear track sections in this strictly fashion, but
this scenario will most likely occur.

Train
1. State

2. State
Train

3. State
Train

4. State
Train

5. State
Train

Train
7. State

6. State
Train

A B C D

Figure 6.9: An example of a train moving on linear track sections.

A train with this rubber band property retains a flexibility that a real life train
movement behaviour cannot feature. The train movement model uses these
discrete track section units to avoid the notion of length. Hence, using this
model of movement it captures a general behaviour of the property of a real life
train having a fixed length, and as consequence, making the real life behaviour a
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subset of the train movement model.
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Chapter 7

Behavioural Model of Buttons
and Points

Without any kind of simulated external events, the interlocking system will
remain in its normal state. Therefore external events are introduced. External
events are buttons being pressed and released, points being operated and tracks
being occupied and released due to train movements1.

Section 7.1 will describe the rules for the behaviour of buttons.

Section 7.2 will describe the rules for the behaviour of operating points.

7.1 Button Behaviour

The buttons are part of the circuitry and rules for their behaviour should therefore
be generated from the circuit diagrams. We intend to generate the button
behaviour, since they are not generated by Kjær and Le Bliguets [2] tool.

1Assuming that no other external event can cause the relay to drop. Objects that fall on
tracks may cause the track relays to drop, for instance. All objects making track relays drop,
except trains, are disregarded.
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The rules for pressing buttons at Stenstrup station, as suggested by Kjær and
Le Bliguet [2, p. 120–124] have the following form.

[ pushButton id ]
idle −→
idle′ = false, id′ = true

where id is the button identifier.

Note that the route locking buttons can be pressed at any time when the system
is idle. Once the internal system returns to the idle state the button is released.

The following rules are the behaviour for pressing buttons located on the operators
panel for Stenstrup station.

[ pushButton b00406 ]
idle −→ idle′ = false, b00406′ = true
debc
[ pushButton b03106 ]
idle −→ idle′ = false, b03106′ = true
debc
[ pushButton b00606 ]
idle −→ idle′ = false, b00606′ = true
debc
[ pushButton b03306 ]
idle −→ idle′ = false, b03306′ = true

As stated earlier we intend to generate the rules for button behaviour. Since the
buttons are part of the internal system the button identifiers cannot be extracted
from the interlocking plan nor can they be derived. Thus, generating the above
rules requires the button identifiers as input.

Releasing buttons are handled by the internal system, which was shown in section
5.3.2.

7.2 Points Behaviour

Points are operated by pressing the + or − button next to the points section of
the operators panel, as described in section 2.5.1.3. The interlocking system will
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register the button press and switch the point if it is safe to do so. This logic is
implemented in the circuitry of the interlocking system and is documented by
circuit diagrams.

This means that the correct way to implement the behaviour is to always allow
the operator to press the buttons and then let the interlocking system sort out
whether to move the points or not. Kjær and Le Bliguet [2, p. 119] chose to
introduce a model abstraction from the real point control, since the hardware
implementation of the point control was too complex to implement in the internal
system. Instead they supplied some hand made rules to simulate the logic for
Stenstrup station. The provided rules for points behaviour allows the model
checker to switch the points without simulating button presses on the operators
panel.

Recall the point states described in section 2.1.1.1, points can be in a minus
position, a plus position or an intermediate position. The intermediate position
is a state when the points are in the act of changing from plus to minus or vice
versa.

Thus there are four rules for each points section. Consider the point machine P
the general form is the following.

[ plusToIntermediateP ]
idle ∧ plusP ∧ Q −→
idle′ = false, plusP′ = false
debc
[ minusToIntermediateP ]
idle ∧ minusP ∧ Q −→
idle′ = false, minusP′ = false
debc
[ intermediateToPlusP ]
idle ∧ ∼ plusP ∧ ∼ minusP ∧ Q −→
idle′ = false, plusP′ = true
debc
[ intermediateToMinusP ]
idle ∧ ∼ plusP ∧ ∼ minusP ∧ Q −→
idle′ = false, minusP′ = true

where Q is a boolean expression that requires no train routes that involves P are
locked and that the points section associated with P is free. The internal system
ensures that if Q is false the point cannot change i.e. if any of the locking relays
are dropped which involves P or the associated point section is occupied, then
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the point is not allowed to change position. Figure 7.1 shows the transition rules
for the point machine behaviour of P.

Intermediate
plusP=false
minusP=false

Plus
plusP=true
minusP=false

Minus
plusP=false
minusP=true

plusToIntermediateP

minusToIntermediateP

intermediateToMinusP

intermediateToPlusP

Figure 7.1: Transition system of point P.

Example Let us consider the point machine 01 on Stenstrup station. Using
the pattern for rules of point behaviour shown above we will start by requiring
that the system needs to be idle, since this is an external event. Recall that Q
requires that the points section associated with P must be free, which is part
of the no derailing safety rule, dictating that the points must not be operated
while occupied. Therefore it is required that the section is vacant, i.e. the track
relay variable t01 is true. Notice that the name is operatePoint01, since the rule
by now is general enough to be any of the four rules.

[ operatePoint01 ]
idle ∧ t01 ∧ . . .−→
idle′ = false, . . .

Additionally Q requires that no route involving P is locked, which means the
switch must not be operated while a route that covers it is locked, i.e. route
locking relays ia, ib and ua must not be locked. If a route is locked, then the
corresponding route locking relay will be dropped.

[ operatePoint01 ]
idle ∧ t01 ∧ ia ∧ ib ∧ ua ∧ . . .−→
idle′ = false, . . .

By now the rule is generic for any of the four cases of the point behaviour, hence
the name is still operatePoint01. The key difference between these rules are
which position the point currently are in and which position to switch to. Let us
consider point 01 locked in plus position changing to intermediate. Switching
from a locked position, the points relay must drop, hence plus01 is set to false.
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[ plusToIntermediateP ]
idle ∧ t01 ∧ ia ∧ ib ∧ ua ∧ plus01 −→
idle′ = false, plus01′ = false

The other case is when switching from the intermediate position to a locked
position, both points relays must first be dropped before one of them are drawn,
i.e. locked into a position. This case the point position is intermediate locking
into plus.

[ intermediateToPlusP ]
idle ∧ t01 ∧ ia ∧ ib ∧ ua ∧ ∼ plus01 ∧ ∼ minus01 −→
idle′ = false, plus01′ = true

To account for the behaviour of point P, rules must exist for the minus position
as well. Below are all the rules that constitutes for point 01 for Stenstrup station.
The rules for point machine 02 will not be shown, since they are made in a
similar fashion.

[ plusToIntermediate01 ]
idle ∧ plus01 ∧ ia ∧ ib ∧ ua ∧ t01 −→
idle′ = false, plus01′ = false
debc
[ minusToIntermediate01 ]
idle ∧ minus01 ∧ ia ∧ ib ∧ ua ∧ t01 −→
idle′ = false, minus01′ = false
debc
[ intermediateToPlus01 ]
idle ∧ ∼ plus01 ∧ ∼ minus01 ∧ ia ∧ ib ∧ ua ∧ t01 −→
idle′ = false, plus01′ = true
debc
[ intermediateToMinus01 ]
idle ∧ ∼ plus01 ∧ ∼ minus01 ∧ ia ∧ ib ∧ ua ∧ t01 −→
idle′ = false, minus01′ = true
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Chapter 8

Associations

This chapter will introduce two structures, both of which relates entities in the
station documentation to variables in the model. A human may guess that the
boolean variable plus01 is the point detection relay for the plus position of a
points section, but it is a difficult task for a computer program.

It would be desirable to have a direct mapping between the physical elements of
the station and the relays that observe them in terms of naming conventions.
Unfortunately, this is not the case. In many cases one could derive the name
of the relays from the name of the element, but this is not generally true. For
example, the point machine 02 is not located on track section 02 (happens to a
linear), but is located on points section 03.

Section 8.1 introduces the object relay association, which is a collection of
associations between physical objects (and train routes) and the variables that
models relays in the internal system.

Section 8.2 introduces train movement association, which is a collection of
associations between the track sections and the variables introduced by the
model of train movements.
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8.1 Object Relay Associations

Object relation associations are associations between physical objects (and train
routes) and relay variable that models them, e.g. for Stenstrup, the track relay
of track section 01 is modelled by the boolean variable t01.

type
ObjectRelayAssociations ::

routeRelayAssoc : TrainRouteId →m VarId
trackRelayAssoc : TrackId →m VarId
pointRelayAssoc : PointMachineId × Branch →m VarId
signalRelayAssoc : SignalId × Lamp →m VarId

where we consider only the green and red lamp.

type
Lamp == gr | re

8.1.1 Well-formedness of Object Relay Associations

The object relay association is well-formed if each of its components are well-
formed and no relay variable is shared between the associations, e.g. the same
relay cannot be used both as a train route locking relay and as a point detection
relay.

value
isWfObjectRelayAssociations : Diagram × TrainRouteTable ×

ObjectRelayAssociations → Bool
isWfObjectRelayAssociations(d, trt, ora) ≡
noRelayVariableOverlap(ora) ∧
isWfRouteAssoc(trt, ora) ∧
isWfTrackAssoc(d, ora) ∧
isWfPointAssoc(d, ora) ∧
isWfSignalAssoc(d, ora)

No relay variable is pointed to in more than one of the association maps.



8.1 Object Relay Associations 117

value
noRelayVariableOverlap : ObjectRelayAssociations → Bool
noRelayVariableOverlap(ora) ≡

let routeVars = rng routeRelayAssoc(ora),
trackVars = rng trackRelayAssoc(ora),
pointVars = rng pointRelayAssoc(ora),
signalVars = rng signalRelayAssoc(ora)

in routeVars ∩ trackVars = {} ∧
routeVars ∩ pointVars = {} ∧
routeVars ∩ signalVars = {} ∧
trackVars ∩ pointVars = {} ∧
trackVars ∩ signalVars = {} ∧
pointVars ∩ signalVars = {}

end

8.1.1.1 Well-formedness of Route Associations

The train route association map is well-formed if the map has the same domain
has the train route table, i.e. all the train routes.

value
isWfRouteAssoc : TrainRouteTable ×

ObjectRelayAssociations → Bool
isWfRouteAssoc(trt, ora) ≡

dom routeRelayAssoc(ora) = dom trt

8.1.1.2 Well-formedness of Track Associations

The track section association map is well-formed if the map has exactly all of
the track sections of the station in its domain.

value
isWfTrackAssoc : Diagram × ObjectRelayAssociations → Bool
isWfTrackAssoc(d, ora) ≡

let allTrackSections = allLinears(d) ∪ allPoints(d)
in dom trackRelayAssoc(ora) = allTrackSections
end
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8.1.1.3 Well-formedness of Point Machine Associations

The point machine association map is well-formed if:

1. Every point machine on the station is part of the association and every
point machine in the association exists on the station.

2. The same relay may not appear in the association twice.

value
isWfPointAssoc : Diagram × ObjectRelayAssociations → Bool
isWfPointAssoc(d, ora) ≡

existingPointMachines(d, ora) ∧
differentPointRelays(ora)

1. Existing Point Machines The point machines in the association must
exist on the station and vice versa.

value
existingPointMachines : Diagram ×

ObjectRelayAssociations → Bool
existingPointMachines(d, ora) ≡

( ∀ (pmId, b) : PointMachineId × Branch •

(pmId, b) ∈ dom pointRelayAssoc(ora) ⇒
pmId ∈ dom pointMachineTrack(d)

) ∧
( ∀ pmId : PointMachineId •

pmId ∈ dom pointMachineTrack(d) ⇒
( ∃ (pmId′, b) : PointMachineId × Branch •

(pmId′, b) ∈ dom pointRelayAssoc(ora) ∧
pmId = pmId′ )

)

2. Each relay in the association, must only appear once The same relay
may not be used to lock different points or the same point in different positions.
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value
differentPointRelays : ObjectRelayAssociations → Bool
differentPointRelays(ora) ≡

( ∀ (pmId, b) : PointMachineId × Branch •

(pmId, b) ∈ dom pointRelayAssoc(ora) ⇒
∼( ∃ (pmId′, b′) : PointMachineId × Branch •

(pmId′, b′) ∈ dom pointRelayAssoc(ora) ∧
(pmId, b) 6= (pmId′, b′) ∧
pointRelayAssoc(ora)(pmId, b) =
pointRelayAssoc(ora)(pmId′, b′)

)
)

8.1.1.4 Well-formedness of Signal Associations

The signal association map is well-formed if:

1. Every signal on the station is part of the association and every signal in
the association exists on the station.

2. The same relay may not appear in the association twice.

value
isWfSignalAssoc : Diagram × ObjectRelayAssociations → Bool
isWfSignalAssoc(d, ora) ≡

existingSignals(d, ora) ∧
differentLampRelays(ora)

1. Existing signals The signals in the association must exist on the station
and vice versa.

value
existingSignals : Diagram ×

ObjectRelayAssociations → Bool
existingSignals(d, ora) ≡

( ∀ (sId, l) : SignalId × Lamp •

(sId, l) ∈ dom signalRelayAssoc(ora) ⇒
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sId ∈ allSignals(d)
) ∧
( ∀ sId : SignalId •

sId ∈ allSignals(d) ⇒
( ∃ (sId′, l) : SignalId × Lamp •

(sId′, l) ∈ dom signalRelayAssoc(ora) ∧
sId = sId′ )

)

2. Each relay in the association, must only appear once The same relay
may not be used to control different lamps.

value
differentLampRelays : ObjectRelayAssociations → Bool
differentLampRelays(ora) ≡

( ∀ (sId, l) : SignalId × Lamp •

(sId, l) ∈ dom signalRelayAssoc(ora) ⇒
∼( ∃ (sId′, l′) : SignalId × Lamp •

(sId′, l′) ∈ dom signalRelayAssoc(ora) ∧
(sId, l) 6= (sId′, l′) ∧
signalRelayAssoc(ora)(sId, l) =
signalRelayAssoc(ora)(sId′, l′)

)
)

8.2 Train Movement Associations

Train movement associations is a collection of maps that associates track sections
to the variables used in the model of train movements.

type
TrainMovementAssociations ::

connectionVars : (TrackId × TrackId) →m VarId
counterVars : TrackId →m VarId
directionFwdVars : TrackId →m VarId
directionBwdVars : TrackId →m VarId
directions : (TrackId × TrackId) →m Direction
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8.2.1 Well-formedness of Train Movement Associations

The train movement association is well-formed if each of its components are
well-formed and no relay variable is shared between the associations, e.g. the
same relay cannot be used both as a forward direction variable and as a backward
direction variable.

value
isWfTrainMovementAssociations : Diagram ×

TrainMovementAssociations → Bool
isWfTrainMovementAssociations(d, tma) ≡

noRelayVariableOverlap(tma) ∧
isWfConnectionVars(d, tma) ∧
isWfCounterVars(d, tma) ∧
isWfDirectionFwdVars(d, tma) ∧
isWfDirectionBwdVars(d, tma) ∧
isWfDirections(d, tma)

No relay variable is pointed to more than one of the association map.

noRelayVariableOverlap : TrainMovementAssociations → Bool
noRelayVariableOverlap(tma) ≡

let connectionVars = rng connectionVars(tma),
counterVars = rng counterVars(tma),
directionFwdVars = rng directionFwdVars(tma),
directionBwdVars = rng directionBwdVars(tma)

in connectionVars ∩ counterVars = {} ∧
connectionVars ∩ directionFwdVars = {} ∧
connectionVars ∩ directionBwdVars = {} ∧
counterVars ∩ directionFwdVars = {} ∧
counterVars ∩ directionBwdVars = {} ∧
directionFwdVars ∩ directionBwdVars = {}

end

8.2.1.1 Well-formedness of connectionVars

The connection variables describe whether two neighbouring track sections are
occupied by a single train, or by two separate trains.



122 Associations

The connection variables association is well-formed if

1. The pair of track sections in each key are neighbours.

2. Variables are not shared.

value
isWfConnectionVars : Diagram ×

TrainMovementAssociations → Bool
isWfConnectionVars(d, tma) ≡

conVarsValidDomain(d, tma) ∧
conVarsValidRange(connectionVars(tma))

1. Only neighbours can have a connection variable Only track sections
that are neighbours may have a connection variable.

value
conVarsValidDomain : Diagram ×

TrainMovementAssociations → Bool
conVarsValidDomain(d, tma) ≡

(∀ (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ dom connectionVars(tma) ⇒
areNeighbours(tId1, tId2, d) )

2. No shared variables No two neighbour pair may share a connection
variable.

value
conVarsValidRange : ((TrackId × TrackId) →m VarId) → Bool
conVarsValidRange(connectionVars) ≡

(∀ key : (TrackId × TrackId) •

key ∈ dom connectionVars ⇒
∼( ∃ key′ : (TrackId × TrackId) •

key′ ∈ dom connectionVars ∧
key 6= key′ ∧
connectionVars(key) =
connectionVars(key′) )

)
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8.2.1.2 Well-formedness of counterVars

The track section to counter variable association is well-formed if:

1. Each track section on the station in part of the domain and every element
in the domain is part of the station.

2. Variables are not shared.

value
isWfCounterVars : Diagram ×

TrainMovementAssociations → Bool
isWfCounterVars(d, tma) ≡

cntVarsValidDomain(d, tma) ∧
cntVarsValidRange(counterVars(tma))

1. All track sections Each track section on the station has a counter variable
and each track section in the domain of the map is also part of the station.

value
cntVarsValidDomain : Diagram ×

TrainMovementAssociations → Bool
cntVarsValidDomain(d, tma) ≡

let allTrackSections = allLinears(d) ∪ allPoints(d)
in dom counterVars(tma) = allTrackSections
end

2. No shared variables No two track sections may share a counter variable.

value
cntVarsValidRange : (TrackId →m VarId) → Bool
cntVarsValidRange(counterVars) ≡

(∀ key : TrackId •

key ∈ dom counterVars ⇒
∼( ∃ key′ : TrackId •

key′ ∈ dom counterVars ∧
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key 6= key′ ∧
counterVars(key) =
counterVars(key′) )

)

8.2.1.3 Well-formedness of fwdVars

The track section to forward direction variable association is well-formed if:

1. Each track section on the station in part of the domain and every element
in the domain is part of the station.

2. Variables are not shared.

value
isWfDirectionFwdVars : Diagram ×

TrainMovementAssociations → Bool
isWfDirectionFwdVars(d, tma) ≡

fwdVarsValidDomain(d, tma) ∧
fwdVarsValidRange(directionFwdVars(tma))

1. All track sections Each track section on the station has a forward direction
variable and each track section in the domain of the map is also part of the
station.

value
fwdVarsValidDomain : Diagram ×

TrainMovementAssociations → Bool
fwdVarsValidDomain(d, tma) ≡

let allTrackSections = allLinears(d) ∪ allPoints(d)
in dom directionFwdVars(tma) = allTrackSections
end
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2. No shared variables No two track sections may share a forward direction
variable.

value
fwdVarsValidRange : (TrackId →m VarId) → Bool
fwdVarsValidRange(directionFwdVars) ≡

(∀ key : TrackId •

key ∈ dom directionFwdVars ⇒
∼( ∃ key′ : TrackId •

key′ ∈ dom directionFwdVars ∧
key 6= key′ ∧
directionFwdVars(key) =
directionFwdVars(key′) )

)

8.2.1.4 Well-formedness of bwdVars

The track section to backward direction variable association is well-formed if:

1. Each track section on the station in part of the domain and every element
in the domain is part of the station.

2. Variables are not shared.

value
isWfDirectionBwdVars : Diagram ×

TrainMovementAssociations → Bool
isWfDirectionBwdVars(d, tma) ≡

bwdVarsValidDomain(d, tma) ∧
bwdVarsValidRange(directionBwdVars(tma))

1. All track sections Each track section on the station has a backward
direction variable and each track section in the domain of the map is also part
of the station.

value
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bwdVarsValidDomain : Diagram ×
TrainMovementAssociations → Bool

bwdVarsValidDomain(d, tma) ≡
let allTrackSections = allLinears(d) ∪ allPoints(d)
in dom directionBwdVars(tma) = allTrackSections
end

2. No shared variables No two track sections may share a backward direction
variable.

value
bwdVarsValidRange : (TrackId →m VarId) → Bool
bwdVarsValidRange(directionBwdVars) ≡

(∀ key : TrackId •

key ∈ dom directionBwdVars ⇒
∼( ∃ key′ : TrackId •

key′ ∈ dom directionBwdVars ∧
key 6= key′ ∧
directionBwdVars(key) =
directionBwdVars(key′) )

)

8.2.1.5 Well-formedness of directions

The directions association is well-formed if

1. The pair of track sections in each key are neighbours.

2. Each neighbour pair have both and forward and a backward direction.

value
isWfDirections : Diagram ×

TrainMovementAssociations → Bool
isWfDirections(d, tma) ≡

directionsValidDomain(d, tma) ∧
bothDirections(directions(tma))
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1. Track section pairs are neighbours Each track section pair in the domain
are neighbours.

value
directionsValidDomain : Diagram ×

TrainMovementAssociations → Bool
directionsValidDomain(d, tma) ≡

(∀ (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ dom directions(tma) ⇒
areNeighbours(tId1, tId2, d) )

2. Both directions present Each neighbour pair has both an associated
forward and backward variable.

value
bothDirections :

((TrackId × TrackId) →m Direction) → Bool
bothDirections(directions) ≡

( ∀ (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ dom directions ⇒
( ∃ (tId1′, tId2′) : (TrackId × TrackId) •

(tId1′, tId2′) ∈ dom directions ∧
tId1 = tId2′ ∧ tId2 = tId1′ ∧
directions((tId1, tId2)) 6=
directions((tId1′, tId2′))

)
)
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Chapter 9

Inter-Model Consistency

The following chapter introduces conditions for the inter-model consistency that
are requirements to ensure that the interaction between the model of train
movement and the relay system model behaves as expected.

The requirements are first described informally in italics. Then the requirements
are written formally as LTL assertions. Finally each formulae is used to write a
concrete example for Stenstrup station.

The model of train movement in chapter 6 introduced variables used to model
the behaviour of the external environment. This chapter uses these variables to
present formulae to ensure the inter-model consistency.

The presented patterns in this chapter are useful when we in chapter 11 introduce
the Generator, that are using these formulae to generate the assertions.

The formal properties are written as formulas in linear temporal logic (LTL).

Section 9.1 will introduce variables used in the LTL expressions discussed in this
chapter and chapter 10.

The rest of the sections within this chapter will introduce the inter-model
consistency conditions.
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9.1 Variables

The model of train movement simulates the movement on the track sections. We
want to ensure that changes to the state space of the model of train movement
is reflected in the model of the interlocking system, i.e. when the model of train
movement claims a train occupy a given track section, the interlocking system
should detect that track section as occupied and vice versa.

The variables introduced below should be interpreted as place holders for the
actual relays in the internal system model. Their values are boolean, meaning it
consists by either true or false. TrackCounter is, on the other hand, a variable
that contains unsigned natural numbers.

Variables for the relay system model:

TrackRelayT False when track section T is occupied by a train.

PlusRelayP True when points section P is positioned in plus.
False when P is not positioned in plus configuration.

MinusRelayP True when points section P is positioned in minus.
False when P is not positioned in minus configuration.

Note when PlusRelayP and MinusRelayP for points section P is both false
the points position configuration is in the intermediate state. Refer to section
7.2 on point behaviour.

Variables introduced in the model of train movement:

TrackCounterT Counts the number of trains on a track section T .

ForwardT True if a train is moving forward on track section
T . False when no train is moving forward on track
section T .

BackwardT True if a train is moving backward on track T . False
when no train is moving backward on track section
T .

ConnectionT1T2
True if a train is intersecting track section T1 and
track section T2.
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9.2 Track Occupation

A track section can either be occupied or vacant. The model of the internal
interlocking system uses this information to set the relay as a boolean value,
where the train movement model uses counters to enable more trains on a
track section. The agreement among the two models is that the model of train
movement knows its own location and this location must be detected by the
internal system.

To ensure that the relays and the counters are interacting as expected two
requirements are formed.

If a track relay TrackRelayT , for track T is dropped, then the associated counter
is greater than zero.∧

T∈AllTracks
2¬TrackRelayT ⇒ TrackCounterT > 0

If a track counter TrackCounterT associated to track T is greater than zero,
then track relay TrackRelayT is dropped∧

T∈AllTracks
2TrackCounterT > 0⇒ ¬TrackRelayT

These two requirements ensure that if and only if there is detected a train on track
T the TrackCounterT is greater than zero and the track relay TrackRelayT is
dropped.

Example The expression below requires that if track relay a12 is dropped,
then track counter cnt A12 must be greater than zero.

2¬a12⇒ cnt A12 > 0

And if the track counter cnt A12 is greater than zero, then track relay a12 must
be dropped.

2cnt A12 > 0⇒ ¬a12

9.3 Track Free

Similar to occupying tracks, requirements of freeing tracks must be formulated.
Thus, when the model of train movement dictates there is no train on a certain
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track the relay system model detects no train and vice versa.

To ensure that the counters behaviour is as expected two requirements are formed
when tracks are free.

If a track relay TrackRelayT , for track T is drawn, then the associated counter
is equal to zero. ∧

T∈AllTracks
2TrackRelayT ⇒ TrackCounterT = 0

If a track counter TrackCounterT associated to track T is equal zero, then track
relay TrackRelayT is drawn∧

T∈AllTracks
2TrackCounterT = 0⇒ TrackRelayT

Again, this ensures that if and only if there is not detected a train on track T
the TrackCounterT is equal to zero and the track relay TrackRelayT is drawn.

Example The expression below requires that if track relay t04 is drawn, then
track counter cnt 04 must be equal to zero.

2t04⇒ cnt 04 = 0

And if the track counter cnt 04 is equal to zero, then track relay t04 must be
drawn.

2cnt 04 = 0⇒ t04

9.4 Train Direction

The model uses the notion of train direction, where the direction is either
going forward or backward. Each track section have these associated directions
described in section 6.2.3. To maintain the inter-model consistency it must be
ensured that a moving train is in fact on a track section, hence the associated
track section counter is greater than zero. It is never the case that a moving
train on a track section is ”invisible” i.e. the counter has to detect the train.

It is tempting to ensure that when the counter is greater than zero, then a train
is moving. However, this is not the case since a train can be stopped if there is a
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signal with stop aspect. For same reason, it can not be concluded that a train is
moving if a track relay is dropped.

Another tempting requirement is that the direction cannot be forward and
backward at the same time. However, physically the model is able to have two
trains on a track section going with an opposite direction.

If a moving train is on track T , then the associated counter for track T is greater
than zero. ∧

T∈AllTracks
2BackwardT ∨ ForwardT ⇒ TrackCounterT > 0

Example The expression below requires that if a moving train is on track
section 03, then track counter cnt 03 must be greater than zero.

2bwd 03 ∨ fwd 03⇒ cnt 03 > 0

9.5 Points Configuration

The physical limitation of a points section is the position configuration can be
in either plus, minus or intermediate. Where intermediate simulates a state that
is neither plus nor minus. Thus somewhere in between plus and minus.

This physical requirement must be ensured in the model. The points relay
controls the point machines that is the mechanical arm to switch between plus
and minus. Assuming that the point machine always obeys the points relay
following requirement is stated.

For all points sections P it is never the case they are plus and minus.∧
P∈AllPoints

2Idle⇒ ¬(PlusRelayP ∧ MinusRelayP)

Note by using this expression the intermediate state is also accepted, which is
when both PlusP and MinusP are false.

Example The expression below requires that points section 01, is in either
plus, minus or intermediate state.

2Idle⇒ ¬(plus01 ∧ minus01)
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9.6 Train Connection

The model uses the notion of train connection, where the connection is a boolean
value that for each neighbour pair of track sections is a connection variable. This
connection variable indicates whether a train intersects (overlaps) any track
sections.

If a train has a connection that intersects track T1 and T2, then the associated
track counter for track T1 and T2 are greater than zero.∧

(T1,T2)∈allNeighbours

2ConnectionT1T2 ⇒

TrackCounterT1 > 0 ∧ TrackCounterT2 > 0

Note that it cannot be concluded that if TrackCounterT1 and TrackCounterT2

are greater than zero, then there is a connection. This is simply because two
distinct trains can occupy each of these track sections.

Example The expression below requires that if a train is on track section 02
and 03, then track counter cnt 02 and cnt 03 must be greater than zero.

2con 02 03⇒ cnt 02 > 0 ∧ cnt 03 > 0
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Safety Properties

The following chapter describes the safety requirements that ensure safe train
operation, which first and foremost includes the safety properties for no collision
and no derailing introduced in section 2.4. Additional safety properties derived
from the train route table for a given station will be described.

The requirements are first described informally in italics. Then the requirements
are written formally, but abstract. Finally the abstract formulae are used to
write a concrete example for Stenstrup station.

Stenstrup station is secured by a relay based interlocking system. For the
remainder of this document, it is assumed that there exists a boolean variable
for each relay in the interlocking system, which mirrors the relays state, i.e. is
true when the relay is drawn.

The formal properties are written as formulas in linear temporal logic (LTL).

10.1 Variables

We introduce the following variables in addition to those from section 9.1:
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LockingRelayx False when train route x is locked. Occasionally
routes share the same locking relay and the specific
routes are then differentiated by the position of
the points on the route (PointsLockedx).

PointsLockedx True when the points in route x are locked in the
position dictated by the train route table for that
route x.

RouteLockedx True when train route x is locked and the points
of the route are locked in the position required for
that route, i.e.

RouteLockedx = ¬LockingRelayx∧
PointsLockedx

TrackFreex True if every track section in route x is unoccupied,
as specified in the train route table for route x.

SignalsSetx True if every signal on route x is set to the aspect
required by the train route table for route x.

ProceedAspectS True when signal S signals proceed.

StopAspectS True when signal S signals stop.

SignalReleaseIsolationx False when signal release isolation on route x is
occupied.

PositionRelayT,P True when the points section P is locked to the
branch, that the neighbouring track section T is
connected to.

Indlx True when the first condition (Indl) of the train
route release in the train route table for route x
holds.

Oplx True when the second condition (Opl) of the train
route release in the train route table for route x
holds.
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10.2 No Collision

The first safety requirement mentioned in section 2.4.1.1 that would ensure secure
train operation is no collision.

In our model the definition of a train collision is when more than one train occupy
the same track section. By using the track counter this enables the detection of
a train collision.

For all track sections it is always the case that a track counter associated to track
section T is less than two.

∧
T∈AllTracks

2TrackCounterT < 2

Example The expression below expresses that track counter associated with
track section 01 is always less than two.

2cnt 01 < 2

10.3 No Derailing

The second safety requirement mentioned in section 2.4.1.2 that would ensure
secure train operation is no derailing.

In our model there are two kinds of a train derailment.

• First kind is that the points configuration is not locked in a position when
a train is occupying the points section. Observe derailing scenarios B and
C on figure 2.8.

• Second kind is when a train is connected to a branch of a points section,
but the points configuration is not set correspondingly. Observe scenarios
A and D on figure 2.8.

Considering the first kind of derailment it must be ensured, that as long as
there is atleast one train occupying a points section, the points stay locked in
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a position. This will avoid an intermediate state when trains are travelling on
points sections.

For all points sections if the associated track counter for points section P is
greater than or equal to one, then the relay must be in either plus or minus.

∧
P∈AllPoints

2TrackCounterP ≥ 1⇒ PlusRelayP ∨ MinusRelayP

From the requirement given in section 9.5 it is ensured that it is never the case
that a points section is configured to plus and minus.

Example The expression below shows that points section 01 is occupied then
the points positioning is in either plus or minus.

2cnt 01 ≥ 1⇒ plus01 ∨ minus01

Considering the second kind of derailment it must be ensured that the points
section position configuration is in accordance to the connection. Thus this rule
ensures that the configuration is set when there is a connection.

If a train occupies track section T and the neighbouring points section P at
the branch side, then the points section must be positioned as required in the
interlocking plan.

∧
(T,P)∈allNeighbours

2ConnectionT,P ⇒ PositionRelayT,P

One could be tempted to say that if the points section is locked then there is a
connection, however that is not always the case.

Example The example below shows that if there is a train covering track
section 02 and points section 03, then point machine 02 associated with points
section 03 must be positioned in plus.

2con 02 03⇒ plus02



10.4 Points Position 139

10.4 Points Position

If a train route has been locked, with locking relay lr, then for one of the routes x,
which is controlled by lr, the points of that route, must be positioned as required
in the train route table for route x.

∧
lr∈AllLockingRelays

2¬lr⇒
∨

x∈RoutesOf(lr)

PointsLockedx

where RoutesOf(lr) is the set of routes controlled by the locking relay lr.

Example If train route 2 or 3 are locked, then both points are either locked
in the plus or the minus position as required by the train route table for route 2
and 3 respectively.

2¬ia⇒ (plus01 ∧ plus02) ∨ (minus01 ∧ minus02)

10.5 Signal

A signal can either show a proceed aspect or a stop aspect. A proceed aspect is
indicated by a green and not a red light, and a stop aspect is indicated by a red
and not a green light. In a malfunctioning relay system undesired aspects could
arise, such as a signal neither shows green nor red light or when a signal shows
both green and red light simultaneously. Since they are not valid aspects, the
train should stop.

It is always the case that when a signal shows the proceed aspect it only shows
a green light and when showing stop aspect it only shows a red light.

For all signals S it is never the case they are red and green.∧
S∈AllSignals

2Idle⇒ ¬(RedS ∧ GreenS)

where Idle is true, when the relay system is ready to accept external events.
RedS is true, when signal S is showing stop aspect and GreenS is true, when
the signal S is showing proceed aspect.
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If a signal S shows proceed aspect, then a route x, starting from S, is locked and
all the related track sections for that route are unoccupied, and all points of that
route are positioned as required in the train route table.

2Idle ∧ ProceedAspectS ⇒∨
x∈Routes(S)

RouteLockedx ∧ TracksFreex ∧ SignalsSetx

where ProceedAspectS is true, when signal S is showing proceed aspect.
Routes(S) is the set of routes starting from signal S.

Example Applying this to the concrete example for entrance signal A the
following abstract expression is yielded:

2Idle ∧ ProceedAspectA ⇒
(RouteLocked2 ∧ TracksFree2 ∧ SignalsSet2)∨
(RouteLocked3 ∧ TracksFree3 ∧ SignalsSet3)

as train routes 2 and 3 starts from signal A.

Replacing the abstract variables with their concrete counterparts in terms of
relay variables gives:

2idle ∧ aGreen⇒
((¬ia ∧ plus01 ∧ plus02)∧
(a12 ∧ t01 ∧ t02 ∧ t03 ∧ b12)∧
(fRed ∧ (gRed ∨ (gGreen ∧ ¬ub ∧ plus02))))∨
((¬ia ∧ minus01 ∧ minus02)∧
(a12 ∧ t01 ∧ t04 ∧ t03 ∧ b12)∧
(eRed ∧ (hRed ∨ (hGreen ∧ ¬ub ∧ minus02))))

This can be reduced to:

2idle ∧ aGreen⇒
¬ia ∧ a12 ∧ t01 ∧ t03 ∧ b12∧
(plus01 ∧ plus02 ∧ t02 ∧ fRed∧(gRed ∨ (gGreen ∧ ¬ub ∧ plus02)))∨
minus01 ∧ minus02 ∧ t04 ∧ eRed∧(hRed ∨ (hGreen ∧ ¬ub ∧ minus02)))
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The expression above shows that if entrance signal A is showing proceed aspect,
then train route 2 or 3 is locked and their common track sections are unoccupied.
Depending on whether route 2 or 3 is locked the points are set correspondingly,
as described in section 10.4, and the track section, t02 or t04, for that route
is unoccupied, required in the train route table. Signals E and F are showing
stop aspect depending on the point positioning. Finally, signals G and H are
showing stop aspect unless an exit route has already been locked1. For route 2
this means that G shows stop unless route 9 is also locked in which case G may
show a drive aspect. Similarly, for route 3 this means that H shows stop unless
route 10 is also locked in which case H may show a proceed aspect2.

10.6 Signal Release

If the track section SignalReleaseIsolationx, specified in the signal release field
for route x in the train route table, is occupied, then the signal S in the signal
release field must show stop aspect.

2Idle ∧ ¬SignalReleaseIsolationx ⇒ StopAspectx

If signal release isolation on route x is occupied the signal release signal on route
x must show stop aspect.

Example The expression below requires that if track section a12 is occupied
by an object, then signal A must show a stop aspect and no longer show a drive
aspect.

2idle ∧ ¬a12⇒ aRed

Recall from section 10.5 that a signal may not show a red and a green light
simultaneously.

10.7 Conflicting Routes

If a train route x is locked, then a conflicting route y must not be locked.

2RouteLockedx ⇒
∧

y∈ConflictingRoutes(x)

¬RouteLockedy

1Viser ”kør” hvis der i forvejen er stillet udkørsel
2Note that these routes are not conflicting routes.
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Example If route 2 is locked the following abstract expression is given:

2RouteLocked2 ⇒¬RouteLocked3∧
¬RouteLocked5∧
¬RouteLocked6∧
¬RouteLocked7∧
¬RouteLocked8∧
¬RouteLocked10

Applying this to the concrete example for route 2 the following is given:

2¬ia ∧ plus01 ∧ plus02⇒
¬(¬ia ∧ minus01 ∧ minus02)∧
¬(¬ib ∧ plus01 ∧ plus02)∧
¬(¬ib ∧ minus01 ∧ minus02)∧
¬(¬ua ∧ plus01)∧
¬(¬ua ∧ minus01)∧
¬(¬ub ∧ minus02)

The expression above requires that if train route 2 is locked, then train routes 3,
5, 6, 7, 8 and 10 are not locked.

10.8 Train Route Release

In order to release a locked train route there must occur a release sequence.
Recall from section 2.6.2.7, that the release sequence involves a train to occupy
and leave track sections in a certain order.

There are two properties for train route release. One is a safety property, the
other a liveliness property.

Safety If a train route has been locked, then the route is not released until after
the release sequence (Indl. → Opl.)

Liveliness After the release sequence, the route is eventually released3

3Not considered
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10.8.1 LTL General Form

The safety property is expressed by:

�(LockingRelayx ∧©(RouteLockedx ∧ ♦LockingRelayx)⇒
©(¬LockingRelayx U ¬LockingRelayx ∧ Indlx∧
©(¬LockingRelayx U ¬LockingRelayx ∧ Oplx)))

where U is the LTL until operator, x is the train route, Indlx is the start condition
for the release sequence for route x and Oplx is the end condition.

Step-by-step Explanation We begin the expression by finding the exact
moment when the route is locked. This is done by finding the critical time, where
the route is not locked in the current state, but is locked in the next state. When
the route is not locked the position of the points is irrelevant, however when the
route is locked it is necessary to know the position of the points in addition to
the state of the route relay to determine which route is locked.

LockingRelayx ∧©(RouteLockedx)

From this point on, there are two options. Either the route is never released or it
eventually is. Since the model of external events allow infinite repeated actions
(such as pressing a button repeatedly infinitely many times on the operator’s
panel), the case where the route is never released is allowed. If the route is never
released, then it follows that the route is not released before the release sequence.
On the other hand, if the route is eventually released, then it must occur after
the release sequence.

LockingRelayx ∧©(RouteLockedx ∧ ♦LockingRelayx)⇒©(. . .)

If the route is never released, then the left side of the implication is false. That
means that the entire expression is true in that state, regardless of the right side.
However, if the left side is true, then the right side must evaluate to true as well
for the entire expression to be true.

Therefore the dots must be replaced with an expression that describes, that the
route is not released until after the release sequence.
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The route must be locked until (and including) the time of the initiation (Indl)
of the release sequence.

¬LockingRelayx U ¬LockingRelayx ∧ Indlx

And once the initiation (Indl) is reached, we may still not release until the last
condition Opl, which completes the sequence:

¬LockingRelayx U ¬LockingRelayx ∧ Indlx∧
©(¬LockingRelayx U ¬LockingRelayx ∧ Oplx)

The formula is then completed by combining the two fragments and ensuring
that it holds for all states:

�(LockingRelayx ∧©(RouteLockedx ∧ ♦LockingRelayx)⇒
©(¬LockingRelayx U ¬LockingRelayx ∧ Indlx∧
©(¬LockingRelayx U ¬LockingRelayx ∧ Oplx)))

Example The following is a concrete example for train route 2 of Stenstrup
Station.

�(ia ∧©(¬ia ∧ plus01 ∧ plus02 ∧ ♦ia)⇒
©(¬ia U ¬ia ∧ ¬t01 ∧ t02∧
©(¬ia U ¬ia ∧ ¬t02 ∧ t01)))

where plus01, plus02 are true when points 01 and 02 are locked in the plus
position and ia is false when route 2 or 3 is locked.

Notice that even though some routes share the same locking relay, it is only
needed to check the points position, when the route is established, as the points
are not allowed to be changed when a route is locked.
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Generator

Our generator takes the data model of the interlocking plan discussed in section
4.1 and transforms it into a transition system containing a state space, transition
rules of the external events, and assertions (section 4.4). The generated transition
system can then be combined with the transition system of the internal events
to obtain the complete system for verification.

This chapter will describe the flow of the generator, the required input of the
generator, how the generator is creating the output and finally how the output
is then unparsed to RSL-SAL.

Section 11.2 shows the sub-generator that facilitates the generation of the state
space.

Section 11.3 shows the sub-generator that facilitates the generation of the trans-
ition rules of the external behaviour.

Section 11.4 shows the sub-generator that facilitates the generation of the safety
properties and the inter-model consistency assertions.

Section 11.5 shows how the output is generated by using an unparser.
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11.1 Overview

The generator requires as input the interlocking plan that contains a station layout
diagram and a train route table, which chapter 4 showed the type definitions of.
Additionally, the associations are needed for the generator to map the names from
the station elements with the relay system. The generator outputs a transition
system, which contains a state space, transition rules and assertions. Figure 11.1
illustrates this simplified partitioning.

The specific input and output will be shown in the study case of Stenstrup in
chapter 13.

OutputInput

Station Layout Diagram

Object Relay 
Associations

Generator

Transition System

Transition Rules

State Space

Train Route Table

Interlocking Plan

Assertions

Figure 11.1: Overview of the generator with the required input and generated
output.

An overview of the application flow is illustrated on figure 11.2. The file Stenstrup,
specifically made for the Stenstrup station, instantiates StationLayout and
ObjectRelayAssociations and invokes the Generator. Within the generator
subclasses facilitates the generation of state space, transition rules and assertions.

The State Generator creates and initialises the state space of the transition sys-
tem (contained in the type TrainMovementAssociations). Transition Generator
facilitates the creation of the transition rules of the external events and the Asser-
tion Generator facilitates the creation of assertions containing safety properties
and inter-model consistency conditions. The output from each generator are
then stored in a transition system, where the unparser prints it in a form that
RSL-SAL accepts.

The generate function, located in the Generator.rsl file, constructs a transition
system by requiring an interlocking plan, object relay associations used to map
the station objects with the relays, the set of button identifiers1, and finally a

1Recall from section 7.1 that button identifiers cannot be extracted from the interlocking
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StateGenerator AssertionGeneratorObjectRelayAssociations

Generator

InterlockingPlan

StationLayout TrainMovement
AssociationsTrainRouteTable

TransitionGenerator

TransitionSystem

Types

Unparser

Stenstrup

InstantiatesInstantiates

Invokes

Invokes Invokes Invokes

Output

Contains Contains Instantiates

Figure 11.2: Structure of the implementation.

text string to name the transition system. Each sub-generator is then invoked
to create the transition system.

value
generate : Text × ObjectRelayAssociations ×

InterlockingPlan × Text-set → TransitionSystem
generate(name, ora, ip, buttonIds) ≡

let sld = sld(ip),
tma = genTrainMovementAssociations(sld)

in mk TransitionSystem(
name,
generateStateSpace(ip, tma),
generateTransitionSystem(ora, ip, tma, buttonIds),
generateAssertions(ora, ip, tma))

end
pre isWfInterlockingPlan(ip) ∧

isWfObjectRelayAssociations(ora, ip)

11.2 State Generator

According to our model of train movement, the counter, connection, and direction
variables are to be generated.

All of this is stored in a TrainMovementAssociation value and is created by

plan nor can they be derived.
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functions defined in StateGenerator.rsl, which can be found in appendix
section E.3.3 and E.2.4, respectively.

type
TrainMovementAssociations ::
connectionVars : (TrackId × TrackId) →m VarId
counterVars : TrackId →m VarId
directionFwdVars : TrackId →m VarId
directionBwdVars : TrackId →m VarId
directions : (TrackId × TrackId) →m Direction

where direction is

type
Direction == fwd | bwd

The generated TrainMovementAssociations are then used as input to the state
generator to generate all the variables by calling the function generateStateSpace.
The preconditions requires that the interlocking plan and the train movement
associations are well-formed.

value
generateStateSpace : InterlockingPlan ×

TrainMovementAssociations → Var-set
generateStateSpace(ip, tma) ≡

genBoolVars(rng connectionVars(tma)) ∪
genNatVars(rng counterVars(tma)) ∪
genBoolVars(rng directionFwdVars(tma)) ∪
genBoolVars(rng directionBwdVars(tma))

pre isWfInterlockingPlan(ip) ∧
isWfTrainMovementAssociations(sld(ip), tma)

In the following sections the three types of variables will be introduced.

11.2.1 Counter Variables

Every track section has a counter which keeps track of how many trains currently
occupy the section. Therefore the state generator recursively goes through every
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track section (except for line) and creates a name of the counter variable for it.
The name is created by prefixing “cnt ” to the name of the track section.

value
genCntVars : TrackId-set × Diagram → TrackId →m VarId
genCntVars(ids, d) ≡

if ids = {} then [ ] else
let id = hd ids, ids′ = ids \ {id}

in if isLine(id, d) then [ ]
else genCntVar(id)
end ∪ genCntVars(ids′, d)

end
end,

genCntVar : TrackId → TrackId →m VarId
genCntVar(id) ≡ [ id 7→ ′′cnt_′′ ̂ id ]

It is then stored in a map, where the id of the track section is used as key.

value
counterVars : TrackId →m VarId

This creates an association between a track section and the variable.

11.2.2 Connection Variables

Every track section has a connection variable for each of its neighbours. Therefore,
the generator uses the neighbour relation, introduced in section 4.2.4, as it only
contains one entry for each pair of neighbours. As with the counter variables
the line section is disregard. The name is generated by prefixing “con ” to the
identifiers of the neighbouring track section, which have been concatenated with
an underscore in between.

value
genConVars : (TrackId × TrackId)-set × Diagram →

(TrackId × TrackId) →m VarId
genConVars(nbs, d) ≡

if nbs = {} then [ ] else



150 Generator

let (nb1,nb2) = hd nbs, nbs′ = nbs \ {(nb1,nb2)}
in if isLine(nb1, d) ∨ isLine(nb2, d)

then genConVars(nbs′, d)
else genConVar(nb1, nb2) ∪ genConVars(nbs′, d)
end

end
end,

genConVar : TrackId × TrackId →
(TrackId × TrackId) →m VarId

genConVar(id1, id2) ≡ [ (id1,id2) 7→ ′′con_′′ ̂ id1 ̂ ′′_′′ ̂ id2 ],

The ids of the connection variables are stored in a map that use the neighbouring
pair of track sections as key.

value
connectionVars : (TrackId × TrackId) →m VarId

11.2.3 Direction Variables

Recall section 6.2.3, that each track section has one forward and one backward
variable. They are created in a similar fashion to the counters and therefore the
code will not be shown here.

The state generator creates these variables by using the principle of source and
sink. Travelling away from the source (towards the sinks) are considered forward,
whereas the opposite is considered backward. The source and sinks are the
station borders, where trains can enter and exit the station, i.e. the line. One of
these are chosen as the source while the rest are considered sinks (fig. 11.3).

A12 01 02

04

03 B12Source Sink

Figure 11.3: Stenstrup in graph form.
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It is noteworthy that the model of the station only has a single line section (fig.
11.4). Therefore it is necessary to consider it a special case. Otherwise it would
act only as source and never as sink.

A12 01 02

04

03 B12

Line

Figure 11.4: Stenstrup in graph form.

The algorithm assigns the directions in the following manner. First all the
neighbours of line are collected. Lets call them nb1, . . . , nbn where n is the
number of neighbours to line and n ≥ 1. Then the edge from line to nb1 is given
the direction forward and the edge from nb1 to line is marked as backward.

For the remainder, the backward direction will always be the opposite direction
of the forward and will therefore not be mentioned again. For the remaining
neighbours of line, the direction from the neighbour to line is forward. In this
way a single source with possible multiple sinks have been created (fig. 11.5).

A12 01 02

04

03 B12

Line
forward

backward

forward

backward

nb1 nb2

Figure 11.5: Stenstrup in graph form.

The rest of the network is then traversed from the neighbours of the source.
Visited notes are marked so that they are not visited again. In this manner
directions are given to the edges of the entire network, except for sources and
sinks, which have already been visited in the first step. See figure 11.6 for a
step-by-step run-though of the algorithm.
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Step 1

Step 2

Step 3

Step 4

Step 5

Figure 11.6: Step by step demonstration of the direction generating algorithm.
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The result is a mapping from a neighbour pair to a direction, which can be used
in creating the rules of train movement.

value
directions : (TrackId × TrackId) →m Direction

This algorithm has a weakness in that it recognises the station borders as a single
line node. Consider a station that has the following station layout on figure 11.7

nb2

nb1

nb4

nb3

Line Line

Figure 11.7: Station layout

The algorithm, like before, finds all neighbours to the line. In this case the line
has four neighbours, nb1, nb2, nb3 and nb4.

The edge from line to nb1 gets the forward direction, and from nb1 to line
gets backward. As stated earlier the algorithm then assigns all the remaining
neighbours such that going from the neighbour to line is forward. Figure 11.8
shows the algorithms representation of the station.

Notice that the dotted arrows from line to nb2 and from nb2 to line. This creates
inconsistency for the notion of direction, since going from line to nb2 should be
forward. Figure 11.9 shows the forward directions and how the dotted forward
direction from nb2 to line creates this inconsistency. The backward direction is
ignored since it always is the opposite of forward.

As the example shows, the algorithm currently will not work when the line
has more than two neighbours. However, one way of solving this is by naming
the station borders uniquely. In case of Stenstrup, this could be Odense and
Svendborg.
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nb2

nb1 nb3

nb4

Line

backward

forward forward

backward

forward

backward forward
backward

Figure 11.8: The algorithms representation of the station layout

nb2

nb1

nb4

nb3

Line Line
forward forward

forward forward

forward

forward

Figure 11.9: Station layout with directions
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11.3 Transition Generator

The transition generator facilitates the creation of all the transition rules for
the external events, which involves rules for train movement i.e. entering and
leaving a station and track sections, rules for points and rules for buttons.

The list below shows each rule that it generates with reference back to the patterns
mentioned earlier and reference to implementation details in this section:

• Entering track section rules (Section 6.3.2 and 11.3.2.2).

• Leaving track section rules (Section 6.3.4 and 11.3.2.3).

• Leaving station rule (Section 6.3.3 and 11.3.2.3).

• Button rules (Section 7.1 and 11.3.3.1).

• Points rules (Section 7.2 and 11.3.3.2).

The specification can be found in appendix E.2.5.

11.3.1 Generating All Transition Rules

All transition rules are generated by calling the function generateTransitionSys-
tem. The precondition of the transition generator is, that the interlocking plan
and the two associations are well-formed.

value
generateTransitionSystem : ObjectRelayAssociations ×

InterlockingPlan × TrainMovementAssociations ×
Text-set → TransitionRule-set

generateTransitionSystem(ora, ip, tma, buttons) ≡
let d = sld(ip),

allSections = allSections(d)
in genTrainMovementTransitions(ora, d, tma) ∪

genOtherExternalTransitions(buttons, ora, ip)
end

pre isWfInterlockingPlan(ip) ∧
isWfTrainMovementAssociations(sld(ip), tma) ∧
isWfObjectRelayAssociations(ora, ip)
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11.3.2 Train Movement Generator

Train movement rules are generated by iterating each track section on a station.
Entering and leaving rules are then generated depending on the type of track
sections.

This section will describe how the transition rules of train movements are
generated from the patterns given in section 6.3.

value
genTrainMovementTransitions :

ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genTrainMovementTransitions(ora, d, tma) ≡
- - 6.3.1 Enter Station
genEnterStationRules(ora, d, tma) ∪
- - 6.3.2 Enter Track Section
genEnterSectionRules(ora, d, tma) ∪
- - 6.3.3 Leave Station
genLeaveStationRules(ora, d, tma) ∪
- - 6.3.4 Leave Track Section
genLeaveSectionRules(ora, d, tma) ∪
- - 6.3.5 Change Direction
genChangeDirectionRules(ora, d, tma)

11.3.2.1 Enter Station

Special enter rules are needed where a train enters a track section from the line.
Therefore the overloaded functions genEnterStationRules recursively iterates
through the set of all neighbour pair, where the line is part of the pair.

value - - 6.3.1 Enter Station
genEnterStationRules :

ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genEnterStationRules(ora, d, tma) ≡
let line = line(d),

nbs = getNeighboursOf(line, d)
in genEnterStationRules(nbs, ora, d, tma)
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end,

genEnterStationRules : TrackId-set ×
ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genEnterStationRules(nbs, ora, d, tma) ≡
if nbs = {} then {} else

let nb = hd nbs,
nbs′ = nbs \ {nb}

in {genEnterStationRule(nb, ora, d, tma)} ∪
genEnterStationRules(nbs′, ora, d, tma) - - Recursive Call

end
end

For transition from the line to a track section on the station, a rule is created
following the pattern shown in section 6.3.1.

value
genEnterStationRule :

TrackId × ObjectRelayAssociations ×
Diagram × TrainMovementAssociations → TransitionRule

genEnterStationRule(nb, ora, d, tma) ≡
let line = line(d),

dir = getDirection(line, nb, tma),
name = genEnterRuleName(line, nb),
guard = and( { idle } ∪

proceedAspect(line, nb, ora, d) ),
update = { systemBusy,

addTrain(nb, tma),
dropTrackRelay(nb, ora),
setDirection(nb, dir, tma) }

in mk TransitionRule(name, guard, update)
end

where auxiliary functions are defined as follows:

value
genEnterRuleName : TrackId × TrackId → Text
genEnterRuleName(from, to) ≡ ′′enter_′′ ̂ to ̂ ′′_from_′′ ̂ from,
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idle : BooleanExp = literal(′′idle′′),

proceedAspect : TrackId × TrackId ×
ObjectRelayAssociations × Diagram → BooleanExp-set

proceedAspect(from, to, ora, d) ≡
let sId = signalLocations(d)(from, to),

sId gr = signalRelayAssoc(ora)(sId, gr),
sId re = signalRelayAssoc(ora)(sId, re)

in { literal(sId gr), neg(literal(sId re)) }
end,

systemBusy : TS.Assignment =
mk Assignment(′′idle′′, T.BoolAssign(false)),

addTrain : TrackId ×
TrainMovementAssociations → Assignment

addTrain(tId, tma) ≡
let cVar = getCounterVar(tId, tma)
in mk Assignment(cVar, AddAssign(1))
end,

dropTrackRelay : TrackId ×
ObjectRelayAssociations → Assignment

dropTrackRelay(tId, ora) ≡
let rId = getTrackRelay(tId, ora)
in mk Assignment(rId, BoolAssign(false))
end,

setDirection : TrackId × Direction ×
TrainMovementAssociations → Assignment

setDirection(tId, dir, tma) ≡
if dir = fwd
then let dVar = getFwdDirVar(tId, tma)

in mk Assignment(dVar, BoolAssign(true))
end

else let dVar = getBwdDirVar(tId, tma)
in mk Assignment(dVar, BoolAssign(true))
end

end
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11.3.2.2 Rules for Entering Track Sections

Each track section can be entered from each of its neighbours. The overloaded
functions genEnterSectionRules recursively iterates through the set of neighbours,
but disregards the neighbours to the line, as these have already been considered
in section 11.3.2.1. For each pair of neighbours, (ts1, ts2), genEnterSectionRule
is then called twice, once with ts1 as the first argument and once with ts2 as
the first argument. This creates an enter rule in both directions, i.e. entering
ts1 from ts2 and entering ts2 from ts1.

value - - 6.3.2 Enter Track Section
genEnterSectionRules : ObjectRelayAssociations × Diagram ×

TrainMovementAssociations → TransitionRule-set
genEnterSectionRules(ora, d, tma) ≡

let nbs = { (tId1, tId2) | (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ neighbours(d) ∧
∼isLine(tId1, d) ∧ ∼isLine(tId2, d) }

in genEnterSectionRules(nbs, ora, d, tma)
end,

genEnterSectionRules : (TrackId × TrackId)-set ×
ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genEnterSectionRules(nbs, ora, d, tma) ≡
if nbs = {} then {} else

let (tId1, tId2) = hd nbs,
nbs′ = nbs \ {(tId1, tId2)}

in - - From tId1 to tId2
genEnterSectionRule(tId1, tId2, ora, d, tma) ∪
- - From tId2 to tId1
genEnterSectionRule(tId2, tId1, ora, d, tma) ∪
- - Recursive Call
genEnterSectionRules(nbs′, ora, d, tma)

end
end

As described in section 6.3.4.1, it matters whether a train enters a points section
from the stem side or the branch and likewise if it enters another section from a
points section. Each of these cases are handled in genEnterSectionRule. Recall,
from section 4.2.4, that two points sections are not allowed to be neighbours.

value
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genEnterSectionRule : TrackId × TrackId ×
ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genEnterSectionRule(from, to, ora, d, tma) ≡
- - 6.3.2.1 Facing Move - Stem Side
if isPoints(to, d) ∧ isStemNb(to, from, d)
then {genEnterLinearSectionRule(from, to, ora, d, tma)}

- - 6.3.2.1 Facing Move - Branch Side
elsif isPoints(from, d) ∧ isBranchNb(from, to, d)
then {genEnterFacingBranchSideRule(from, to, ora, d, tma)}

- - 6.3.2.1 Trailing Move - Stem Side
elsif isPoints(from, d) ∧ isStemNb(from, to, d)
then {genEnterLinearSectionRule(from, to, ora, d, tma)}

- - 6.3.2.1 Trailing Move - Branch Side
elsif isPoints(to, d) ∧ isBranchNb(to, from, d)
then {genEnterFacingBranchSideRule(from, to, ora, d, tma), - - Correct pos

genEnterTrailingBranchSideRule(from, to, ora, d, tma)} - - Incorrect pos

else - - 6.3.2 Linear
{genEnterLinearSectionRule(from, to, ora, d, tma)}

end

The structure of the functions for each case is the same, but the rule that is
generated varies slightly. Therefore only genEnterLinearSectionRule will be
shown and explained here. In fact it follows the same structure as for generating
enter station rules, which where shown in section 11.3.2.1.

value
genEnterLinearSectionRule : TrackId × TrackId ×

ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule

genEnterLinearSectionRule(from, to, ora, d, tma) ≡
let dir = getDirection(from, to, tma),

name = ′′enter_′′ ̂ to ̂ ′′_from_′′ ̂ from,
guard = and(
{ idle,
trackOccupied(from, tma),
direction(from, to, tma),
notConnected(from, to, tma) } ∪
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- - If move passes signal
if hasSignal(from, to, d)
then proceedAspect(from, to, ora, d) else {} end),

update = {
systemBusy,
addTrain(to, tma),
dropTrackRelay(to, ora),
connect(to, from, tma),
setDirection(to, dir, tma) }

in mk TransitionRule(name, guard, update)
end

where

value
trackOccupied : TrackId ×

TrainMovementAssociations → BooleanExp
trackOccupied(tId, tma) ≡

equals(literal(getCounterVar(tId, tma)), literal(′′1′′)),

direction : TrackId × TrackId ×
TrainMovementAssociations → BooleanExp

direction(from, to, tma) ≡
literal(getDirVar(from, to, tma)),

notConnected : TrackId × TrackId ×
TrainMovementAssociations → BooleanExp

notConnected(tId1, tId2, tma) ≡
neg(literal(getConnectionVar(tId1, tId2, tma))),

connect : TrackId × TrackId ×
TrainMovementAssociations → Assignment

connect(tId1, tId2, tma) ≡
let cVar = getConnectionVar(tId1, tId2, tma)
in mk Assignment(cVar, T.BoolAssign(true))
end
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11.3.2.3 Rules for Leaving Track Sections

The rules for leaving track sections are similar to the rules for entering and will
not be shown. The patterns for leaving track sections are located at section 6.3.3
and 6.3.4 for behaviour of train movements.

Additionally, generating rules for leaving a station is similar to leaving track
sections, except that it is not required to have a connection to the line. Hence,
the function genLineLeaveRules called by genRules will not be shown.

11.3.2.4 Change Direction

Trains are allowed to change direction under certain conditions only, as described
in section 6.3.5. Trains may only change direction when it occupies only a single
section and by turning around and entering the next section, it would pass a signal
showing proceed. The overloaded function genChangeDirectionRules recursively
iterates through the locations of the signals and creates a rule allowing the train
to change direction at those locations. Locations on the line is disregarded as no
train is modelled there, so it does not make sense to have a rule allowing it to
change direction.

value - - 6.3.5 Change Direction
genChangeDirectionRules :

ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genChangeDirectionRules(ora, d, tma) ≡
let allSignalLocations = dom signalLocations(d)
in genChangeDirectionRules(allSignalLocations, ora, d, tma)
end,

genChangeDirectionRules : (TrackId × TrackId)-set ×
ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule-set

genChangeDirectionRules(signalLocations, ora, d, tma) ≡
if signalLocations = {} then {} else

let (tId1, tId2) = hd signalLocations,
signalLocations′ = signalLocations \ {(tId1, tId2)}

in - - Recursive Call
genChangeDirectionRules(signalLocations′, ora, d, tma) ∪

if tId1 = line(d) then {}
else {genChangeDirectionRule(tId1, tId2, ora, d, tma)}
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end
end

end

The transition rule itself is created by the function genChangeDirectionRule,
which is in the same way as the other transition generating functions.

value
genChangeDirectionRule : TrackId × TrackId ×

ObjectRelayAssociations × Diagram ×
TrainMovementAssociations → TransitionRule

genChangeDirectionRule(from, to, a, d, tma) ≡
let curDir = directions(tma)(from, to),

oppDir = oppositeDirection(curDir),
name = ′′change_direction_at_′′ ̂ from ̂ ′′_towards_′′ ̂ to,
guard = { idle,

trackOccupied(from, tma),
direction(from, to, tma) } ∪
proceedAspect(from, to, a, d) ∪
isTailOfTrainGuards(from, to, d, tma),

update = { setDirection(from, oppDir, tma),
removeDirection(from, curDir, tma)}

in mk TransitionRule(name, T.and(guard), update)
end

11.3.3 Other External Events Generator

In addition to the train movements, there are two kinds of external events that
have to be modelled. These are the behaviour of buttons and the operation of
points, as described in section 7.

The function genOtherExternalTransitions is supplied by the generator of other
external events and is called by the transition generator.

value
genOtherExternalTransitions :

Text-set × ObjectRelayAssociations ×
InterlockingPlan → TransitionRule-set
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genOtherExternalTransitions(buttons, ora, ip) ≡
- - 7.1 Button Behaviour
genAllButtonRules(buttons) ∪
- - 7.2 Points Behaviour
genAllPointsOpRules(ora, ip)

The following will explain the generation of the transitions that describe the
button and points behaviour in detail.

11.3.3.1 Rules for Buttons

The button behaviour patterns are described in section 7.1. The rules for button
presses are simple and so is the generator that generates them. To generate the
transition rules for pressing buttons, the set of all button identifiers is required.
Refer to the case study of Stenstrup where button identiers are provided shown
in section 13.1.5.

value - - 7.1 Button Behaviour
genAllButtonRules : Text-set → TransitionRule-set
genAllButtonRules(bs) ≡

if bs = {} then {} else
let b = hd bs, bs′ = bs \ {b}
in {genButtonRule(b)} ∪ genAllButtonRules(bs′)
end

end,

genButtonRule : Text → TransitionRule
genButtonRule(b) ≡

mk TransitionRule(
′′pushButton_′′ ̂ b,
T.literal(′′idle′′),
{ busySystem, mk Assignment(b, BoolAssign(true)) })

A transition rule is generated for each button, by recursively iterating through
the set of all buttons. The rule is very simple. If the system is standing idle, the
button can be pressed. This causes the system to become busy and the variable
that represent the state of the button is set to true, which represents that the
button is pressed.
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11.3.3.2 Rules for Operation of Points

The rule patterns for operation of points are described in section 7.2.

Even though these rules should be generated from the circuit diagrams, they can
also be generated from the interlocking plan.

The rules are generated as part of the transition generator and are mostly trivial.
For each points section in the station layout diagram, the four rules are generated.
The difficult part is figuring out which routes covers the points. This is done by
searching for each points section in the track section part of each route in the
train route table. If the track relay for the points section should be drawn before
the route can be locked, then the points section is indeed part of the route.

A total of four transition rules are needed for each points section. The overloaded
functions genAllPointsOpRules collectively calls genPointsOpRules for each
points section on the station.

value - - 7.2 Points Behaviour
genAllPointsOpRules : ObjectRelayAssociations ×

InterlockingPlan → TransitionRule-set
genAllPointsOpRules(ora, ip) ≡

let d = sld(ip),
allPoints = allPoints(d)

in genAllPointsOpRules(allPoints, ora, ip)
end,

genAllPointsOpRules :
TrackId-set × ObjectRelayAssociations ×
InterlockingPlan → TransitionRule-set

genAllPointsOpRules(allPoints, ora, ip) ≡
if allPoints = {} then {} else

let p = hd allPoints,
allPoints′ = allPoints \ {p}

in genPointsOpRules(p, ora, ip) ∪
genAllPointsOpRules(allPoints′, ora, ip) - - Recursive Call

end
end

Each of the four transition rules are then generated by genPointsOpRules.

value



166 Generator

genPointsOpRules :
TrackId × ObjectRelayAssociations ×
InterlockingPlan → TransitionRule-set

genPointsOpRules(pId, ora, ip) ≡
let d = sld(ip),

trt = trt(ip),
rlrs = getRouteLockingRelaysCoveringP(pId, ora, trt) in {

- - From plus to intermediate
mk TransitionRule(

′′plusToIntermediate′′ ̂ pId,
genPointsOpGuard(pId, plus, rlrs, ora, d),
genPointsOpUpd(pId, plus, false, ora, d) ),

- - From intermediate to plus
mk TransitionRule(

′′intermediateToPlus′′ ̂ pId,
genPointsOpGuard(pId, rlrs, ora, d),
genPointsOpUpd(pId, plus, true, ora, d) ),

- - From minus to intermediate
mk TransitionRule(

′′minusToIntermediate′′ ̂ pId,
genPointsOpGuard(pId, minus, rlrs, ora, d),
genPointsOpUpd(pId, minus, false, ora, d) ),

- - From intermediate to minus
mk TransitionRule(

′′intermediateToMinus′′ ̂ pId,
genPointsOpGuard(pId, rlrs, ora, d),
genPointsOpUpd(pId, minus, true, ora, d) )

}
end

The following explains the remaining functions used to generate the transitions
for the points operation.

genPointsOpGuard Are two overloaded functions, which handle the cases
of moving from one of the two locked positions to intermediate and the other
way, respectively. They call getRouteLockingRelaysCoveringP to get the route
locking relays that covers the points section in question.
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getRouteLockingRelaysCoveringP A wrapper function that finds all the
routes from the train route table and calls getRLRsCoveringP. Then getRLRsCov-
eringP recursively runs through the routes and calls getRLRCoveringP. Finally,
if the given points section is covered by the given route, then the related route
locking relay is returned by getRLRCoveringP.

genPointsOpUpdate Returns a set of assignments by updating the idle and
updating the points relay to either being locked into a position or intermediate
depending on which case.

convRelayIdsToLiterals Converts a set of relay ids into literals to be used
in a boolean expression.

11.4 Assertion Generator

This section introduces the assertion generator and describes important parts
in the specification. The patterns introduced in chapter 9 about inter-model
consistency, and chapter 10 about safety properties described the assertions in
general form. This section will use these patterns and apply them as guidelines
to implement the assertion generator.

The assertion generator handles the generation of the safety properties and
inter-model consistency conditions. The safety properties consists of no collision
and no derailing assertions and other requirements derived from the train route
table.

The inter-model consistency consists of conditions that ensure the interaction
between the train movement model and the internal relay system model behaves
as expected.

Thus, the assertion generator is split into three parts, one for inter-model con-
sistency, one for safety conditions assertions and one for the assertions derived
from the train route table.

Inter-model consistency consist of the following conditions each with reference
back to the patterns mentioned earlier.

• Track Occupation (Section 9.2).
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• Track Free (Section 9.3).

• Train Direction (Section 9.4).

• Points Configuration (Section 9.5).

• Train Connection (Section 9.6).

The basic safety properties consists of the following conditions each with a
reference back to the patterns mentioned earlier.

• No collision (Section 10.2).

• No derailing (Section 10.3).

And lastly, the safety properties derived from the train route table consists of
the following conditions each with a reference back to the patterns mentioned
earlier.

• Points Position (Section 10.4).

• Signal (Section 10.5).

• Signal Release (Section 10.6).

• Conflicting Routes (Section 10.7).

• Train Route Release (Section 10.8).

The following sections will present a description of how a single assertion is
generated by introducing some general rules and then an overview of how the
assertions are generated. Finally an example from our specification showing how
the signal release assertion is generated.

11.4.1 Generating a Single Assertion

RSL-SAL assertions have the following general form:

[ assertionName ] TransitionSystem ` TemporalLogic
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where assertionName is a unique identifier for the assertion. The Transistion-
System is the name of the transition system and TemporalLogic is the LTL
expression checking the validity of the model/transition system.

The abstract syntax of this is given by the RSL Assertion type. This type was
described in section 4.4.4.

In the example below the generateSomeAssertion function accepts two para-
meters. This is simply to show the structure, where the number of parameters
typically range from two to five.

Generating an assertion has the following general form:

generateSomeAssertion : ... × ... → T.Assertion
generateSomeAssertion(..., ...) ≡

(′′some_assertion_name′′ ̂ toString(...),
TransitionSystem,
genSomeFormula(..., ...)

),

The name is made unique by concatenating an indicative identifier to the name,
where we usually use a track section id, route id or signal id. The TransitionSystem
is simply a variable, that contains the name of the current transition system
used in all the generated assertions, namely InterlockingSystem.

Finally, the genSomeFormula function is invoked to generate the LTL expressions.
In the simplest form all the assertions consist of a boolean expression implying
another boolean expression. The inter-model consistency conditions and the
safety properties described in chapter 9 and chapter 10 all requires that the
expressions must hold true in all states. Thus, applying globally on the general
form.

By invoking the function genSomeFormula it returns a LTLformula defined in
section 4.4.4.

Hence, the generated LTLformula has the following general form:

genSomeFormula : ... × ... → LTLformula
genSomeFormula(..., ...) ≡
g(impl(...,...))

This would generate the following LTL formula:
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G(...⇒ ...)

11.4.2 Specifying the Assertion Generator

AssertionGenerator.rsl supply the function generateAssertions, which makes calls
to each of the subgenerators.

value
generateAssertions :

ObjectRelayAssociations × InterlockingPlan ×
TrainMovementAssociations → Assertion-set

generateAssertions(ora, ip, tma) ≡
genConsistencyAssertions(ora, ip, tma) ∪
genSafetyAssertions(ora, ip, tma) ∪
genTrtAssertions(ora, ip, tma)

pre isWfInterlockingPlan(ip) ∧
isWfTrainMovementAssociations(sld(ip), tma) ∧
isWfObjectRelayAssociations(ora, ip)

11.4.2.1 Consistency Assertion Generator

The inter-model consistency assertions are generated by the consistency assertion
generator. The more general assertion generator call the genConsistencyAsser-
tions method of the consistency assertion generator.

value
genConsistencyAssertions :

ObjectRelayAssociations × InterlockingPlan ×
TrainMovementAssociations → Assertion-set

genConsistencyAssertions(ora, ip, tma) ≡
- - 9.2 Track Occupation
generateOccupationAssertions(ora, ip, tma) ∪
- - 9.3 Track Free
generateFreeAssertions(ora, ip, tma) ∪
- - 9.4 Train Direction
generateDirectionAssertions(ip, tma) ∪
- - 9.5 Points Configuration
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generatePointsConfigurationAssertions(ora, ip) ∪
- - 9.6 Train Connection
generateConnectionAssertions(ip, tma)

pre isWfInterlockingPlan(ip) ∧
isWfTrainMovementAssociations(sld(ip), tma) ∧
isWfObjectRelayAssociations(ora, ip)

Consider the track occupation consistency requirement presented in section 9.2.
In the following, the specification of the generator for the related assertions will
be explained.

value - - 9.2 Track Occupation
generateOccupationAssertions : ObjectRelayAssociations ×

InterlockingPlan × TrainMovementAssociations → Assertion-set
generateOccupationAssertions(ora, ip, tma) ≡

let d = sld(ip),
sections = allLinears(d) ∪ allPoints(d) - - NB: No line pieces!

in generateOccupationAssertions(sections, ora, tma)
end

Track Occupation requires that there must be consistency, for each track section,
between the track relay variables and the track counters. Therefore the set of all
track sections is given to generateOccupationAssertions.

value
generateOccupationAssertions :

TrackId-set × ObjectRelayAssociations ×
TrainMovementAssociations → Assertion-set

generateOccupationAssertions(sections, ora, tma) ≡
if sections = {} then {} else

let s = hd sections,
sections′ = sections \ {s}

in {generateOccupationAssertion1(s, ora, tma),
generateOccupationAssertion2(s, ora, tma)} ∪
generateOccupationAssertions(sections′, ora, tma) - - Recursive

end
end

The function generateOccupationAssertions runs through all the track sections
recursively and calls the two functions which are respondsible for generating the
actual assertion for a given track section.
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value
generateOccupationAssertion1 :

TrackId × ObjectRelayAssociations ×
TrainMovementAssociations → Assertion

generateOccupationAssertion1(s, ora, tma) ≡
(′′occ_′′ ̂ s,
genOccuFormula1(s, ora, tma)),

genOccuFormula1 :
TrackId × ObjectRelayAssociations ×
TrainMovementAssociations → LTLformula

genOccuFormula1(s, ora, tma) ≡
g(impl(b(greaterthan(

literal(getCounterVar(s, tma)),
literal(′′0′′))),
neg(ltrl(trackRelayAssoc(ora)(s))))),

generateOccupationAssertion2 is very similar to generateOccupationAssertion1.
However, it generates the other direction of the bi-implication.

value
generateOccupationAssertion2 :

TrackId × ObjectRelayAssociations ×
TrainMovementAssociations → Assertion

generateOccupationAssertion2(s, ora, tma) ≡
( ′′occ_′′ ̂ s ̂ ′′_′′,
genOccuFormula2(s, ora, tma) ),

genOccuFormula2 :
TrackId × ObjectRelayAssociations ×

TrainMovementAssociations → LTLformula
genOccuFormula2(s, ora, tma) ≡

g(
impl(neg(ltrl(trackRelayAssoc(ora)(s))),

b(greaterthan(literal(getCounterVar(s, tma)),
literal(′′0′′)))))

The functions for the other consistancy requirements are similar.
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11.4.2.2 Safety Generator

This subgenerator is respondsable for generating the assertions for the basic
safety requirements, i.e. no collision and no derailing.

value
genSafetyAssertions :

ObjectRelayAssociations × InterlockingPlan ×
TrainMovementAssociations → Assertion-set

genSafetyAssertions(ora, ip, tma) ≡
- - 10.2 No Collision
genNoCollisionAssertions(ip, tma) ∪
- - 10.3 No Derailing
genNoDerailingAssertions(ora, ip, tma)

pre isWfInterlockingPlan(ip) ∧
isWfTrainMovementAssociations(sld(ip), tma) ∧
isWfObjectRelayAssociations(ora, ip)

The no collistion assertions are generated by the function genNoCollisionAsser-
tions, by recursively running through each track section on the station.

value - - 10.2 No Collision
genNoCollisionAssertions : InterlockingPlan ×

TrainMovementAssociations → Assertion-set
genNoCollisionAssertions(ip, tma) ≡

let d = sld(ip),
sections = allLinears(d) ∪ allPoints(d) - - NB: No line pieces!

in generateNoCollisionAssertions(sections, tma)
end,

generateNoCollisionAssertions : TrackId-set ×
TrainMovementAssociations → Assertion-set

generateNoCollisionAssertions(sections, tma) ≡
if sections = {} then {} else

let s = hd sections,
sections′ = sections \ {s}

in {generateNoCollisionAssertion(s, tma)} ∪
generateNoCollisionAssertions(sections′, tma) - - Recursive call

end
end
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The pattern described in sections 10.2 and 10.3 is applied to each track section
on the station.

value
generateNoCollisionAssertion : TrackId ×

TrainMovementAssociations → Assertion
generateNoCollisionAssertion(s, tma) ≡

(′′no_collision_′′ ̂ s,
genNoColFormula(s, tma) ),

genNoColFormula : TrackId ×
TrainMovementAssociations → LTLformula

genNoColFormula(s, tma) ≡
g(b(lessthan(literal(getCounterVar(s, tma)), literal(′′2′′))))

11.4.2.3 TRT Generator

The trt generator creates the assertions of the requirements derived from the
train route table. Each requirement, as described in section 10.4 through 10.8.

value
genTrtAssertions :

ObjectRelayAssociations × InterlockingPlan ×
TrainMovementAssociations → Assertion-set

genTrtAssertions(ora, ip, tma) ≡
- - 10.4 Points Position
genPointsPositionAssertions(ora, trt(ip)) ∪
- - 10.5 Signal
genSignalAssertions(ora, ip) ∪
- - 10.6 Signal Release
genSignalReleaseAssertions(ora, ip) ∪
- - 10.7 Conflicting Routes
genConflictingRoutesAssertions(ora, ip) ∪
- - 10.8 Train Route Release
genTrainRouteReleaseAssertions(ora, ip)

pre isWfInterlockingPlan(ip) ∧
isWfTrainMovementAssociations(sld(ip), tma) ∧
isWfObjectRelayAssociations(ora, ip)
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The implementation of each requirement is very similar to what has already been
shown in the preceeding section and will therefore not be discussed further here.
Refer to the source code for the entire specification.

11.5 Output

The Stenstrup file instantiates InterlockingPlan and ObjectRelayAssociations
for Stenstrup station. By executing the test case within the Stenstrup file it will
invoke the generator, asking it to generate the transition system for Stenstrup
and the unparser to print it in a form that RSL-SAL accepts.

11.5.1 Unparser

The unparser takes a transition system and prints a textual representation of it,
using the syntax of RSL-SAL.

A transition system in RSL-SAL looks as follows:

transition system [ name ]
local
[ variable decl ]
in
[ transition decl ]
end

ltl assertions
[ assertions decl ]

The unparser creates this structure and calls the overloaded method print on
each component of the transition system, such that they are inserted at the right
place.

value
print : TransitionSystem → Text
print(ts) ≡

let name = name(ts),
state = state(ts),
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transitionRules = transitionRules(ts),
assertions = assertions(ts)

in ′′\ntransition_system\n\n[′′ ̂ name ̂ ′′]\n\nlocal′′ ̂
print(state) ̂ ′′\n\nin\n′′ ̂
print(transitionRules) ̂ ′′\n\nend\n\nltl_assertion\n′′ ̂
print(name, assertions) ̂ ′′\n′′

end

11.5.1.1 State

The state is unparsed by recursively running through all the variables in the
state space. Each variable is written on its own line and they are seperated by
commas.

value
print : Var-set → Text
print(vars) ≡

if vars = {} then ′′′′ else
let var = hd vars, vars′ = vars \ {var}
in ′′\n′′ ̂ print(var) ̂

if vars′ = {} then ′′′′

else ′′,′′ ̂ print(vars′)
end

end
end

The identifier of the variable is written and then the type definition and initial
assignment is unparsed.

value
print : Var → Text
print(var) ≡

let id = id(var),
val = val(var)

in id ̂ ′′ : ′′ ̂ print(val)
end

The unparser support the types boolean and natural numbers.
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value
print : Val → Text
print(val) ≡

case val of
mk BoolVal(b) → ′′Bool := ′′ ̂ toString(b),
mk NatVal(n) → ′′Nat := ′′ ̂ toString(n)

end

11.5.1.2 Transitions

The transition rules are written out using the same method as the variables.
However, they are separated by the choice operator, [=].

value
print : TransitionRule-set → Text
print(trs) ≡

if trs = {} then ′′′′

else let tr = hd trs, trs′ = trs \ {tr}
in ′′\n′′ ̂ print(tr) ̂

if trs′ = {} then ′′′′

else ′′\n[=]′′ ̂ print(trs′)
end

end
end

The name can be completely unparsed at this point, however both the guard
and update needs further treatment.

value
print : TransitionRule → Text
print(tr) ≡

′′[′′ ̂ name(tr) ̂ ′′]\n′′ ̂
print(guard(tr)) ̂ ′′ ==>\n′′ ̂
print(assignments(tr))

Recall that the guard is a boolean expression and is unparsed in a similar fashion
as the update and will therefore not be shown. The update consists of assignments
separated by commas.
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value
print : MultipleAssignment → Text
print(assignments) ≡

if assignments = {} then ′′′′ else
let assignment = hd assignments,

assignments′ = assignments \ {assignment}
in print(assignment) ̂

if assignments′ = {} then ′′′′

else ′′, ′′ ̂ print(assignments′)
end

end
end

Each different type of assignment is treated independently.

value
print : Assignment → Text
print(assignment) ≡

let id = id(assignment)
in case assign(assignment) of

BoolAssign(b) → id ̂ ′′’ = ′′ ̂ toString(b),
NatAssign(n) → id ̂ ′′’ = ′′ ̂ toString(n),
AddAssign(a) → id ̂ ′′’ = ′′ ̂ id ̂ ′′ + ′′ ̂ toString(a),
SubAssign(s) → id ̂ ′′’ = ′′ ̂ id ̂ ′′ - ′′ ̂ toString(s)
end

end

11.5.1.3 Assertions

Assertions are written under the ltl assertions tag, where each assertion gets its
own line separated by comma.

value
print : Text × Assertion-set → Text
print(tsName, asserts) ≡

if asserts = {} then ′′′′ else
let assert = hd asserts, asserts′ = asserts \ {assert}
in ′′\n′′ ̂ print(tsName, assert) ̂

if asserts′ = {} then ′′′′
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else ′′,\n′′ ̂ print(tsName, asserts′)
end

end
end

The LTL formular is unparsed in a similar manner as the boolean expression
(not shown here).

value
print : Text × (Text × LTLformula) → Text
print(tsName, (nm, ltl)) ≡

′′[′′ ̂ nm ̂ ′′] ′′ ̂ tsName ̂ ′′ |-\n′′ ̂ print(ltl)
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Chapter 12

Test

The test strategy of the implementation is to create scenarios of invalid and
valid data models and associations. The expected invalid scenarios should then
be caught by the well-formedness expressions defined within each of the data
models and associations, as well as the expected valid scenarios should satisfy
the requirements.

In the following chapter a thorough test of the station layout will be conducted
in section 12.1. The tests of train route table, transition system, train movement
associations and object relay association uses the same test strategy as the
station layout. These tests can be found in appendix E.5.2, E.5.3, E.5.5, E.5.4,
respectively.

All of the tests can be found in appendix E.5, and all the output from each test
can be found in appendix F.3.

12.1 Station Layout

The test strategy for the station layout diagram is to create a simple station
consisting of two linear track sections 02 and 03, and a points sections 01, where
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Test case name Description

isWfIdentifiers fail id 01 used both as a linear section and a points
section

isWfIdentifiers succeed distinct ids used in linear, signal and point

Table 12.1: Test of well-formedness of identifiers

each linear track section is connected to the points section at the branch side,
and a line connected to the stem, as illustrated on figure 12.1. Additionally, the
points section is covered by two signals A and B at the branch side. Using the
simple station allows us to easily modify it creating invalid station layouts.

Line 01 02

03

A

B

Figure 12.1: A simple station for testing the station layout diagram well-
formedness.

Each well-formedness requirement defined in the station layout is to be tested.
The tables from 12.1–12.7 are divided in groups each listed with names of well-
formedness expressions followed by fail or success. Fail indicates that it is
expected to fail, while success indicates a scenario that satisfies the requirements
by the given well-formedness expression. Each test is attached with a description
of the tested scenario.

12.2 Results

Each test case shown for the station layout diagram using the simple station
passed all tests. All the invalid input failed as expected, and the valid input
succeeded as expected.

All the tested output can be found in appendix F.3, where each test case is
prefixed with the name of the well-formedness expression followed by either fail
or succeed. The result is printed to the right of the name, where true denotes
the test was as expected, and false would imply a failed test.
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Test case name Description

neighbours OnlySections fail id which is not a section id
neighbours OnlySections succeed id which is a section id
neighbours EverySection fail a section without any neighbour
neighbours EverySection succeed all sections has a neighbour, 01 is

connected to line
neighbours Irreflexive linear fail a linear section neighbour with itself
neighbours Irreflexive points fail a points section neighbour with itself
neighbours Antisymmetrical fail neighbouring sections are inserted as

double entry
neighbours Antisymmetrical succeed neighbouring sections are inserted

not as double entry

Table 12.2: Test well-formedness of neighbours

Test case name Description

linears 1or2Neighbours fail 1 linear section 03 has no neighbours
linears 1or2Neighbours fail 2 linear section 02 has 3 neighbours
linears 1or2Neighbours succeed 1 linear sections has 1 neighbour each
linears 1or2Neighbours succeed 2 linear sections has 2 neighbour each

Table 12.3: Test well-formedness of linear track sections

Test case name Description

points 3Neighbours fail 1 point section 01 has 2 neighbours
points 3Neighbours fail 2 point section 01 has 4 neighbours
points 3Neighbours succeed point section 01 has 3 neighbours

Table 12.4: Test well-formedness of points sections



184 Test

Test case name Description

branchNeighbours areNeighbours fail the neighbours in the branch
neighbours relation does not
match the neighbours relation

branchNeighbours areNeighbours succeed the neighbours in the branch
neighbours relation match the
neighbours relation

branchNeighbours FirstIsPoints fail The first parameter in the tuple
is a linear section

branchNeighbours FirstIsPoints succeed The first parameter in the tuple
is a points section

branchNeighbours everyPoints fail Not every points defined in all-
Points are used in branchNeig-
bours

branchNeighbours everyPoints succeed every points defined in allPoints
and are used in branchNeig-
bours

Table 12.5: Test well-formedness of branch neighbours

Test case name Description

signalLocation UsesExistingSignals fail signal location does not use
existing signals from allsig-
nals

signalLocation UsesExistingSignals succeed signal location use existing
signals from allsignals

signalsArePlacedAtValtIdNeighbours fail signals are placed at invalid
locations (between sections
that does not exist)

signalsArePlacedAtValtIdNeighbours succeed signals are placed at valid loc-
ations (between existing sec-
tions)

Table 12.6: Test well-formedness of signals
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Test case name Description

pointMachines areSymmetrical fail1 inconsistency between
pointMachineTrack and
trackPointMachine

pointMachines areSymmetrical fail2 inconsistency between
pointMachineTrack and
trackPointMachine

pointMachines areSymmetrical fail3 inconsistency between
pointMachineTrack and
trackPointMachine

pointMachines areSymmetrical succeed consistency between point-
MachineTrack and track-
PointMachine

pointMachines ExistingTrackSections fail uses a non-existing points
section

pointMachines ExistingTrackSections succeed uses an existing points sec-
tion

Table 12.7: Test well-formedness of point machines
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Chapter 13

Case Study - Stenstrup

This chapter shows the entire process of verifying the interlocking system of
Stenstrup station, from filling in the data representation to model checking the
generated model of the interlocking system and environment.

This case study follows the user guide given in appendix C.

Refer to appendix B for the documentation of Stenstrup and appendix E.4.5 for
the specification.

Section 13.1 describes, using Stenstrup station, how it is constructed step by
step.

Section 13.2 then shows how to generate the external events by using Stenstrup.
Some of the generated output is then compared with variables and transition
rules for the external behaviour.

13.1 Defining Stenstrup

Beginning from the provided template (see appendix E.4.4), every entry is filled
out as described in the following sections.
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13.1.1 Interlocking Plan

An interlocking plan consists of a station layout diagram and a train route table.

value
stenstrupIP : InterlockingPlan =

mk InterlockingPlan(
stenstrupSLD,
stenstrupTRT

)

13.1.2 Station Layout Diagram

The station layout diagram of Stenstrup is defined as a well-formed station
layout diagram. The content of each of the constituents is shown in the following
sections.

value
stenstrupSLD : Diagram =

mk Diagram(
′′line′′,
allLinears,
allPoints,
allSignals,
neighbours,
branchNeighbours,
pointMachineTrack,
trackPointMachine,
signalLocations

)

13.1.2.1 Physical Objects

The linear track sections A12, 02, 04 and B12 are stored in the set allLinears,
the points sections 01 and 03 are stored in allPoints and the signals A, B, D, F,
G and H are stored in allSignals.
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value
allLinears : TrackId-set = {′′A12′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints : TrackId-set = {′′01′′, ′′03′′},
allSignals : SignalId-set = {′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′}

13.1.2.2 Neighbour Relation

The pairs of physically connected track sections are stored in neighbours. Recall
from section 4.2.4, that the line is part of this relation and that the relation is
asymmetric.

value
neighbours : (TrackId × TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) }

13.1.2.3 Points

As described in section 4.2.5, the neighbours relation provide insufficient inform-
ation about the points sections, namely that it does not provide any information
about which branch a points section and its branch side neighbours are connected
to.

value
branchNeighbours : (TrackId × TrackId) →m Branch =

[ (′′01′′, ′′02′′) 7→ plus,
(′′01′′, ′′04′′) 7→ minus,
(′′03′′, ′′02′′) 7→ plus,
(′′03′′, ′′04′′) 7→ minus ]

Furthermore the point sections needs to be associated with the point machine
that control them.
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value
pointMachineTrack : PointMachineId →m TrackId =

[ ′′01′′ 7→ ′′01′′,
′′02′′ 7→ ′′03′′ ],

trackPointMachine : TrackId →m PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ]

13.1.2.4 Signals

Finishing out the station layout diagram of Stenstrup, is defining the signals
locations.

value
signalLocations : (TrackId × TrackId) →m SignalId =

[ (′′line′′, ′′A12′′) 7→ ′′A′′, (′′line′′, ′′B12′′) 7→ ′′B′′,
(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ]

13.1.3 Train Route Table

The train route table of Stenstrup (fig. 2.15), shows that Stenstrup has eight
train routes. The data for each route is stored in a DataRow structure. Only
the content of two of the routes are shown here. Please refer to the full listing in
appendix E.4.5 for the remaining routes.

value
stenstrupTRT : TrainRouteTable =

[ ′′2′′ 7→ dataRow2, ′′3′′ 7→ dataRow3,
′′5′′ 7→ dataRow5, ′′6′′ 7→ dataRow6,
′′7′′ 7→ dataRow7, ′′8′′ 7→ dataRow8,
′′9′′ 7→ dataRow9, ′′10′′ 7→ dataRow10 ]

Recall the specification of a DataRow from section 4.3.2. The following shows a
DataRow object instantiated with the data from the row of train route 2.
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value
dataRow2 : DataRow =

mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ gr, ′′B′′ 7→ arbitrary, ′′E′′ 7→ arbitrary,

′′F′′ 7→ re, ′′G′′ 7→ re, ′′H′′ 7→ arbitrary ],
[ ′′01′′ 7→ plus, ′′02′′ 7→ plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, dropped), (′′02′′, drawn)),

((′′02′′, dropped), (′′01′′, drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ true ]
)

The data for train route 10 is shown below.

value
dataRow10 : DataRow =

mk DataRow(
{},
[ ′′A′′ 7→ arbitrary, ′′B′′ 7→ arbitrary, ′′E′′ 7→ arbitrary,
′′F′′ 7→ arbitrary, ′′G′′ 7→ re, ′′H′′ 7→ gr ],
[ ′′01′′ 7→ arbitrary, ′′02′′ 7→ minus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′H′′, ′′03′′ ),
( ((′′03′′, dropped), (′′B12′′, drawn)),

((′′B12′′, dropped), (′′03′′, drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ false, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
)

13.1.4 Object Relay Associations

The object relay associations from section 8.1 is a collection of data that associates
relays of the interlocking system, with the physical objects of the station and
the route ids.



192 Case Study - Stenstrup

value
stenstrupAssocs : ObjectRelayAssociations =

mk ObjectRelayAssociations(
routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc

)

Table 5.5 shows the relation between train routes and train route locking relays,
i.e. which relay must be dropped for a given train route to be locked.

value
routeRelayAssoc : TrainRouteId →m RelayId =

[ ′′2′′ 7→ ′′ia′′, ′′3′′ 7→ ′′ia′′,
′′5′′ 7→ ′′ib′′, ′′6′′ 7→ ′′ib′′,
′′7′′ 7→ ′′ua′′, ′′8′′ 7→ ′′ua′′,
′′9′′ 7→ ′′ub′′, ′′10′′ 7→ ′′ub′′ ]

Table 5.2 shows which track sections are associated with which track relay
variables, i.e. the names of the variables that are false when the associated track
section is occupied.

value
trackRelayAssoc : TrackId →m RelayId =

[ ′′A12′′ 7→ ′′a12′′, ′′01′′ 7→ ′′t01′′, ′′02′′ 7→ ′′t02′′,
′′B12′′ 7→ ′′b12′′, ′′03′′ 7→ ′′t03′′, ′′04′′ 7→ ′′t04′′ ]

Table 5.3 shows the relation between point machines and the point relay variables
for the points sections.

value
pointRelayAssoc : PointMachineId × Branch →m RelayId =
[ (′′01′′, plus) 7→ ′′plus01′′, (′′01′′, minus) 7→ ′′minus01′′,

(′′02′′, plus) 7→ ′′plus02′′, (′′02′′, minus) 7→ ′′minus02′′ ]

Table 5.4 shows the relations between the signals and the signal relay variables
to show stop and proceed.
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value
signalRelayAssoc : SignalId × Aspect →m RelayId =

[ (′′A′′, gr) 7→ ′′aGreen′′, (′′A′′, re) 7→ ′′aRed′′,
(′′B′′, gr) 7→ ′′bGreen′′, (′′B′′, re) 7→ ′′bRed′′,
(′′E′′, gr) 7→ ′′eGreen′′, (′′E′′, re) 7→ ′′eRed′′,
(′′F′′, gr) 7→ ′′fGreen′′, (′′F′′, re) 7→ ′′fRed′′,
(′′G′′, gr) 7→ ′′gGreen′′, (′′G′′, re) 7→ ′′gRed′′,
(′′H′′, gr) 7→ ′′hGreen′′, (′′H′′, re) 7→ ′′hRed′′ ]

13.1.5 Buttons

The buttons are stored in the set allButtons. Table 5.5 shows the button
identifiers.

value
allButtons : Text-set = {′′b00406′′, ′′b03106′′, ′′b00606′′, ′′b03306′′}

13.2 Generating Model of External Events

The model of the external behaviour is generated by first translating the RSL
specification of the tool to SML and then calling the generators generate function.

test case
[ generate transitionSystem ]

print(generate(
′′InterlockingSystem′′,
stenstrupAssocs,
stenstrupIP,
allButtons))

13.2.1 Result

The generator creates a transition system containing 24 variables, 47 transitions
and 102 assertions. The entire unparsed output is available in appendix F.1.
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Lets have a look at some of the output in order to convince ourselves that it is
correct.

13.2.1.1 Variables

The generated variables are shown in tables 13.1, 13.2 and 13.3. Comparing
the generated output for Stenstrup station on the right column with the left
column for the model of train movement presented in section 6.2, we see that it
is exactly as expected.

Model Generated

cnt 04 : Nat := 0,
cnt 02 : Nat := 0,
cnt B12 : Nat := 0,
cnt A12 : Nat := 0,
cnt 03 : Nat := 0,
cnt 01 : Nat := 0

cnt 04 : Nat := 0,
cnt 02 : Nat := 0,
cnt B12 : Nat := 0,
cnt A12 : Nat := 0,
cnt 03 : Nat := 0,
cnt 01 : Nat := 0

Table 13.1: Generated output of counter variables compared to the model of
train movement

Model Generated

con 01 04 : Bool := false,
con 02 03 : Bool := false,
con 01 02 : Bool := false,
con 03 04 : Bool := false,
con A12 01 : Bool := false,
con 03 B12 : Bool := false

con 01 04 : Bool := false,
con 02 03 : Bool := false,
con 01 02 : Bool := false,
con 03 04 : Bool := false,
con A12 01 : Bool := false,
con 03 B12 : Bool := false

Table 13.2: Generated output of connection variables compared to the model of
train movement

13.2.1.2 Transitions

Comparing the transition rules from section 7.1 with the generated transition
rules for button behaviour we get the expected output.

[push_b03106] idle ==>
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Model Generated

fwd 04 : Bool := false, bwd 04
: Bool := false, fwd 02 :
Bool := false, bwd 02 : Bool
:= false, fwd B12 : Bool
:= false, bwd B12 : Bool
:= false, fwd A12 : Bool :=
false, bwd A12 : Bool := false,
fwd 03 : Bool := false, bwd 03
: Bool := false, fwd 01 : Bool
:= false, bwd 01 : Bool :=
false

fwd 04 : Bool := false, bwd 04
: Bool := false, fwd 02 :
Bool := false, bwd 02 : Bool
:= false, fwd B12 : Bool
:= false, bwd B12 : Bool
:= false, fwd A12 : Bool :=
false, bwd A12 : Bool := false,
fwd 03 : Bool := false, bwd 03
: Bool := false, fwd 01 : Bool
:= false, bwd 01 : Bool :=
false

Table 13.3: Generated output of direction variables compared to the model of
train movement

b03106’ = true, idle’ = false

[=]

[push_b00606] idle ==>

b00606’ = true, idle’ = false

[=]

[push_b00406] idle ==>

b00406’ = true, idle’ = false

[=]

[push_b03306] idle ==>

b03306’ = true, idle’ = false

Again, comparing the transition rules presented in section 7.2 with the generated
output we get the expected output.

[point01FromPlus] idle /\ ib /\ plus01 /\ ua /\ t01 /\ ia ==>

plus01’ = false, idle’ = false

[=]

[point01ToPlus] idle /\ ib /\ ~(plus01) /\ ua /\ ~(minus01) /\

ia /\ t01 ==>

plus01’ = true, idle’ = false

[=]

[point01FromMinus] idle /\ ib /\ minus01 /\ ua /\ t01 /\ ia ==>

minus01’ = false, idle’ = false

[=]

[point01ToMinus] idle /\ ib /\ ~(plus01) /\ ua /\ ~(minus01) /\
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ia /\ t01 ==>

minus01’ = true, idle’ = false

Comparing an entering rule and a leaving rule from section 6.3.1 and 6.3.3 with
the generated output we get the expected result.

[enter_A12_from_line] idle /\ aGreen /\ ~(aRed) ==>

fwd_A12’ = true, idle’ = false, a12’ = false,

cnt_A12’ = cnt_A12 + 1

[=]

[leave_A12_to_line] bwd_A12 /\ idle /\ ~(con_A12_01) /\

cnt_A12 = 1 ==>

idle’ = false, cnt_A12’ = 0, a12’ = true, bwd_A12’ = false

13.2.1.3 Assertions

Finally, comparing one of the assertions presented in section 10.8 with the
generated output below we get the expected result.

[train_route_release_2] InterlockingSystem |- G(ia /\ X(plus02 /\

plus01 /\ ~(ia) /\ F(ia)) => X(U(~(ia), ~(t01) /\ t02 /\ ~(ia)

/\ X(U(~(ia), ~(ia) /\ ~(t02) /\ t01)))))

13.3 Combining the Models

We now have the RSL-SAL model of the external system. This needs to be
combined with the internal system into a single model, that can then be model
checked.

The model of the internal system is acquired, as described in the user guide
found in appendix C, by using the tool developed by Kjær and Le Bliguet [2].

The combined RSL-SAL model of the internal and external system can then be
translated to SAL, and finally model checked. The results of model checking
Stenstrup station will be presented in the next section.
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13.4 Results Stenstrup

The result shows that the consistency conditions are satisfied. This means that
the internal system responds according to the external events provided by the
model of train movement. Since the safety properties (chapter 10) are satisfied
as well, we can conclude that the model of the interlocking system ensures the
safety of the modelled train movements (chapter 6).

The results of the model checker can be found in appendix F.2. All the inter-
model consistency and safety property assertions were satisfied including the
assertions provided by Kjær and Le Bliguet [2]

The model checking was conducted on the following hardware which took ap-
proximately 1.5 hour.

CPU Intel Core i5-2400 CPU @ 3.10 GHz, 6MB cache

RAM 8 GB 1333 MHz DDR3 non-ECC SDRAM

Operating System Xubuntu 11.04, Linux kernel 2.6.38-13-generic-pae

RSLTC Version 2.5-1

SAL Version 3.0
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Chapter 14

Conclusion

Banedanmark wanted to automate the process of validating relay interlocking
systems. Some work had already been carried out, but part of the generation
process was still to be done manually.

In this project we have specified data models of station layout diagrams, train
route tables and the RSL-SAL transition system, and created well-formedness
functions that essentially acts as data validators. Furthermore, we created
associations between the physical station elements and the model of the internal
system, and associations to allow the generation of a representation of trains.

We have, in RSL, specified a tool which is able to generate a behavioural model
of train movements and the behaviour of operating points and buttons for
Stenstrup station. We then formalised basic safety properties, identified safety
properties from a train route table and specified a generator that can generate
these properties automatically. Our model of train movement is compatible with
Kjær and Le Bliguet’s [2] model of the internal system and is indeed intended to
be a substitute for the train movement model they suggested.

To verify the compatibility between the model of train movement and internal
system we identified, formalised and generated inter-model consistency conditions
to ensure that the external behaviours were observed by the internal system.
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Thus, the tool is capable of generating a RSL-SAL transition system of the
external events from station documentation using our data models, in addition
to generating the safety and consistency assertions.

With our contribution Banedanmark now has a functioning prototype for auto-
mated validation of relay interlocking systems. With such a tool Banedanmark
can validate their station documentation faster and eliminate the risk of human
error. Furthermore, one can speculate that the proposed tool would verify more
properties, compared to now.

Our model of train movements allows for trains of arbitrary length and uses
implicitly defined trains, which allows for an arbitrary number of trains on the
station. This model was chosen over a model using explicitly defined trains, as
that model was not only limited to a certain number of trains, but also model
checked slower, which could cause problems for larger systems.

Finally, we model checked a combined RSL-SAL transition system of the external
events and the internal events. The result of our case study of Stenstrup station
showed that all safety and consistency conditions were satisfied using our model of
train movement. From this fact we concluded that the model of the interlocking
system ensures the safety of the modelled train movements.

We are aware that the algorithm for assigning directions may not function
properly if more than one track is connected to the line at each end. This could
be solved by differentiating between the line sections at each end.

RSL-SAL

Station Documentation

Station Layout

Train Route Table Auto Generation

Internal Behaviour
Confidence Conditions

External Behaviour

Safety Properties

Translation to SAL SAL files

SAL Model Checker

Results

Auto Generation

Auto Generation

Figure 14.1: Auto generation of external behaviour and safety properties.
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14.1 Future Work

In this section, suggestions will be made on how to proceed from here and how
the developed tool and the tools used can be improved.

14.1.1 Directly Related

While the tool has been tested on Stenstrup, it is not known how well it work
with another station using the DSB type 1954 relay interlocking system. The
problem with testing this, is the amount of work needed to transform the physical
documentation into the digital data structure. This is especially true considering
the assumptions made in both this work and that of Kjær and Le Bliguet [2].

A graphical editor would help speed up this process. Unfortunately the output
of the editor developed by Eriksen and Pedersen [7] is not compatible with tool
set.

If the tool set should see use in industry, it would most likely have to be expanded
with some of the parts that where not considered due to scope, e.g. support for
level crossings.

Finally, some work would be required to fully automate the verification process.
As of now, the model of the internal and the external system has to be combined
by hand before the combined system can be given to the model checker. One
could choose to expand the Java implementation of the generator of the internal
system, using our specification of the external system. However, it would seem
more natural to merge the specifications, make the specification of the internal
system executable and combine it with ours at this level. By making the complete
specification executable, the output of the complete system can be tested before
implementation.

14.1.2 Indirectly Related

During this work, we found that it would be useful for RSL-SAL to support
multiple models in a single file.

scheme SchemeName =
class
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transition system [ Internal ]
local
...
in
...
end

transition system [ External ]
local
...
in
...
end

end

This would greatly improve the readability of the file, as the parts would be
logically divided.

Even if SAL does not support interaction between two models, the RSL-SAL
translator could combine them into a single SAL model. Any conflicting names
could be solved by adding the system name to the conflicting variable or transition
name.
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Appendix A

Word List

The table below has a translation from english to danish of the words and
terminology used throughout this thesis.
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English Danish

(Track) Section Sporafsnit
(Set of) Points Sporskifte
Branch Forgrening
Relay Relæ
Signal lamp relay Lampekontrolrelæ
Point relay Sporskiftekontrolrelæ
Interlocking System Sikringsanlæg
Train route Togvej
Train route table Togvejstabel
Interlocking Plan Sikringsplan
Shunting movement Rangering
Open Line Fri bane
Line block Linieblok
Distant signal Fremskudt signal
(Station) Entry signal Indkørelsessignal
(Station) Pre-exit signal Perronudkørelsessignal
(Station) Exit signal Udkørelsessignal
Shunt signal Signal for rangering
Station limit Stationsgrænse
Signal Release Stop Fald
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Documentation of Stenstrup
Station
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Appendix C

User Guide

The following section will describe how to use the tool.

C.1 Requirements

Ensure that the following software is installed and running correctly:

• rsltc version 2.5

• Standard ML of New Jersey v110.72

• SAL 3.0

• Java Runtime Environment 6 (1.6)

• Emacs 23



212 User Guide

C.2 Stenstrup

Assuming everything is in the same folder, call the generator of the internal
model.

java -jar InternalBehaviourGeneration.jar

It will ask for parameters, so fill in as below:

Please enter the path of the input XML file:

> stenstrup.xml

Please enter the path of the output RSL-SAL file:

> stenstrup.rsl

Please enter the name of the generated RSL-SAL scheme:

> stenstrup

This will generate the file stenstrup.rsl in the folder.

Open stenstrup.rsl, locate the transition setIdle and replace:

==> idle’ = true

with

==> idle’ = ~ (b00406 \/ b00606 \/ b03106 \/ b03306),

b00406’ = false,

b00606’ = false,

b03106’ = false,

b03306’ = false

Open Stenstrup.rsl (another file) in emacs and click RSL→ Type check. This
should return 0 errors and 0 warnings.

Now click RSL → SML → Translate to SML and run. Without closing the
window that appears, hit RSL → SML → End SML run and save. Click yes.

This output shall now be combined with stenstrup.rsl. Copy anything between
“local” and “in” from the output and place it after ”local” in stenstrup.rsl

(insert comma if needed).
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Next copy everything between “in” and “end” from the output and place it after
”in” in stenstrup.rsl (insert [=] if needed).

Finally copy everything after ”ltl assertion” from the output and paste it in after
”ltl assertion” in stenstrup.rsl and type check stenstrup.rsl. This should
return no errors and no warnings.

Close the output buffer and Stenstrup.rsl, leaving just stenstrup.rsl open.
Click RSL → SAL → Translate to SAL. This will generate a great number of
files. Next click RSL → SAL → Run SAL well-formed checker. All three checks
should be successful.

Finally click RSL → SAL → Run model checker → base. Hit enter. Expect the
model to run for at least 1.5 hour.
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Appendix D

Behavioural Model of Train
Movements Using Explicitly

Defined Trains

This solution explores explicit declaration of trains. A train occupies a number
of connected track sections and has a direction. Here the tracks occupied by
the train is collected in a set1 and the direction is a pointer to the next section.
Alternatively a up/down type mechanism could be employed.

transition system [ InterlockingSystem ]
local

...
train1dir : TrackId := none,
train1loc : TrackId-set := {},

in
...

end

1Using RSL-SAL, a set is translated into a boolean variable for each possible element in
the set, which is true if the element is in the set. Not all RSL set operators are translatable,
unfortunately, most noticeable card, which would actually be easy to implement, but that is
an aside.
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where TrackId is defined as follows

type TrackId ==
t a12 | t 01 | t 02 | t 03 | t 04 | t b12 | none

The initial state of the system is the normal state. Here no track sections are
occupied and therefore, no trains are at the station. Hence the direction is
initialised to none (could be set to either a12 or b12, but is not, since we don’t
want to dictate its entrance.) and the location is the empty set to represent that
the train is not at the station.

It is assumed that the trains respect the aspects of the signals. Therefore no
train are supposed to enter the station before a green light at a station entry
signal is given. Assuming a working and well-formed interlocking system, this
only happens once a route has been locked. This require an external event, which
we assumed has happened in the following. Every rule also require the system to
be idle, so that the relays are in a correct position. As a consequence every rule
introduced here will also set the system in the busy state, to allow the relays to
response to the external events.

D.1 Enter

Lets look at the rules for entering the station at section a12.

[ t1 enter a12 from line ]
idle ∧ aGreen ∧ train1loc = {} −→

idle′ = false,
a12′ = false,
train1dir′ = t 01,
train1loc′ = train1loc ∪ {t a12}

The guard require the station entry signal to show green, while the train cannot
already be at the station. If these conditions are met, the train is allowed to
enter a12. Therefore the relay a12 is dropped, the track identifier is added to
the location set and the direction is set to section 01, since the train came from
the line. This information is derived from the station layout.
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Entering the station is a special case and therefore has rules that are not in the
general case. Lets look at another special case, which happens to be the next in
our scenario.

[ t1 enter 01 in plus from a12 ]
idle ∧ train1dir = t 01 ∧ t a12 ∈ train1loc ∧ plus01 −→

idle′ = false,
t01′ = false,
train1dir′ = t 02,
train1loc′ = train1loc ∪ {t 01}

In this situation the train enters 01 from a12. For this to occur, we need to
have a train on a12, which is headed towards 01. Since the direction points to a
specific section, a rule is needed for each possible state of the point. Here it is
in plus. Therefore the next section will be 02. Had it been in minus, the next
would be 04 and if the point is not locked, the train will derail, so the direction
is set to none.

[ t1 enter 01 in neither ]
idle ∧ train1dir = t 01 ∧ ∼ plus01 ∧ ∼ minus01 −→

idle′ = false,
t01′ = false,
train1dir′ = none,
train1loc′ = train1loc ∪ {t 01}

The interlocking system should ensure that both the plus and minus relay cannot
be dawn at the same time, eliminating the case where the point is locked in both
plus and minus position, which also happens to be physically impossible.

Lets continue the example. If 01 was in plus, the next section would be 02. 02 is
a regular track segment, but since the trains comes from a point, we again need
to ensure that the point is in the correct position.

[ t1 enter 02 from 01 ]
idle ∧ train1dir = t 02 ∧
t 01 ∈ train1loc ∧ plus01 −→

idle′ = false,
t02′ = false,
train1dir′ = t 03,
train1loc′ = train1loc ∪ {t 02}
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The next section is yet another point, but this time it is not entered from the
stem. In addition there is a signal on 02, which we have to respect. As such the
details have already been discussed.

D.2 Leave

Since the train is allowed to occupy multiple sections and we would like to be
able to move the back end of the train as well, rules for leaving a section is
introduced.

Imagine that the train from before has reached b12 and is leaving the station.
We want to correctly move the back end of the train off the station. First we
check that the train is leaving the station by checking that the direction is set to
none. We should not be allowed to remove the train from this section unless it
is the tail end. Therefore we require that the train is only on b12. If it was at
other sections as well, we would not be looking at the tail end.

[ t1 leave b12 to line ]
idle ∧ train1dir = none ∧ train1loc = {t b12} −→

idle′ = false,
b12′ = true,
train1loc′ = train1loc \ {t b12}

Lets say that the train is on 03 as well. Everything else being equal, the tail end
of the train would now be on 03. Therefore we can remove it from 03 and then
afterwards use t1 leave b12 to line to remove it entirely.

[ t1 leave 03 to b12 ]
idle ∧ train1dir = t b12 ∧ train1loc = {t 03, t b12} −→

idle′ = false,
t03′ = true,
train1loc′ = train1loc \ {t 03}

One could follow the same method and keep adding requirements about the
location of the train the further back along the track we look, but instead we’ll
introduce a more general rule.

Lets consider the train leaving 02 in the direction of 03 as an example to
demonstrate the rule. We require that the section prior to 02, i.e. 01 is not in
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the location set. This ensures that we do not split the train. In addition, it is
required that the train is on both 02 and 03. The reason for this is that we
cannot remove a train from a section where it is not located and we should not
remove the entire train, just the tail end. If the train was positioned on just 02
and we did not require it to be on 03 as well, both the head and tail end would
be at 02 and therefore we would remove the entire train. Obviously a train is
not allowed to disappear at random locations.

[ t1 leave 02 to 03 ]
idle ∧ ∼ (t 01 ∈ train1loc) ∧
{t 02, t 03} ⊆ train1loc ∧ train1dir 6= t 01 −→

idle′ = false,
t02′ = true,
train1loc′ = train1loc \ {t 02}
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Appendix E

Specifications

E.1 Data Models

E.1.1 Objects

context: InterlockingPlan
object IP : InterlockingPlan

context: StationLayout
object SL : StationLayout

context: TrainRouteTable
object TRT : TrainRouteTable

context: TransitionSystem
object TS : TransitionSystem
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E.1.2 Interlocking Plan

context: T, TRT, SL
scheme InterlockingPlan =

class
type

InterlockingPlan ::
sld : SL.Diagram
trt : TRT.TrainRouteTable

value
isWfInterlockingPlan : InterlockingPlan → Bool
isWfInterlockingPlan(ip) ≡

let d = sld(ip),
trt = trt(ip)

in SL.isWfDiagram(d) ∧ TRT.isWfTrainRouteTable(trt, d)
end

end

E.1.3 Station Layout Diagram

context: T
scheme StationLayout =

class
type

TrackId = Text,
PointMachineId = Text,
SignalId = Text

type /∗ Station Layout ∗/
Branch = {| ps : T.PointsState • ps 6= T.arbitrary |},

Diagram :: /∗ Station Layout Diagram ∗/
line : TrackId
allLinears : TrackId-set
allPoints : TrackId-set
allSignals : SignalId-set
neighbours : (TrackId × TrackId)-set
branchNeighbours : (TrackId × TrackId) →m Branch
pointMachineTrack : PointMachineId →m TrackId
trackPointMachine : TrackId →m PointMachineId
signalLocations : (TrackId × TrackId) →m SignalId

value /∗ Observer functions ∗/
areNeighbours : TrackId × TrackId × Diagram → Bool
areNeighbours(tId1, tId2, d) ≡

(tId1, tId2) ∈ neighbours(d) ∨
(tId2, tId1) ∈ neighbours(d),
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isLine : TrackId × Diagram → Bool
isLine(tId, d) ≡ tId = line(d),

isPoints : TrackId × Diagram → Bool
isPoints(tId, d) ≡ tId ∈ allPoints(d),

isLinear : TrackId × Diagram → Bool
isLinear(tId, d) ≡ tId ∈ allLinears(d),

isSignal : SignalId × Diagram → Bool
isSignal(sId, d) ≡ sId ∈ allSignals(d),

isSection : TrackId × Diagram → Bool
isSection(tId, d) ≡ tId ∈ allSections(d),

hasSignal : TrackId × TrackId × Diagram → Bool
hasSignal(tId1, tId2, d) ≡

(tId1, tId2) ∈ dom signalLocations(d),

isBranchNb : TrackId × TrackId × Diagram → Bool
isBranchNb(points, nb, d) ≡

(points, nb) ∈ dom branchNeighbours(d)
pre isPoints(points, d),

isStemNb : TrackId × TrackId × Diagram → Bool
isStemNb(points, nb, d) ≡
∼isBranchNb(points, nb, d) ∧ areNeighbours(points, nb, d)

pre isPoints(points, d)

value /∗ Aux functions ∗/
getNeighboursOf : TrackId × Diagram → TrackId-set
getNeighboursOf(tId, d) ≡

getNbs(tId, neighbours(d)),

getNbs : TrackId × (TrackId × TrackId)-set → TrackId-set
getNbs(tId, nbs) ≡

if nbs = {} then {} else
let nb = hd nbs, nbs′ = nbs \ {nb}
in getNbs(tId, nbs′) ∪ getNb(tId,nb)
end

end,

getNb : TrackId × (TrackId × TrackId) → TrackId-set
getNb(tId, (nb1, nb2)) ≡

if tId = nb1 then {nb2} else
if tId = nb2 then {nb1} else {} end

end,

allSections : Diagram → TrackId-set
allSections(d) ≡

allLinears(d) ∪ allPoints(d) ∪ {line(d)},

xor : Bool-set → Bool
xor(bools) ≡

if bools = {} then false else
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let bool = hd bools, bools′ = bools \ {bool}
in xor(bool, xor(bools′))
end

end,

xor : Bool × Bool → Bool
xor(p, q) ≡ (p ∧ ∼q) ∨ (∼p ∧ q)

value /∗ Well−formedness ∗/
isWfDiagram : Diagram → Bool
isWfDiagram(d) ≡

isWfIdentifiers(d) ∧
isWfNeighbours(d) ∧
isWfBranchNeighbours(d) ∧
isWfPointMachines(d) ∧
isWfSignalLocations(d),

isWfIdentifiers : Diagram → Bool
isWfIdentifiers(d) ≡

allLinears(d) ∩ allPoints(d) = {}

value /∗ Well−formedness neighbours ∗/
isWfNeighbours : Diagram → Bool
isWfNeighbours(d) ≡

neighbours OnlySections(d) ∧
neighbours EverySection(d) ∧
neighbours Irreflexive(d) ∧
neighbours Antisymmetrical(d) ∧
linears 1or2Neighbours(d) ∧
points 3Neighbours(d) ∧
pointsNotNeighbours(d),

neighbours OnlySections : Diagram → Bool
neighbours OnlySections(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ⇒
isSection(tId1, d) ∧ isSection(tId2, d) ),

neighbours EverySection : Diagram → Bool
neighbours EverySection(d) ≡

( ∀ tId : TrackId • tId ∈ allSections(d) ⇒
( ∃ nb : TrackId • nb ∈ allSections(d) ∧

areNeighbours(tId, nb, d)) ),

neighbours Irreflexive : Diagram → Bool
neighbours Irreflexive(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ⇒
tId1 6= tId2 ),

neighbours Antisymmetrical : Diagram → Bool
neighbours Antisymmetrical(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ⇒
(tId2, tId1) 6∈ neighbours(d) ),
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linears 1or2Neighbours : Diagram → Bool
linears 1or2Neighbours(d) ≡

( ∀ tId : TrackId •

tId ∈ allLinears(d) ⇒
let n = card getNeighboursOf(tId, d) in

n ≥ 1 ∧ n ≤ 2
end),

points 3Neighbours : Diagram → Bool
points 3Neighbours(d) ≡

( ∀ tId : TrackId •

tId ∈ allPoints(d) ⇒
card getNeighboursOf(tId, d) = 3),

pointsNotNeighbours : Diagram → Bool
pointsNotNeighbours(d) ≡
∼( ∃ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ neighbours(d) ∧
isPoints(tId1, d) ∧ isPoints(tId2, d) )

value /∗ Well−formedness branchNeighbours ∗/
isWfBranchNeighbours : Diagram → Bool
isWfBranchNeighbours(d) ≡

branchNeighbours areNeighbours(d) ∧
branchNeighbours FirstIsPoints(d) ∧
branchNeighbours everyPoints 2branchNbs(d) ∧
branchNeighbours diffNbsOnBranch(d),

branchNeighbours areNeighbours : Diagram → Bool
branchNeighbours areNeighbours(d) ≡

( ∀ (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ dom branchNeighbours(d) ⇒
areNeighbours(tId1, tId2, d) ),

branchNeighbours FirstIsPoints : Diagram → Bool
branchNeighbours FirstIsPoints(d) ≡

( ∀ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ dom branchNeighbours(d) ⇒
isPoints(tId1,d)

),

branchNeighbours everyPoints 2branchNbs : Diagram → Bool
branchNeighbours everyPoints 2branchNbs(d) ≡

(∀ p : TrackId • p ∈ allPoints(d) ⇒
(∃ (tId1, tId2) : TrackId × TrackId •

(tId1, tId2) ∈ dom branchNeighbours(d) ∧
p = tId1 ∧
(∃ (tId1′, tId2′) : TrackId × TrackId •

(tId1′, tId2′) ∈ dom branchNeighbours(d) ∧
p = tId1′ ∧ tId2 6= tId2′)

)
),

branchNeighbours diffNbsOnBranch : Diagram → Bool
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branchNeighbours diffNbsOnBranch(d) ≡
(∀ (p, tId1) : TrackId × TrackId •

(p, tId1) ∈ branchNeighbours(d) ⇒
(∀ (p′, tId2) : TrackId × TrackId •

(p′, tId2) ∈ branchNeighbours(d) ⇒
(p = p′ ∧ tId1 6= tId2 ⇒

(branchNeighbours(d)(p, tId1) = T.plus ∧
branchNeighbours(d)(p, tId2) = T.minus) ∨

(branchNeighbours(d)(p, tId1) = T.minus ∧
branchNeighbours(d)(p, tId2) = T.plus))))

value /∗ Well−formnedness point machines ∗/
isWfPointMachines : Diagram → Bool
isWfPointMachines(d) ≡

areSymmetrical(pointMachineTrack(d), trackPointMachine(d)) ∧
pointsSectionsExists(d),

areSymmetrical : (PointMachineId →m TrackId) ×
(TrackId →m PointMachineId) → Bool

areSymmetrical(pmt, tpm) ≡
dom pmt = rng tpm ∧
dom tpm = rng pmt ∧
( ∀ pmId : PointMachineId • pmId ∈ dom pmt ⇒

let tId = pmt(pmId)
in pmId = tpm(tId)
end ) ∧

( ∀ tId : TrackId • tId ∈ dom tpm ⇒
let pmId = tpm(tId)
in tId = pmt(pmId)
end ),

pointsSectionsExists : Diagram → Bool
pointsSectionsExists(d) ≡

dom trackPointMachine(d) = allPoints(d)

value /∗ Well−formedness signalLocations ∗/
isWfSignalLocations : Diagram → Bool
isWfSignalLocations(d) ≡

signalLocation UsesExistingSignals(d) ∧
signalsArePlacedAtValtIdNeighbours(d),

signalLocation UsesExistingSignals : Diagram → Bool
signalLocation UsesExistingSignals(d) ≡

rng signalLocations(d) = allSignals(d),

signalsArePlacedAtValtIdNeighbours : Diagram → Bool
signalsArePlacedAtValtIdNeighbours(d) ≡
( ∀ (tId1, tId2) : (TrackId × TrackId) •

(tId1, tId2) ∈ dom signalLocations(d) ⇒
areNeighbours(tId1, tId2, d) )

end
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E.1.4 Train Route Table

context: T, SL
scheme TrainRouteTable =

class
type

RelayState == drawn | dropped,
Aspect == gr | re | arbitrary,

ReleaseCond = (SL.TrackId × RelayState) × (SL.TrackId × RelayState),
ReleaseSequence = ReleaseCond × ReleaseCond, - - Indl ¿¡ Opl

DataRow ::
overlap : SL.TrackId-set
signals : SL.SignalId →m Aspect
points : SL.PointMachineId →m T.PointsState
trainDetection : SL.TrackId →m Bool
signalRelease : SL.SignalId × SL.TrackId
trainRouteRelease : ReleaseSequence
mutuallyBlocking : T.TrainRouteId →m Bool,

TrainRouteTable = T.TrainRouteId →m DataRow

value - - AUX
getEntrySignal : DataRow → SL.SignalId
getEntrySignal(dr) ≡

let (sId, tId) = signalRelease(dr) in sId end,

coveredSections : (SL.TrackId →m Bool) → SL.TrackId-set
coveredSections(trainDetection) ≡
{ tId | tId : SL.TrackId • tId ∈ dom trainDetection ∧

trainDetection(tId)},

areConnected : SL.TrackId-set × SL.Diagram → Bool
areConnected(sections, d) ≡

if sections = {} then true else
let s = hd sections, sections′ = sections \ {s}
in findConnected({s}, {s}, sections, d) = sections
end

end,

findConnected : SL.TrackId-set × SL.TrackId-set ×
SL.TrackId-set × SL.Diagram → SL.TrackId-set

findConnected(queue, visited, sectionsInRoute, d) ≡
if queue = {} then visited else

let q = hd queue,
nbs = SL.getNeighboursOf(q, d) ∩ sectionsInRoute,
queue′ = (queue \ {q}) ∪ (nbs \ visited),
visited′ = visited ∪ {q}

in findConnected(queue′, visited′, sectionsInRoute, d)
end

end

value - - Well-formedness
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isWfTrainRouteTable : TrainRouteTable × SL.Diagram → Bool
isWfTrainRouteTable(trt, d) ≡

(∀ trId : T.TrainRouteId • trId ∈ dom trt ⇒
isWfDataRow(trId, d, trt)),

isWfDataRow : T.TrainRouteId × SL.Diagram × TrainRouteTable → Bool
isWfDataRow(trId, d, trt) ≡

let dr = trt(trId)
in isWfOverlap(dr, d) ∧

isWfSignals(dr, d) ∧
isWfPoints(dr, d) ∧
isWfTrainDetection(trainDetection(dr), d) ∧
isWfSignalRelease(signalRelease(dr), d) ∧
isWfTrainRouteRelease(dr, d) ∧
isWfMutuallyBlocking(trId, trt)

end

value - - Well-formedness of overlap
isWfOverlap : DataRow × SL.Diagram → Bool
isWfOverlap(dr, d) ≡

let overlap = overlap(dr)
in card overlap > 0 ⇒

overlapCovered(overlap, trainDetection(dr)) ∧
overlapIsConnected(overlap, d) ∧
endOfRoute(dr, d)

end,

- - 4.3.3.1.1
overlapCovered : SL.TrackId-set × (SL.TrackId →m Bool) → Bool
overlapCovered(overlap, trainDetection) ≡

overlap ⊆ coveredSections(trainDetection),

- - 4.3.3.1.2
overlapIsConnected : SL.TrackId-set × SL.Diagram → Bool
overlapIsConnected(overlap, d) ≡

areConnected(overlap, d),

- - 4.3.3.1.3
endOfRoute : DataRow × SL.Diagram → Bool
endOfRoute(dr, d) ≡

let overlap = overlap(dr),
coveredSections = coveredSections(trainDetection(dr)),
route = coveredSections \ overlap

in ( ∃! tId : SL.TrackId • tId ∈ overlap ∧
let nbs = SL.getNeighboursOf(tId, d),

nbsInOverlap = nbs ∩ route
in card nbsInOverlap ≥ 1
end

)
end

value - - Well-formedness of signals
isWfSignals : DataRow × SL.Diagram → Bool
isWfSignals(dr, d) ≡

let signals = signals(dr)
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in existingSignals(signals, d) ∧
proceedEntry(getEntrySignal(dr), signals)

end,

- - 4.3.4.1.1
existingSignals : (SL.SignalId →m Aspect) × SL.Diagram → Bool
existingSignals(signals, d) ≡

dom signals = SL.allSignals(d),

- - 4.3.4.1.2
proceedEntry : SL.SignalId × (SL.SignalId →m Aspect) → Bool
proceedEntry(entrySignal, signals) ≡

signals(entrySignal) = gr

value - - Well-formedness of points
isWfPoints : DataRow × SL.Diagram → Bool
isWfPoints(dr, d) ≡

let points = points(dr)
in - - 4.3.5.1.1

pointMachinesExist(dom points, d) ∧
- - 4.3.5.1.2
pointMachinesInTRT(dr, d) ∧
- - 4.3.5.1.3
pointsInRouteLocked(dr, d) ∧
- - 4.3.5.1.4
correctPos(dr, d)

end,

- - 4.3.5.1.1
pointMachinesExist : SL.PointMachineId-set × SL.Diagram → Bool
pointMachinesExist(points, d) ≡

( ∀ pId : SL.PointMachineId • pId ∈ points ⇒
pId ∈ dom SL.pointMachineTrack(d) ∧
let tId = SL.pointMachineTrack(d)(pId)
in tId ∈ SL.allPoints(d)
end ),

- - 4.3.5.1.2
pointMachinesInTRT : DataRow × SL.Diagram → Bool
pointMachinesInTRT(dr, d) ≡

( ∀ tId : SL.TrackId •

tId ∈ dom trainDetection(dr) ⇒
SL.isPoints(tId, d) ⇒

let pmId = SL.trackPointMachine(d)(tId)
in pmId ∈ dom points(dr)
end ),

- - 4.3.5.1.3
pointsInRouteLocked : DataRow × SL.Diagram → Bool
pointsInRouteLocked(dr, d) ≡

( ∀ pId : SL.PointMachineId • pId ∈ points(dr) ⇒
let pos = points(dr)(pId),

tId = SL.pointMachineTrack(d)(pId)
in tId ∈ coveredSections(trainDetection(dr)) ⇒

(pos = T.plus ∨ pos = T.minus)
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end ),

- - 4.3.5.1.4
correctPos : DataRow × SL.Diagram → Bool
correctPos(dr, d) ≡

( ∀ pId : SL.TrackId •

pId ∈ coveredSections(trainDetection(dr)) ∩
SL.allPoints(d) ⇒

( ∀ nb : SL.TrackId •

nb ∈ SL.getNeighboursOf(pId, d) ∩
coveredSections(trainDetection(dr)) ⇒

SL.isBranchNb(pId, nb, d) ⇒
points(dr)(SL.trackPointMachine(d)(pId)) =
SL.branchNeighbours(d)(pId, nb) ))

value - - Well-formedness of train detection
isWfTrainDetection : (SL.TrackId →m Bool) × SL.Diagram → Bool
isWfTrainDetection(trainDetection, d) ≡

existingTrackSections(dom trainDetection, d) ∧
atLeastOneSectionInRoute(trainDetection) ∧
connectedRoute(trainDetection, d) ∧
justOneBranchNeighbour(trainDetection, d),

- - 4.3.6.1.1
existingTrackSections : SL.TrackId-set × SL.Diagram → Bool
existingTrackSections(sections, d) ≡

sections = SL.allLinears(d) ∪ SL.allPoints(d),

- - 4.3.6.1.2
atLeastOneSectionInRoute : (SL.TrackId →m Bool) → Bool
atLeastOneSectionInRoute(trainDetection) ≡

(∃ b : Bool • b ∈ rng trainDetection ∧ b),

- - 4.3.6.1.3
connectedRoute : (SL.TrackId →m Bool) × SL.Diagram → Bool
connectedRoute(trainDetection, d) ≡

areConnected(coveredSections(trainDetection), d),

- - 4.3.6.1.4
justOneBranchNeighbour :

(SL.TrackId →m Bool) × SL.Diagram → Bool
justOneBranchNeighbour(trainDetection, d) ≡

( ∀ tId : SL.TrackId • tId ∈ coveredSections(trainDetection) ⇒
- - Only interrested in points sections

SL.isPoints(tId, d) ⇒
- - Does not have two branch side neighbour
∼( ∃ bNb1 : SL.TrackId •

bNb1 ∈ coveredSections(trainDetection) ∧
SL.isBranchNb(tId, bNb1, d) ∧
( ∃ bNb2 : SL.TrackId •

bNb2 ∈ coveredSections(trainDetection) ∧
SL.isBranchNb(tId, bNb2, d) ∧
bNb1 6= bNb2 )

)
)



Data Models 231

value - - Well-formedness of signal release
isWfSignalRelease : (SL.SignalId × SL.TrackId) × SL.Diagram → Bool
isWfSignalRelease((sId, tId), d) ≡

sId ∈ SL.allSignals(d) ∧
tId ∈ SL.allLinears(d) ∪ SL.allPoints(d) ∧
signalFollowedByTrackSection(sId, tId, d),

- - 4.3.7.1
signalFollowedByTrackSection : SL.SignalId × SL.TrackId ×

SL.Diagram → Bool
signalFollowedByTrackSection(sId, tId, d) ≡

(∃ tId2 : SL.TrackId • tId2 ∈ SL.allSections(d) ∧
(tId2, tId) ∈ dom SL.signalLocations(d) ∧
SL.signalLocations(d)(tId2, tId) = sId

)

value - - Well-formedness of train route release
isWfTrainRouteRelease : DataRow × SL.Diagram → Bool
isWfTrainRouteRelease(dr, d) ≡

let (indl, opl) = trainRouteRelease(dr),
((tId1, rs1), (tId2, rs2)) = indl,
((tId3, rs3), (tId4, rs4)) = opl

in reverseTrackSections(tId1, tId2, tId3, tId4) ∧
reverseRelayState(rs1, rs2, rs3, rs4) ∧
trackSectionPartOfRoute(tId1, dr) ∧
trackSectionPartOfRoute(tId2, dr) ∧
properRelayState(rs1, rs2) ∧
SL.areNeighbours(tId1, tId2, d)

end,

reverseTrackSections : SL.TrackId × SL.TrackId ×
SL.TrackId × SL.TrackId → Bool

reverseTrackSections(tId1, tId2, tId3, tId4) ≡
tId1 = tId4 ∧ tId2 = tId3,

reverseRelayState : RelayState × RelayState ×
RelayState × RelayState → Bool

reverseRelayState(rs1, rs2, rs3, rs4) ≡
rs1 = rs3 ∧ rs2 = rs4,

trackSectionPartOfRoute : SL.TrackId × DataRow → Bool
trackSectionPartOfRoute(tId, dr) ≡

tId ∈ coveredSections(trainDetection(dr)),

properRelayState : RelayState × RelayState → Bool
properRelayState(rs1, rs2) ≡

rs1 = dropped ∧ rs2 = drawn

value - - Well-formedness of mutually blocking
isWfMutuallyBlocking : T.TrainRouteId × TrainRouteTable → Bool
isWfMutuallyBlocking(trId, trt) ≡

let dr = trt(trId)
in entryForEveryRoute(mutuallyBlocking(dr), trt) ∧

conflictingWhenShareSection(trId, trt) ∧
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conflictingWhenDifferentPos(trId, trt)
end,

- - 4.3.9.1 Every Train Route Has An Entry
entryForEveryRoute : (T.TrainRouteId →m Bool) ×

TrainRouteTable → Bool
entryForEveryRoute(mutuallyBlocking, trt) ≡

dom mutuallyBlocking ⊆ dom trt ∧
dom mutuallyBlocking ⊇ dom trt,

- - 4.3.9.2 Conflicting routes when sharing sections
conflictingWhenShareSection : T.TrainRouteId ×

TrainRouteTable → Bool
conflictingWhenShareSection(route1, trt) ≡

let routes = dom trt
in conflictingWhenShareSection(route1, routes, trt)
end,

conflictingWhenShareSection : T.TrainRouteId ×
T.TrainRouteId-set × TrainRouteTable → Bool

conflictingWhenShareSection(route1, routes, trt) ≡
if routes = {} then true else

let route2 = hd routes, routes′ = routes \ {route2}
in conflictingWhenShareSection(route1, route2, trt) ∧

conflictingWhenShareSection(route1, routes′, trt) - - Recursive Call
end

end,

conflictingWhenShareSection : T.TrainRouteId × T.TrainRouteId ×
TrainRouteTable → Bool

conflictingWhenShareSection(route1, route2, trt) ≡
let - - Route 1

dr1 = trt(route1),
sections1 = coveredSections(trainDetection(dr1)),
overlap1 = overlap(dr1),
sectionsNoOverlap1 = sections1 \ overlap1,
- - Route 2
dr2 = trt(route2),
sections2 = coveredSections(trainDetection(dr2)),
overlap2 = overlap(dr2),
sectionsNoOverlap2 = sections2 \ overlap2

in card (sectionsNoOverlap1 ∩ sectionsNoOverlap2) > 0 ⇒
mutuallyBlocking(dr1)(route2)

end,

- - 4.3.9.3 Conflicting routes if different point positions
conflictingWhenDifferentPos : T.TrainRouteId × TrainRouteTable → Bool
conflictingWhenDifferentPos(route1, trt) ≡

let routes = dom trt
in conflictingWhenDifferentPos(route1, routes, trt)
end,

conflictingWhenDifferentPos : T.TrainRouteId ×
T.TrainRouteId-set × TrainRouteTable → Bool

conflictingWhenDifferentPos(route1, routes, trt) ≡
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if routes = {} then true else
let route2 = hd routes,

routes′ = routes \ {route2}
in conflictingWhenDifferentPos(route1, route2, trt) ∧

conflictingWhenDifferentPos(route1, routes′, trt) - - Recursive Call
end

end,

conflictingWhenDifferentPos : T.TrainRouteId × T.TrainRouteId ×
TrainRouteTable → Bool

conflictingWhenDifferentPos(route1, route2, trt) ≡
let - - Route 1

dr1 = trt(route1),
points1 = points(dr1),
- - Route 2
dr2 = trt(route2),
points2 = points(dr2)

in ( ∃ pmId : SL.PointMachineId •

pmId ∈ dom points1 ∧
pmId ∈ dom points2 ∧
points1(pmId) 6= T.arbitrary ∧
points2(pmId) 6= T.arbitrary ∧
points1(pmId) 6= points2(pmId)

) ⇒ mutuallyBlocking(dr1)(route2)
end

end

E.1.5 Transition System

context: T
scheme TransitionSystem =

class
type

/∗ Variable in state of transition system ∗/
Var ::

id : T.VarId
val : Val,

/∗ Value as boolean or natural number ∗/
Val == mk BoolVal(b : Bool) | mk NatVal(n : Nat),

Assignment ::
id : T.VarId
assign : T.AssignExp,

MultipleAssignment = Assignment-set,

TransitionRule ::
name : Text
guard : T.BooleanExp
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assignments : MultipleAssignment,

/∗ Assertion ∗/
Assertion = Text × T.LTLformula,

TransitionSystem ::
name : Text
state : Var-set
transitionRules : TransitionRule-set
assertions : Assertion-set

value /∗ Auxiliary functions ∗/
isIdInState : T.VarId × Var-set → Bool
isIdInState(id, state) ≡

( ∃ var : Var • var ∈ state ∧ id = id(var) ),

idsInBoolExp : T.BooleanExp → T.VarId-set
idsInBoolExp(boolExp) ≡

case boolExp of
T.bool(b) → {},
T.literal(l) → {l},
T.and(a) → idsInBoolExp(a),
T.or(o) → idsInBoolExp(o),
T.neg(n) → idsInBoolExp(n),
T.lessthan(l,r) →

idsInArithmeticExp(l) ∪ idsInArithmeticExp(r),
T.greaterthan(l,r) →

idsInArithmeticExp(l) ∪ idsInArithmeticExp(r),
T.geq(l,r) →

idsInArithmeticExp(l) ∪ idsInArithmeticExp(r),
T.equals(l,r) →

idsInArithmeticExp(l) ∪ idsInArithmeticExp(r)
end,

idsInBoolExp : T.BooleanExp-set → T.VarId-set
idsInBoolExp(boolExps) ≡

let boolExp = hd boolExps, boolExps′ = boolExps \ {boolExp}
in if boolExps = {} then {}

else idsInBoolExp(boolExp) ∪ idsInBoolExp(boolExps′)
end

end,

idsInArithmeticExp : T.ArithmeticExp → T.VarId-set
idsInArithmeticExp(aExp) ≡

case aExp of
T.add(a) → idsInArithmeticExp(a),
T.sub(s) → idsInArithmeticExp(s),
T.literal(l) → {l}

end,

idsInArithmeticExp : T.ArithmeticExp-set → T.VarId-set
idsInArithmeticExp(aExps) ≡

let aExp = hd aExps, aExps′ = aExps \ {aExp}
in if aExps = {} then {}

else idsInArithmeticExp(aExp) ∪
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idsInArithmeticExp(aExps′)
end

end,

idsInLTL : T.LTLformula → T.VarId-set
idsInLTL(ltl) ≡

case ltl of
T.b(boolExp) → idsInBoolExp(boolExp),
T.ltrl(l) → {l},
T.conj(ltls) → idsInLTL(ltls),
T.disj(ltls) → idsInLTL(ltls),
T.paren(ltl) → idsInLTL(ltl),
T.neg(ltl) → idsInLTL(ltl),
T.impl(ltl1, ltl2) → idsInLTL(ltl1) ∪ idsInLTL(ltl2),
T.x(ltl) → idsInLTL(ltl),
T.g(ltl) → idsInLTL(ltl),
T.f(ltl) → idsInLTL(ltl),
T.u(ltl1, ltl2) → idsInLTL(ltl1) ∪ idsInLTL(ltl2)

end,

idsInLTL : T.LTLformula-set → T.VarId-set
idsInLTL(ltls) ≡

let ltl = hd ltls, ltls′ = ltls \ {ltl}
in if ltls = {} then {}

else idsInLTL(ltl) ∪ idsInLTL(ltls′)
end

end

value /∗ Well−formness ∗/
isWfTransitionSystem : TransitionSystem → Bool
isWfTransitionSystem(ts) ≡

isWfName(name(ts)) ∧
isWfState(state(ts)) ∧
isWfTransitionRules(ts) ∧
isWfAssertions(ts)

value /∗ Well−formness of name ∗/
isWfName : Text → Bool
isWfName(name) ≡ name 6= ′′′′

value /∗ Well−formness of state ∗/
isWfState : Var-set → Bool
isWfState(vars) ≡ uniqueIds(vars) ∧ validIds(vars),

uniqueIds : Var-set → Bool
uniqueIds(vars) ≡

( ∀ var1 : Var • var1 ∈ vars ⇒
∼( ∃ var2 : Var • var2 ∈ vars ∧

id(var1) = id(var2) ∧ var1 6= var2)
),

validIds : Var-set → Bool
validIds(vars) ≡

( ∀ var : Var • var ∈ vars ⇒
id(var) 6= ′′′′ ∧
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let char = hd id(var)
in char 6= ′0′ ∧ char 6= ′1′ ∧

char 6= ′2′ ∧ char 6= ′3′ ∧
char 6= ′4′ ∧ char 6= ′5′ ∧
char 6= ′6′ ∧ char 6= ′7′ ∧
char 6= ′8′ ∧ char 6= ′9′

end )

value /∗ Well−formness of transition rules ∗/
isWfTransitionRules : TransitionSystem → Bool
isWfTransitionRules(ts) ≡

let state = state(ts),
trs = transitionRules(ts)

in validNames(trs) ∧
uniqueNames(trs) ∧
assignmentToExistingIds(ts) ∧
idsInGuardMustBeInState(state, trs) ∧
nonemptyAssignment(trs) ∧
idUpdOnlyOnce(trs)

end,

validNames : TransitionRule-set → Bool
validNames(trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
name(tr) 6= ′′′′

),

uniqueNames : TransitionRule-set → Bool
uniqueNames(trs) ≡

( ∀ tr1 : TransitionRule • tr1 ∈ trs ⇒
∼( ∃ tr2 : TransitionRule • tr2 ∈ trs ∧

tr1 6= tr2 ∧ name(tr1) = name(tr2) )
),

assignmentToExistingIds : TransitionSystem → Bool
assignmentToExistingIds(ts) ≡

( ∀ tr : TransitionRule • tr ∈ transitionRules(ts) ⇒
( ∀ assign : Assignment • assign ∈ assignments(tr) ⇒

( ∃ var : Var • var ∈ state(ts) ∧
id(assign) = id(var) )

)
),

idsInGuardMustBeInState : Var-set × TransitionRule-set → Bool
idsInGuardMustBeInState(state, trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
( ∀ id : T.VarId • id ∈ idsInBoolExp(guard(tr)) ⇒

( ∃ var : Var • var ∈ state ∧
id = id(var) )

)
),

nonemptyAssignment : TransitionRule-set → Bool
nonemptyAssignment(trs) ≡



Data Models 237

( ∀ tr : TransitionRule • tr ∈ trs ⇒
assignments(tr) 6= {}

),

idUpdOnlyOnce : TransitionRule-set → Bool
idUpdOnlyOnce(trs) ≡

( ∀ tr : TransitionRule • tr ∈ trs ⇒
let ma = assignments(tr)
in ( ∀ assign : Assignment • assign ∈ ma ⇒

∼( ∃ assign2 : Assignment • assign2 ∈ ma ∧
assign 6= assign2 ∧ id(assign) = id(assign2) )

)
end

)

value /∗ Well−formness of assertions ∗/
isWfAssertions : TransitionSystem → Bool
isWfAssertions(ts) ≡

let state = state(ts),
assertions = assertions(ts)

in nonemptyNames(assertions) ∧
uniqueNames(assertions) ∧
existingVars(state, assertions)

end,

nonemptyNames : Assertion-set → Bool
nonemptyNames(assertions) ≡

( ∀ (name, ltl) : Assertion • (name, ltl) ∈ assertions ⇒
name 6= ′′′′ ),

uniqueNames : Assertion-set → Bool
uniqueNames(assertions) ≡

( ∀ (name, ltl) : Assertion • (name, ltl) ∈ assertions ⇒
∼( ∃ (name2, ltl2) : Assertion •

(name2, ltl2) ∈ assertions ∧
(name, ltl) 6= (name2, ltl2) ∧
name = name2 )

),

existingVars : Var-set × Assertion-set → Bool
existingVars(state, assertions) ≡

( ∀ (name, ltl) : Assertion • (name, ltl) ∈ assertions ⇒
( ∀ id : T.VarId • id ∈ idsInLTL(ltl) ⇒

isIdInState(id, state) )
)

end
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E.2 Generators

E.2.1 Objects

E.2.1.1 Generator

context: Generator
object G : Generator

E.2.1.2 AssertionGenerator

context: AssertionGenerator
object AG : AssertionGenerator

context: ConsistencyAssertionGenerator
object CAG : ConsistencyAssertionGenerator

context: SafetyAssertionGenerator
object SAG : SafetyAssertionGenerator

context: TrtAssertionGenerator
object TAG : TrtAssertionGenerator

E.2.1.3 StateGenerator

context: StateGenerator
object SG : StateGenerator

E.2.1.4 TransitionGenerator

context: TransitionGenerator
object TG : TransitionGenerator
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context: TrainMovementTransitionGenerator
object TMTG : TrainMovementTransitionGenerator

context: OtherExternalTransitionsGenerator
object OXTG : OtherExternalTransitionsGenerator

E.2.2 Generator

context: AG, SG, TG, ORA, TMA
scheme Generator =

class
value

generate : Text × ORA.ObjectRelayAssociations ×
IP.InterlockingPlan × Text-set → TS.TransitionSystem

generate(name, ora, ip, buttonIds) ≡
let sld = IP.sld(ip),

tma = genTrainMovementAssociations(sld)
in TS.mk TransitionSystem(

name,
SG.generateStateSpace(ip, tma),
TG.generateTransitionSystem(ora, ip, tma, buttonIds),
AG.generateAssertions(ora, ip, tma))

end
pre IP.isWfInterlockingPlan(ip) ∧

ORA.isWfObjectRelayAssociations(ora, ip),

genTrainMovementAssociations :
SL.Diagram → TMA.TrainMovementAssociations

genTrainMovementAssociations(d) ≡
TMA.mk TrainMovementAssociations(

SG.genConVars(SL.neighbours(d), d),
SG.genCntVars(SL.allSections(d), d),
SG.genDirFwdVars(SL.allSections(d), d),
SG.genDirBwdVars(SL.allSections(d), d),
SG.genDirections(d) )

end

E.2.3 Assertion Generator

context: CAG, SAG, TAG
scheme AssertionGenerator =

class
value

generateAssertions :
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ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateAssertions(ora, ip, tma) ≡
CAG.genConsistencyAssertions(ora, ip, tma) ∪
SAG.genSafetyAssertions(ora, ip, tma) ∪
TAG.genTrtAssertions(ora, ip, tma)

pre IP.isWfInterlockingPlan(ip) ∧
TMA.isWfTrainMovementAssociations(IP.sld(ip), tma) ∧
ORA.isWfObjectRelayAssociations(ora, ip)

end

E.2.3.1 Consistency Assertion Generator

context: ORA, IP, TMA
scheme ConsistencyAssertionGenerator =

class
value

genConsistencyAssertions :
ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

genConsistencyAssertions(ora, ip, tma) ≡
- - 9.2 Track Occupation
generateOccupationAssertions(ora, ip, tma) ∪
- - 9.3 Track Free
generateFreeAssertions(ora, ip, tma) ∪
- - 9.4 Train Direction
generateDirectionAssertions(ip, tma) ∪
- - 9.5 Points Configuration
generatePointsConfigurationAssertions(ora, ip) ∪
- - 9.6 Train Connection
generateConnectionAssertions(ip, tma)

pre IP.isWfInterlockingPlan(ip) ∧
TMA.isWfTrainMovementAssociations(IP.sld(ip), tma) ∧
ORA.isWfObjectRelayAssociations(ora, ip)

value - - 9.2 Track Occupation
generateOccupationAssertions :

ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateOccupationAssertions(ora, ip, tma) ≡
let d = IP.sld(ip),

sections = SL.allLinears(d) ∪ SL.allPoints(d) - - NB: No line pieces!
in generateOccupationAssertions(sections, ora, tma)
end,

generateOccupationAssertions :
SL.TrackId-set × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateOccupationAssertions(sections, ora, tma) ≡
if sections = {} then {} else
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let s = hd sections,
sections′ = sections \ {s}

in {generateOccupationAssertion1(s, ora, tma),
generateOccupationAssertion2(s, ora, tma)} ∪

generateOccupationAssertions(sections′, ora, tma) - - Recursive
end

end,

- - cnt 01 ¿ 0 =¿ ∼01
generateOccupationAssertion1 :

SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion

generateOccupationAssertion1(s, ora, tma) ≡
(′′occ_′′ ̂ s,
genOccuFormula1(s, ora, tma)),

genOccuFormula1 :
SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → T.LTLformula

genOccuFormula1(s, ora, tma) ≡
T.g(T.impl(T.b(T.greaterthan(

T.literal(TMA.getCounterVar(s, tma)),
T.literal(′′0′′))),
T.neg(T.ltrl(ORA.trackRelayAssoc(ora)(s))))),

- - ∼01 =¿ cnt 01 ¿ 0
generateOccupationAssertion2 :

SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion

generateOccupationAssertion2(s, ora, tma) ≡
( ′′occ_′′ ̂ s ̂ ′′_′′,

genOccuFormula2(s, ora, tma) ),

genOccuFormula2 :
SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → T.LTLformula

genOccuFormula2(s, ora, tma) ≡
T.g(

T.impl(T.neg(T.ltrl(ORA.trackRelayAssoc(ora)(s))),
T.b(T.greaterthan(T.literal(TMA.getCounterVar(s, tma)),

T.literal(′′0′′)))))

value - - 9.3 Track Free
generateFreeAssertions :

ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateFreeAssertions(ora, ip, tma) ≡
let d = IP.sld(ip),

sections = SL.allLinears(d) ∪ SL.allPoints(d) - - NB: No line pieces!
in generateFreeAssertions(sections, ora, tma)
end,

generateFreeAssertions :
SL.TrackId-set × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion-set
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generateFreeAssertions(sections, ora, tma) ≡
if sections = {} then {} else

let s = hd sections,
sections′ = sections \ {s}

in {generateFreeAssertion1(s, ora, tma),
generateFreeAssertion2(s, ora, tma)} ∪

generateFreeAssertions(sections′, ora, tma) - - Recursive
end

end,

- - cnt 01 = 0 =¿ t01
generateFreeAssertion1 :

SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion

generateFreeAssertion1(s, ora, tma) ≡
(′′free_′′ ̂ s,
genFreeFormula1(s, ora, tma)),

genFreeFormula1 :
SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → T.LTLformula

genFreeFormula1(s, ora, tma) ≡
T.g(T.impl(T.b(T.equals(T.literal(TMA.getCounterVar(s, tma)),

T.literal(′′0′′))),
T.ltrl(ORA.trackRelayAssoc(ora)(s)))),

- - t01 =¿ cnt 01 = 0
generateFreeAssertion2 :

SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion

generateFreeAssertion2(s, ora, tma) ≡
(′′free_′′ ̂ s ̂ ′′_′′,
genFreeFormula2(s, ora, tma)),

genFreeFormula2 :
SL.TrackId × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → T.LTLformula

genFreeFormula2(s, ora, tma) ≡
T.g(T.impl(T.ltrl(ORA.trackRelayAssoc(ora)(s)),

T.b(T.equals(T.literal(TMA.getCounterVar(s, tma)),
T.literal(′′0′′)))))

value - - 9.4 Train Direction
generateDirectionAssertions : IP.InterlockingPlan ×

TMA.TrainMovementAssociations → TS.Assertion-set
generateDirectionAssertions(ip, tma) ≡

let d = IP.sld(ip),
sections = SL.allLinears(d) ∪ SL.allPoints(d) - - NB: No line pieces!

in generateDirectionAssertions(sections, tma)
end,

generateDirectionAssertions : SL.TrackId-set ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateDirectionAssertions(sections, tma) ≡
if sections = {} then {} else



Generators 243

let s = hd sections,
sections′ = sections \ {s}

in {generateDirectionAssertion(s, tma)} ∪
generateDirectionAssertions(sections′, tma) - - Recursive

end
end,

generateDirectionAssertion : SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assertion

generateDirectionAssertion(tId, tma) ≡
(′′direction_′′ ̂ tId,
genDirFormula(tId, tma)

),

genDirFormula : SL.TrackId ×
TMA.TrainMovementAssociations → T.LTLformula

genDirFormula(tId, tma) ≡
let trackFwd = TMA.getDirVar(tId, T.fwd, tma),

trackBwd = TMA.getDirVar(tId, T.bwd, tma),
trackCnt = TMA.getCounterVar(tId, tma)

in T.g(T.impl(T.disj({T.ltrl(trackFwd), T.ltrl(trackBwd)}),
T.b(T.greaterthan(T.literal(trackCnt), T.literal(′′0′′)))))

end

value - - 9.5 Points Configuration
generatePointsConfigurationAssertions :

ORA.ObjectRelayAssociations ×
IP.InterlockingPlan → TS.Assertion-set

generatePointsConfigurationAssertions(ora, ip) ≡
let d = IP.sld(ip),

allPoints = SL.allPoints(d)
in generatePointsConfigurationAssertions(allPoints, d, ora)
end,

generatePointsConfigurationAssertions :
SL.TrackId-set × SL.Diagram ×
ORA.ObjectRelayAssociations → TS.Assertion-set

generatePointsConfigurationAssertions(sections, d, ora) ≡
if sections = {} then {} else

let s = hd sections,
sections′ = sections \ {s}

in {generatePointsConfigurationAssertion(s, d, ora)} ∪
generatePointsConfigurationAssertions(sections′, d, ora) - - Recursive

end
end,

generatePointsConfigurationAssertion :
SL.TrackId × SL.Diagram ×
ORA.ObjectRelayAssociations → TS.Assertion

generatePointsConfigurationAssertion(s, d, ora) ≡
(′′points_configuration_′′ ̂ s,
genPointsConfigFormula(s, d, ora)
),

genPointsConfigFormula : SL.TrackId × SL.Diagram ×
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ORA.ObjectRelayAssociations → T.LTLformula
genPointsConfigFormula(s, d, ora) ≡

T.g(T.impl(T.ltrl(′′idle′′),T.neg(T.conj(
{T.ltrl(ORA.getPointRelay(s, T.plus, ora, d)),
T.ltrl(ORA.getPointRelay(s, T.minus, ora, d))
}))))

value - - 9.6 Train Connection
generateConnectionAssertions : IP.InterlockingPlan ×

TMA.TrainMovementAssociations → TS.Assertion-set
generateConnectionAssertions(ip, tma) ≡

let d = IP.sld(ip),
neighbours = SL.neighbours(d) - - NB: Includes line pieces

in generateConnectionAssertions(neighbours, d, tma)
end,

generateConnectionAssertions :
(SL.TrackId × SL.TrackId)-set × SL.Diagram ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateConnectionAssertions(neighbours, d, tma) ≡
if neighbours = {} then {} else

let nb = hd neighbours,
neighbours′ = neighbours \ {nb}

in generateConnectionAssertion(nb, d, tma) ∪
generateConnectionAssertions(neighbours′, d, tma) - - Recursive

end
end,

generateConnectionAssertion :
(SL.TrackId × SL.TrackId) × SL.Diagram ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateConnectionAssertion((nb1,nb2), d, tma) ≡
if SL.isLine(nb1, d) ∨ SL.isLine(nb2, d) then {} - - NB: Discard line pieces
else {( TMA.getConnectionVar(nb1, nb2, tma),

genConFormula(nb1, nb2, tma) )}
end,

genConFormula : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → T.LTLformula

genConFormula(from, to, tma) ≡
T.g(T.impl(T.ltrl(TMA.getConnectionVar(from, to, tma)),

T.conj({T.b(
T.greaterthan(T.literal(TMA.getCounterVar(from, tma)),

T.literal(′′0′′))),
T.b(T.greaterthan(T.literal(TMA.getCounterVar(to, tma)),

T.literal(′′0′′)))})))

end

E.2.3.2 SafetyAssertionGenerator

context: ORA, IP, TMA
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scheme SafetyAssertionGenerator =
class

value
genSafetyAssertions :

ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

genSafetyAssertions(ora, ip, tma) ≡
- - 10.2 No Collision
genNoCollisionAssertions(ip, tma) ∪
- - 10.3 No Derailing
genNoDerailingAssertions(ora, ip, tma)

pre IP.isWfInterlockingPlan(ip) ∧
TMA.isWfTrainMovementAssociations(IP.sld(ip), tma) ∧
ORA.isWfObjectRelayAssociations(ora, ip)

value - - 10.2 No Collision
genNoCollisionAssertions : IP.InterlockingPlan ×

TMA.TrainMovementAssociations → TS.Assertion-set
genNoCollisionAssertions(ip, tma) ≡

let d = IP.sld(ip),
sections = SL.allLinears(d) ∪ SL.allPoints(d) - - NB: No line pieces!

in generateNoCollisionAssertions(sections, tma)
end,

generateNoCollisionAssertions : SL.TrackId-set ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateNoCollisionAssertions(sections, tma) ≡
if sections = {} then {} else

let s = hd sections,
sections′ = sections \ {s}

in {generateNoCollisionAssertion(s, tma)} ∪
generateNoCollisionAssertions(sections′, tma) - - Recursive call

end
end,

generateNoCollisionAssertion : SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assertion

generateNoCollisionAssertion(s, tma) ≡
(′′no_collision_′′ ̂ s,
genNoColFormula(s, tma) ),

genNoColFormula : SL.TrackId ×
TMA.TrainMovementAssociations → T.LTLformula

genNoColFormula(s, tma) ≡
T.g(T.b(T.lessthan(T.literal(TMA.getCounterVar(s, tma)),

T.literal(′′2′′))))

value - - 10.3 No Derailing
genNoDerailingAssertions :

ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

genNoDerailingAssertions(ora, ip, tma) ≡
let d = IP.sld(ip),

sections = SL.allPoints(d),
branchNbs = dom SL.branchNeighbours(d)
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in - - G(cnt 01 ¿= 1 =¿ plus01 \/ minus01)
generateNoDerailingAssertions(sections, d, ora, tma) ∪
- - G(con 02 03 =¿ plus02)
generateNoDerailingAssertions(branchNbs, d, ora, tma)

end,

- - G(cnt 01 ¿= 1 =¿ plus01 \/ minus01)
generateNoDerailingAssertions : SL.TrackId-set ×

SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateNoDerailingAssertions(sections, d, ora, tma) ≡
if sections = {} then {} else

let s = hd sections,
sections′ = sections \ {s}

in {generateNoDerailingAssertion(s, d, ora, tma)} ∪
generateNoDerailingAssertions(sections′, d, ora, tma) - - Recursive call

end
end,

generateNoDerailingAssertion : SL.TrackId ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion

generateNoDerailingAssertion(s, d, ora, tma) ≡
(′′points_locked_when_occupied_′′ ̂ s,
genNoDerailFormula(s, d, ora, tma) ),

genNoDerailFormula : SL.TrackId ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → T.LTLformula

genNoDerailFormula(s, d, ora, tma) ≡
T.g(T.impl(T.b(T.geq(T.literal(

TMA.getCounterVar(s, tma)), T.literal(′′1′′))),
T.disj({T.ltrl(ORA.getPointRelay(s, T.plus, ora, d)),

T.ltrl(ORA.getPointRelay(s, T.minus, ora, d))
}))),

- - G(con 02 03 =¿ plus02)
generateNoDerailingAssertions : (SL.TrackId × SL.TrackId)-set ×

SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion-set

generateNoDerailingAssertions(bNbs, d, ora, tma) ≡
if bNbs = {} then {} else

let bNb = hd bNbs,
bNbs′ = bNbs \ {bNb}

in {generateNoDerailingAssertion(bNb, d, ora, tma)} ∪
generateNoDerailingAssertions(bNbs′, d, ora, tma) - - Recursive call

end
end,

generateNoDerailingAssertion : (SL.TrackId × SL.TrackId) ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.Assertion

generateNoDerailingAssertion(bNb, d, ora, tma) ≡
let (pointsSection, nb) = bNb,

branch = SL.branchNeighbours(d)(pointsSection, nb),
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conVar = TMA.getConnectionVar(pointsSection, nb, tma),
branchVar = ORA.getPointRelay(pointsSection, branch, ora, d)

in (′′no_derailing_′′ ̂ pointsSection ̂ ′′_′′ ̂ nb,
T.g(T.impl(T.ltrl(conVar), T.ltrl(branchVar))))

end

end

E.2.3.3 TrtAssertionGenerator

context: ORA, IP, TMA
scheme TrtAssertionGenerator =

class
value

genTrtAssertions :
ORA.ObjectRelayAssociations × IP.InterlockingPlan ×
TMA.TrainMovementAssociations → TS.Assertion-set

genTrtAssertions(ora, ip, tma) ≡
- - 10.4 Points Position
genPointsPositionAssertions(ora, IP.trt(ip)) ∪
- - 10.5 Signal
genSignalAssertions(ora, ip) ∪
- - 10.6 Signal Release
genSignalReleaseAssertions(ora, ip) ∪
- - 10.7 Conflicting Routes
genConflictingRoutesAssertions(ora, ip) ∪
- - 10.8 Train Route Release
genTrainRouteReleaseAssertions(ora, ip)

pre IP.isWfInterlockingPlan(ip) ∧
TMA.isWfTrainMovementAssociations(IP.sld(ip), tma) ∧
ORA.isWfObjectRelayAssociations(ora, ip)

value - - 10.4 Points Position
genPointsPositionAssertions : ORA.ObjectRelayAssociations ×

TRT.TrainRouteTable → TS.Assertion-set
genPointsPositionAssertions(ora, trt) ≡

let lockingRelays = rng ORA.routeRelayAssoc(ora)
in generatePointPositionAssertions(lockingRelays, ora, trt)
end,

generatePointPositionAssertions :
T.VarId-set × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

generatePointPositionAssertions(lockingRelays, ora, trt) ≡
if lockingRelays = {} then {} else

let relayId = hd lockingRelays,
lockingRelays′ = lockingRelays \ {relayId}

in {genPointPosAssert(relayId, ora, trt)} ∪
generatePointPositionAssertions(lockingRelays′, ora, trt)

end
end,
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genPointPosAssert : T.VarId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion

genPointPosAssert(relayId, ora, trt) ≡
(′′point_position_′′ ̂ relayId,

genPointPosFormula(relayId, ora, trt) ),

genPointPosFormula : T.VarId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula

genPointPosFormula(relayId, ora, trt) ≡
let routeIds = getRouteIdsOfLockingRelay(

ORA.routeRelayAssoc(ora),relayId)
in T.g(T.impl(T.neg(T.ltrl(relayId)),

T.disj(relayPointPosConfig(routeIds, ora, trt))))
end,

relayPointPosConfig : T.TrainRouteId-set ×
ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula-set

relayPointPosConfig(routeIds, ora, trt) ≡
if routeIds = {} then {} else

let routeId = hd routeIds,
routeIds′ = routeIds \ {routeId}

in {T.conj(routePointPosConfig(routeId, ora, trt))} ∪
relayPointPosConfig(routeIds′, ora, trt)

end
end,

routePointPosConfig : T.TrainRouteId ×
ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula-set

routePointPosConfig(routeId, ora, trt) ≡
let pointsMap = TRT.points(trt(routeId)),

pointsSet = mapToSet(pointsMap)
in routePointPosConfig (pointsSet, ora, trt)
end,

routePointPosConfig : (SL.PointMachineId × T.PointsState)-set ×
ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula-set

routePointPosConfig (pointsSet, ora, trt) ≡
if pointsSet = {} then {} else

let (pId, branch) = hd pointsSet,
pointsSet′ = pointsSet \ {(pId, branch)}

in if branch = T.arbitrary then {}
else {T.ltrl(ORA.pointRelayAssoc(ora)(pId, branch))}
end ∪ routePointPosConfig (pointsSet′, ora, trt)

end
end,

getRouteIdsOfLockingRelay : (T.TrainRouteId →m T.VarId) ×
T.VarId → T.TrainRouteId-set

getRouteIdsOfLockingRelay(rrAssocs, relayId) ≡
{ routeId | routeId : T.VarId •

routeId ∈ dom rrAssocs ∧
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rrAssocs(routeId) = relayId}

value - - 10.5 Signal
genSignalAssertions : ORA.ObjectRelayAssociations ×

IP.InterlockingPlan → TS.Assertion-set
genSignalAssertions(ora, ip) ≡

let d = IP.sld(ip),
trt = IP.trt(ip)

in generateSignalAspectAssertions(d, ora, trt) ∪
generateSignalLockingAssertions(d, ora, trt)

end,

generateSignalAspectAssertions :
SL.Diagram × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

generateSignalAspectAssertions(d, ora, trt) ≡
generateSignalAspectAssertions(SL.allSignals(d), ora, trt),

generateSignalAspectAssertions :
SL.SignalId-set × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

generateSignalAspectAssertions(allSignals, ora, trt) ≡
if allSignals = {} then {} else

let signalId = hd allSignals,
allSignals′ = allSignals \ {signalId}

in {generateSignalAspectAssertion(signalId, ora)} ∪
- - Recursive call
generateSignalAspectAssertions(allSignals′, ora, trt)

end
end,

generateSignalAspectAssertion : SL.SignalId ×
ORA.ObjectRelayAssociations → TS.Assertion

generateSignalAspectAssertion(signalId, a) ≡
(′′signal_′′ ̂ signalId,

genSignalAspectFormula(signalId, a)),

genSignalAspectFormula : SL.SignalId ×
ORA.ObjectRelayAssociations → T.LTLformula

genSignalAspectFormula(signalId, a) ≡
let gr = ORA.signalRelayAssoc(a)(signalId, ORA.gr),

re = ORA.signalRelayAssoc(a)(signalId, ORA.re)
in T.g(T.impl(T.ltrl(′′idle′′),

T.neg(T.conj({T.ltrl(gr), T.ltrl(re)}))))
end,

- - Signal locking
generateSignalLockingAssertions :

SL.Diagram × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

generateSignalLockingAssertions(d, ora, trt) ≡
let allSignals = SL.allSignals(d)
in generateSignalLockingAssertions(allSignals, ora, trt)
end,
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generateSignalLockingAssertions :
SL.SignalId-set × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

generateSignalLockingAssertions(signals, ora, trt) ≡
if signals = {} then {} else

let s = hd signals,
signals′ = signals \ {s}

in {generateSignalLockingAssertion(s, ora, trt)} ∪
- - Recursive Call
generateSignalLockingAssertions(signals′, ora, trt)

end
end,

generateSignalLockingAssertion :
SL.SignalId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion

generateSignalLockingAssertion(signalId, ora, trt) ≡
(′′signal_exp_′′ ̂ signalId,

genSigFormula(signalId, ora, trt)),

genSigFormula :
SL.SignalId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula

genSigFormula(signalId, ora, trt) ≡
let coveredRoutes = getRoutesCoveredBySignal(signalId, trt),

grVarId = ORA.signalRelayAssoc(ora)(signalId, ORA.gr)
in T.g(T.impl(T.conj({T.ltrl(′′idle′′), T.ltrl(grVarId)}),

T.disj(getReservations(
coveredRoutes, signalId, ora, trt))))

end,

getReservations : T.TrainRouteId-set ×
SL.SignalId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula-set

getReservations(trainRoutes, signalId, a, trt) ≡
if trainRoutes = {} then {} else

let routeId = hd trainRoutes,
trainRoutes′ = trainRoutes \ {routeId},
tracksFree = getReqFreeTracks(trt, routeId),
redSignals = getSignalAspectRoutes1(routeId, TRT.re, trt),
nonConflictRoutes = getNonConflictingRoutes(

TRT.mutuallyBlocking(trt(routeId)), routeId)
in if getIfGreenSignalIsMoreThanOnce1(

signalId, dom trt, trt, 0) > 1
then
{T.paren(T.conj({T.neg(T.ltrl(

ORA.routeRelayAssoc(a)(routeId)))}
∪
routePointPosConfig(routeId, a, trt) ∪
getTrackRelays(tracksFree, a) ∪
getSignalRelays(redSignals, ORA.re, a) ∪
{T.disj(getRouteRelayPointPosConfigSignal(
nonConflictRoutes, routeId, a, trt))}))}
else
{T.paren(T.conj({T.neg(T.ltrl(
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ORA.routeRelayAssoc(a)(routeId)))} ∪
routePointPosConfig(routeId, a, trt) ∪
getTrackRelays(tracksFree, a) ∪
getSignalRelays(redSignals, ORA.re, a)))}
end
∪

getReservations(trainRoutes′,signalId, a, trt)
end

end,

getRouteRelayPointPosConfigSignal : T.TrainRouteId-set ×
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula-set

getRouteRelayPointPosConfigSignal(routeIds, currentRouteId, a, trt) ≡
if routeIds = {} then {} else

let routeId = hd routeIds, routeIds′ = routeIds \ {routeId},
signalsGr =

getSignalAspectRoutes(routeId, TRT.gr, trt),
signalsRe =

getSignalAspectRoutes(routeId, TRT.re, trt),
signalRED =

getSignalAspectRoutes(currentRouteId, TRT.re, trt)
in {T.paren(T.disj({

T.conj(getSignalRelays(signalRED, ORA.re, a)),
T.paren(T.conj({T.neg(T.ltrl(

ORA.routeRelayAssoc(a)(routeId)))} ∪
routePointPosConfig(routeId, a, trt) ∪
getSignalRelays(signalsGr, ORA.gr, a) ∪
getSignalRelays(signalsRe, ORA.re, a)))

}))}
∪ getRouteRelayPointPosConfigSignal(

routeIds′, currentRouteId, a, trt)
end

end,

getTrackRelays : SL.TrackId-set ×
ORA.ObjectRelayAssociations → T.LTLformula-set

getTrackRelays(tIds, a) ≡
if tIds = {} then {} else

let tId = hd tIds, tIds′ = tIds \ {tId}
in {T.ltrl(ORA.getTrackRelay(tId, a))} ∪

getTrackRelays(tIds′, a)
end

end,

getSignalRelays : SL.SignalId-set × ORA.Lamp ×
ORA.ObjectRelayAssociations → T.LTLformula-set

getSignalRelays(signals,asp, a) ≡
if signals = {} then {} else

let signalId = hd signals,
signals′ = signals \ {signalId}

in {T.ltrl(ORA.signalRelayAssoc(a)(signalId, asp))} ∪
getSignalRelays(signals′, asp, a)

end
end,
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getSignalAspectRoutes :
T.TrainRouteId × TRT.Aspect ×
TRT.TrainRouteTable → SL.SignalId-set

getSignalAspectRoutes(routeId, aspect, trt) ≡
{signalId | signalId : SL.SignalId •

signalId ∈ dom TRT.signals(trt(routeId)) ∧
TRT.signals(trt(routeId))(signalId) = aspect},

getSignalAspectRoutes1 :
T.TrainRouteId × TRT.Aspect ×
TRT.TrainRouteTable → SL.SignalId-set

getSignalAspectRoutes1(routeId, aspect, trt) ≡
{signalId | signalId : SL.SignalId •

signalId ∈ dom TRT.signals(trt(routeId)) ∧
TRT.signals(trt(routeId))(signalId) = aspect ∧
∼isSignalGreenInNonConflictingRoute(

routeId, dom trt, signalId, trt)},

isSignalGreenInNonConflictingRoute :
T.TrainRouteId × T.TrainRouteId-set ×
SL.SignalId × TRT.TrainRouteTable → Bool

isSignalGreenInNonConflictingRoute(routeId, allRoutes, signalId, trt) ≡
if allRoutes = {} then false else

let curRouteId = hd allRoutes,
allRoutes′ = allRoutes \ {curRouteId},
mutualBlock = TRT.mutuallyBlocking(trt(routeId)),
nonConflict = getNonConflictingRoutes(mutualBlock, routeId)

in containsTrueInSet(nonConflict, signalId, trt)
end

end,

containsTrueInSet :
T.TrainRouteId-set × SL.SignalId ×
TRT.TrainRouteTable → Bool

containsTrueInSet(allNonConflictRoutes, signalId, trt) ≡
let set = isSignalGreenInNonConflictingRoutes(

allNonConflictRoutes, signalId, trt),
set′ = set \ {hd set}

in hd set
end,

isSignalGreenInNonConflictingRoutes : T.TrainRouteId-set ×
SL.SignalId × TRT.TrainRouteTable → Bool-set

isSignalGreenInNonConflictingRoutes(allNonConflictRoutes, signalId, trt) ≡
if allNonConflictRoutes = {} then {false} else

let routeId = hd allNonConflictRoutes,
allNonConflictRoutes′ = allNonConflictRoutes \ {routeId}

in if TRT.signals(trt(routeId))(signalId) = TRT.gr then {true}
else {false}
end ∪ isSignalGreenInNonConflictingRoutes(

allNonConflictRoutes′, signalId, trt)
end

end,
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getRoutesCoveredBySignal : SL.SignalId ×
TRT.TrainRouteTable → T.TrainRouteId-set

getRoutesCoveredBySignal(signalId, trt) ≡
{routeId | routeId : T.TrainRouteId •

routeId ∈ dom trt ∧
signalId ∈ dom TRT.signals(trt(routeId)) ∧
TRT.signals(trt(routeId))(signalId) = TRT.gr},

getReqFreeTracks : TRT.TrainRouteTable ×
T.TrainRouteId → T.VarId-set

getReqFreeTracks(trt, routeId) ≡
{trackId | trackId : SL.TrackId •

trackId ∈ dom TRT.trainDetection(trt(routeId)) ∧
TRT.trainDetection(trt(routeId))(trackId) },

getIfGreenSignalIsMoreThanOnce1 : SL.SignalId ×
T.TrainRouteId-set × TRT.TrainRouteTable × Nat → Nat

getIfGreenSignalIsMoreThanOnce1(signalId, allRoutes, trt, counter) ≡
if allRoutes = {} then counter else

let routeId = hd allRoutes,
allRoutes′ = allRoutes \ {routeId}

in if TRT.signals(trt(routeId))(signalId) = TRT.gr
then getIfGreenSignalIsMoreThanOnce1(

signalId, allRoutes′, trt, counter + 1)
else getIfGreenSignalIsMoreThanOnce1(

signalId, allRoutes′, trt, counter)
end

end
end

value - - 10.6 Signal Release
genSignalReleaseAssertions : ORA.ObjectRelayAssociations ×

IP.InterlockingPlan → TS.Assertion-set
genSignalReleaseAssertions(ora, ip) ≡

let trt = IP.trt(ip),
routeIds = dom trt

in genSignalReleaseAssertions(dom IP.trt(ip), ora, trt)
end,

genSignalReleaseAssertions :
T.TrainRouteId-set × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

genSignalReleaseAssertions(routeIds, ora, trt) ≡
if routeIds = {} then {} else

let routeId = hd routeIds,
routeIds′ = routeIds \ {routeId}

in {generateSignalReleaseAssertion(routeId, ora, trt)} ∪
- - Recursive Call
genSignalReleaseAssertions(routeIds′, ora, trt)

end
end,

generateSignalReleaseAssertion :
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion



254 Specifications

generateSignalReleaseAssertion(routeId, ora, trt) ≡
(′′signal_release_′′ ̂ routeId,

genSignalReleaseFormula(routeId, ora, trt)),

genSignalReleaseFormula :
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula

genSignalReleaseFormula(routeId, ora, trt) ≡
let (sId, tId) = TRT.signalRelease(trt(routeId)),

trackRelayId = ORA.trackRelayAssoc(ora)(tId),
signalAspect = ORA.signalRelayAssoc(ora)(sId, ORA.re)

in
T.g(T.impl(T.conj({T.ltrl(′′idle′′),

T.neg(T.ltrl(trackRelayId))}),
T.ltrl(signalAspect)))

end

value - - 10.7 Conflicting Routes
genConflictingRoutesAssertions : ORA.ObjectRelayAssociations ×

IP.InterlockingPlan → TS.Assertion-set
genConflictingRoutesAssertions(ora, ip) ≡

let trt = IP.trt(ip),
routeIds = dom trt

in genConflictingRoutesAssertions(routeIds, ora, trt)
end,

genConflictingRoutesAssertions :
T.TrainRouteId-set × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion-set

genConflictingRoutesAssertions(routeIds, ora, trt) ≡
if routeIds = {} then {} else

let routeId = hd routeIds,
routeIds′ = routeIds \ {routeId}

in {generateConflictingRouteAssertion(routeId, ora, trt)} ∪
- - Recursive Call
genConflictingRoutesAssertions(routeIds′, ora, trt)

end
end,

generateConflictingRouteAssertion :
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion

generateConflictingRouteAssertion(routeId, ora, trt) ≡
(′′conflicting_route_′′ ̂ routeId,

genConflictRouteFormula(routeId, ora, trt)
),

genConflictRouteFormula :
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula

genConflictRouteFormula(routeId, ora, trt) ≡
T.g(T.impl(T.conj(
{T.neg(T.ltrl(ORA.routeRelayAssoc(ora)(routeId)))} ∪
routePointPosConfig(routeId, ora, trt)),
T.conj(getRouteRelayAndPointPosConfig(
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getConflictingRoutes(TRT.mutuallyBlocking(trt(routeId)),
routeId), routeId, ora, trt)))),

getConflictingRoutes : (T.TrainRouteId →m Bool) ×
T.TrainRouteId → T.TrainRouteId-set

getConflictingRoutes(mutuallyBlocking, routeId) ≡
{routeId | routeId : T.TrainRouteId •

routeId ∈ dom mutuallyBlocking ∧
mutuallyBlocking(routeId)},

getRouteRelayAndPointPosConfig : T.TrainRouteId-set ×
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula-set

getRouteRelayAndPointPosConfig(routeIds, routeId, ora, trt) ≡
if routeIds = {} then {} else

let currentRouteId = hd routeIds,
routeIds′ = routeIds \ {currentRouteId}

in if currentRouteId = routeId then {} else
{T.neg(T.conj({T.neg(T.ltrl(

ORA.routeRelayAssoc(ora)(currentRouteId)))}
∪ routePointPosConfig(currentRouteId, ora, trt)
))}

end ∪ getRouteRelayAndPointPosConfig(
routeIds′, routeId, ora, trt)

end
end

value - - 10.8 Train Route Release
genTrainRouteReleaseAssertions : ORA.ObjectRelayAssociations ×

IP.InterlockingPlan → TS.Assertion-set
genTrainRouteReleaseAssertions(ora, ip) ≡

let trt = IP.trt(ip),
routeIds = dom trt

in genTrainRouteReleaseAssertions(routeIds, ora, trt)
end,

genTrainRouteReleaseAssertions :
T.TrainRouteId-set × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable→ TS.Assertion-set

genTrainRouteReleaseAssertions(routeIds, ora, trt) ≡
if routeIds = {} then {} else

let routeId = hd routeIds,
routeIds′ = routeIds \ {routeId}

in {generateRouteReleaseAssertion(routeId, ora, trt)} ∪
- - Recursive Call
genTrainRouteReleaseAssertions(routeIds′, ora, trt)

end
end,

generateRouteReleaseAssertion :
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → TS.Assertion

generateRouteReleaseAssertion(routeId, ora, trt) ≡
(′′train_route_release_′′ ̂ routeId,

genRouteReleaseFormula(routeId, ora, trt)),
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trackRelayState : SL.TrackId × TRT.RelayState ×
ORA.ObjectRelayAssociations → T.LTLformula

trackRelayState(tId, rs, ora) ≡
let rId = ORA.trackRelayAssoc(ora)(tId)
in if rs = TRT.dropped then T.neg(T.ltrl(rId))

else T.ltrl(rId) end
end,

genPointReqPos : (SL.PointMachineId × T.PointsState)-set ×
ORA.ObjectRelayAssociations → T.LTLformula-set

genPointReqPos(points, ora) ≡
if points = {} then {}
else let (pId, ps) = hd points,

points′ = points \ {(pId, ps)}
in if ps = T.arbitrary then {}

else {T.ltrl(ORA.pointRelayAssoc(ora)(pId, ps))}
end ∪ genPointReqPos(points′, ora)

end
end,

genRouteReleaseFormula :
T.TrainRouteId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.LTLformula

genRouteReleaseFormula(routeId, ora, trt) ≡
let routeRelay = ORA.routeRelayAssoc(ora)(routeId),

route not locked = T.ltrl(routeRelay),
route locked = T.neg(route not locked),

requiredPointPositions = T.conj(
genPointReqPos(mapToSet(

TRT.points(trt(routeId))), ora) ),

(initiation, dissolve) =
TRT.trainRouteRelease(trt(routeId)),

((init tId1, init rs1),(init tId2, init rs2)) = initiation,
((diss tId1, diss rs1),(diss tId2, diss rs2)) = dissolve,

- - Initiation trigger
init tr1 = trackRelayState(init tId1, init rs1, ora),
init tr2 = trackRelayState(init tId2, init rs2, ora),
init = T.conj( {init tr1, init tr2} ),

- - Dissolve trigger
diss tr1 = trackRelayState(diss tId1, diss rs1, ora),
diss tr2 = trackRelayState(diss tId2, diss rs2, ora),
diss = T.conj( {diss tr1, diss tr2} )

in T.g( T.impl( T.conj({
route not locked,
T.x(T.conj({

route locked,
requiredPointPositions,
T.f(route not locked) }) ) }),

T.x(T.u(route locked, T.conj({
route locked,
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init,
T.x(T.u(route locked,T.conj({

route locked, diss })) ) })
))

))
end

value - - AUX –
- - helper function for point position and train route release
mapToSet : (SL.PointMachineId →m T.PointsState) →

(SL.PointMachineId × T.PointsState)-set
mapToSet(map) ≡ mapToSet(dom map, map),

mapToSet : SL.PointMachineId-set ×
(SL.PointMachineId →m T.PointsState) →
(SL.PointMachineId × T.PointsState)-set

mapToSet(keys, map) ≡
if keys = {} then {} else

let key = hd keys, keys′ = keys \ {key}
in {(key, map(key))} ∪ mapToSet(keys′, map)
end

end,

getNonConflictingRoutes : (T.TrainRouteId →m Bool) ×
T.TrainRouteId → T.TrainRouteId-set

getNonConflictingRoutes(mutuallyBlocking, routeId) ≡
{routeId | routeId : T.TrainRouteId •

routeId ∈ dom mutuallyBlocking ∧
∼mutuallyBlocking(routeId)}

end

E.2.4 State Generator

context: TS, SL, TMA, IP
scheme StateGenerator =

class
value /∗ Generator functions for model catalog ∗/

genConVars :
(SL.TrackId × SL.TrackId)-set × SL.Diagram →
(SL.TrackId × SL.TrackId) →m T.VarId

genConVars(nbs, d) ≡
if nbs = {} then [ ] else

let (nb1,nb2) = hd nbs, nbs′ = nbs \ {(nb1,nb2)}
in if SL.isLine(nb1, d) ∨ SL.isLine(nb2, d)

then genConVars(nbs′, d)
else genConVar(nb1, nb2) ∪ genConVars(nbs′, d)
end

end
end,

genConVar : SL.TrackId × SL.TrackId →
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(SL.TrackId × SL.TrackId) →m T.VarId
genConVar(id1, id2) ≡ [ (id1,id2) 7→ ′′con_′′ ̂ id1 ̂ ′′_′′ ̂ id2 ],

genCntVars : SL.TrackId-set × SL.Diagram → SL.TrackId →m T.VarId
genCntVars(ids, d) ≡

if ids = {} then [ ] else
let id = hd ids, ids′ = ids \ {id}
in if SL.isLine(id, d) then [ ]

else genCntVar(id)
end ∪ genCntVars(ids′, d)

end
end,

genCntVar : SL.TrackId → SL.TrackId →m T.VarId
genCntVar(id) ≡ [ id 7→ ′′cnt_′′ ̂ id ],

genDirFwdVars : SL.TrackId-set ×
SL.Diagram → SL.TrackId →m T.VarId

genDirFwdVars(ids, d) ≡
if ids = {} then [ ] else

let id = hd ids, ids′ = ids \ {id}
in if SL.isLine(id, d) then [ ]

else genFwdVar(id)
end ∪ genDirFwdVars(ids′, d)

end
end,

genFwdVar : SL.TrackId → SL.TrackId →m T.VarId
genFwdVar(id) ≡ [ id 7→ ′′fwd_′′ ̂ id ],

genDirBwdVars : SL.TrackId-set ×
SL.Diagram → SL.TrackId →m T.VarId

genDirBwdVars(ids, d) ≡
if ids = {} then [ ] else

let id = hd ids, ids′ = ids \ {id}
in if SL.isLine(id, d) then [ ]

else genBwdVar(id)
end ∪ genDirBwdVars(ids′, d)

end
end,

genBwdVar : SL.TrackId → SL.TrackId →m T.VarId
genBwdVar(id) ≡ [ id 7→ ′′bwd_′′ ̂ id ],

genDirections : SL.Diagram →
(SL.TrackId × SL.TrackId) →m T.Direction

genDirections(d) ≡
let nbs = SL.getNeighboursOf(SL.line(d), d), nb = hd nbs
in dirTraverse({nb}, {SL.line(d)}, d) †

dirSourceAndSinks(nb, nbs, d)
end

value /∗ Helper functions for generating the directions ∗/
dirSourceAndSinks : SL.TrackId ×

SL.TrackId-set × SL.Diagram →
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(SL.TrackId × SL.TrackId) →m T.Direction
dirSourceAndSinks(nb, nbs, d) ≡

dirSinks(nbs, d) † genDirection(SL.line(d), nb),

dirSinks : SL.TrackId-set × SL.Diagram →
(SL.TrackId × SL.TrackId) →m T.Direction

dirSinks(nbs, d) ≡
if nbs = {} then [ ]
else let nb = hd nbs, nbs′ = nbs \ {nb}

in dirSinks(nbs′, d) † genDirection(nb, SL.line(d))
end

end,

dirTraverse : SL.TrackId-set ×
SL.TrackId-set × SL.Diagram →
(SL.TrackId × SL.TrackId) →m T.Direction

dirTraverse(ids, visited, d) ≡
if ids = {} then [ ]
else let id = hd ids,

nbs = SL.getNeighboursOf(id, d),
visited′ = visited ∪ {id},
ids′ = (nbs ∪ ids) \ visited′

in dirNbs(id, nbs \ visited′) †
dirTraverse(ids′, visited′, d)

end
end,

dirNbs : SL.TrackId × SL.TrackId-set →
(SL.TrackId × SL.TrackId) →m T.Direction

dirNbs(id, nbs) ≡
if nbs = {} then [ ]
else let nb = hd nbs, nbs′ = nbs \ {nb}

in genDirection(id, nb) ∪ dirNbs(id, nbs′)
end

end,

genDirection : SL.TrackId × SL.TrackId →
(SL.TrackId × SL.TrackId) →m T.Direction

genDirection(id, nb) ≡ [ (id, nb) 7→ T.fwd, (nb, id) 7→ T.bwd ]

value /∗ Generator function for state ∗/
generateStateSpace : IP.InterlockingPlan ×

TMA.TrainMovementAssociations → TS.Var-set
generateStateSpace(ip, tma) ≡

genBoolVars(rng TMA.connectionVars(tma)) ∪
genNatVars(rng TMA.counterVars(tma)) ∪
genBoolVars(rng TMA.directionFwdVars(tma)) ∪
genBoolVars(rng TMA.directionBwdVars(tma))

pre IP.isWfInterlockingPlan(ip) ∧
TMA.isWfTrainMovementAssociations(IP.sld(ip), tma),

genBoolVars : SL.TrackId-set → TS.Var-set
genBoolVars(ids) ≡

if ids = {} then {} else
let id = hd ids, ids′ = ids \ {id}
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in genBoolVars(ids′) ∪ {TS.mk Var(id, TS.mk BoolVal(false))}
end

end,

genNatVars : SL.TrackId-set → TS.Var-set
genNatVars(ids) ≡

if ids = {} then {} else
let id = hd ids, ids′ = ids \ {id}
in genNatVars(ids′) ∪ {TS.mk Var(id, TS.mk NatVal(0))}
end

end

end

E.2.5 Transition Generator

context: OXTG, TMTG
scheme TransitionGenerator =

class
value

generateTransitionSystem : ORA.ObjectRelayAssociations ×
IP.InterlockingPlan × TMA.TrainMovementAssociations ×
Text-set → TS.TransitionRule-set

generateTransitionSystem(ora, ip, tma, buttons) ≡
let d = IP.sld(ip),

allSections = SL.allSections(d)
in TMTG.genTrainMovementTransitions(ora, d, tma) ∪

OXTG.genOtherExternalTransitions(buttons, ora, ip)
end

pre IP.isWfInterlockingPlan(ip) ∧
TMA.isWfTrainMovementAssociations(IP.sld(ip), tma) ∧
ORA.isWfObjectRelayAssociations(ora, ip)

end

E.2.5.1 Train Movement Transition Generator

context: ORA, TMA
scheme TrainMovementTransitionGenerator =

class
value

genTrainMovementTransitions :
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genTrainMovementTransitions(ora, d, tma) ≡
- - 6.3.1 Enter Station
genEnterStationRules(ora, d, tma) ∪
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- - 6.3.2 Enter Track Section
genEnterSectionRules(ora, d, tma) ∪
- - 6.3.3 Leave Station
genLeaveStationRules(ora, d, tma) ∪
- - 6.3.4 Leave Track Section
genLeaveSectionRules(ora, d, tma) ∪
- - 6.3.5 Change Direction
genChangeDirectionRules(ora, d, tma)

value - - 6.3.1 Enter Station
genEnterStationRules :

ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genEnterStationRules(ora, d, tma) ≡
let line = SL.line(d),

nbs = SL.getNeighboursOf(line, d)
in genEnterStationRules(nbs, ora, d, tma)
end,

genEnterStationRules : SL.TrackId-set ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genEnterStationRules(nbs, ora, d, tma) ≡
if nbs = {} then {} else

let nb = hd nbs,
nbs′ = nbs \ {nb}

in {genEnterStationRule(nb, ora, d, tma)} ∪
genEnterStationRules(nbs′, ora, d, tma) - - Recursive Call

end
end,

genEnterStationRule :
SL.TrackId × ORA.ObjectRelayAssociations ×
SL.Diagram × TMA.TrainMovementAssociations → TS.TransitionRule

genEnterStationRule(nb, ora, d, tma) ≡
let line = SL.line(d),

dir = TMA.getDirection(line, nb, tma),
name = genEnterRuleName(line, nb),
guard = T.and( { idle } ∪

proceedAspect(line, nb, ora, d) ),
update = { systemBusy,

addTrain(nb, tma),
dropTrackRelay(nb, ora),
setDirection(nb, dir, tma) }

in TS.mk TransitionRule(name, guard, update)
end

value - - 6.3.2 Enter Track Section
genEnterSectionRules : ORA.ObjectRelayAssociations × SL.Diagram ×

TMA.TrainMovementAssociations → TS.TransitionRule-set
genEnterSectionRules(ora, d, tma) ≡

let nbs = { (tId1, tId2) | (tId1, tId2) : (SL.TrackId × SL.TrackId) •

(tId1, tId2) ∈ SL.neighbours(d) ∧
∼SL.isLine(tId1, d) ∧ ∼SL.isLine(tId2, d) }

in genEnterSectionRules(nbs, ora, d, tma)
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end,

genEnterSectionRules : (SL.TrackId × SL.TrackId)-set ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genEnterSectionRules(nbs, ora, d, tma) ≡
if nbs = {} then {} else

let (tId1, tId2) = hd nbs,
nbs′ = nbs \ {(tId1, tId2)}

in - - From tId1 to tId2
genEnterSectionRule(tId1, tId2, ora, d, tma) ∪
- - From tId2 to tId1
genEnterSectionRule(tId2, tId1, ora, d, tma) ∪
- - Recursive Call
genEnterSectionRules(nbs′, ora, d, tma)

end
end,

genEnterSectionRule : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genEnterSectionRule(from, to, ora, d, tma) ≡
- - 6.3.2.1 Facing Move - Stem Side
if SL.isPoints(to, d) ∧ SL.isStemNb(to, from, d)
then {genEnterLinearSectionRule(from, to, ora, d, tma)}

- - 6.3.2.1 Facing Move - Branch Side
elsif SL.isPoints(from, d) ∧ SL.isBranchNb(from, to, d)
then {genEnterFacingBranchSideRule(from, to, ora, d, tma)}

- - 6.3.2.1 Trailing Move - Stem Side
elsif SL.isPoints(from, d) ∧ SL.isStemNb(from, to, d)
then {genEnterLinearSectionRule(from, to, ora, d, tma)}

- - 6.3.2.1 Trailing Move - Branch Side
elsif SL.isPoints(to, d) ∧ SL.isBranchNb(to, from, d)
then { - - Correct pos

genEnterFacingBranchSideRule(from, to, ora, d, tma),
- - Incorrect pos
genEnterTrailingBranchSideRule(from, to, ora, d, tma)}

else - - 6.3.2 Linear
{genEnterLinearSectionRule(from, to, ora, d, tma)}

end,

genEnterLinearSectionRule : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule

genEnterLinearSectionRule(from, to, ora, d, tma) ≡
let dir = TMA.getDirection(from, to, tma),

name = ′′enter_′′ ̂ to ̂ ′′_from_′′ ̂ from,
guard = T.and(
{ idle,

trackOccupied(from, tma),
direction(from, to, tma),
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notConnected(from, to, tma) } ∪
- - If move passes signal
if SL.hasSignal(from, to, d)
then proceedAspect(from, to, ora, d) else {} end),

update = {
systemBusy,
addTrain(to, tma),
dropTrackRelay(to, ora),
connect(to, from, tma),
setDirection(to, dir, tma) }

in TS.mk TransitionRule(name, guard, update)
end,

genEnterFacingBranchSideRule : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule

genEnterFacingBranchSideRule(from, to, ora, d, tma) ≡
let dir = TMA.getDirection(from, to, tma),

name = ′′enter_′′ ̂ to ̂ ′′_from_′′ ̂ from,
guard = T.and(
{ idle,

trackOccupied(from, tma),
direction(from, to, tma),
notConnected(from, to, tma),
branchGuard(to, from, ora, d) } ∪

- - If move passes signal
if SL.hasSignal(from, to, d)
then proceedAspect(from, to, ora, d) else {} end),

update = {
systemBusy,
addTrain(to, tma),
dropTrackRelay(to, ora),
connect(to, from, tma),
setDirection(to, dir, tma) }

in TS.mk TransitionRule(name, guard, update)
end,

genEnterTrailingBranchSideRule : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule

genEnterTrailingBranchSideRule(from, to, ora, d, tma) ≡
let name = ′′enter_′′ ̂ to ̂ ′′_from_′′ ̂ from ̂ ′′_derail′′,

guard = T.and(
{ idle,

trackOccupied(from, tma),
direction(from, to, tma),
notConnected(from, to, tma),
T.neg(branchGuard(from, to, ora, d)) } ∪

- - If move passes signal
if SL.hasSignal(from, to, d)
then proceedAspect(from, to, ora, d) else {} end),

update = {
systemBusy,
addTrain(to, tma),
dropTrackRelay(to, ora),
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connect(to, from, tma) }
in TS.mk TransitionRule(name, guard, update)
end

value - - 6.3.3 Leave Station
genLeaveStationRules : ORA.ObjectRelayAssociations × SL.Diagram ×

TMA.TrainMovementAssociations → TS.TransitionRule-set
genLeaveStationRules(ora, d, tma) ≡

let line = SL.line(d),
nbs = SL.getNeighboursOf(line, d)

in genLeaveStationRules(nbs, ora, d, tma)
end,

genLeaveStationRules : SL.TrackId-set ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genLeaveStationRules(nbs, ora, d, tma) ≡
if nbs = {} then {} else

let nb = hd nbs,
nbs′ = nbs \ {nb}

in {genLeaveStationRule(nb, ora, d, tma)} ∪
genLeaveStationRules(nbs′, ora, d, tma) - - Recursive Call

end
end,

genLeaveStationRule : SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule

genLeaveStationRule(nb, ora, d, tma) ≡
let line = SL.line(d),

name = genLeaveRuleName(nb, SL.line(d)),
guard =
{ idle,

trackOccupied(nb, tma),
direction(nb, line, tma) } ∪

isTailOfTrainGuards(nb, line, d, tma),
update =
{ systemBusy,

drawTrackRelay(nb, ora),
removeTrain(nb, tma),
removeDirection(nb, line, tma) }

in TS.mk TransitionRule(name, T.and(guard), update)
end

value - - 6.3.4 Leave Track Section
genLeaveSectionRules :

ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genLeaveSectionRules(ora, d, tma) ≡
let nbs = { (tId1, tId2) | (tId1, tId2) : (SL.TrackId × SL.TrackId) •

(tId1, tId2) ∈ SL.neighbours(d) ∧
∼SL.isLine(tId1, d) ∧ ∼SL.isLine(tId2, d) }

in genLeaveSectionRules(nbs, d, ora, tma)
end,
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genLeaveSectionRules : (SL.TrackId × SL.TrackId)-set ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genLeaveSectionRules(nbs, d, ora, tma) ≡
if nbs = {} then {} else

let (tId1, tId2) = hd nbs,
nbs′ = nbs \ {(tId1, tId2)}

in {genLeaveSectionRule(tId1, tId2, d, ora, tma),
genLeaveSectionRule(tId2, tId1, d, ora, tma)} ∪

genLeaveSectionRules(nbs′, d, ora, tma) - - Recursive Call
end

end,

genLeaveSectionRule : SL.TrackId × SL.TrackId ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.TransitionRule

genLeaveSectionRule(from, to, d, ora, tma) ≡
- - 6.3.4.1 Leave towards points section
if SL.isPoints(to, d)
then genLeaveLinearSectionRule(from, to, d, ora, tma)

- - 6.3.4.1 Leave points section at stem end
elsif SL.isPoints(from, d) ∧ SL.isStemNb(from, to, d)
then genLeaveLinearSectionRule(from, to, d, ora, tma)

- - 6.3.4.1 Leave points section at branch end
elsif SL.isPoints(from, d) ∧ SL.isBranchNb(from, to, d)
then genLeavePointsBranchEnd(from, to, d, ora, tma)

- - 6.3.4 Leave Linear Section
else genLeaveLinearSectionRule(from, to, d, ora, tma)
end,

genLeaveLinearSectionRule : SL.TrackId × SL.TrackId ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.TransitionRule

genLeaveLinearSectionRule(from, to, d, ora, tma) ≡
let dir = TMA.getDirection(from, to, tma),

name = genLeaveRuleName(from, to),
guard = T.and({

idle,
direction(from, to, tma),
connected(from, to, tma),
trackOccupied(from, tma)
} ∪
isTailOfTrainGuards(from, to, d, tma) ),

update = {
systemBusy,
drawTrackRelay(from, ora),
removeTrain(from, tma),
removeConnection(from, to, tma),
removeDirection(from, dir, tma)

}
in TS.mk TransitionRule(name, guard, update)
end,
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genLeavePointsBranchEnd : SL.TrackId × SL.TrackId ×
SL.Diagram × ORA.ObjectRelayAssociations ×
TMA.TrainMovementAssociations → TS.TransitionRule

genLeavePointsBranchEnd(from, to, d, ora, tma) ≡
let dir = TMA.getDirection(from, to, tma),

name = genLeaveRuleName(from, to),
guard = T.and({

idle,
direction(from, to, tma),
connected(from, to, tma),
trackOccupied(from, tma),
branchGuard(from, to, ora, d)
} ∪
isTailOfTrainGuards(from, to, d, tma) ),

update = {
systemBusy,
drawTrackRelay(from, ora),
removeTrain(from, tma),
removeConnection(from, to, tma),
removeDirection(from, dir, tma)

}
in TS.mk TransitionRule(name, guard, update)
end

value - - 6.3.5 Change Direction
genChangeDirectionRules :

ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genChangeDirectionRules(ora, d, tma) ≡
let allSignalLocations = dom SL.signalLocations(d)
in genChangeDirectionRules(allSignalLocations, ora, d, tma)
end,

genChangeDirectionRules : (SL.TrackId × SL.TrackId)-set ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule-set

genChangeDirectionRules(signalLocations, ora, d, tma) ≡
if signalLocations = {} then {} else

let (tId1, tId2) = hd signalLocations,
signalLocations′ = signalLocations \ {(tId1, tId2)}

in - - Recursive Call
genChangeDirectionRules(signalLocations′, ora, d, tma) ∪
if tId1 = SL.line(d) then {}
else {genChangeDirectionRule(tId1, tId2, ora, d, tma)}
end

end
end,

genChangeDirectionRule : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram ×
TMA.TrainMovementAssociations → TS.TransitionRule

genChangeDirectionRule(from, to, a, d, tma) ≡
let curDir = TMA.directions(tma)(from, to),

oppDir = T.oppositeDirection(curDir),
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name = ′′change_direction_at_′′ ̂ from ̂ ′′_towards_′′ ̂ to,
guard = { idle,

trackOccupied(from, tma),
direction(from, to, tma) } ∪

proceedAspect(from, to, a, d) ∪
isTailOfTrainGuards(from, to, d, tma),

update = { setDirection(from, oppDir, tma),
removeDirection(from, curDir, tma)}

in TS.mk TransitionRule(name, T.and(guard), update)
end

value - - AUX
isHeadOfTrainGuard : SL.TrackId × SL.TrackId ×

TMA.TrainMovementAssociations → T.BooleanExp
isHeadOfTrainGuard(s, inFront, tma) ≡

T.neg(T.literal(TMA.getConnectionVar(s, inFront, tma))),

isTailOfTrainGuards : SL.TrackId × SL.TrackId ×
SL.Diagram × TMA.TrainMovementAssociations → T.BooleanExp-set

isTailOfTrainGuards(from, to, d, tma) ≡
let nbs = SL.getNeighboursOf(from, d),

otherNbs = {tId | tId : SL.TrackId •

tId ∈ nbs ∧ tId 6= to ∧ ∼SL.isLine(tId, d) }
in isTailOfTrainGuards(otherNbs, from, tma)
end,

isTailOfTrainGuards : SL.TrackId-set × SL.TrackId ×
TMA.TrainMovementAssociations → T.BooleanExp-set

isTailOfTrainGuards(nbs, from, tma) ≡
if nbs = {} then {} else

let nb = hd nbs,
nbs′ = nbs \ {nb}

in {notConnected(from, nb, tma)} ∪
isTailOfTrainGuards(nbs′, from, tma) - - Recursive Call

end
end

value - - Name
genEnterRuleName : SL.TrackId × SL.TrackId → Text
genEnterRuleName(from, to) ≡ ′′enter_′′ ̂ to ̂ ′′_from_′′ ̂ from,

genLeaveRuleName : SL.TrackId × SL.TrackId → Text
genLeaveRuleName(from, to) ≡ ′′leave_′′ ̂ from ̂ ′′_to_′′ ̂ to

value - - Guards
idle : T.BooleanExp = T.literal(′′idle′′),

trackOccupied : SL.TrackId ×
TMA.TrainMovementAssociations → T.BooleanExp

trackOccupied(tId, tma) ≡
T.equals(T.literal(TMA.getCounterVar(tId, tma)), T.literal(′′1′′)),

trackUnoccupied : SL.TrackId ×
TMA.TrainMovementAssociations → T.BooleanExp

trackUnoccupied(tId, tma) ≡
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T.equals(T.literal(TMA.getCounterVar(tId, tma)), T.literal(′′0′′)),

connected : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → T.BooleanExp

connected(tId1, tId2, tma) ≡
T.literal(TMA.getConnectionVar(tId1, tId2, tma)),

notConnected : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → T.BooleanExp

notConnected(tId1, tId2, tma) ≡
T.neg(T.literal(TMA.getConnectionVar(tId1, tId2, tma))),

direction : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → T.BooleanExp

direction(from, to, tma) ≡
T.literal(TMA.getDirVar(from, to, tma)),

proceedAspect : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations × SL.Diagram → T.BooleanExp-set

proceedAspect(from, to, ora, d) ≡
let sId = SL.signalLocations(d)(from, to),

sId gr = ORA.signalRelayAssoc(ora)(sId, ORA.gr),
sId re = ORA.signalRelayAssoc(ora)(sId, ORA.re)

in { T.literal(sId gr), T.neg(T.literal(sId re)) }
end,

branchGuard : SL.TrackId × SL.TrackId ×
ORA.ObjectRelayAssociations ×
SL.Diagram → T.BooleanExp

branchGuard(tId1, tId2, ora, d) ≡
let points = if SL.isPoints(tId1, d) then tId1 else tId2 end,

section = if SL.isPoints(tId1, d) then tId2 else tId1 end,
branch = SL.branchNeighbours(d)(points, section)

in T.literal(ORA.getPointRelay(points, branch, ora, d))
end

value - - update
systemBusy : TS.Assignment =

TS.mk Assignment(′′idle′′, T.BoolAssign(false)),

drawTrackRelay : SL.TrackId ×
ORA.ObjectRelayAssociations → TS.Assignment

drawTrackRelay(tId, ora) ≡
let rId = ORA.getTrackRelay(tId, ora)
in TS.mk Assignment(rId, T.BoolAssign(true))
end,

dropTrackRelay : SL.TrackId ×
ORA.ObjectRelayAssociations → TS.Assignment

dropTrackRelay(tId, ora) ≡
let rId = ORA.getTrackRelay(tId, ora)
in TS.mk Assignment(rId, T.BoolAssign(false))
end,

addTrain : SL.TrackId ×



Generators 269

TMA.TrainMovementAssociations → TS.Assignment
addTrain(tId, tma) ≡

let cVar = TMA.getCounterVar(tId, tma)
in TS.mk Assignment(cVar, T.AddAssign(1))
end,

removeTrain : SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assignment

removeTrain(tId, tma) ≡
let cVar = TMA.getCounterVar(tId, tma)
in TS.mk Assignment(cVar, T.SubAssign(1))
end,

setDirection : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assignment

setDirection(from, to, tma) ≡
let dVar = TMA.getDirVar(from, to, tma)
in TS.mk Assignment(dVar, T.BoolAssign(true))
end,

setDirection : SL.TrackId × T.Direction ×
TMA.TrainMovementAssociations → TS.Assignment

setDirection(tId, dir, tma) ≡
if dir = T.fwd
then let dVar = TMA.getFwdDirVar(tId, tma)

in TS.mk Assignment(dVar, T.BoolAssign(true))
end

else let dVar = TMA.getBwdDirVar(tId, tma)
in TS.mk Assignment(dVar, T.BoolAssign(true))
end

end,

removeDirection : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assignment

removeDirection(from, to, tma) ≡
let dVar = TMA.getDirVar(from, to, tma)
in TS.mk Assignment(dVar, T.BoolAssign(false))
end,

removeDirection : SL.TrackId × T.Direction ×
TMA.TrainMovementAssociations → TS.Assignment

removeDirection(tId, dir, tma) ≡
if dir = T.fwd
then let dVar = TMA.getFwdDirVar(tId, tma)

in TS.mk Assignment(dVar, T.BoolAssign(false))
end

else let dVar = TMA.getBwdDirVar(tId, tma)
in TS.mk Assignment(dVar, T.BoolAssign(false))
end

end,

connect : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assignment

connect(tId1, tId2, tma) ≡
let cVar = TMA.getConnectionVar(tId1, tId2, tma)
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in TS.mk Assignment(cVar, T.BoolAssign(true))
end,

removeConnection : SL.TrackId × SL.TrackId ×
TMA.TrainMovementAssociations → TS.Assignment

removeConnection(tId1, tId2, tma) ≡
let cVar = TMA.getConnectionVar(tId1, tId2, tma)
in TS.mk Assignment(cVar, T.BoolAssign(false))
end

end

E.2.5.2 Other External Transitions Generator

context: ORA, TS
scheme OtherExternalTransitionsGenerator =

class
value

genOtherExternalTransitions :
Text-set × ORA.ObjectRelayAssociations ×
IP.InterlockingPlan → TS.TransitionRule-set

genOtherExternalTransitions(buttons, ora, ip) ≡
- - 7.1 Button Behaviour
genAllButtonRules(buttons) ∪
- - 7.2 Points Behaviour
genAllPointsOpRules(ora, ip)

value - - 7.1 Button Behaviour
genAllButtonRules : Text-set → TS.TransitionRule-set
genAllButtonRules(bs) ≡

if bs = {} then {} else
let b = hd bs, bs′ = bs \ {b}
in {genButtonRule(b)} ∪ genAllButtonRules(bs′)
end

end,

genButtonRule : Text → TS.TransitionRule
genButtonRule(b) ≡

TS.mk TransitionRule(
′′pushButton_′′ ̂ b,
T.literal(′′idle′′),
{ busySystem, TS.mk Assignment(b, T.BoolAssign(true)) })

value - - 7.2 Points Behaviour
genAllPointsOpRules : ORA.ObjectRelayAssociations ×

IP.InterlockingPlan → TS.TransitionRule-set
genAllPointsOpRules(ora, ip) ≡

let d = IP.sld(ip),
allPoints = SL.allPoints(d)

in genAllPointsOpRules(allPoints, ora, ip)
end,
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genAllPointsOpRules :
SL.TrackId-set × ORA.ObjectRelayAssociations ×
IP.InterlockingPlan → TS.TransitionRule-set

genAllPointsOpRules(allPoints, ora, ip) ≡
if allPoints = {} then {} else

let p = hd allPoints,
allPoints′ = allPoints \ {p}

in genPointsOpRules(p, ora, ip) ∪
genAllPointsOpRules(allPoints′, ora, ip) - - Recursive Call

end
end,

genPointsOpRules :
SL.TrackId × ORA.ObjectRelayAssociations ×
IP.InterlockingPlan → TS.TransitionRule-set

genPointsOpRules(pId, ora, ip) ≡
let d = IP.sld(ip),

trt = IP.trt(ip),
rlrs = getRouteLockingRelaysCoveringP(pId, ora, trt) in {

- - From plus to intermediate
TS.mk TransitionRule(

′′plusToIntermediate′′ ̂ pId,
genPointsOpGuard(pId, T.plus, rlrs, ora, d),
genPointsOpUpd(pId, T.plus, false, ora, d) ),

- - From intermediate to plus
TS.mk TransitionRule(

′′intermediateToPlus′′ ̂ pId,
genPointsOpGuard(pId, rlrs, ora, d),
genPointsOpUpd(pId, T.plus, true, ora, d) ),

- - From minus to intermediate
TS.mk TransitionRule(

′′minusToIntermediate′′ ̂ pId,
genPointsOpGuard(pId, T.minus, rlrs, ora, d),
genPointsOpUpd(pId, T.minus, false, ora, d) ),

- - From intermediate to minus
TS.mk TransitionRule(

′′intermediateToMinus′′ ̂ pId,
genPointsOpGuard(pId, rlrs, ora, d),
genPointsOpUpd(pId, T.minus, true, ora, d) )

}
end,

genPointsOpUpd : SL.TrackId × SL.Branch × Bool ×
ORA.ObjectRelayAssociations × SL.Diagram → TS.MultipleAssignment

genPointsOpUpd(pId, branch, locked, ora, d) ≡
{ busySystem,

TS.mk Assignment( ORA.getPointRelay(pId, branch, ora, d),
T.BoolAssign(locked))},

- - From locked to intermediate
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genPointsOpGuard : SL.TrackId × SL.Branch × T.VarId-set ×
ORA.ObjectRelayAssociations × SL.Diagram → T.BooleanExp

genPointsOpGuard(pId, branch, rlrs, ora, d) ≡
T.and({ T.literal(′′idle′′),

T.literal(ORA.getPointRelay(pId, branch, ora, d)),
T.literal(ORA.trackRelayAssoc(ora)(pId))

} ∪
convRelayIdsToLiterals(rlrs)

),
- - From intermediate to locked
genPointsOpGuard : SL.TrackId × T.VarId-set ×

ORA.ObjectRelayAssociations × SL.Diagram → T.BooleanExp
genPointsOpGuard(pId, rlrs, ora, d) ≡

T.and({ T.literal(′′idle′′),
T.neg(T.literal(ORA.getPointRelay(pId, T.plus, ora, d))),
T.neg(T.literal(ORA.getPointRelay(pId, T.minus, ora, d))),
T.literal(ORA.trackRelayAssoc(ora)(pId))

} ∪
convRelayIdsToLiterals(rlrs)

),

convRelayIdsToLiterals : T.VarId-set → T.BooleanExp-set
convRelayIdsToLiterals(rIds) ≡

if rIds = {} then {} else
let rId = hd rIds, rIds′ = rIds \ {rId}
in {T.literal(rId)} ∪ convRelayIdsToLiterals(rIds′)
end

end,

getRouteLockingRelaysCoveringP :
SL.TrackId × ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.VarId-set

getRouteLockingRelaysCoveringP(tId, ora, trt) ≡
getRLRsCoveringP(dom ORA.routeRelayAssoc(ora), tId, ora, trt),

getRLRsCoveringP : T.TrainRouteId-set × SL.TrackId ×
ORA.ObjectRelayAssociations × TRT.TrainRouteTable → T.VarId-set

getRLRsCoveringP(allRoutes, tId, ora, trt) ≡
if allRoutes = {} then {} else

let route = hd allRoutes, allRoutes′ = allRoutes \ {route}
in getRLRCoveringP(route, tId, ora, trt) ∪

getRLRsCoveringP(allRoutes′, tId, ora, trt)
end

end,

getRLRCoveringP : T.TrainRouteId × SL.TrackId ×
ORA.ObjectRelayAssociations ×
TRT.TrainRouteTable → T.VarId-set

getRLRCoveringP(route, tId, ora, trt) ≡
if TRT.trainDetection(trt(route))(tId)
then {ORA.routeRelayAssoc(ora)(route)}
else {}
end

value - - Aux functions
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busySystem : TS.Assignment = TS.mk Assignment(′′idle′′, T.BoolAssign(false))

end

E.3 Associations

E.3.1 Objects

context: ObjectRelayAssociations
object ORA : ObjectRelayAssociations

context: TrainMovementAssociations
object TMA : TrainMovementAssociations

E.3.2 Object Relay Associtations

context: IP
scheme ObjectRelayAssociations =

class
type

Lamp == gr | re,

ObjectRelayAssociations ::
routeRelayAssoc : T.TrainRouteId →m T.VarId
trackRelayAssoc : SL.TrackId →m T.VarId
pointRelayAssoc : SL.PointMachineId × SL.Branch →m T.VarId
signalRelayAssoc : SL.SignalId × Lamp →m T.VarId

value /∗ getters ∗/
getPointRelay : SL.TrackId × SL.Branch ×

ObjectRelayAssociations × SL.Diagram → T.VarId
getPointRelay(tId, branch, a, d) ≡

let pId = SL.trackPointMachine(d)(tId)
in pointRelayAssoc(a)(pId, branch)
end,

getTrackRelay : SL.TrackId × ObjectRelayAssociations → T.VarId
getTrackRelay(tId, a) ≡ trackRelayAssoc(a)(tId)

value /∗ Well−formedness ∗/
isWfObjectRelayAssociations : ObjectRelayAssociations ×

IP.InterlockingPlan → Bool
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isWfObjectRelayAssociations(ora, ip) ≡
let d = IP.sld(ip),

trt = IP.trt(ip)
in noRelayVariableOverlap(ora) ∧

isWfRouteAssoc(trt, ora) ∧
isWfTrackAssoc(d, ora) ∧
isWfPointAssoc(d, ora) ∧
isWfSignalAssoc(d, ora)

end
pre IP.isWfInterlockingPlan(ip),

noRelayVariableOverlap : ObjectRelayAssociations → Bool
noRelayVariableOverlap(ora) ≡

let routeVars = rng routeRelayAssoc(ora),
trackVars = rng trackRelayAssoc(ora),
pointVars = rng pointRelayAssoc(ora),
signalVars = rng signalRelayAssoc(ora)

in routeVars ∩ trackVars = {} ∧
routeVars ∩ pointVars = {} ∧
routeVars ∩ signalVars = {} ∧
trackVars ∩ pointVars = {} ∧
trackVars ∩ signalVars = {} ∧
pointVars ∩ signalVars = {}

end

value /∗ Well−formedness of routeRelayAssoc ∗/
isWfRouteAssoc : TRT.TrainRouteTable ×

ObjectRelayAssociations → Bool
isWfRouteAssoc(trt, ora) ≡

dom routeRelayAssoc(ora) = dom trt

value /∗ Well−formedness of trackRelayAssoc ∗/
isWfTrackAssoc : SL.Diagram ×

ObjectRelayAssociations → Bool
isWfTrackAssoc(d, ora) ≡

let allTrackSections = SL.allLinears(d) ∪ SL.allPoints(d)
in dom trackRelayAssoc(ora) = allTrackSections
end

value /∗ Well−formedness of pointRelayAssoc ∗/
isWfPointAssoc : SL.Diagram ×

ObjectRelayAssociations → Bool
isWfPointAssoc(d, ora) ≡

existingPointMachines(d, ora) ∧
differentPointRelays(ora),

existingPointMachines : SL.Diagram ×
ObjectRelayAssociations → Bool

existingPointMachines(d, ora) ≡
( ∀ (pmId, b) : SL.PointMachineId × SL.Branch •

(pmId, b) ∈ dom pointRelayAssoc(ora) ⇒
pmId ∈ dom SL.pointMachineTrack(d)

) ∧
( ∀ pmId : SL.PointMachineId •
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pmId ∈ dom SL.pointMachineTrack(d) ⇒
( ∃ (pmId′, b) : SL.PointMachineId × SL.Branch •

(pmId′, b) ∈ dom pointRelayAssoc(ora) ∧
pmId = pmId′ )

),

differentPointRelays : ObjectRelayAssociations → Bool
differentPointRelays(ora) ≡

( ∀ (pmId, b) : SL.PointMachineId × SL.Branch •

(pmId, b) ∈ dom pointRelayAssoc(ora) ⇒
∼( ∃ (pmId′, b′) : SL.PointMachineId × SL.Branch •

(pmId′, b′) ∈ dom pointRelayAssoc(ora) ∧
(pmId, b) 6= (pmId′, b′) ∧
pointRelayAssoc(ora)(pmId, b) =
pointRelayAssoc(ora)(pmId′, b′)

)
)

value /∗ Well−formedness of signalRelayAssoc ∗/
isWfSignalAssoc : SL.Diagram ×

ObjectRelayAssociations → Bool
isWfSignalAssoc(d, ora) ≡

existingSignals(d, ora) ∧
differentLampRelays(ora),

existingSignals : SL.Diagram ×
ObjectRelayAssociations → Bool

existingSignals(d, ora) ≡
( ∀ (sId, l) : SL.SignalId × Lamp •

(sId, l) ∈ dom signalRelayAssoc(ora) ⇒
sId ∈ SL.allSignals(d)

) ∧
( ∀ sId : SL.SignalId •

sId ∈ SL.allSignals(d) ⇒
( ∃ (sId′, l) : SL.SignalId × Lamp •

(sId′, l) ∈ dom signalRelayAssoc(ora) ∧
sId = sId′ )

),

differentLampRelays : ObjectRelayAssociations → Bool
differentLampRelays(ora) ≡

( ∀ (sId, l) : SL.SignalId × Lamp •

(sId, l) ∈ dom signalRelayAssoc(ora) ⇒
∼( ∃ (sId′, l′) : SL.SignalId × Lamp •

(sId′, l′) ∈ dom signalRelayAssoc(ora) ∧
(sId, l) 6= (sId′, l′) ∧
signalRelayAssoc(ora)(sId, l) =
signalRelayAssoc(ora)(sId′, l′)

)
)

end
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E.3.3 Train Movement Associations

context: T, SL, TS
scheme TrainMovementAssociations =

class

type
TrainMovementAssociations ::

connectionVars : (SL.TrackId × SL.TrackId) →m T.VarId
counterVars : SL.TrackId →m T.VarId
directionFwdVars : SL.TrackId →m T.VarId
directionBwdVars : SL.TrackId →m T.VarId
directions : (SL.TrackId × SL.TrackId) →m T.Direction

value /∗ Auxiliary functions ∗/
getConnectionVar : SL.TrackId × SL.TrackId ×

TrainMovementAssociations → Text
getConnectionVar(id, nb, tma) ≡

let conVars = connectionVars(tma)
in if (id,nb) ∈ dom conVars

then conVars(id, nb) else conVars(nb, id) end
end,

getCounterVar : SL.TrackId ×
TrainMovementAssociations → T.VarId

getCounterVar(tId, tma) ≡
counterVars(tma)(tId),

getFwdDirVar : SL.TrackId ×
TrainMovementAssociations → T.VarId

getFwdDirVar(tId, tma) ≡ directionFwdVars(tma)(tId),

getBwdDirVar : SL.TrackId ×
TrainMovementAssociations → T.VarId

getBwdDirVar(tId, tma) ≡ directionBwdVars(tma)(tId),

getDirVar : SL.TrackId × SL.TrackId ×
TrainMovementAssociations → T.VarId

getDirVar(id, nb, tma) ≡
getDirVar(id, directions(tma)(id, nb), tma),

getDirVar : SL.TrackId × SL.TrackId ×
TrainMovementAssociations → T.VarId

getDirVar (id, nb, tma) ≡
getDirVar(id, directions(tma)(nb, id), tma),

getDirVar : SL.TrackId × T.Direction ×
TrainMovementAssociations → T.VarId

getDirVar(id, dir, tma) ≡
if dir = T.fwd then getFwdDirVar(id, tma)
else getBwdDirVar(id, tma) end,

getDirection : SL.TrackId × SL.TrackId ×
TrainMovementAssociations → T.Direction
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getDirection(tId1, tId2, tma) ≡
let directions = directions(tma)
in if (tId1, tId2) ∈ dom directions

then directions(tId1, tId2)
else directions(tId2, tId1)
end

end

value /∗ Well−formedness of train movement associations ∗/
isWfTrainMovementAssociations : SL.Diagram ×

TrainMovementAssociations → Bool
isWfTrainMovementAssociations(d, tma) ≡

noRelayVariableOverlap(tma) ∧
isWfConnectionVars(d, tma) ∧
isWfCounterVars(d, tma) ∧
isWfDirectionFwdVars(d, tma) ∧
isWfDirectionBwdVars(d, tma) ∧
isWfDirections(d, tma),

noRelayVariableOverlap : TrainMovementAssociations → Bool
noRelayVariableOverlap(tma) ≡

let connectionVars = rng connectionVars(tma),
counterVars = rng counterVars(tma),
directionFwdVars = rng directionFwdVars(tma),
directionBwdVars = rng directionBwdVars(tma)

in connectionVars ∩ counterVars = {} ∧
connectionVars ∩ directionFwdVars = {} ∧
connectionVars ∩ directionBwdVars = {} ∧
counterVars ∩ directionFwdVars = {} ∧
counterVars ∩ directionBwdVars = {} ∧
directionFwdVars ∩ directionBwdVars = {}

end

value
isWfConnectionVars : SL.Diagram ×

TrainMovementAssociations → Bool
isWfConnectionVars(d, tma) ≡

conVarsValidDomain(d, tma) ∧
conVarsValidRange(connectionVars(tma)),

conVarsValidDomain : SL.Diagram ×
TrainMovementAssociations → Bool

conVarsValidDomain(d, tma) ≡
(∀ (tId1, tId2) : (SL.TrackId × SL.TrackId) •

(tId1, tId2) ∈ dom connectionVars(tma) ⇒
SL.areNeighbours(tId1, tId2, d) ),

conVarsValidRange : ((SL.TrackId × SL.TrackId) →m T.VarId) → Bool
conVarsValidRange(connectionVars) ≡

(∀ key : (SL.TrackId × SL.TrackId) •

key ∈ dom connectionVars ⇒
∼( ∃ key′ : (SL.TrackId × SL.TrackId) •

key′ ∈ dom connectionVars ∧
key 6= key′ ∧
connectionVars(key) =
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connectionVars(key′) )
)

value
isWfCounterVars : SL.Diagram ×

TrainMovementAssociations → Bool
isWfCounterVars(d, tma) ≡

cntVarsValidDomain(d, tma) ∧
cntVarsValidRange(counterVars(tma)),

cntVarsValidDomain : SL.Diagram ×
TrainMovementAssociations → Bool

cntVarsValidDomain(d, tma) ≡
let allTrackSections = SL.allLinears(d) ∪ SL.allPoints(d)
in dom counterVars(tma) = allTrackSections
end,

cntVarsValidRange : (SL.TrackId →m T.VarId) → Bool
cntVarsValidRange(counterVars) ≡

(∀ key : SL.TrackId •

key ∈ dom counterVars ⇒
∼( ∃ key′ : SL.TrackId •

key′ ∈ dom counterVars ∧
key 6= key′ ∧
counterVars(key) =
counterVars(key′) )

)

value
isWfDirectionFwdVars : SL.Diagram ×

TrainMovementAssociations → Bool
isWfDirectionFwdVars(d, tma) ≡

fwdVarsValidDomain(d, tma) ∧
fwdVarsValidRange(directionFwdVars(tma)),

fwdVarsValidDomain : SL.Diagram ×
TrainMovementAssociations → Bool

fwdVarsValidDomain(d, tma) ≡
let allTrackSections = SL.allLinears(d) ∪ SL.allPoints(d)
in dom directionFwdVars(tma) = allTrackSections
end,

fwdVarsValidRange : (SL.TrackId →m T.VarId) → Bool
fwdVarsValidRange(directionFwdVars) ≡

(∀ key : SL.TrackId •

key ∈ dom directionFwdVars ⇒
∼( ∃ key′ : SL.TrackId •

key′ ∈ dom directionFwdVars ∧
key 6= key′ ∧
directionFwdVars(key) =
directionFwdVars(key′) )

)

value
isWfDirectionBwdVars : SL.Diagram ×
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TrainMovementAssociations → Bool
isWfDirectionBwdVars(d, tma) ≡

bwdVarsValidDomain(d, tma) ∧
bwdVarsValidRange(directionBwdVars(tma)),

bwdVarsValidDomain : SL.Diagram ×
TrainMovementAssociations → Bool

bwdVarsValidDomain(d, tma) ≡
let allTrackSections = SL.allLinears(d) ∪ SL.allPoints(d)
in dom directionBwdVars(tma) = allTrackSections
end,

bwdVarsValidRange : (SL.TrackId →m T.VarId) → Bool
bwdVarsValidRange(directionBwdVars) ≡

(∀ key : SL.TrackId •

key ∈ dom directionBwdVars ⇒
∼( ∃ key′ : SL.TrackId •

key′ ∈ dom directionBwdVars ∧
key 6= key′ ∧
directionBwdVars(key) =
directionBwdVars(key′) )

)

value
isWfDirections : SL.Diagram ×

TrainMovementAssociations → Bool
isWfDirections(d, tma) ≡

directionsValidDomain(d, tma) ∧
bothDirections(directions(tma)),

directionsValidDomain : SL.Diagram ×
TrainMovementAssociations → Bool

directionsValidDomain(d, tma) ≡
(∀ (tId1, tId2) : (SL.TrackId × SL.TrackId) •

(tId1, tId2) ∈ dom directions(tma) ⇒
SL.areNeighbours(tId1, tId2, d) ),

bothDirections :
((SL.TrackId × SL.TrackId) →m T.Direction) → Bool

bothDirections(directions) ≡
( ∀ (tId1, tId2) : (SL.TrackId × SL.TrackId) •

(tId1, tId2) ∈ dom directions ⇒
( ∃ (tId1′, tId2′) : (SL.TrackId × SL.TrackId) •

(tId1′, tId2′) ∈ dom directions ∧
tId1 = tId2′ ∧ tId2 = tId1′ ∧
directions((tId1, tId2)) 6=
directions((tId1′, tId2′))

)
)

end
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E.4 Misc.

E.4.1 Objects

context: Types
object T : Types

context: Unparser
object UP : Unparser

E.4.2 Types

scheme Types =
class

type
VarId = Text,
TrainRouteId = Text,

PointsState == plus | minus | arbitrary,

/∗ a boolean expression ∗/
BooleanExp ==

and(a : BooleanExp-set) |
or(o : BooleanExp-set) |
neg(n : BooleanExp) |
lessthan(ArithmeticExp, ArithmeticExp) |
greaterthan(ArithmeticExp, ArithmeticExp) |
geq(ArithmeticExp, ArithmeticExp) | /∗ greater than equal to∗/
equals(ArithmeticExp, ArithmeticExp) |
literal(id : VarId) |
bool(b : Bool),

/∗ an arithmetric expression ∗/
ArithmeticExp ==

add(a : ArithmeticExp-set) |
sub(s : ArithmeticExp-set) |
literal(l : VarId),

AssignExp ==
BoolAssign(ba : Bool) |
NatAssign(na : Nat) |
AddAssign(aa : Nat) |
SubAssign(sa : Nat) ,

Direction == fwd | bwd

value
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oppositeDirection : Direction → Direction
oppositeDirection(dir) ≡

case dir of
fwd → bwd,
bwd → fwd

end

type
LTLformula ==

b(bExp : BooleanExp) |
ltrl(l : Text) | /∗ Literal ∗/
conj(LTLformula-set) | /∗ Conjunction ∗/
disj(LTLformula-set) | /∗ Disjunction ∗/
paren(LTLformula) | /∗ Parenthesis ∗/
neg(LTLformula) | /∗ Negation ∗/
impl(LTLformula, LTLformula) | /∗ Implication ∗/
x(LTLformula) | /∗ Next ∗/
g(LTLformula) | /∗ Globally ∗/
f(LTLformula) | /∗ Finally ∗/
u(LTLformula, LTLformula) /∗ Until ∗/

end

E.4.3 Unparser

context: T, TS
scheme Unparser =

class
value /∗ Functions to be called externally ∗/

/∗ Unparses given transition system ∗/
print : TS.TransitionSystem → Text
print(ts) ≡

let name = TS.name(ts),
state = TS.state(ts),
transitionRules = TS.transitionRules(ts),
assertions = TS.assertions(ts)

in ′′\ntransition_system\n\n[′′ ̂ name ̂ ′′]\n\nlocal′′ ̂
print(state) ̂ ′′\n\nin\n′′ ̂
print(transitionRules) ̂ ′′\n\nend\n\nltl_assertion\n′′ ̂
print(name, assertions) ̂ ′′\n′′

end

value /∗ Auxiliary functions ∗/

/∗ Converts a boolean value to text ∗/
toString : Bool → Text
toString(b) ≡ if b then ′′true′′ else ′′false′′ end,

/∗ Converts a natural number to text ∗/
toString : Nat → Text
toString(n) ≡
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case n of
0 → ′′0′′,
1 → ′′1′′,
2 → ′′2′′,
3 → ′′3′′,
4 → ′′4′′

end

value /∗ Unparse state ∗/

/∗ State ∗/
print : TS.Var-set → Text
print(vars) ≡

if vars = {} then ′′′′ else
let var = hd vars, vars′ = vars \ {var}
in ′′\n′′ ̂ print(var) ̂

if vars′ = {} then ′′′′

else ′′,′′ ̂ print(vars′)
end

end
end,

/∗ State variable ∗/
print : TS.Var → Text
print(var) ≡

let id = TS.id(var),
val = TS.val(var)

in id ̂ ′′ : ′′ ̂ print(val)
end,

/∗ Val ∗/
print : TS.Val → Text
print(val) ≡

case val of
TS.mk BoolVal(b) → ′′Bool := ′′ ̂ toString(b),
TS.mk NatVal(n) → ′′Nat := ′′ ̂ toString(n)

end

value /∗ Unparse transition rules ∗/

/∗ Transition rules ∗/
print : TS.TransitionRule-set → Text
print(trs) ≡

if trs = {} then ′′′′

else let tr = hd trs, trs′ = trs \ {tr}
in ′′\n′′ ̂ print(tr) ̂

if trs′ = {} then ′′′′

else ′′\n[=]′′ ̂ print(trs′)
end

end
end,

/∗ Transition rule ∗/
print : TS.TransitionRule → Text
print(tr) ≡
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′′[′′ ̂ TS.name(tr) ̂ ′′]\n′′ ̂
print(TS.guard(tr)) ̂ ′′ ==>\n′′ ̂
print(TS.assignments(tr)),

/∗ Multiple assignment ∗/
print : TS.MultipleAssignment → Text
print(assignments) ≡

if assignments = {} then ′′′′ else
let assignment = hd assignments,

assignments′ = assignments \ {assignment}
in print(assignment) ̂

if assignments′ = {} then ′′′′

else ′′, ′′ ̂ print(assignments′)
end

end
end,

/∗ Assignment ∗/
print : TS.Assignment → Text
print(assignment) ≡

let id = TS.id(assignment)
in case TS.assign(assignment) of

T.BoolAssign(b) → id ̂ ′′’ = ′′ ̂ toString(b),
T.NatAssign(n) → id ̂ ′′’ = ′′ ̂ toString(n),
T.AddAssign(a) → id ̂ ′′’ = ′′ ̂ id ̂ ′′ + ′′ ̂ toString(a),
T.SubAssign(s) → id ̂ ′′’ = ′′ ̂ id ̂ ′′ - ′′ ̂ toString(s)

end
end

value /∗ Unparse assertions ∗/
print : Text × TS.Assertion-set → Text
print(tsName, asserts) ≡

if asserts = {} then ′′′′ else
let assert = hd asserts, asserts′ = asserts \ {assert}
in ′′\n′′ ̂ print(tsName, assert) ̂

if asserts′ = {} then ′′′′

else ′′,\n′′ ̂ print(tsName, asserts′)
end

end
end,

/∗ Assertion ∗/
print : Text × (Text × T.LTLformula) → Text
print(tsName, (nm, ltl)) ≡

′′[′′ ̂ nm ̂ ′′] ′′ ̂ tsName ̂ ′′ |-\n′′ ̂ print(ltl)

value /∗ Unparse expressions ∗/
print : T.BooleanExp → Text
print(boolExp) ≡

case boolExp of
T.and(a) → let x = hd a, a′ = a \ {x}

in print(x) ̂
if a′ = {} then ′′′′

else ′′ /\\ ′′ ̂ print(T.and(a′)) end
end,
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T.or(o) → let x = hd o, o′ = o \ {x}
in print(x) ̂

if o′ = {} then ′′′′

else ′′ \\/ ′′ ̂ print(T.or(o′)) end
end,

T.neg(n) → ′′~(′′ ̂ print(n) ̂ ′′)′′,
T.lessthan(l,r) → print(l) ̂ ′′ < ′′ ̂ print(r),
T.greaterthan(l,r) → print(l) ̂ ′′ > ′′ ̂ print(r),
T.geq(l,r) → print(l) ̂ ′′ >= ′′ ̂ print(r),
T.equals(l,r) → print(l) ̂ ′′ = ′′ ̂ print(r),
T.literal(l) → l,
T.bool(b) → toString(b)

end,

print : T.ArithmeticExp → Text
print(arithExp) ≡

case arithExp of
T.add(a) → let x = hd a, a′ = a \ {x}

in print(x) ̂ if a′ = {} then ′′′′

else ′′ + ′′ ̂ print(T.add(a′))
end

end,
T.sub(s) → let x = hd s, s′ = s \ {x}

in print(x) ̂ if s′ = {} then ′′′′

else ′′ - ′′ ̂ print(T.sub(s′))
end

end,
T.literal(n) → n

end

value /∗ Unparse LTL formula ∗/
print : T.LTLformula → Text
print(ltl) ≡

case ltl of
T.paren(ltl) → ′′(′′ ̂ print(ltl) ̂ ′′)′′,
T.b(b) → print(b),
T.ltrl(l) → l,
T.conj(set) → let s = hd set, set′ = set \ {s}

in if set′ = {} then ′′′′

else print(T.conj(set′)) ̂ ′′ /\\ ′′

end ̂ print(s)
end,

T.disj(set) → let s = hd set, set′ = set \ {s}
in if set′ = {} then ′′′′

else print(T.disj(set′)) ̂ ′′ \\/ ′′

end ̂ print(s)
end,

T.neg(n) → ′′~(′′ ̂ print(n) ̂ ′′)′′,
T.impl(l,r) → print(l) ̂ ′′ => ′′ ̂ print(r),
T.x(x) → ′′X(′′ ̂ print(x) ̂ ′′)′′,
T.g(g) → ′′G(′′ ̂ print(g) ̂ ′′)′′,
T.f(f) → ′′F(′′ ̂ print(f) ̂ ′′)′′,
T.u(l,r) → ′′U(′′ ̂ print(l) ̂ ′′, ′′ ̂ print(r) ̂ ′′)′′

end
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end

E.4.4 Station Template

context: G, UP, ORA
scheme StationTemplate =

class
value - - Station Layout Diagram

stationLayoutDiagram : SL.Diagram =
SL.mk Diagram(

line, allLinears, allPoints, allSignals,
neighbours, branchNeighbours, pointMachineTrack,
trackPointMachine, signalLocations),

line : Text = ′′line′′,
allLinears : SL.TrackId-set = {},
allPoints : SL.TrackId-set = {},
allSignals : SL.SignalId-set = {},
neighbours : (SL.TrackId × SL.TrackId)-set = {},
branchNeighbours :

(SL.TrackId × SL.TrackId) →m SL.Branch = [ ],
pointMachineTrack : SL.PointMachineId →m SL.TrackId =

[ ],
trackPointMachine : SL.TrackId →m SL.PointMachineId =

[ ],
signalLocations :

(SL.TrackId × SL.TrackId) →m SL.SignalId = [ ]

value - - Train Route Table
trainRouteTable : TRT.TrainRouteTable = [ ],
dataRow : TRT.DataRow =

TRT.mk DataRow({}, [ ], [ ], [ ], (), (), [ ])

value - - Interlocking Plan
interlockingPlan : IP.InterlockingPlan =

IP.mk InterlockingPlan(
stationLayoutDiagram, trainRouteTable)

value - - Buttons
allButtons : Text-set = {}

value - - Object Relay Associations
objectRelayAssociations : ORA.ObjectRelayAssociations =

ORA.mk ObjectRelayAssociations(
routeRelayAssoc, trackRelayAssoc,
pointRelayAssoc, signalRelayAssoc),

routeRelayAssoc : T.TrainRouteId →m T.VarId = [ ],
trackRelayAssoc : SL.TrackId →m T.VarId = [ ],
pointRelayAssoc :

SL.PointMachineId × SL.Branch →m T.VarId = [ ],
signalRelayAssoc :

SL.SignalId × ORA.Lamp →m T.VarId = [ ]
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test case - - Well-formedness checks
[ isWfStationLayoutDiagram ]

SL.isWfDiagram(stationLayoutDiagram),
[ isWfTrainRouteTable ]

TRT.isWfTrainRouteTable(trainRouteTable,
stationLayoutDiagram),

[ isWfInterlockingPlan ]
IP.isWfInterlockingPlan(interlockingPlan),

[ isWfObjectRelayAssociations ]
ORA.isWfObjectRelayAssociations(objectRelayAssociations,

interlockingPlan)

test case
[ generate transitionSystem ]

UP.print(G.generate(′′InterlockingSystem′′,
objectRelayAssociations,
interlockingPlan,
allButtons))

end

E.4.5 Stenstrup Station

context: G, UP
scheme Stenstrup =

class
value

stenstrupSLD : SL.Diagram =
SL.mk Diagram(

′′line′′,
allLinears,
allPoints,
allSignals,
neighbours,
branchNeighbours,
pointMachineTrack,
trackPointMachine,
signalLocations

),

allLinears : SL.TrackId-set = {′′A12′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints : SL.TrackId-set = {′′01′′, ′′03′′},
allSignals : SL.SignalId-set = {′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

neighbours : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) },

branchNeighbours : (SL.TrackId × SL.TrackId) →m SL.Branch =
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[ (′′01′′, ′′02′′) 7→ T.plus,
(′′01′′, ′′04′′) 7→ T.minus,
(′′03′′, ′′02′′) 7→ T.plus,
(′′03′′, ′′04′′) 7→ T.minus ],

pointMachineTrack : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′,

′′02′′ 7→ ′′03′′ ],

trackPointMachine : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ],

signalLocations : (SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′line′′, ′′A12′′) 7→ ′′A′′, (′′line′′, ′′B12′′) 7→ ′′B′′,

(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ]

value
allButtons : Text-set = {′′b00406′′, ′′b03106′′, ′′b00606′′, ′′b03306′′}

value
stenstrupTRT : TRT.TrainRouteTable =

[ ′′2′′ 7→ dataRow2, ′′3′′ 7→ dataRow3,
′′5′′ 7→ dataRow5, ′′6′′ 7→ dataRow6,
′′7′′ 7→ dataRow7, ′′8′′ 7→ dataRow8,
′′9′′ 7→ dataRow9, ′′10′′ 7→ dataRow10 ],

dataRow2 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ true ]
),

dataRow3 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′04′′, TRT.drawn)),

((′′04′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,
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′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ true, ′′10′′ 7→ false ]
),

dataRow5 : TRT.DataRow =
TRT.mk DataRow(
{′′A12′′, ′′01′′},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.gr, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′B′′, ′′B12′′ ),
( ((′′03′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ true, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

dataRow6 : TRT.DataRow =
TRT.mk DataRow(
{′′A12′′, ′′01′′},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.gr, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′B′′, ′′B12′′ ),
( ((′′03′′, TRT.dropped), (′′04′′, TRT.drawn)),

((′′04′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

dataRow7 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.gr,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ false, ′′B12′′ 7→ false ],
( ′′E′′, ′′01′′ ),
( ((′′01′′, TRT.dropped), (′′A12′′, TRT.drawn)),

((′′A12′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ false, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
),

dataRow8 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.gr, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,
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′′04′′ 7→ false, ′′03′′ 7→ false, ′′B12′′ 7→ false ],
( ′′F′′, ′′01′′ ),
( ((′′01′′, TRT.dropped), (′′A12′′, TRT.drawn)),

((′′A12′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ false,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
),

dataRow9 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.gr, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′G′′, ′′03′′ ),
( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),

((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ false, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

dataRow10 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.gr ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′H′′, ′′03′′ ),
( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),

((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ false, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
)

value
stenstrupIP : IP.InterlockingPlan =

IP.mk InterlockingPlan(
stenstrupSLD,
stenstrupTRT

)

value
stenstrupAssocs : ORA.ObjectRelayAssociations =

ORA.mk ObjectRelayAssociations(
routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc

),

routeRelayAssoc : T.TrainRouteId →m T.VarId =
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[ ′′2′′ 7→ ′′ia′′, ′′3′′ 7→ ′′ia′′,
′′5′′ 7→ ′′ib′′, ′′6′′ 7→ ′′ib′′,
′′7′′ 7→ ′′ua′′, ′′8′′ 7→ ′′ua′′,
′′9′′ 7→ ′′ub′′, ′′10′′ 7→ ′′ub′′ ],

trackRelayAssoc : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′a12′′, ′′01′′ 7→ ′′t01′′, ′′02′′ 7→ ′′t02′′,

′′B12′′ 7→ ′′b12′′, ′′03′′ 7→ ′′t03′′, ′′04′′ 7→ ′′t04′′ ],

pointRelayAssoc : SL.PointMachineId ×
SL.Branch →m T.VarId =
[ (′′01′′, T.plus) 7→ ′′plus01′′, (′′01′′, T.minus) 7→ ′′minus01′′,

(′′02′′, T.plus) 7→ ′′plus02′′, (′′02′′, T.minus) 7→ ′′minus02′′ ],

signalRelayAssoc : SL.SignalId × ORA.Lamp →m T.VarId =
[ (′′A′′, ORA.gr) 7→ ′′aGreen′′, (′′A′′, ORA.re) 7→ ′′aRed′′,

(′′B′′, ORA.gr) 7→ ′′bGreen′′, (′′B′′, ORA.re) 7→ ′′bRed′′,
(′′E′′, ORA.gr) 7→ ′′eGreen′′, (′′E′′, ORA.re) 7→ ′′eRed′′,
(′′F′′, ORA.gr) 7→ ′′fGreen′′, (′′F′′, ORA.re) 7→ ′′fRed′′,
(′′G′′, ORA.gr) 7→ ′′gGreen′′, (′′G′′, ORA.re) 7→ ′′gRed′′,
(′′H′′, ORA.gr) 7→ ′′hGreen′′, (′′H′′, ORA.re) 7→ ′′hRed′′ ]

test case - - Well-formedness checks
[ isWfStationLayoutDiagram ]

SL.isWfDiagram(stenstrupSLD),
[ isWfTrainRouteTable ]

TRT.isWfTrainRouteTable(stenstrupTRT, stenstrupSLD),
[ isWfInterlockingPlan ]

IP.isWfInterlockingPlan(stenstrupIP),
[ isWfObjectRelayAssociations ]

ORA.isWfObjectRelayAssociations(stenstrupAssocs, stenstrupIP)

test case
[ generate transitionSystem ]

UP.print(G.generate(′′InterlockingSystem′′,
stenstrupAssocs,
stenstrupIP,
allButtons))

end

E.5 Test

E.5.1 Test of Station Layout

context: SL
scheme Test StationLayout =

class
value
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/∗ Fail test cases ∗/
/∗ Well−formedness NEIGHBOURS start ∗/
/∗ id which is not a section id ∗/
neighbours OnlySections d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours OnlySections fail, branchNeighbours,
pmt, tpm, signalLocations),

neighbours OnlySections fail :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′A′′)},

/∗ id which is a section id ∗/
neighbours OnlySections d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours OnlySections succeed,
branchNeighbours, pmt, tpm, signalLocations),

neighbours OnlySections succeed :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′)},

/∗ a section without a neighbour ∗/
neighbours EverySection d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours EverySection fail, branchNeighbours,
pmt, tpm, signalLocations),

neighbours EverySection fail :
(SL.TrackId × SL.TrackId)-set = {(′′01′′, ′′02′′)},

/∗ all sections has a neighbour, 01 is connected
to line otherwise
the station is jsut planted in the middle of
no−where.∗/
neighbours EverySection d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours EverySection succeed,
branchNeighbours, pmt, tpm, signalLocations),

neighbours EverySection succeed :
(SL.TrackId × SL.TrackId)-set =
{(′′line′′, ′′01′′), (′′01′′, ′′02′′), (′′01′′, ′′03′′)},

/∗ a linear section neighbour with itself ∗/
neighbours Irreflexive d linear fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours Irreflexive linear fail,
branchNeighbours, pmt, tpm, signalLocations),

neighbours Irreflexive linear fail :
(SL.TrackId × SL.TrackId)-set = {(′′03′′, ′′03′′)},
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/∗ a points section neighbour with itself ∗/
neighbours Irreflexive d points fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours Irreflexive points fail,
branchNeighbours, pmt, tpm, signalLocations),

neighbours Irreflexive points fail :
(SL.TrackId × SL.TrackId)-set = {(′′01′′, ′′01′′)},

/∗ neighbouring sections are inserted as double
entry ∗/
neighbours Antisymmetrical d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours Antisymmetrical fail,
branchNeighbours, pmt, tpm, signalLocations),

neighbours Antisymmetrical fail :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′), (′′02′′, ′′01′′),
(′′03′′, ′′01′′)},

/∗ neighbouring sections are inserted not as double
entry ∗/
neighbours Antisymmetrical d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours Antisymmetrical succeed,
branchNeighbours, pmt, tpm, signalLocations),

neighbours Antisymmetrical succeed :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′)},

/∗ linear section 03 has no neighbours ∗/
linears 1or2Neighbours d fail 1 : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears linears 1or2Neighbours fail 2,
allPoints, allSignals,
neighbours linears 1or2Neighbours fail 1,
branchNeighbours, pmt, tpm, signalLocations),

neighbours linears 1or2Neighbours fail 1 :
(SL.TrackId × SL.TrackId)-set = {(′′01′′, ′′02′′)},

/∗ linear section 02 has 3 neighbours ∗/
linears 1or2Neighbours d fail 2 : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears linears 1or2Neighbours fail 2,
allPoints, allSignals,
neighbours linears 1or2Neighbours fail 2,
branchNeighbours, pmt, tpm, signalLocations),
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allLinears linears 1or2Neighbours fail 2 :
SL.TrackId-set = {′′02′′, ′′03′′, ′′04′′},

neighbours linears 1or2Neighbours fail 2 :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′03′′, ′′02′′), (′′04′′, ′′02′′)},

/∗ linear sections has 1 neighbour each ∗/
linears 1or2Neighbours d succeed 1 : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours linears 1or2Neighbours succeed 1,
branchNeighbours, pmt, tpm, signalLocations),

neighbours linears 1or2Neighbours succeed 1 :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′)},

/∗ linear sections has 2 neighbour each ∗/
linears 1or2Neighbours d succeed 2 : SL.Diagram =

SL.mk Diagram(
′′line′′,
allLinears linears 1or2Neighbours succeed 2,
allPoints, allSignals,
neighbours linears 1or2Neighbours succeed 2,
branchNeighbours, pmt, tpm, signalLocations),

allLinears linears 1or2Neighbours succeed 2 :
SL.TrackId-set = {′′02′′, ′′03′′, ′′04′′, ′′05′′},

neighbours linears 1or2Neighbours succeed 2 :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′), (′′02′′, ′′04′′),
(′′03′′, ′′05′′)},

/∗ point section 01 has 2 neighbours ∗/
points 3Neighbours d fail 1 : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours points 3Neighbours fail 1,
branchNeighbours, pmt, tpm, signalLocations),

neighbours points 3Neighbours fail 1 :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′)},

/∗ point section 01 has 4 neighbours ∗/
points 3Neighbours d fail 2 : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears points 3Neighbours fail 2,
allPoints, allSignals,
neighbours points 3Neighbours fail 2,
branchNeighbours, pmt, tpm, signalLocations),

allLinears points 3Neighbours fail 2 : SL.TrackId-set =
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{′′02′′, ′′03′′, ′′04′′, ′′05′′},

neighbours points 3Neighbours fail 2 :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′), (′′01′′, ′′04′′),
(′′01′′, ′′05′′)},

/∗ point section 01 has 3 neighbours ∗/
points 3Neighbours d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears points 3Neighbours succeed,
allPoints, allSignals,
neighbours points 3Neighbours succeed,
branchNeighbours, pmt, tpm, signalLocations),

allLinears points 3Neighbours succeed : SL.TrackId-set =
{′′02′′, ′′03′′, ′′04′′},

neighbours points 3Neighbours succeed :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′02′′), (′′01′′, ′′03′′), (′′01′′, ′′04′′)},

neighbours pointsNotNeighbours d fail :
(SL.TrackId × SL.TrackId)-set =
{(′′01′′, ′′03′′)},

pointsNotNeighbours d fail : SL.Diagram =
SL.mk Diagram(

′′line′′,
stenstrup allLinears,
stenstrup allPoints,
stenstrup allSignals,
neighbours pointsNotNeighbours d fail,
stenstrup branchNeighbours,
stenstrup pointMachineTrack,
stenstrup trackPointMachine,
stenstrup signalLocations

),

/∗ Well−formedness NEIGHBOURS end ∗/

/∗ Well−formedness BRANCHNEIGHBOURS start∗/
/∗ the neighbours in the branch neighbours relation
does
not match the neighbours relation ∗/
branchNeighbours areNeighbours d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours areNeighbours fail,
pmt, tpm, signalLocations),

branchNeighbours areNeighbours fail :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′02′′, ′′03′′) 7→ T.plus ],
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/∗ the neighbours in the branch neighbours relation
match the neighbours relation ∗/
branchNeighbours areNeighbours d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours,
branchNeighbours areNeighbours succeed, pmt, tpm,
signalLocations),

branchNeighbours areNeighbours succeed :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus, (′′01′′, ′′03′′) 7→ T.minus ],

/∗ The first parameter in the tuple is a linear
∗/
branchNeighbours FirstIsPoints d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours FirstIsPoints fail,
pmt, tpm, signalLocations),

branchNeighbours FirstIsPoints fail :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′02′′, ′′01′′) 7→ T.plus, (′′03′′, ′′01′′) 7→ T.minus ],

/∗ The first parameter in the tuple is a points
∗/
branchNeighbours FirstIsPoints d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours,
branchNeighbours FirstIsPoints succeed, pmt, tpm,
signalLocations),

branchNeighbours FirstIsPoints succeed :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus, (′′01′′, ′′03′′) 7→ T.minus ],

/∗ Not every points defined in allPoints are used
in branchNeigbours ∗/
branchNeighbours everyPoints d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours everyPoints fail,
pmt, tpm, signalLocations),

branchNeighbours everyPoints fail :
(SL.TrackId × SL.TrackId) →m SL.Branch = [ ],

/∗ every points defined in allPoints and are used
in branchNeigbours ∗/
branchNeighbours everyPoints d succeed : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours everyPoints succeed,
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pmt, tpm, signalLocations),

branchNeighbours everyPoints succeed :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus, (′′01′′, ′′03′′) 7→ T.minus ],

/∗ Well−formedness BRANCHNEIGHBOURS end∗/
/∗ Well−formedness SIGNALLOCATION start∗/
/∗ signal location does not use existing signals
from allsignals ∗/

signalLocation UsesExistingSignals d fail : SL.Diagram =
SL.mk Diagram(

′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours, pmt, tpm,
signalLocations UsesExistingSignals fail),

signalLocations UsesExistingSignals fail :
(SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′02′′, ′′01′′) 7→ ′′A′′, (′′03′′, ′′01′′) 7→ ′′F′′ ],

/∗ signal location does not use existing signals
from allsignals ∗/
signalLocation UsesExistingSignals d succeed :

SL.Diagram =
SL.mk Diagram(

′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours, pmt, tpm,
signalLocations UsesExistingSignals succeed),

signalLocations UsesExistingSignals succeed :
(SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′02′′, ′′01′′) 7→ ′′A′′, (′′03′′, ′′01′′) 7→ ′′B′′ ],

/∗ signals are placed at invalid locations (between
sections that does not exist) ∗/
signalsArePlacedAtValtIdNeighbours d fail : SL.Diagram =

SL.mk Diagram(
′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours, pmt, tpm,
signalsArePlacedAtValtIdNeighbours fail),

signalsArePlacedAtValtIdNeighbours fail :
(SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′02′′, ′′04′′) 7→ ′′A′′, (′′03′′, ′′06′′) 7→ ′′B′′ ],

/∗ signals are placed at valid locations (between
sections that does exist) ∗/
signalsArePlacedAtValtIdNeighbours d succeed :

SL.Diagram =
SL.mk Diagram(

′′line′′, allLinears, allPoints, allSignals,
neighbours, branchNeighbours, pmt, tpm,
signalsArePlacedAtValtIdNeighbours succeed),

signalsArePlacedAtValtIdNeighbours succeed :
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(SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′02′′, ′′01′′) 7→ ′′A′′, (′′03′′, ′′01′′) 7→ ′′B′′ ],

/∗ Well−formedness SIGNALLOCATION end∗/
/∗ Success station layout ∗/
allLinears : SL.TrackId-set = {′′02′′, ′′03′′},

allPoints : SL.TrackId-set = {′′01′′},

allSignals : SL.SignalId-set = {′′A′′, ′′B′′},

neighbours : (SL.TrackId × SL.TrackId)-set =
{(′′line′′,′′01′′),(′′01′′, ′′02′′), (′′01′′, ′′03′′)},

branchNeighbours :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus, (′′01′′, ′′03′′) 7→ T.minus ],

signalLocations :
(SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′02′′, ′′01′′) 7→ ′′A′′, (′′03′′, ′′01′′) 7→ ′′B′′ ]

/∗ Succeed test cases ∗/
value
stenstrupSLD : SL.Diagram =

SL.mk Diagram(
′′line′′,
stenstrup allLinears,
stenstrup allPoints,
stenstrup allSignals,
stenstrup neighbours,
stenstrup branchNeighbours,
stenstrup pointMachineTrack,
stenstrup trackPointMachine,
stenstrup signalLocations

),

stenstrup allLinears : SL.TrackId-set =
{′′A12′′, ′′02′′, ′′04′′, ′′B12′′},

stenstrup allPoints : SL.TrackId-set =
{′′01′′, ′′03′′},

stenstrup allSignals : SL.SignalId-set =
{′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

stenstrup neighbours : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) },

stenstrup branchNeighbours :
(SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus,

(′′01′′, ′′04′′) 7→ T.minus,
(′′03′′, ′′02′′) 7→ T.plus,
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(′′03′′, ′′04′′) 7→ T.minus ],

stenstrup pointMachineTrack : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′,

′′02′′ 7→ ′′03′′ ],

stenstrup trackPointMachine : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ],

stenstrup signalLocations :
(SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′line′′, ′′A12′′) 7→ ′′A′′, (′′line′′, ′′B12′′) 7→ ′′B′′,

(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ],

sld fail1 : SL.Diagram =
SL.mk Diagram(

′′line′′,
allLinears fail,
allPoints fail,
stenstrup allSignals,
stenstrup neighbours,
stenstrup branchNeighbours,
stenstrup pointMachineTrack,
stenstrup trackPointMachine,
stenstrup signalLocations

),

allLinears fail : SL.TrackId-set = {′′A12′′, ′′01′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints fail : SL.TrackId-set = {′′01′′, ′′03′′}

test case
[ isWfIdentifiers fail ]
∼ SL.isWfIdentifiers(sld fail1),

[ isWfIdentifiers succeed ]
SL.isWfIdentifiers(stenstrupSLD)

test case
[ neighbours OnlySections fail ]
∼ SL.neighbours OnlySections(

neighbours OnlySections d fail),
[ neighbours OnlySections succeed ]

SL.neighbours OnlySections(
neighbours OnlySections d succeed),

[ neighbours EverySection fail ]
∼ SL.neighbours EverySection(

neighbours EverySection d fail),
[ neighbours EverySection succeed ]

SL.neighbours EverySection(
neighbours EverySection d succeed),

[ neighbours Irreflexive linear fail ]
∼ SL.neighbours Irreflexive(

neighbours Irreflexive d linear fail),
[ neighbours Irreflexive points fail ]
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∼ SL.neighbours Irreflexive(
neighbours Irreflexive d points fail),

[ neighbours Antisymmetrical fail ]
∼ SL.neighbours Antisymmetrical(

neighbours Antisymmetrical d fail),
[ neighbours Antisymmetrical succeed ]

SL.neighbours Antisymmetrical(
neighbours Antisymmetrical d succeed),

[ linears 1or2Neighbours fail 1 ]
∼ SL.linears 1or2Neighbours(

linears 1or2Neighbours d fail 1),
[ linears 1or2Neighbours fail 2 ]
∼ SL.linears 1or2Neighbours(

linears 1or2Neighbours d fail 2),
[ linears 1or2Neighbours succeed 1 ]

SL.linears 1or2Neighbours(
linears 1or2Neighbours d succeed 1),

[ linears 1or2Neighbours succeed 2 ]
SL.linears 1or2Neighbours(

linears 1or2Neighbours d succeed 2),
[ points 3Neighbours fail 1 ]
∼ SL.points 3Neighbours(points 3Neighbours d fail 1),

[ points 3Neighbours fail 2 ]
∼ SL.points 3Neighbours(points 3Neighbours d fail 2),

[ points 3Neighbours succeed ]
SL.points 3Neighbours(points 3Neighbours d succeed),

[ pointsNotNeighbours fail ]
∼SL.pointsNotNeighbours(pointsNotNeighbours d fail),

[ pointsNotNeighbours succeed ]
SL.pointsNotNeighbours(stenstrupSLD)

test case
[ branchNeighbours areNeighbours fail ]
∼ SL.branchNeighbours areNeighbours(

branchNeighbours areNeighbours d fail),
[ branchNeighbours areNeighbours succeed ]

SL.branchNeighbours areNeighbours(
branchNeighbours areNeighbours d succeed),

[ branchNeighbours FirstIsPoints fail ]
∼ SL.branchNeighbours FirstIsPoints(

branchNeighbours FirstIsPoints d fail),
[ branchNeighbours FirstIsPoints succeed ]

SL.branchNeighbours FirstIsPoints(
branchNeighbours FirstIsPoints d succeed),

[ branchNeighbours everyPoints fail ]
∼ SL.branchNeighbours everyPoints 2branchNbs(

branchNeighbours everyPoints d fail),
[ branchNeighbours everyPoints succeed ]

SL.branchNeighbours everyPoints 2branchNbs(
branchNeighbours everyPoints d succeed)

test case
[ signalLocation UsesExistingSignals fail ]
∼ SL.signalLocation UsesExistingSignals(

signalLocation UsesExistingSignals d fail),
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[ signalLocation UsesExistingSignals succeed ]
SL.signalLocation UsesExistingSignals(

signalLocation UsesExistingSignals d succeed),
[ signalsArePlacedAtValtIdNeighbours fail ]
∼ SL.signalsArePlacedAtValtIdNeighbours(

signalsArePlacedAtValtIdNeighbours d fail),
[ signalsArePlacedAtValtIdNeighbours succeed ]

SL.signalsArePlacedAtValtIdNeighbours(
signalsArePlacedAtValtIdNeighbours d succeed)

/∗ Point Machines ∗/

value
pmt fail1 : SL.PointMachineId →m SL.TrackId =

[ ′′01′′ 7→ ′′01′′, ′′02′′ 7→ ′′03′′ ],
tpm fail1 : SL.TrackId →m SL.PointMachineId =

[ ′′01′′ 7→ ′′01′′, ′′03′′ 7→ ′′03′′ ],
pmt fail2 : SL.PointMachineId →m SL.TrackId =

[ ′′01′′ 7→ ′′01′′, ′′02′′ 7→ ′′03′′ ],
tpm fail2 : SL.TrackId →m SL.PointMachineId =

[ ′′01′′ 7→ ′′01′′, ′′02′′ 7→ ′′02′′ ],
pmt fail3 : SL.PointMachineId →m SL.TrackId =

[ ′′01′′ 7→ ′′01′′, ′′02′′ 7→ ′′03′′ ],
tpm fail3 : SL.TrackId →m SL.PointMachineId =

[ ′′01′′ 7→ ′′02′′, ′′03′′ 7→ ′′01′′ ],
pmt : SL.PointMachineId →m SL.TrackId =

[ ′′01′′ 7→ ′′01′′, ′′02′′ 7→ ′′03′′ ],
tpm : SL.TrackId →m SL.PointMachineId =

[ ′′01′′ 7→ ′′01′′, ′′03′′ 7→ ′′02′′ ]

test case
[ pointMachines areSymmetrical fail1 ]
∼ SL.areSymmetrical(pmt fail1, tpm fail1),

[ pointMachines areSymmetrical fail2 ]
∼ SL.areSymmetrical(pmt fail2, tpm fail2),

[ pointMachines areSymmetrical fail3 ]
∼ SL.areSymmetrical(pmt fail3, tpm fail3),

[ pointMachines areSymmetrical succeed ]
SL.areSymmetrical(pmt, tpm)

value
sld fail : SL.Diagram =

SL.mk Diagram(
′′line′′,
allLinears ok,
allPoints ok,
allSignals ok,
neighbours ok,
branchNeighbours ok,
pointMachineTrack ok,
trackPointMachine fail,
signalLocations ok

),

trackPointMachine fail : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,
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′′07′′ 7→ ′′02′′ ],

sld ok : SL.Diagram =
SL.mk Diagram(

′′line′′,
allLinears ok,
allPoints ok,
allSignals ok,
neighbours ok,
branchNeighbours ok,
pointMachineTrack ok,
trackPointMachine ok,
signalLocations ok

),

allLinears ok : SL.TrackId-set = {′′A12′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints ok : SL.TrackId-set = {′′01′′, ′′03′′},
allSignals ok : SL.SignalId-set = {′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

neighbours ok : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) },

branchNeighbours ok : (SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus,

(′′01′′, ′′04′′) 7→ T.minus,
(′′03′′, ′′02′′) 7→ T.plus,
(′′03′′, ′′04′′) 7→ T.minus ],

pointMachineTrack ok : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′,

′′02′′ 7→ ′′03′′ ],

trackPointMachine ok : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ],

signalLocations ok : (SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′line′′,′′A12′′) 7→ ′′A′′, (′′line′′,′′B12′′) 7→ ′′B′′,

(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ]

test case
[ pointMachines ExistingTrackSections fail ]
∼SL.pointsSectionsExists(sld fail),

[ pointMachines ExistingTrackSections succeed ]
SL.pointsSectionsExists(sld ok)

end
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E.5.2 Test of Train Route Table

context: SL, TRT
scheme Test TrainRouteTable =

class
value

/∗ Success station layout ∗/
allLinears : SL.TrackId-set = {′′02′′, ′′03′′},
allPoints : SL.TrackId-set = {′′01′′},
allSignals : SL.SignalId-set = {′′A′′, ′′B′′},

neighbours : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′01′′), (′′01′′, ′′02′′), (′′01′′, ′′03′′) },

branchNeighbours : (SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus, (′′01′′, ′′03′′) 7→ T.minus ],

trackPointMachine : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′ ],

pointMachineTrack : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′ ],

signalLocations : (SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′02′′, ′′01′′) 7→ ′′A′′, (′′03′′, ′′01′′) 7→ ′′B′′ ],

d : SL.Diagram =
SL.mk Diagram(

′′line′′,
allLinears,
allPoints,
allSignals,
neighbours,
branchNeighbours,
trackPointMachine,
pointMachineTrack,
signalLocations

)

/∗ Well−formed overlap ∗/

/∗ No overlap is WF ∗/
value

dataRow : TRT.DataRow =
TRT.mk DataRow(

emptyOverlap,
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
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[ ′′2′′ 7→ true, ′′3′′ 7→ true ]
),

emptyOverlap : SL.TrackId-set = {}
test case

[ noOverlap ] TRT.isWfOverlap(dataRow, d)

/∗ Overlap part of route ∗/
value

trainDetection : SL.TrackId →m Bool =
[ ′′01′′ 7→ true, ′′02′′ 7→ true, ′′03′′ 7→ false ]

test case
[ overlapNotPartofRoute ]
∼TRT.overlapCovered({′′03′′}, trainDetection),

[ overlapPartofRoute ]
TRT.overlapCovered({′′02′′}, trainDetection)

/∗ Overlap forms connected path ∗/
test case

[ overlapNotConnected ]
∼TRT.overlapIsConnected({′′02′′, ′′03′′}, d),

[ overlapConnectedA ]
TRT.overlapIsConnected({′′01′′}, d),

[ overlapConnectedB ]
TRT.overlapIsConnected({′′01′′, ′′02′′}, d)

/∗ Overlap end of route ∗/
value

stenstrupSLD : {| d : SL.Diagram • SL.isWfDiagram(d) |} =
SL.mk Diagram(

′′line′′,
stenstrup allLinears,
stenstrup allPoints,
stenstrup allSignals,
stenstrup neighbours,
stenstrup branchNeighbours,
stenstrup pointMachineTrack,
stenstrup trackPointMachine,
stenstrup signalLocations

),

stenstrup allLinears : SL.TrackId-set =
{′′A12′′, ′′02′′, ′′04′′, ′′B12′′},

stenstrup allPoints : SL.TrackId-set =
{′′01′′, ′′03′′},

stenstrup allSignals : SL.SignalId-set =
{′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

stenstrup neighbours : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) },

stenstrup branchNeighbours : (SL.TrackId × SL.TrackId) →m SL.Branch =
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[ (′′01′′, ′′02′′) 7→ T.plus,
(′′01′′, ′′04′′) 7→ T.minus,
(′′03′′, ′′02′′) 7→ T.plus,
(′′03′′, ′′04′′) 7→ T.minus ],

stenstrup pointMachineTrack : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′,

′′02′′ 7→ ′′03′′ ],

stenstrup trackPointMachine : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ],

stenstrup signalLocations : (SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′line′′,′′A12′′) 7→ ′′A′′, (′′line′′,′′B12′′) 7→ ′′B′′,

(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ],

dataRow2 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true ]

),

dataRow2D : TRT.DataRow =
TRT.mk DataRow(
{′′02′′, ′′03′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true ]

)

test case
[ overlapNotEOR ]
∼TRT.endOfRoute(dataRow2D, stenstrupSLD),

[ overlapEOR ]
TRT.endOfRoute(dataRow2, stenstrupSLD)

/∗ Well−formed signals ∗/
value

signals1 : SL.SignalId →m TRT.Aspect =
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[ ′′A′′ 7→ TRT.re, ′′C′′ 7→ TRT.gr ],
signals2 : SL.SignalId →m TRT.Aspect =

[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.re ]
test case

[ nonExistingSignals ]
∼TRT.existingSignals(signals1, d),

[ existingSignals ]
TRT.existingSignals(signals2, d)

value
entrySignal : SL.SignalId = ′′A′′

test case
[ stopEntry ]
∼TRT.proceedEntry(entrySignal, signals1),

[ proceedEntry ]
TRT.proceedEntry(entrySignal, signals2)

/∗ Well−formed points ∗/
test case

[ nonexistingPointMachine ]
∼TRT.pointMachinesExist({′′00′′}, d),

[ existingPointMachines ]
TRT.pointMachinesExist({′′01′′}, d)

value
dataRow2B : TRT.DataRow =

TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true ]

),

dataRow2C : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true ]

)

test case
[ pointMachinesNotInTRT ]
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∼TRT.pointMachinesInTRT(dataRow2B, stenstrupSLD),
[ pointMachineNotInTRT ]
∼TRT.pointMachinesInTRT(dataRow2C, stenstrupSLD),

[ pointMachinesInTRT ]
TRT.pointMachinesInTRT(dataRow2, stenstrupSLD)

value
dataRow10A : TRT.DataRow =

TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.gr ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′H′′, ′′03′′ ),
( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),

((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ false, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
)

test case
[ pointsInRouteLocked fail ]
∼TRT.pointsInRouteLocked(dataRow10A, stenstrupSLD),

[ pointsInRouteLocked success ]
TRT.pointsInRouteLocked(dataRow2, stenstrupSLD)

value
dataRow2A : TRT.DataRow =

TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true ]

)

test case
[ pointsNotInCorrectPos ]
∼TRT.correctPos(dataRow2A, stenstrupSLD),

[ pointsInCorrectPos ]
TRT.correctPos(dataRow2, stenstrupSLD)

/∗ Well−formed train detection ∗/
value

sections1 : SL.TrackId-set = {′′00′′, ′′01′′, ′′02′′},
sections2 : SL.TrackId-set = {′′01′′, ′′02′′},
sections3 : SL.TrackId-set = {′′01′′, ′′02′′, ′′03′′, ′′04′′},
sections4 : SL.TrackId-set = {′′01′′, ′′02′′, ′′03′′}
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test case
[ nonexistingTrackSections ]
∼TRT.existingTrackSections(sections1, d),

[ tooFewTrackSections ]
∼TRT.existingTrackSections(sections2, d),

[ tooManyTrackSections ]
∼TRT.existingTrackSections(sections3, d),

[ existingTrackSections ]
TRT.existingTrackSections(sections4, d)

value
trainDetection1 : SL.TrackId →m Bool = [ ′′01′′ 7→ false ],
trainDetection2 : SL.TrackId →m Bool = [ ′′01′′ 7→ true ]

test case
[ emptyTrainDetection ]
∼TRT.atLeastOneSectionInRoute([ ]),

[ noSectionInRoute ]
∼TRT.atLeastOneSectionInRoute(trainDetection1),

[ atLeastOneSectionInRoute ]
TRT.atLeastOneSectionInRoute(trainDetection2)

value
trainDetection fail : SL.TrackId →m Bool =

[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,
′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],

trainDetection succeed : SL.TrackId →m Bool =
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ]

test case
[ notConnectedRoute ]
∼TRT.connectedRoute(trainDetection fail, stenstrupSLD),

[ connectedRoute ]
TRT.connectedRoute(trainDetection succeed, stenstrupSLD)

value
trainDetection fail2 : SL.TrackId →m Bool =

[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,
′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ]

test case
[ justOneBranchNeighbour fail ]
∼TRT.justOneBranchNeighbour(trainDetection fail2,

stenstrupSLD),
[ justOneBranchNeighbour ]

TRT.justOneBranchNeighbour(trainDetection succeed,
stenstrupSLD)

/∗ Well−formed signal release ∗/
test case

[ nonexistingSignal ]
∼TRT.isWfSignalRelease((′′C′′, ′′01′′), d),

[ existingSignal ]
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TRT.isWfSignalRelease((′′A′′,′′01′′), d)

test case
[ nonexistingTrackSection ]
∼TRT.isWfSignalRelease((′′A′′,′′00′′), d),

[ existingTrackSection ]
TRT.isWfSignalRelease((′′A′′,′′01′′), d),

[ signalNotFollowedByTrackSection ]
∼TRT.signalFollowedByTrackSection(′′A′′, ′′02′′, d),

[ signalFollowedByTrackSection ]
TRT.signalFollowedByTrackSection(′′A′′, ′′01′′, d)

/∗ Well−formed train route release ∗/
test case

[ notReverseTrackSections ]
∼TRT.reverseTrackSections(′′01′′, ′′02′′, ′′01′′, ′′02′′),

[ reverseTrackSections ]
TRT.reverseTrackSections(′′01′′, ′′02′′, ′′02′′, ′′01′′)

test case
[ notReverseRelayState ]
∼TRT.reverseRelayState(TRT.dropped, TRT.drawn,

TRT.drawn, TRT.dropped),
[ reverseRelayState ]

TRT.reverseRelayState(TRT.dropped, TRT.drawn,
TRT.dropped, TRT.drawn)

test case
[ trackSectionNotPartOfRoute ]
∼TRT.trackSectionPartOfRoute(′′00′′, dataRow),

[ trackSectionPartOfRoute ]
TRT.trackSectionPartOfRoute(′′01′′, dataRow)

test case
[ improperRelayState1 ]
∼TRT.properRelayState(TRT.drawn, TRT.dropped),

[ improperRelayState2 ]
∼TRT.properRelayState(TRT.drawn, TRT.drawn),

[ improperRelayState3 ]
∼TRT.properRelayState(TRT.dropped, TRT.dropped),

[ properRelayState ]
TRT.properRelayState(TRT.dropped, TRT.drawn)

/∗ Well−formed mutually blocking ∗/
value

trt : TRT.TrainRouteTable =
[ ′′1′′ 7→ dataRowA, ′′2′′ 7→ dataRowB ],

dataRowA : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
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[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,
′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],

( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′1′′ 7→ true, ′′2′′ 7→ true ]

),

dataRowB : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′1′′ 7→ true, ′′2′′ 7→ true ]

),

mb nwf1 : T.TrainRouteId →m Bool =
[ ′′1′′ 7→ false ],

mb nwf2 : T.TrainRouteId →m Bool =
[ ′′0′′ 7→ false, ′′1′′ 7→ false ],

mb nwf3 : T.TrainRouteId →m Bool =
[ ′′0′′ 7→ false, ′′1′′ 7→ false, ′′2′′ 7→ false ],

mb wf : T.TrainRouteId →m Bool =
[ ′′1′′ 7→ false, ′′2′′ 7→ false ]

test case
[ notEveryExistingRoute few ]
∼TRT.entryForEveryRoute(mb nwf1, trt),

[ notEveryExistingRoute wrong ]
∼TRT.entryForEveryRoute(mb nwf2, trt),

[ notEveryExistingRoute many ]
∼TRT.entryForEveryRoute(mb nwf3, trt),

[ everyExistingRoute ]
TRT.entryForEveryRoute(mb wf, trt)

value
stenstrupTRT : TRT.TrainRouteTable =

[ ′′2′′ 7→ dr2 fail, ′′3′′ 7→ stenstrup dr3,
′′5′′ 7→ stenstrup dr5, ′′6′′ 7→ stenstrup dr6,
′′7′′ 7→ stenstrup dr7, ′′8′′ 7→ stenstrup dr8,
′′9′′ 7→ stenstrup dr9, ′′10′′ 7→ stenstrup dr10 ],

dr2 fail : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,
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′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ false, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ true ]
),

stenstrup dr3 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′04′′, TRT.drawn)),

((′′04′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ true, ′′10′′ 7→ false ]
),

stenstrup dr5 : TRT.DataRow =
TRT.mk DataRow(
{′′A12′′, ′′01′′},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.gr, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′B′′, ′′B12′′ ),
( ((′′03′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ true, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

stenstrup dr6 : TRT.DataRow =
TRT.mk DataRow(
{′′A12′′, ′′01′′},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.gr, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′B′′, ′′B12′′ ),
( ((′′03′′, TRT.dropped), (′′04′′, TRT.drawn)),

((′′04′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

stenstrup dr7 : TRT.DataRow =
TRT.mk DataRow(
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{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.gr,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ false, ′′B12′′ 7→ false ],
( ′′E′′, ′′01′′ ),
( ((′′01′′, TRT.dropped), (′′A12′′, TRT.drawn)),

((′′A12′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ false, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
),

stenstrup dr8 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.gr, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ false, ′′B12′′ 7→ false ],
( ′′F′′, ′′01′′ ),
( ((′′01′′, TRT.dropped), (′′A12′′, TRT.drawn)),

((′′A12′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ false,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
),

stenstrup dr9 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.gr, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′G′′, ′′03′′ ),
( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),

((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ false, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

stenstrup dr10 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.gr ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′H′′, ′′03′′ ),
( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),

((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ false, ′′5′′ 7→ true, ′′6′′ 7→ true,
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′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
)

test case
[ notconflictingIfShareSectionB ]
∼TRT.conflictingWhenShareSection(′′2′′, stenstrupTRT),

[ conflictingIfShareSection ]
TRT.conflictingWhenShareSection(′′3′′, stenstrupTRT)

value
stenstrupTRT2 : TRT.TrainRouteTable =

[ ′′2′′ 7→ dr2 fail2, ′′3′′ 7→ stenstrup dr3,
′′5′′ 7→ stenstrup dr5, ′′6′′ 7→ stenstrup dr6,
′′7′′ 7→ stenstrup dr7, ′′8′′ 7→ stenstrup dr8,
′′9′′ 7→ stenstrup dr9, ′′10′′ 7→ stenstrup dr10 ],

dr2 fail2 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
)

test case
- - Different pos, but not conflicting
[ notConflictingWhenDifferentPos ]
∼TRT.conflictingWhenDifferentPos(′′2′′, ′′10′′, stenstrupTRT2),

- - Same pos
[ conflictingWhenDifferentPos samePos ]

TRT.conflictingWhenDifferentPos(′′2′′, ′′9′′, stenstrupTRT),
- - Different pos and conflicting
[ conflictingWhenDifferentPos ]

TRT.conflictingWhenDifferentPos(′′2′′, ′′10′′, stenstrupTRT)

end

E.5.3 Test of Transition System

context: T, TS
scheme Test TransitionSystem =

class
value

- - TS names
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emptyString : Text = ′′′′,
nonemptyString : Text = ′′test′′

test case - - WF of TS
- - Name
[ emptySystemName ] ∼TS.isWfName(emptyString),
[ nonemptySystemName ] TS.isWfName(nonemptyString)

- - WF of State
value

bVar1 : TS.Var = TS.mk Var(′′t′′, TS.mk BoolVal(true)),
bVar2 : TS.Var = TS.mk Var(′′hest′′, TS.mk BoolVal(true)),
bVar3 : TS.Var = TS.mk Var(′′t′′, TS.mk BoolVal(false)),

identicalIds : TS.Var-set = {bVar1, bVar3},
uniqueIds : TS.Var-set = {bVar1, bVar2}

test case
[ identicalIds ] ∼TS.uniqueIds(identicalIds),
[ uniqueIds ] TS.uniqueIds(uniqueIds)

value
bVar4 : TS.Var = TS.mk Var(′′′′, TS.mk BoolVal(false)),
bVar5 : TS.Var = TS.mk Var(′′0a′′, TS.mk BoolVal(false)),
bVar6 : TS.Var = TS.mk Var(′′1s′′, TS.mk BoolVal(false)),
bVar7 : TS.Var = TS.mk Var(′′2d′′, TS.mk BoolVal(false)),
bVar8 : TS.Var = TS.mk Var(′′3f′′, TS.mk BoolVal(false)),
bVar9 : TS.Var = TS.mk Var(′′4g′′, TS.mk BoolVal(false)),
bVar10 : TS.Var = TS.mk Var(′′5h′′, TS.mk BoolVal(false)),
bVar11 : TS.Var = TS.mk Var(′′6j′′, TS.mk BoolVal(false)),
bVar12 : TS.Var = TS.mk Var(′′7k′′, TS.mk BoolVal(false)),
bVar13 : TS.Var = TS.mk Var(′′8l′′, TS.mk BoolVal(false)),
bVar14 : TS.Var = TS.mk Var(′′9z′′, TS.mk BoolVal(false)),

bVar15 : TS.Var = TS.mk Var(′′a0′′, TS.mk BoolVal(false)),
bVar16 : TS.Var = TS.mk Var(′′s1′′, TS.mk BoolVal(false)),
bVar17 : TS.Var = TS.mk Var(′′d2′′, TS.mk BoolVal(false)),
bVar18 : TS.Var = TS.mk Var(′′f3′′, TS.mk BoolVal(false)),
bVar19 : TS.Var = TS.mk Var(′′g4′′, TS.mk BoolVal(false)),
bVar20 : TS.Var = TS.mk Var(′′h5′′, TS.mk BoolVal(false)),
bVar21 : TS.Var = TS.mk Var(′′j6′′, TS.mk BoolVal(false)),
bVar22 : TS.Var = TS.mk Var(′′k7′′, TS.mk BoolVal(false)),
bVar23 : TS.Var = TS.mk Var(′′l8′′, TS.mk BoolVal(false)),
bVar24 : TS.Var = TS.mk Var(′′z9′′, TS.mk BoolVal(false)),

invalid : TS.Var-set =
{ bVar1, bVar2, bVar3, bVar4, bVar5,

bVar6, bVar7, bVar8, bVar9, bVar10,
bVar11, bVar12, bVar13, bVar14 },

valid : TS.Var-set =
{ bVar15, bVar16, bVar17, bVar18, bVar19,

bVar20, bVar21, bVar22, bVar23, bVar24 }

test case
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[ invalidIds ] ∼TS.validIds(invalid),
[ validIds ] TS.validIds(valid)

- - WF of transitions
value

tinyBoolExp : T.BooleanExp = T.bool(true),

transition1 : TS.TransitionRule =
TS.mk TransitionRule(emptyString, tinyBoolExp, {}),

transition2 : TS.TransitionRule =
TS.mk TransitionRule(nonemptyString, tinyBoolExp, {})

test case
[ emptyTransitionName ] ∼TS.validNames({transition1}),
[ nonemptyTransitionName ] TS.validNames({transition2})

value
tinyBoolExp2 : T.BooleanExp = T.bool(false),
transition3 : TS.TransitionRule =

TS.mk TransitionRule(nonemptyString, tinyBoolExp2, {}),
transition4 : TS.TransitionRule =

TS.mk TransitionRule(′′TR4′′, tinyBoolExp2, {})

test case
[ identicalTransitionNames ] ∼TS.uniqueNames({transition2, transition3}),
[ uniqueTransitionNames ] TS.uniqueNames({transition3, transition4})

value
state : TS.Var-set = {bVar1},
boolExp : T.BooleanExp = T.literal(TS.id(bVar1)),
tr : TS.TransitionRule =

TS.mk TransitionRule(′′notok′′, boolExp, {})

test case
[ nonExistingIdsInGuard ] ∼TS.idsInGuardMustBeInState({}, {tr}),
[ existingIdsInGuard ] TS.idsInGuardMustBeInState(state, {tr})

value
assignment : TS.Assignment =

TS.mk Assignment(TS.id(bVar1), T.BoolAssign(true)),
assignments : TS.MultipleAssignment = {assignment},
transition5 : TS.TransitionRule =

TS.mk TransitionRule(′′TR5′′, tinyBoolExp, assignments)
test case

[ emptyAssignment ] ∼TS.nonemptyAssignment({transition2}),
[ nonemptyAssignment ] TS.nonemptyAssignment({transition5})

value
state1 : TS.Var-set = {bVar1},
assignment1 : TS.Assignment =

TS.mk Assignment(TS.id(bVar2), T.BoolAssign(false)),
transition1a : TS.TransitionRule =

TS.mk TransitionRule(′′TR1′′, tinyBoolExp, {assignment1}),
transitions1 : TS.TransitionRule-set = {transition1a},
assertions1 : TS.Assertion-set = {},
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ts1 : TS.TransitionSystem =
TS.mk TransitionSystem(′′name′′, state1, transitions1, assertions1),

state2 : TS.Var-set = {bVar2},
assignment2 : TS.Assignment =

TS.mk Assignment(TS.id(bVar2), T.BoolAssign(false)),
transition2a : TS.TransitionRule =

TS.mk TransitionRule(′′TR1′′, tinyBoolExp, {assignment2}),
transitions2 : TS.TransitionRule-set = {transition2a},
assertions2 : TS.Assertion-set = {},
ts2 : TS.TransitionSystem =

TS.mk TransitionSystem(′′name′′, state2, transitions2, assertions2)

test case
[ assignToNonexistingIds ] ∼TS.assignmentToExistingIds(ts1),
[ assignToExistingIds ] TS.assignmentToExistingIds(ts2)

value
assign1 : TS.Assignment =

TS.mk Assignment(TS.id(bVar1), T.BoolAssign(true)),
assign2 : TS.Assignment =

TS.mk Assignment(TS.id(bVar2), T.BoolAssign(true)),
assign3 : TS.Assignment =

TS.mk Assignment(TS.id(bVar1), T.BoolAssign(false)),

tr1 : TS.TransitionRule =
TS.mk TransitionRule(′′TR1′′, tinyBoolExp, {assign1, assign2}),

tr2 : TS.TransitionRule =
TS.mk TransitionRule(′′TR2′′, tinyBoolExp, {assign2, assign3}),

tr3 : TS.TransitionRule =
TS.mk TransitionRule(′′TR3′′, tinyBoolExp, {assign1, assign3})

test case
[ idUpdMoreThanOnce ] ∼TS.idUpdOnlyOnce({tr3}),
[ idUpdOnlyOnce ] TS.idUpdOnlyOnce({tr1, tr2})

- - WF of assertions
value

tinyLTL : T.LTLformula = T.ltrl(TS.id(bVar1)),
assert1 : TS.Assertion = (′′′′, tinyLTL),
assert2 : TS.Assertion = (′′assertA′′, tinyLTL)

test case
[ emptyAssertionName ] ∼TS.nonemptyNames({assert1}),
[ nonemptyAssertionName ] TS.nonemptyNames({assert2})

value
tinyLTL2 : T.LTLformula = T.ltrl(TS.id(bVar2)),
assert3 : TS.Assertion = (′′assertA′′, tinyLTL2),
assert4 : TS.Assertion = (′′assertB′′, tinyLTL)

test case
[ identicalAssertionNames ] ∼TS.uniqueNames({assert2, assert3}),
[ uniqueAssertionNames ] TS.uniqueNames({assert2, assert4})
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test case
[ nonexistingVars ] ∼TS.existingVars({bVar1}, {assert3}),
[ existingVars ] TS.existingVars({bVar1}, {assert2})

end

E.5.4 Test of Object Relay Associations

context: ORA, SL, TRT
scheme Test ObjectRelayAssociations =

class

value
stenstrupSLD : SL.Diagram =

SL.mk Diagram(
′′line′′,
allLinears,
allPoints,
allSignals,
neighbours,
branchNeighbours,
pointMachineTrack,
trackPointMachine,
signalLocations

),

allLinears : SL.TrackId-set = {′′A12′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints : SL.TrackId-set = {′′01′′, ′′03′′},
allSignals : SL.SignalId-set = {′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

neighbours : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) },

branchNeighbours : (SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus,

(′′01′′, ′′04′′) 7→ T.minus,
(′′03′′, ′′02′′) 7→ T.plus,
(′′03′′, ′′04′′) 7→ T.minus ],

pointMachineTrack : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′,

′′02′′ 7→ ′′03′′ ],

trackPointMachine : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ],

signalLocations : (SL.TrackId × SL.TrackId) →m SL.SignalId =
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[ (′′line′′, ′′A12′′) 7→ ′′A′′, (′′line′′, ′′B12′′) 7→ ′′B′′,
(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ]

value
stenstrupTRT : TRT.TrainRouteTable =

[ ′′2′′ 7→ dataRow2, ′′3′′ 7→ dataRow3,
′′5′′ 7→ dataRow5, ′′6′′ 7→ dataRow6,
′′7′′ 7→ dataRow7, ′′8′′ 7→ dataRow8,
′′9′′ 7→ dataRow9, ′′10′′ 7→ dataRow10 ],

dataRow2 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ true ]
),

dataRow3 : TRT.DataRow =
TRT.mk DataRow(
{′′03′′, ′′B12′′},
[ ′′A′′ 7→ TRT.gr, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′A′′, ′′A12′′ ),
( ((′′01′′, TRT.dropped), (′′04′′, TRT.drawn)),

((′′04′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ true, ′′10′′ 7→ false ]
),

dataRow5 : TRT.DataRow =
TRT.mk DataRow(
{′′A12′′, ′′01′′},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.gr, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ true,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′B′′, ′′B12′′ ),
( ((′′03′′, TRT.dropped), (′′02′′, TRT.drawn)),

((′′02′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ true, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),
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dataRow6 : TRT.DataRow =
TRT.mk DataRow(
{′′A12′′, ′′01′′},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.gr, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ true, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′B′′, ′′B12′′ ),
( ((′′03′′, TRT.dropped), (′′04′′, TRT.drawn)),

((′′04′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

dataRow7 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.gr,

′′F′′ 7→ TRT.re, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.plus, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ false, ′′B12′′ 7→ false ],
( ′′E′′, ′′01′′ ),
( ((′′01′′, TRT.dropped), (′′A12′′, TRT.drawn)),

((′′A12′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ false, ′′6′′ 7→ true,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
),

dataRow8 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.re,

′′F′′ 7→ TRT.gr, ′′G′′ 7→ TRT.arbitrary, ′′H′′ 7→ TRT.arbitrary ],
[ ′′01′′ 7→ T.minus, ′′02′′ 7→ T.arbitrary ],
[ ′′A12′′ 7→ true, ′′01′′ 7→ true, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ false, ′′B12′′ 7→ false ],
( ′′F′′, ′′01′′ ),
( ((′′01′′, TRT.dropped), (′′A12′′, TRT.drawn)),

((′′A12′′, TRT.dropped), (′′01′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ false,

′′7′′ 7→ true, ′′8′′ 7→ true, ′′9′′ 7→ false, ′′10′′ 7→ false ]
),

dataRow9 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.gr, ′′H′′ 7→ TRT.re ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.plus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′G′′, ′′03′′ ),
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( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),
((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),

[ ′′2′′ 7→ false, ′′3′′ 7→ true, ′′5′′ 7→ true, ′′6′′ 7→ true,
′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]

),

dataRow10 : TRT.DataRow =
TRT.mk DataRow(
{},
[ ′′A′′ 7→ TRT.arbitrary, ′′B′′ 7→ TRT.arbitrary, ′′E′′ 7→ TRT.arbitrary,

′′F′′ 7→ TRT.arbitrary, ′′G′′ 7→ TRT.re, ′′H′′ 7→ TRT.gr ],
[ ′′01′′ 7→ T.arbitrary, ′′02′′ 7→ T.minus ],
[ ′′A12′′ 7→ false, ′′01′′ 7→ false, ′′02′′ 7→ false,

′′04′′ 7→ false, ′′03′′ 7→ true, ′′B12′′ 7→ true ],
( ′′H′′, ′′03′′ ),
( ((′′03′′, TRT.dropped), (′′B12′′, TRT.drawn)),

((′′B12′′, TRT.dropped), (′′03′′, TRT.drawn)) ),
[ ′′2′′ 7→ true, ′′3′′ 7→ false, ′′5′′ 7→ true, ′′6′′ 7→ true,

′′7′′ 7→ false, ′′8′′ 7→ false, ′′9′′ 7→ true, ′′10′′ 7→ true ]
),

stenstrupAssocs : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc

),

routeRelayAssoc : T.TrainRouteId →m T.VarId =
[ ′′2′′ 7→ ′′ia′′, ′′3′′ 7→ ′′ia′′,

′′5′′ 7→ ′′ib′′, ′′6′′ 7→ ′′ib′′,
′′7′′ 7→ ′′ua′′, ′′8′′ 7→ ′′ua′′,
′′9′′ 7→ ′′ub′′, ′′10′′ 7→ ′′ub′′ ],

trackRelayAssoc : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′a12′′, ′′01′′ 7→ ′′t01′′, ′′02′′ 7→ ′′t02′′,

′′B12′′ 7→ ′′b12′′, ′′03′′ 7→ ′′t03′′, ′′04′′ 7→ ′′t04′′ ],

pointRelayAssoc : SL.PointMachineId ×
SL.Branch →m T.VarId =
[ (′′01′′, T.plus) 7→ ′′plus01′′, (′′01′′, T.minus) 7→ ′′minus01′′,

(′′02′′, T.plus) 7→ ′′plus02′′, (′′02′′, T.minus) 7→ ′′minus02′′ ],

signalRelayAssoc : SL.SignalId × ORA.Lamp →m T.VarId =
[ (′′A′′, ORA.gr) 7→ ′′aGreen′′, (′′A′′, ORA.re) 7→ ′′aRed′′,

(′′B′′, ORA.gr) 7→ ′′bGreen′′, (′′B′′, ORA.re) 7→ ′′bRed′′,
(′′E′′, ORA.gr) 7→ ′′eGreen′′, (′′E′′, ORA.re) 7→ ′′eRed′′,
(′′F′′, ORA.gr) 7→ ′′fGreen′′, (′′F′′, ORA.re) 7→ ′′fRed′′,
(′′G′′, ORA.gr) 7→ ′′gGreen′′, (′′G′′, ORA.re) 7→ ′′gRed′′,
(′′H′′, ORA.gr) 7→ ′′hGreen′′, (′′H′′, ORA.re) 7→ ′′hRed′′ ]

/∗ Well−fomnedness of ORA ∗/
value

assocs fail0A : ORA.ObjectRelayAssociations =
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ORA.mk ObjectRelayAssociations(
routeRelayAssoc fail0,
trackRelayAssoc fail0,
pointRelayAssoc,
signalRelayAssoc

),

assocs fail0B : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc fail0,
trackRelayAssoc,
pointRelayAssoc fail0,
signalRelayAssoc

),

assocs fail0C : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc fail0,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc fail0

),

assocs fail0D : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc fail0,
trackRelayAssoc fail0,
pointRelayAssoc fail0,
signalRelayAssoc

),

assocs fail0E : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc fail0,
trackRelayAssoc fail0,
pointRelayAssoc,
signalRelayAssoc fail0

),

assocs fail0F : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc fail0,
pointRelayAssoc fail0,
signalRelayAssoc fail0

),

assocs fail0G : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc fail0,
pointRelayAssoc,
signalRelayAssoc fail0

),
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assocs fail0H : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc fail0,
pointRelayAssoc fail0,
signalRelayAssoc fail0

),

routeRelayAssoc fail0 : T.TrainRouteId →m T.VarId =
[ ′′2′′ 7→ ′′ia′′, ′′3′′ 7→ ′′fail′′,

′′5′′ 7→ ′′ib′′, ′′6′′ 7→ ′′ib′′,
′′7′′ 7→ ′′ua′′, ′′8′′ 7→ ′′ua′′,
′′9′′ 7→ ′′ub′′, ′′10′′ 7→ ′′ub′′ ],

trackRelayAssoc fail0 : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′a12′′, ′′01′′ 7→ ′′t01′′, ′′02′′ 7→ ′′t02′′,

′′B12′′ 7→ ′′b12′′, ′′03′′ 7→ ′′t03′′, ′′04′′ 7→ ′′fail′′ ],

pointRelayAssoc fail0 : SL.PointMachineId ×
SL.Branch →m T.VarId =
[ (′′01′′, T.plus) 7→ ′′plus01′′, (′′01′′, T.minus) 7→ ′′minus01′′,

(′′02′′, T.plus) 7→ ′′fail′′, (′′02′′, T.minus) 7→ ′′minus02′′ ],

signalRelayAssoc fail0 : SL.SignalId × ORA.Lamp →m T.VarId =
[ (′′A′′, ORA.gr) 7→ ′′aGreen′′, (′′A′′, ORA.re) 7→ ′′aRed′′,

(′′B′′, ORA.gr) 7→ ′′bGreen′′, (′′B′′, ORA.re) 7→ ′′bRed′′,
(′′E′′, ORA.gr) 7→ ′′eGreen′′, (′′E′′, ORA.re) 7→ ′′fail′′,
(′′F′′, ORA.gr) 7→ ′′fGreen′′, (′′F′′, ORA.re) 7→ ′′fRed′′,
(′′G′′, ORA.gr) 7→ ′′gGreen′′, (′′G′′, ORA.re) 7→ ′′gRed′′,
(′′H′′, ORA.gr) 7→ ′′hGreen′′, (′′H′′, ORA.re) 7→ ′′hRed′′ ]

test case
[ noRelayVariableOverlap failA ]
∼ORA.noRelayVariableOverlap(assocs fail0A),

[ noRelayVariableOverlap failB ]
∼ORA.noRelayVariableOverlap(assocs fail0B),

[ noRelayVariableOverlap failC ]
∼ORA.noRelayVariableOverlap(assocs fail0C),

[ noRelayVariableOverlap failD ]
∼ORA.noRelayVariableOverlap(assocs fail0D),

[ noRelayVariableOverlap failE ]
∼ORA.noRelayVariableOverlap(assocs fail0E),

[ noRelayVariableOverlap failF ]
∼ORA.noRelayVariableOverlap(assocs fail0F),

[ noRelayVariableOverlap failG ]
∼ORA.noRelayVariableOverlap(assocs fail0G),

[ noRelayVariableOverlap failH ]
∼ORA.noRelayVariableOverlap(assocs fail0H),

[ noRelayVariableOverlap ok ]
ORA.noRelayVariableOverlap(stenstrupAssocs)

/∗ Well−formedness of route associations ∗/
value

assocs fail1 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(
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routeRelayAssoc fail,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc

),

routeRelayAssoc fail : T.TrainRouteId →m T.VarId =
[ ′′1′′ 7→ ′′ia′′, ′′2′′ 7→ ′′ia′′,

′′3′′ 7→ ′′ib′′, ′′4′′ 7→ ′′ib′′,
′′5′′ 7→ ′′ua′′, ′′6′′ 7→ ′′ua′′,
′′7′′ 7→ ′′ub′′, ′′8′′ 7→ ′′ub′′ ]

test case
[ routeAssoc fail ] ∼ORA.isWfRouteAssoc(stenstrupTRT, assocs fail1),
[ routeAssoc ok ] ORA.isWfRouteAssoc(stenstrupTRT, stenstrupAssocs)

/∗ Well−formedness of track associations ∗/
value

assocs fail2 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc fail,
pointRelayAssoc,
signalRelayAssoc

),

trackRelayAssoc fail : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′a12′′, ′′t01′′ 7→ ′′t01′′, ′′t02′′ 7→ ′′t02′′,

′′B12′′ 7→ ′′b12′′, ′′t03′′ 7→ ′′t03′′, ′′t04′′ 7→ ′′t04′′ ]

test case
[ trackAssoc fail ] ∼ORA.isWfTrackAssoc(stenstrupSLD, assocs fail2),
[ trackAssoc ok ] ORA.isWfTrackAssoc(stenstrupSLD, stenstrupAssocs)

/∗ Well−formedness of point associations ∗/
value

assocs fail3 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc fail1,
signalRelayAssoc

),

pointRelayAssoc fail1 : SL.PointMachineId ×
SL.Branch →m T.VarId =
[ (′′01′′, T.plus) 7→ ′′plus01′′, (′′02′′, T.minus) 7→ ′′minus01′′,

(′′03′′, T.plus) 7→ ′′plus02′′, (′′04′′, T.minus) 7→ ′′minus02′′ ],

assocs fail4 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc fail2,
signalRelayAssoc
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),

pointRelayAssoc fail2 : SL.PointMachineId ×
SL.Branch →m T.VarId =
[ (′′01′′, T.plus) 7→ ′′plus01′′, (′′01′′, T.minus) 7→ ′′plus01′′,

(′′02′′, T.plus) 7→ ′′plus02′′, (′′02′′, T.minus) 7→ ′′minus02′′ ],

assocs fail5 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc fail3,
signalRelayAssoc

),

pointRelayAssoc fail3 : SL.PointMachineId ×
SL.Branch →m T.VarId =
[ (′′01′′, T.plus) 7→ ′′plus01′′, (′′01′′, T.minus) 7→ ′′minus01′′,

(′′02′′, T.plus) 7→ ′′plus01′′, (′′02′′, T.minus) 7→ ′′minus02′′ ]

test case
[ pointAssoc existing fail ]
∼ORA.existingPointMachines(stenstrupSLD, assocs fail3),

[ pointAssoc different fail1 ]
∼ORA.differentPointRelays(assocs fail4),

[ pointAssoc different fail2 ]
∼ORA.differentPointRelays(assocs fail5),

[ pointAssoc ok ]
ORA.isWfPointAssoc(stenstrupSLD, stenstrupAssocs)

/∗ Well−formedness of signal associations ∗/
value

assocs fail6 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc fail1

),

signalRelayAssoc fail1 : SL.SignalId × ORA.Lamp →m T.VarId =
[ (′′A′′, ORA.gr) 7→ ′′aGreen′′, (′′A′′, ORA.re) 7→ ′′aRed′′,

(′′B′′, ORA.gr) 7→ ′′bGreen′′, (′′B′′, ORA.re) 7→ ′′bRed′′,
(′′C′′, ORA.gr) 7→ ′′eGreen′′, (′′C′′, ORA.re) 7→ ′′eRed′′,
(′′F′′, ORA.gr) 7→ ′′fGreen′′, (′′F′′, ORA.re) 7→ ′′fRed′′,
(′′G′′, ORA.gr) 7→ ′′gGreen′′, (′′G′′, ORA.re) 7→ ′′gRed′′,
(′′H′′, ORA.gr) 7→ ′′hGreen′′, (′′H′′, ORA.re) 7→ ′′hRed′′ ],

assocs fail7 : ORA.ObjectRelayAssociations =
ORA.mk ObjectRelayAssociations(

routeRelayAssoc,
trackRelayAssoc,
pointRelayAssoc,
signalRelayAssoc fail2

),
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signalRelayAssoc fail2 : SL.SignalId × ORA.Lamp →m T.VarId =
[ (′′A′′, ORA.gr) 7→ ′′aGreen′′, (′′A′′, ORA.re) 7→ ′′aGreen′′,

(′′B′′, ORA.gr) 7→ ′′bGreen′′, (′′B′′, ORA.re) 7→ ′′bRed′′,
(′′E′′, ORA.gr) 7→ ′′eGreen′′, (′′E′′, ORA.re) 7→ ′′eRed′′,
(′′F′′, ORA.gr) 7→ ′′fGreen′′, (′′F′′, ORA.re) 7→ ′′fRed′′,
(′′G′′, ORA.gr) 7→ ′′gGreen′′, (′′G′′, ORA.re) 7→ ′′gRed′′,
(′′H′′, ORA.gr) 7→ ′′hGreen′′, (′′H′′, ORA.re) 7→ ′′hRed′′ ]

test case
[ signalAssoc existing fail ]
∼ORA.existingSignals(stenstrupSLD, assocs fail6),

[ signalAssoc different fail ]
∼ORA.differentLampRelays(assocs fail7),

[ signalAssoc ok ]
ORA.isWfSignalAssoc(stenstrupSLD, stenstrupAssocs)

end

E.5.5 Test of Train Movement Associations

context: TMA, SL
scheme Test TrainMovementAssociations =

class

value
stenstrupSLD : SL.Diagram =

SL.mk Diagram(
′′line′′,
allLinears,
allPoints,
allSignals,
neighbours,
branchNeighbours,
pointMachineTrack,
trackPointMachine,
signalLocations

),

allLinears : SL.TrackId-set = {′′A12′′, ′′02′′, ′′04′′, ′′B12′′},
allPoints : SL.TrackId-set = {′′01′′, ′′03′′},
allSignals : SL.SignalId-set = {′′A′′, ′′B′′, ′′E′′, ′′F′′, ′′G′′, ′′H′′},

neighbours : (SL.TrackId × SL.TrackId)-set =
{ (′′line′′, ′′A12′′), (′′A12′′, ′′01′′),

(′′01′′, ′′02′′), (′′01′′, ′′04′′),
(′′02′′, ′′03′′), (′′03′′, ′′04′′),
(′′03′′, ′′B12′′), (′′B12′′, ′′line′′) },

branchNeighbours : (SL.TrackId × SL.TrackId) →m SL.Branch =
[ (′′01′′, ′′02′′) 7→ T.plus,
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(′′01′′, ′′04′′) 7→ T.minus,
(′′03′′, ′′02′′) 7→ T.plus,
(′′03′′, ′′04′′) 7→ T.minus ],

pointMachineTrack : SL.PointMachineId →m SL.TrackId =
[ ′′01′′ 7→ ′′01′′,

′′02′′ 7→ ′′03′′ ],

trackPointMachine : SL.TrackId →m SL.PointMachineId =
[ ′′01′′ 7→ ′′01′′,

′′03′′ 7→ ′′02′′ ],

signalLocations : (SL.TrackId × SL.TrackId) →m SL.SignalId =
[ (′′line′′, ′′A12′′) 7→ ′′A′′, (′′line′′, ′′B12′′) 7→ ′′B′′,

(′′02′′, ′′01′′) 7→ ′′E′′, (′′04′′, ′′01′′) 7→ ′′F′′,
(′′02′′, ′′03′′) 7→ ′′G′′, (′′04′′, ′′03′′) 7→ ′′H′′ ],

stenstrupTMA : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars,
directionFwdVars,
directionBwdVars,
directions

),

connectionVars : (SL.TrackId × SL.TrackId) →m T.VarId =
[ (′′A12′′, ′′01′′) 7→ ′′con_A12_01′′,

(′′01′′, ′′02′′) 7→ ′′con_01_02′′,
(′′01′′, ′′04′′) 7→ ′′con_01_04′′,
(′′02′′, ′′03′′) 7→ ′′con_02_03′′,
(′′03′′, ′′04′′) 7→ ′′con_03_04′′,
(′′03′′, ′′B12′′) 7→ ′′con_03_B12′′

],

counterVars : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′cnt_A12′′, ′′B12′′ 7→ ′′cnt_B12′′,

′′01′′ 7→ ′′cnt_01′′, ′′02′′ 7→ ′′cnt_02′′,
′′03′′ 7→ ′′cnt_03′′, ′′04′′ 7→ ′′cnt_04′′

],

directionFwdVars : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′fwd_A12′′, ′′B12′′ 7→ ′′fwd_B12′′,

′′01′′ 7→ ′′fwd_01′′, ′′02′′ 7→ ′′fwd_02′′,
′′03′′ 7→ ′′fwd_03′′, ′′04′′ 7→ ′′fwd_04′′

],

directionBwdVars : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′bwd_A12′′, ′′B12′′ 7→ ′′bwd_B12′′,

′′01′′ 7→ ′′bwd_01′′, ′′02′′ 7→ ′′bwd_02′′,
′′03′′ 7→ ′′bwd_03′′, ′′04′′ 7→ ′′bwd_04′′

],

directions : (SL.TrackId × SL.TrackId) →m T.Direction =
[ (′′line′′, ′′A12′′) 7→ T.fwd, (′′A12′′, ′′line′′) 7→ T.bwd,
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(′′A12′′, ′′01′′) 7→ T.fwd, (′′01′′, ′′A12′′) 7→ T.bwd,
(′′01′′, ′′02′′) 7→ T.fwd, (′′02′′, ′′01′′) 7→ T.bwd,
(′′01′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′01′′) 7→ T.bwd,
(′′02′′, ′′03′′) 7→ T.fwd, (′′03′′, ′′02′′) 7→ T.bwd,
(′′03′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′03′′) 7→ T.bwd,
(′′03′′, ′′B12′′) 7→ T.fwd, (′′B12′′, ′′03′′) 7→ T.bwd,
(′′B12′′, ′′line′′) 7→ T.fwd, (′′line′′, ′′B12′′) 7→ T.bwd ]

value
tma fail0A : TMA.TrainMovementAssociations =

TMA.mk TrainMovementAssociations(
connectionVars fail0,
counterVars fail0,
directionFwdVars,
directionBwdVars,
directions

),

tma fail0B : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars fail0,
counterVars,
directionFwdVars,
directionBwdVars fail0,
directions

),

tma fail0C : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars fail0,
directionFwdVars fail0,
directionBwdVars,
directions

),

tma fail0D : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars fail0,
directionFwdVars,
directionBwdVars fail0,
directions

),

tma fail0E : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars,
directionFwdVars fail0,
directionBwdVars fail0,
directions

),

tma fail0F : TMA.TrainMovementAssociations =
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TMA.mk TrainMovementAssociations(
connectionVars fail0,
counterVars fail0,
directionFwdVars fail0,
directionBwdVars,
directions

),

tma fail0G : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars fail0,
counterVars fail0,
directionFwdVars,
directionBwdVars fail0,
directions

),

tma fail0H : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars fail0,
counterVars,
directionFwdVars fail0,
directionBwdVars fail0,
directions

),

tma fail0I : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars fail0,
directionFwdVars fail0,
directionBwdVars fail0,
directions

),

connectionVars fail0 : (SL.TrackId × SL.TrackId) →m T.VarId =
[ (′′A12′′, ′′01′′) 7→ ′′fail′′,

(′′01′′, ′′02′′) 7→ ′′con_01_02′′,
(′′01′′, ′′04′′) 7→ ′′con_01_04′′,
(′′02′′, ′′03′′) 7→ ′′con_02_03′′,
(′′03′′, ′′04′′) 7→ ′′con_03_04′′,
(′′03′′, ′′B12′′) 7→ ′′con_03_B12′′

],

counterVars fail0 : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′cnt_A12′′, ′′B12′′ 7→ ′′fail′′,

′′01′′ 7→ ′′cnt_01′′, ′′02′′ 7→ ′′cnt_02′′,
′′03′′ 7→ ′′cnt_03′′, ′′04′′ 7→ ′′cnt_04′′

],

directionFwdVars fail0 : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′fwd_A12′′, ′′B12′′ 7→ ′′fwd_B12′′,

′′01′′ 7→ ′′fail′′, ′′02′′ 7→ ′′fwd_02′′,
′′03′′ 7→ ′′fwd_03′′, ′′04′′ 7→ ′′fwd_04′′

],
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directionBwdVars fail0 : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′bwd_A12′′, ′′B12′′ 7→ ′′bwd_B12′′,

′′01′′ 7→ ′′bwd_01′′, ′′02′′ 7→ ′′bwd_02′′,
′′03′′ 7→ ′′bwd_03′′, ′′04′′ 7→ ′′fail′′

]

test case
[ noRelayVariableOverlap failA ]
∼TMA.noRelayVariableOverlap(tma fail0A),

[ noRelayVariableOverlap failB ]
∼TMA.noRelayVariableOverlap(tma fail0B),

[ noRelayVariableOverlap failC ]
∼TMA.noRelayVariableOverlap(tma fail0C),

[ noRelayVariableOverlap failD ]
∼TMA.noRelayVariableOverlap(tma fail0D),

[ noRelayVariableOverlap failE ]
∼TMA.noRelayVariableOverlap(tma fail0E),

[ noRelayVariableOverlap failF ]
∼TMA.noRelayVariableOverlap(tma fail0F),

[ noRelayVariableOverlap failG ]
∼TMA.noRelayVariableOverlap(tma fail0G),

[ noRelayVariableOverlap failH ]
∼TMA.noRelayVariableOverlap(tma fail0H),

[ noRelayVariableOverlap failI ]
∼TMA.noRelayVariableOverlap(tma fail0I),

[ noRelayVariableOverlap ok ]
TMA.noRelayVariableOverlap(stenstrupTMA)

/∗ Connection Vars ∗/
value

tma fail1 : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars fail1A,
counterVars,
directionFwdVars,
directionBwdVars,
directions

),

connectionVars fail1A : (SL.TrackId × SL.TrackId) →m T.VarId =
[ (′′A12′′, ′′B12′′) 7→ ′′con_A12_01′′,

(′′01′′, ′′02′′) 7→ ′′con_01_02′′,
(′′01′′, ′′04′′) 7→ ′′con_01_04′′,
(′′02′′, ′′03′′) 7→ ′′con_02_03′′,
(′′03′′, ′′04′′) 7→ ′′con_03_04′′,
(′′03′′, ′′B12′′) 7→ ′′con_03_B12′′

],

connectionVars fail1B : (SL.TrackId × SL.TrackId) →m T.VarId =
[ (′′A12′′, ′′01′′) 7→ ′′con_A12_01′′,

(′′01′′, ′′02′′) 7→ ′′same′′,
(′′01′′, ′′04′′) 7→ ′′con_01_04′′,
(′′02′′, ′′03′′) 7→ ′′con_02_03′′,
(′′03′′, ′′04′′) 7→ ′′same′′,



Test 329

(′′03′′, ′′B12′′) 7→ ′′con_03_B12′′

]

test case
[ conVarsValidDomain fail ]
∼TMA.conVarsValidDomain(stenstrupSLD, tma fail1),

[ conVarsValidRange fail ]
∼TMA.conVarsValidRange(connectionVars fail1B),

[ connectionVars ]
TMA.isWfConnectionVars(stenstrupSLD, stenstrupTMA)

/∗ Counter Vars ∗/
value

tma fail2 : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars fail2A,
directionFwdVars,
directionBwdVars,
directions

),

counterVars fail2A : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′cnt_A12′′, ′′B12′′ 7→ ′′cnt_B12′′,

′′01′′ 7→ ′′cnt_01′′, ′′02′′ 7→ ′′cnt_02′′,
′′03′′ 7→ ′′cnt_03′′, ′′04′′ 7→ ′′cnt_04′′,
′′line′′ 7→ ′′cnt_line′′

],

counterVars fail2B : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′same′′, ′′B12′′ 7→ ′′cnt_B12′′,

′′01′′ 7→ ′′cnt_01′′, ′′02′′ 7→ ′′same′′,
′′03′′ 7→ ′′cnt_03′′, ′′04′′ 7→ ′′cnt_04′′

]

test case
[ cntVarsValidDomain fail ]
∼TMA.cntVarsValidDomain(stenstrupSLD, tma fail2),

[ cntVarsValidRange ]
∼TMA.cntVarsValidRange(counterVars fail2B),

[ counterVars ]
TMA.isWfCounterVars(stenstrupSLD, stenstrupTMA)

/∗ Fwd Direction Vars ∗/
value

tma fail3 : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars,
directionFwdVars fail3A,
directionBwdVars,
directions

),
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directionFwdVars fail3A : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′fwd_A12′′, ′′B12′′ 7→ ′′fwd_B12′′,

′′01′′ 7→ ′′fwd_01′′, ′′02′′ 7→ ′′fwd_02′′,
′′03′′ 7→ ′′fwd_03′′, ′′04′′ 7→ ′′fwd_04′′,
′′line′′ 7→ ′′fwd_line′′

],

directionFwdVars fail3B : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′same′′, ′′B12′′ 7→ ′′fwd_B12′′,

′′01′′ 7→ ′′fwd_01′′, ′′02′′ 7→ ′′same′′,
′′03′′ 7→ ′′fwd_03′′, ′′04′′ 7→ ′′fwd_04′′

]

test case
[ fwdVarsValidDomain fail ]
∼TMA.fwdVarsValidDomain(stenstrupSLD, tma fail3),

[ fwdVarsValidRange fail ]
∼TMA.fwdVarsValidRange(directionFwdVars fail3B),

[ directionFwdVars ]
TMA.isWfDirectionFwdVars(stenstrupSLD, stenstrupTMA)

/∗ Bwd Direction Vars ∗/
value

tma fail4 : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars,
directionFwdVars,
directionBwdVars fail4A,
directions

),

directionBwdVars fail4A : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′bwd_A12′′, ′′B12′′ 7→ ′′bwd_B12′′,

′′01′′ 7→ ′′bwd_01′′, ′′02′′ 7→ ′′bwd_02′′,
′′03′′ 7→ ′′bwd_03′′, ′′04′′ 7→ ′′bwd_04′′,
′′line′′ 7→ ′′bwd_line′′

],

directionBwdVars fail4B : SL.TrackId →m T.VarId =
[ ′′A12′′ 7→ ′′bwd_A12′′, ′′B12′′ 7→ ′′same′′,

′′01′′ 7→ ′′bwd_01′′, ′′02′′ 7→ ′′bwd_02′′,
′′03′′ 7→ ′′same′′, ′′04′′ 7→ ′′bwd_04′′

]

test case
[ bwdVarsValidDomain fail ]
∼TMA.bwdVarsValidDomain(stenstrupSLD, tma fail4),

[ bwdVarsValidRange fail ]
∼TMA.bwdVarsValidRange(directionBwdVars fail4B),

[ directionBwdVars ]
TMA.isWfDirectionBwdVars(stenstrupSLD, stenstrupTMA)

/∗ Directions ∗/
value
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tma fail5 : TMA.TrainMovementAssociations =
TMA.mk TrainMovementAssociations(

connectionVars,
counterVars,
directionFwdVars,
directionBwdVars,
directions fail5A

),

directions fail5A : (SL.TrackId × SL.TrackId) →m T.Direction =
[ (′′line′′, ′′A12′′) 7→ T.fwd, (′′A12′′, ′′line′′) 7→ T.bwd,

(′′A12′′, ′′01′′) 7→ T.fwd, (′′01′′, ′′A12′′) 7→ T.bwd,
(′′01′′, ′′02′′) 7→ T.fwd, (′′02′′, ′′01′′) 7→ T.bwd,
(′′01′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′01′′) 7→ T.bwd,
(′′02′′, ′′03′′) 7→ T.fwd, (′′03′′, ′′02′′) 7→ T.bwd,
(′′03′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′03′′) 7→ T.bwd,
(′′03′′, ′′B12′′) 7→ T.fwd, (′′B12′′, ′′03′′) 7→ T.bwd,
(′′B12′′, ′′line′′) 7→ T.fwd, (′′line′′, ′′B12′′) 7→ T.bwd,
(′′02′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′02′′) 7→ T.bwd ],

directions fail5B : (SL.TrackId × SL.TrackId) →m T.Direction =
[ (′′line′′, ′′A12′′) 7→ T.fwd, (′′A12′′, ′′line′′) 7→ T.fwd,

(′′A12′′, ′′01′′) 7→ T.fwd, (′′01′′, ′′A12′′) 7→ T.bwd,
(′′01′′, ′′02′′) 7→ T.fwd, (′′02′′, ′′01′′) 7→ T.bwd,
(′′01′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′01′′) 7→ T.bwd,
(′′02′′, ′′03′′) 7→ T.fwd, (′′03′′, ′′02′′) 7→ T.bwd,
(′′03′′, ′′04′′) 7→ T.fwd, (′′04′′, ′′03′′) 7→ T.bwd,
(′′03′′, ′′B12′′) 7→ T.fwd, (′′B12′′, ′′03′′) 7→ T.bwd,
(′′B12′′, ′′line′′) 7→ T.fwd, (′′line′′, ′′B12′′) 7→ T.bwd ]

test case
[ directionsValidDomain fail ]
∼TMA.directionsValidDomain(stenstrupSLD, tma fail5),

[ bothDirections fail ]
∼TMA.bothDirections(directions fail5B),

[ directions ]
TMA.isWfDirections(stenstrupSLD, stenstrupTMA)

end
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Appendix F

Output

F.1 Output of Generator

[isWfStationLayoutDiagram] true

[isWfTrainRouteTable] true

[isWfInterlockingPlan] true

[isWfObjectRelayAssociations] true

[generate_transitionSystem] "

transition_system

[InterlockingSystem]

local

fwd_04 : Bool := false,

bwd_04 : Bool := false,

fwd_02 : Bool := false,

bwd_02 : Bool := false,

fwd_B12 : Bool := false,

bwd_B12 : Bool := false,

fwd_A12 : Bool := false,

bwd_A12 : Bool := false,

fwd_03 : Bool := false,
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bwd_03 : Bool := false,

fwd_01 : Bool := false,

bwd_01 : Bool := false,

con_01_04 : Bool := false,

cnt_04 : Nat := 0,

con_02_03 : Bool := false,

cnt_02 : Nat := 0,

con_01_02 : Bool := false,

cnt_B12 : Nat := 0,

con_03_04 : Bool := false,

cnt_A12 : Nat := 0,

con_A12_01 : Bool := false,

cnt_03 : Nat := 0,

con_03_B12 : Bool := false,

cnt_01 : Nat := 0

in

[change_direction_at_04_towards_03]

hGreen /\ ~(con_01_04) /\ ~(hRed) /\

idle /\ fwd_04 /\ cnt_04 = 1 ==>

fwd_04’ = false, bwd_04’ = true

[=]

[plusToIntermediate01]

idle /\ ib /\ plus01 /\ ua /\ t01 /\ ia ==>

plus01’ = false, idle’ = false

[=]

[change_direction_at_02_towards_01]

eGreen /\ ~(con_02_03) /\ ~(eRed) /\

idle /\ bwd_02 /\ cnt_02 = 1 ==>

bwd_02’ = false, fwd_02’ = true

[=]

[intermediateToPlus01]

idle /\ ib /\ ~(plus01) /\ ua /\

~(minus01) /\ ia /\ t01 ==>

plus01’ = true, idle’ = false

[=]

[change_direction_at_04_towards_01]

fGreen /\ ~(con_03_04) /\ ~(fRed) /\

idle /\ bwd_04 /\ cnt_04 = 1 ==>

bwd_04’ = false, fwd_04’ = true

[=]

[minusToIntermediate01]

idle /\ ib /\ minus01 /\ ua /\ t01 /\ ia ==>
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minus01’ = false, idle’ = false

[=]

[change_direction_at_02_towards_03]

gGreen /\ ~(con_01_02) /\ ~(gRed) /\

idle /\ fwd_02 /\ cnt_02 = 1 ==>

fwd_02’ = false, bwd_02’ = true

[=]

[intermediateToMinus01]

idle /\ ib /\ ~(plus01) /\ ua /\

~(minus01) /\ ia /\ t01 ==>

minus01’ = true, idle’ = false

[=]

[leave_B12_to_line]

idle /\ ~(con_03_B12) /\ cnt_B12 = 1 /\ fwd_B12 ==>

fwd_B12’ = false, idle’ = false,

cnt_B12’ = cnt_B12 - 1, b12’ = true

[=]

[intermediateToMinus03]

idle /\ ub /\ ~(plus02) /\ ib /\

~(minus02) /\ ia /\ t03 ==>

minus02’ = true, idle’ = false

[=]

[leave_A12_to_line]

idle /\ ~(con_A12_01) /\ cnt_A12 = 1 /\ bwd_A12 ==>

bwd_A12’ = false, idle’ = false,

cnt_A12’ = cnt_A12 - 1, a12’ = true

[=]

[minusToIntermediate03]

idle /\ ub /\ minus02 /\ ib /\ t03 /\ ia ==>

minus02’ = false, idle’ = false

[=]

[enter_B12_from_line]

idle /\ bGreen /\ ~(bRed) ==>

bwd_B12’ = true, idle’ = false,

b12’ = false, cnt_B12’ = cnt_B12 + 1

[=]

[intermediateToPlus03]

idle /\ ub /\ ~(plus02) /\ ib /\

~(minus02) /\ ia /\ t03 ==>

plus02’ = true, idle’ = false

[=]

[enter_A12_from_line]

idle /\ aGreen /\ ~(aRed) ==>

fwd_A12’ = true, idle’ = false,
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a12’ = false, cnt_A12’ = cnt_A12 + 1

[=]

[plusToIntermediate03]

idle /\ ub /\ plus02 /\ ib /\ t03 /\ ia ==>

plus02’ = false, idle’ = false

[=]

[enter_03_from_B12]

~(con_03_B12) /\ idle /\ bwd_B12 /\ cnt_B12 = 1 ==>

bwd_03’ = true, idle’ = false,

con_03_B12’ = true, cnt_03’ = cnt_03 + 1, t03’ = false

[=]

[pushButton_b03306]

idle ==>

b03306’ = true, idle’ = false

[=]

[enter_B12_from_03]

~(con_03_B12) /\ idle /\ fwd_03 /\ cnt_03 = 1 ==>

fwd_B12’ = true, idle’ = false,

con_03_B12’ = true, cnt_B12’ = cnt_B12 + 1, b12’ = false

[=]

[pushButton_b00406]

idle ==>

b00406’ = true, idle’ = false

[=]

[enter_A12_from_01]

~(con_A12_01) /\ idle /\ bwd_01 /\ cnt_01 = 1 ==>

bwd_A12’ = true, idle’ = false,

con_A12_01’ = true, cnt_A12’ = cnt_A12 + 1, a12’ = false

[=]

[pushButton_b00606]

idle ==>

b00606’ = true, idle’ = false

[=]

[enter_01_from_A12]

~(con_A12_01) /\ idle /\ fwd_A12 /\ cnt_A12 = 1 ==>

fwd_01’ = true, idle’ = false,

con_A12_01’ = true, cnt_01’ = cnt_01 + 1, t01’ = false

[=]

[pushButton_b03106]

idle ==>

b03106’ = true, idle’ = false

[=]

[enter_03_from_04]

idle /\ hGreen /\ cnt_04 = 1 /\
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~(hRed) /\ fwd_04 /\ minus02 /\ ~(con_03_04) ==>

fwd_03’ = true, idle’ = false,

con_03_04’ = true, cnt_03’ = cnt_03 + 1, t03’ = false

[=]

[leave_01_to_04]

idle /\ ~(con_A12_01) /\ fwd_01 /\

~(con_01_02) /\ con_01_04 /\ minus01 /\ cnt_01 = 1 ==>

fwd_01’ = false, idle’ = false,

con_01_04’ = false, t01’ = true, cnt_01’ = cnt_01 - 1

[=]

[enter_03_from_04_derail]

idle /\ hGreen /\ cnt_04 = 1 /\

~(hRed) /\ fwd_04 /\ ~(minus02) /\ ~(con_03_04) ==>

con_03_04’ = true, idle’ = false,

t03’ = false, cnt_03’ = cnt_03 + 1

[=]

[leave_04_to_01]

idle /\ ~(con_03_04) /\

bwd_04 /\ cnt_04 = 1 /\ con_01_04 ==>

bwd_04’ = false, idle’ = false,

con_01_04’ = false, t04’ = true, cnt_04’ = cnt_04 - 1

[=]

[enter_04_from_03]

minus02 /\ idle /\

~(con_03_04) /\ cnt_03 = 1 /\ bwd_03 ==>

bwd_04’ = true, idle’ = false,

con_03_04’ = true, cnt_04’ = cnt_04 + 1, t04’ = false

[=]

[leave_03_to_02]

idle /\ ~(con_03_B12) /\ bwd_03 /\

~(con_03_04) /\ con_02_03 /\ plus02 /\ cnt_03 = 1 ==>

bwd_03’ = false, idle’ = false,

con_02_03’ = false, t03’ = true, cnt_03’ = cnt_03 - 1

[=]

[enter_01_from_02]

idle /\ eGreen /\ cnt_02 = 1 /\

~(eRed) /\ bwd_02 /\ plus01 /\ ~(con_01_02) ==>

bwd_01’ = true, idle’ = false,

con_01_02’ = true, cnt_01’ = cnt_01 + 1, t01’ = false

[=]

[leave_02_to_03]

idle /\ ~(con_01_02) /\

fwd_02 /\ cnt_02 = 1 /\ con_02_03 ==>

fwd_02’ = false, idle’ = false,
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con_02_03’ = false, t02’ = true, cnt_02’ = cnt_02 - 1

[=]

[enter_01_from_02_derail]

idle /\ eGreen /\ cnt_02 = 1 /\

~(eRed) /\ bwd_02 /\ ~(plus01) /\ ~(con_01_02) ==>

con_01_02’ = true, idle’ = false,

t01’ = false, cnt_01’ = cnt_01 + 1

[=]

[leave_02_to_01]

idle /\ ~(con_02_03) /\

bwd_02 /\ cnt_02 = 1 /\ con_01_02 ==>

bwd_02’ = false, idle’ = false,

con_01_02’ = false, t02’ = true, cnt_02’ = cnt_02 - 1

[=]

[enter_02_from_01]

plus01 /\ idle /\

~(con_01_02) /\ cnt_01 = 1 /\ fwd_01 ==>

fwd_02’ = true, idle’ = false,

con_01_02’ = true, cnt_02’ = cnt_02 + 1, t02’ = false

[=]

[leave_01_to_02]

idle /\ ~(con_A12_01) /\ fwd_01 /\

~(con_01_04) /\ con_01_02 /\ plus01 /\ cnt_01 = 1 ==>

fwd_01’ = false, idle’ = false,

con_01_02’ = false, t01’ = true, cnt_01’ = cnt_01 - 1

[=]

[enter_02_from_03]

plus02 /\ idle /\

~(con_02_03) /\ cnt_03 = 1 /\ bwd_03 ==>

bwd_02’ = true, idle’ = false,

con_02_03’ = true, cnt_02’ = cnt_02 + 1, t02’ = false

[=]

[leave_04_to_03]

idle /\ ~(con_01_04) /\

fwd_04 /\ cnt_04 = 1 /\ con_03_04 ==>

fwd_04’ = false, idle’ = false,

con_03_04’ = false, t04’ = true, cnt_04’ = cnt_04 - 1

[=]

[enter_03_from_02_derail]

idle /\ gGreen /\ cnt_02 = 1 /\

~(gRed) /\ fwd_02 /\ ~(plus02) /\ ~(con_02_03) ==>

con_02_03’ = true, idle’ = false,

t03’ = false, cnt_03’ = cnt_03 + 1

[=]
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[leave_03_to_04]

idle /\ ~(con_03_B12) /\ bwd_03 /\

~(con_02_03) /\ con_03_04 /\ minus02 /\ cnt_03 = 1 ==>

bwd_03’ = false, idle’ = false,

con_03_04’ = false, t03’ = true, cnt_03’ = cnt_03 - 1

[=]

[enter_03_from_02]

idle /\ gGreen /\ cnt_02 = 1 /\

~(gRed) /\ fwd_02 /\ plus02 /\ ~(con_02_03) ==>

fwd_03’ = true, idle’ = false,

con_02_03’ = true, cnt_03’ = cnt_03 + 1, t03’ = false

[=]

[leave_01_to_A12]

idle /\ ~(con_01_04) /\ bwd_01 /\

~(con_01_02) /\ con_A12_01 /\ cnt_01 = 1 ==>

bwd_01’ = false, idle’ = false,

con_A12_01’ = false, t01’ = true, cnt_01’ = cnt_01 - 1

[=]

[enter_04_from_01]

minus01 /\ idle /\

~(con_01_04) /\ cnt_01 = 1 /\ fwd_01 ==>

fwd_04’ = true, idle’ = false,

con_01_04’ = true, cnt_04’ = cnt_04 + 1, t04’ = false

[=]

[leave_A12_to_01]

cnt_A12 = 1 /\ idle /\ con_A12_01 /\ fwd_A12 ==>

fwd_A12’ = false, idle’ = false,

con_A12_01’ = false, a12’ = true, cnt_A12’ = cnt_A12 - 1

[=]

[enter_01_from_04_derail]

idle /\ fGreen /\ cnt_04 = 1 /\

~(fRed) /\ bwd_04 /\ ~(minus01) /\ ~(con_01_04) ==>

con_01_04’ = true, idle’ = false,

t01’ = false, cnt_01’ = cnt_01 + 1

[=]

[leave_B12_to_03]

cnt_B12 = 1 /\ idle /\ con_03_B12 /\ bwd_B12 ==>

bwd_B12’ = false, idle’ = false,

con_03_B12’ = false, b12’ = true, cnt_B12’ = cnt_B12 - 1

[=]

[enter_01_from_04]

idle /\ fGreen /\ cnt_04 = 1 /\

~(fRed) /\ bwd_04 /\ minus01 /\ ~(con_01_04) ==>

bwd_01’ = true, idle’ = false,
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con_01_04’ = true, cnt_01’ = cnt_01 + 1, t01’ = false

[=]

[leave_03_to_B12]

idle /\ ~(con_02_03) /\ fwd_03 /\

~(con_03_04) /\ con_03_B12 /\ cnt_03 = 1 ==>

fwd_03’ = false, idle’ = false,

con_03_B12’ = false, t03’ = true, cnt_03’ = cnt_03 - 1

end

ltl_assertion

[no_derailing_03_02] InterlockingSystem |-

G(con_02_03 => plus02),

[train_route_release_7] InterlockingSystem |-

G(ua /\ X(plus01 /\ ~(ua) /\ F(ua)) =>

X(U(~(ua), ~(t01) /\ a12 /\ ~(ua) /\

X(U(~(ua), ~(ua) /\ ~(a12) /\ t01))))),

[no_derailing_01_04] InterlockingSystem |-

G(con_01_04 => minus01),

[train_route_release_6] InterlockingSystem |-

G(ib /\ X(minus02 /\ minus01 /\ ~(ib) /\ F(ib)) =>

X(U(~(ib), ~(t03) /\ t04 /\ ~(ib) /\

X(U(~(ib), ~(ib) /\ ~(t04) /\ t03))))),

[no_derailing_03_04] InterlockingSystem |-

G(con_03_04 => minus02),

[train_route_release_8] InterlockingSystem |-

G(ua /\ X(minus01 /\ ~(ua) /\ F(ua)) =>

X(U(~(ua), ~(t01) /\ a12 /\ ~(ua) /\

X(U(~(ua), ~(ua) /\ ~(a12) /\ t01))))),

[no_derailing_01_02] InterlockingSystem |-

G(con_01_02 => plus01),

[train_route_release_5] InterlockingSystem |-

G(ib /\ X(plus02 /\ plus01 /\ ~(ib) /\ F(ib)) =>

X(U(~(ib), ~(t03) /\ t02 /\ ~(ib) /\

X(U(~(ib), ~(ib) /\ ~(t02) /\ t03))))),
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[points_locked_when_occupied_03] InterlockingSystem |-

G(cnt_03 >= 1 => plus02 \/ minus02),

[train_route_release_9] InterlockingSystem |-

G(ub /\ X(plus02 /\ ~(ub) /\ F(ub)) =>

X(U(~(ub), ~(t03) /\ b12 /\ ~(ub) /\

X(U(~(ub), ~(ub) /\ ~(b12) /\ t03))))),

[points_locked_when_occupied_01] InterlockingSystem |-

G(cnt_01 >= 1 => plus01 \/ minus01),

[train_route_release_3] InterlockingSystem |-

G(ia /\ X(minus02 /\ minus01 /\ ~(ia) /\ F(ia)) =>

X(U(~(ia), ~(t01) /\ t04 /\ ~(ia) /\

X(U(~(ia), ~(ia) /\ ~(t04) /\ t01))))),

[no_collision_A12] InterlockingSystem |-

G(cnt_A12 < 2),

[train_route_release_10] InterlockingSystem |-

G(ub /\ X(minus02 /\ ~(ub) /\ F(ub)) =>

X(U(~(ub), ~(t03) /\ b12 /\ ~(ub) /\

X(U(~(ub), ~(ub) /\ ~(b12) /\ t03))))),

[no_collision_01] InterlockingSystem |-

G(cnt_01 < 2),

[train_route_release_2] InterlockingSystem |-

G(ia /\ X(plus02 /\ plus01 /\ ~(ia) /\ F(ia)) =>

X(U(~(ia), ~(t01) /\ t02 /\ ~(ia) /\

X(U(~(ia), ~(ia) /\ ~(t02) /\ t01))))),

[no_collision_02] InterlockingSystem |-

G(cnt_02 < 2),

[signal_release_7] InterlockingSystem |-

G(idle /\ ~(t01) => eRed),

[no_collision_03] InterlockingSystem |-

G(cnt_03 < 2),

[signal_release_6] InterlockingSystem |-

G(idle /\ ~(b12) => bRed),
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[no_collision_04] InterlockingSystem |-

G(cnt_04 < 2),

[signal_release_8] InterlockingSystem |-

G(idle /\ ~(t01) => fRed),

[no_collision_B12] InterlockingSystem |-

G(cnt_B12 < 2),

[signal_release_5] InterlockingSystem |-

G(idle /\ ~(b12) => bRed),

[points_configuration_01] InterlockingSystem |-

G(idle => ~(plus01 /\ minus01)),

[signal_release_9] InterlockingSystem |-

G(idle /\ ~(t03) => gRed),

[points_configuration_03] InterlockingSystem |-

G(idle => ~(plus02 /\ minus02)),

[signal_release_3] InterlockingSystem |-

G(idle /\ ~(a12) => aRed),

[free_B12] InterlockingSystem |-

G(cnt_B12 = 0 => b12),

[signal_release_10] InterlockingSystem |-

G(idle /\ ~(t03) => hRed),

[free_B12_] InterlockingSystem |-

G(b12 => cnt_B12 = 0),

[signal_release_2] InterlockingSystem |-

G(idle /\ ~(a12) => aRed),

[free_04_] InterlockingSystem |-

G(t04 => cnt_04 = 0),

[point_position_ua] InterlockingSystem |-

G(~(ua) => plus01 \/ minus01),

[free_04] InterlockingSystem |-

G(cnt_04 = 0 => t04),
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[point_position_ib] InterlockingSystem |-

G(~(ib) => plus02 /\ plus01 \/ minus02 /\ minus01),

[free_03_] InterlockingSystem |-

G(t03 => cnt_03 = 0),

[point_position_ub] InterlockingSystem |-

G(~(ub) => plus02 \/ minus02),

[free_03] InterlockingSystem |-

G(cnt_03 = 0 => t03),

[point_position_ia] InterlockingSystem |-

G(~(ia) => plus02 /\ plus01 \/ minus02 /\ minus01),

[free_02_] InterlockingSystem |-

G(t02 => cnt_02 = 0),

[signal_E] InterlockingSystem |-

G(idle => ~(eGreen /\ eRed)),

[free_02] InterlockingSystem |-

G(cnt_02 = 0 => t02),

[signal_F] InterlockingSystem |-

G(idle => ~(fGreen /\ fRed)),

[free_01_] InterlockingSystem |-

G(t01 => cnt_01 = 0),

[signal_B] InterlockingSystem |-

G(idle => ~(bGreen /\ bRed)),

[free_01] InterlockingSystem |-

G(cnt_01 = 0 => t01),

[signal_G] InterlockingSystem |-

G(idle => ~(gGreen /\ gRed)),

[free_A12_] InterlockingSystem |-

G(a12 => cnt_A12 = 0),

[signal_A] InterlockingSystem |-
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G(idle => ~(aGreen /\ aRed)),

[free_A12] InterlockingSystem |-

G(cnt_A12 = 0 => a12),

[signal_H] InterlockingSystem |-

G(idle => ~(hGreen /\ hRed)),

[occ_A12] InterlockingSystem |-

G(cnt_A12 > 0 => ~(a12)),

[signal_exp_H] InterlockingSystem |-

G(idle /\ hGreen =>

(~(ub) /\ minus02 /\ b12 /\ gRed /\ t03)),

[occ_A12_] InterlockingSystem |-

G(~(a12) => cnt_A12 > 0),

[signal_exp_A] InterlockingSystem |-

G(idle /\ aGreen =>

(a12 /\ b12 /\ t03 /\ ~(ia) /\ t01 /\ plus01 /\

t02 /\ plus02 /\ (fRed /\ gRed \/ (plus02 /\

~(ub) /\ hRed /\ gGreen)) /\ fRed) \/ (a12 /\

b12 /\ t03 /\ ~(ia) /\ t01 /\ minus01 /\ t04 /\

minus02 /\ (eRed /\ hRed \/ (minus02 /\ ~(ub) /\

gRed /\ hGreen)) /\ eRed)),

[occ_01] InterlockingSystem |-

G(cnt_01 > 0 => ~(t01)),

[signal_exp_G] InterlockingSystem |-

G(idle /\ gGreen =>

(~(ub) /\ plus02 /\ b12 /\ hRed /\ t03)),

[occ_01_] InterlockingSystem |-

G(~(t01) => cnt_01 > 0),

[signal_exp_B] InterlockingSystem |-

G(idle /\ bGreen =>

(a12 /\ b12 /\ t03 /\ ~(ib) /\ t01 /\ plus01 /\

t02 /\ plus02 /\ (eRed /\ hRed \/ (plus01 /\

~(ua) /\ fRed /\ eGreen)) /\ hRed) \/ (a12 /\

b12 /\ t03 /\ ~(ib) /\ t01 /\ minus01 /\ t04 /\

minus02 /\ (fRed /\ gRed \/ (minus01 /\
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~(ua) /\ eRed /\ fGreen)) /\ gRed)),

[occ_02] InterlockingSystem |-

G(cnt_02 > 0 => ~(t02)),

[signal_exp_F] InterlockingSystem |-

G(idle /\ fGreen =>

(~(ua) /\ minus01 /\ t01 /\ eRed /\ a12)),

[occ_02_] InterlockingSystem |-

G(~(t02) => cnt_02 > 0),

[signal_exp_E] InterlockingSystem |-

G(idle /\ eGreen =>

(~(ua) /\ plus01 /\ t01 /\ fRed /\ a12)),

[occ_03] InterlockingSystem |-

G(cnt_03 > 0 => ~(t03)),

[conflicting_route_2] InterlockingSystem |-

G(plus01 /\ plus02 /\ ~(ia) =>

~(plus01 /\ ~(ua)) /\ ~(minus01 /\ minus02 /\ ~(ia)) /\

~(plus01 /\ plus02 /\ ~(ib)) /\ ~(minus01 /\ ~(ua)) /\

~(minus01 /\ minus02 /\ ~(ib)) /\ ~(minus02 /\ ~(ub))),

[occ_03_] InterlockingSystem |-

G(~(t03) => cnt_03 > 0),

[conflicting_route_10] InterlockingSystem |-

G(minus02 /\ ~(ub) =>

~(plus01 /\ plus02 /\ ~(ib)) /\ ~(plus02 /\ ~(ub)) /\

~(minus01 /\ minus02 /\ ~(ib)) /\ ~(plus01 /\ plus02 /\

~(ia))),

[occ_04] InterlockingSystem |-

G(cnt_04 > 0 => ~(t04)),

[conflicting_route_3] InterlockingSystem |-

G(minus01 /\ minus02 /\ ~(ia) =>

~(plus01 /\ ~(ua)) /\ ~(minus01 /\ ~(ua)) /\

~(plus01 /\ plus02 /\ ~(ib)) /\

~(plus01 /\ plus02 /\ ~(ia)) /\

~(minus01 /\ minus02 /\ ~(ib)) /\ ~(plus02 /\ ~(ub))),
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[occ_04_] InterlockingSystem |-

G(~(t04) => cnt_04 > 0),

[conflicting_route_9] InterlockingSystem |-

G(plus02 /\ ~(ub) =>

~(plus01 /\ plus02 /\ ~(ib)) /\

~(minus01 /\ minus02 /\ ~(ia)) /\

~(minus01 /\ minus02 /\ ~(ib)) /\

~(minus02 /\ ~(ub))),

[occ_B12_] InterlockingSystem |-

G(~(b12) => cnt_B12 > 0),

[conflicting_route_5] InterlockingSystem |-

G(plus01 /\ plus02 /\ ~(ib) =>

~(minus01 /\ minus02 /\ ~(ia)) /\ ~(plus02 /\ ~(ub)) /\

~(minus01 /\ ~(ua)) /\ ~(plus01 /\ plus02 /\ ~(ia)) /\

~(minus01 /\ minus02 /\ ~(ib)) /\ ~(minus02 /\ ~(ub))),

[occ_B12] InterlockingSystem |-

G(cnt_B12 > 0 => ~(b12)),

[conflicting_route_8] InterlockingSystem |-

G(minus01 /\ ~(ua) =>

~(minus01 /\ minus02 /\ ~(ia)) /\

~(plus01 /\ ~(ua)) /\

~(plus01 /\ plus02 /\ ~(ib)) /\

~(plus01 /\ plus02 /\ ~(ia))),

[direction_A12] InterlockingSystem |-

G(fwd_A12 \/ bwd_A12 => cnt_A12 > 0),

[conflicting_route_6] InterlockingSystem |-

G(minus01 /\ minus02 /\ ~(ib) =>

~(minus01 /\ minus02 /\ ~(ia)) /\

~(plus02 /\ ~(ub)) /\ ~(plus01 /\ ~(ua)) /\

~(plus01 /\ plus02 /\ ~(ia)) /\

~(plus01 /\ plus02 /\ ~(ib)) /\ ~(minus02 /\ ~(ub))),

[direction_01] InterlockingSystem |-

G(fwd_01 \/ bwd_01 => cnt_01 > 0),

[conflicting_route_7] InterlockingSystem |-

G(plus01 /\ ~(ua) =>
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~(minus01 /\ minus02 /\ ~(ia)) /\

~(plus01 /\ plus02 /\ ~(ia)) /\

~(minus01 /\ minus02 /\ ~(ib)) /\

~(minus01 /\ ~(ua))),

[direction_02] InterlockingSystem |-

G(fwd_02 \/ bwd_02 => cnt_02 > 0),

[con_01_04] InterlockingSystem |-

G(con_01_04 => cnt_01 > 0 /\ cnt_04 > 0),

[direction_03] InterlockingSystem |-

G(fwd_03 \/ bwd_03 => cnt_03 > 0),

[con_02_03] InterlockingSystem |-

G(con_02_03 => cnt_02 > 0 /\ cnt_03 > 0),

[direction_04] InterlockingSystem |-

G(fwd_04 \/ bwd_04 => cnt_04 > 0),

[con_01_02] InterlockingSystem |-

G(con_01_02 => cnt_01 > 0 /\ cnt_02 > 0),

[direction_B12] InterlockingSystem |-

G(fwd_B12 \/ bwd_B12 => cnt_B12 > 0),

[con_03_04] InterlockingSystem |-

G(con_03_04 => cnt_03 > 0 /\ cnt_04 > 0),

[con_03_B12] InterlockingSystem |-

G(con_03_B12 => cnt_03 > 0 /\ cnt_B12 > 0),

[con_A12_01] InterlockingSystem |-

G(con_A12_01 => cnt_A12 > 0 /\ cnt_01 > 0)

"

F.2 Output of Model Checker

Summary:

The assertion ’initIdle’ located at

[Context: combined, line(5055), column(0)] is valid.
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The assertion ’alwaysEventuallyIdle’ located at

[Context: combined, line(5056), column(0)] is valid.

The assertion ’gk_gkAG_downConcurrency’ located at

[Context: combined, line(5057), column(0)] is valid.

The assertion ’gk_gkAG_upConcurrency’ located at

[Context: combined, line(5076), column(0)] is valid.

The assertion ’gk_gkBE_downConcurrency’ located at

[Context: combined, line(5095), column(0)] is valid.

The assertion ’gk_gkBE_upConcurrency’ located at

[Context: combined, line(5114), column(0)] is valid.

The assertion ’lockingIA1_r35_downConcurrency’ located at

[Context: combined, line(5133), column(0)] is valid.

The assertion ’lockingIA1_r35_upConcurrency’ located at

[Context: combined, line(5204), column(0)] is valid.

The assertion ’lockingIA1_r44_downConcurrency’ located at

[Context: combined, line(5275), column(0)] is valid.

The assertion ’lockingIA1_r44_upConcurrency’ located at

[Context: combined, line(5294), column(0)] is valid.

The assertion ’lockingIA2_ia_downConcurrency’ located at

[Context: combined, line(5313), column(0)] is valid.

The assertion ’lockingIA2_ia_mutualExclusion’ located at

[Context: combined, line(5324), column(0)] is valid.

The assertion ’lockingIA2_ia_upConcurrency’ located at

[Context: combined, line(5335), column(0)] is valid.

The assertion ’lockingIA2_iadub_downConcurrency’ located at

[Context: combined, line(5352), column(0)] is valid.

The assertion ’lockingIA2_iadub_mutualExclusion’ located at

[Context: combined, line(5361), column(0)] is valid.

The assertion ’lockingIA2_iadub_upConcurrency’ located at

[Context: combined, line(5370), column(0)] is valid.

The assertion ’lockingIB1_r36_downConcurrency’ located at

[Context: combined, line(5385), column(0)] is valid.

The assertion ’lockingIB1_r36_upConcurrency’ located at

[Context: combined, line(5456), column(0)] is valid.

The assertion ’lockingIB1_r45_downConcurrency’ located at

[Context: combined, line(5527), column(0)] is valid.

The assertion ’lockingIB1_r45_upConcurrency’ located at

[Context: combined, line(5546), column(0)] is valid.

The assertion ’lockingIB2_ib_downConcurrency’ located at

[Context: combined, line(5565), column(0)] is valid.

The assertion ’lockingIB2_ib_mutualExclusion’ located at

[Context: combined, line(5576), column(0)] is valid.

The assertion ’lockingIB2_ib_upConcurrency’ located at

[Context: combined, line(5587), column(0)] is valid.
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The assertion ’lockingIB2_ibdub_downConcurrency’ located at

[Context: combined, line(5604), column(0)] is valid.

The assertion ’lockingIB2_ibdub_mutualExclusion’ located at

[Context: combined, line(5613), column(0)] is valid.

The assertion ’lockingIB2_ibdub_upConcurrency’ located at

[Context: combined, line(5622), column(0)] is valid.

The assertion ’lockingUA1_ef111_downConcurrency’ located at

[Context: combined, line(5637), column(0)] is valid.

The assertion ’lockingUA1_ef111_upConcurrency’ located at

[Context: combined, line(5684), column(0)] is valid.

The assertion ’lockingUA1_ef411_downConcurrency’ located at

[Context: combined, line(5731), column(0)] is valid.

The assertion ’lockingUA1_ef411_upConcurrency’ located at

[Context: combined, line(5746), column(0)] is valid.

The assertion ’lockingUA2_ua_downConcurrency’ located at

[Context: combined, line(5761), column(0)] is valid.

The assertion ’lockingUA2_ua_mutualExclusion’ located at

[Context: combined, line(5770), column(0)] is valid.

The assertion ’lockingUA2_ua_upConcurrency’ located at

[Context: combined, line(5790), column(0)] is valid.

The assertion ’lockingUA2_uadub_downConcurrency’ located at

[Context: combined, line(5827), column(0)] is valid.

The assertion ’lockingUA2_uadub_mutualExclusion’ located at

[Context: combined, line(5834), column(0)] is valid.

The assertion ’lockingUA2_uadub_upConcurrency’ located at

[Context: combined, line(5851), column(0)] is valid.

The assertion ’lockingUB1_gh111_downConcurrency’ located at

[Context: combined, line(5884), column(0)] is valid.

The assertion ’lockingUB1_gh111_upConcurrency’ located at

[Context: combined, line(5931), column(0)] is valid.

The assertion ’lockingUB1_gh411_downConcurrency’ located at

[Context: combined, line(5978), column(0)] is valid.

The assertion ’lockingUB1_gh411_upConcurrency’ located at

[Context: combined, line(5993), column(0)] is valid.

The assertion ’lockingUB2_ub_downConcurrency’ located at

[Context: combined, line(6008), column(0)] is valid.

The assertion ’lockingUB2_ub_mutualExclusion’ located at

[Context: combined, line(6017), column(0)] is valid.

The assertion ’lockingUB2_ub_upConcurrency’ located at

[Context: combined, line(6029), column(0)] is valid.

The assertion ’lockingUB2_ubdub_downConcurrency’ located at

[Context: combined, line(6050), column(0)] is valid.

The assertion ’lockingUB2_ubdub_mutualExclusion’ located at

[Context: combined, line(6057), column(0)] is valid.
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The assertion ’lockingUB2_ubdub_upConcurrency’ located at

[Context: combined, line(6067), column(0)] is valid.

The assertion ’releaseIA_r47_downConcurrency’ located at

[Context: combined, line(6086), column(0)] is valid.

The assertion ’releaseIA_r47_upConcurrency’ located at

[Context: combined, line(6145), column(0)] is valid.

The assertion ’releaseIA_r67_downConcurrency’ located at

[Context: combined, line(6204), column(0)] is valid.

The assertion ’releaseIA_r67_upConcurrency’ located at

[Context: combined, line(6263), column(0)] is valid.

The assertion ’releaseIA_r87_downConcurrency’ located at

[Context: combined, line(6322), column(0)] is valid.

The assertion ’releaseIA_r87_upConcurrency’ located at

[Context: combined, line(6379), column(0)] is valid.

The assertion ’releaseIB_r50_downConcurrency’ located at

[Context: combined, line(6436), column(0)] is valid.

The assertion ’releaseIB_r50_upConcurrency’ located at

[Context: combined, line(6495), column(0)] is valid.

The assertion ’releaseIB_r70_downConcurrency’ located at

[Context: combined, line(6554), column(0)] is valid.

The assertion ’releaseIB_r70_upConcurrency’ located at

[Context: combined, line(6613), column(0)] is valid.

The assertion ’releaseIB_r90_downConcurrency’ located at

[Context: combined, line(6672), column(0)] is valid.

The assertion ’releaseIB_r90_upConcurrency’ located at

[Context: combined, line(6729), column(0)] is valid.

The assertion ’releaseUA_r48_downConcurrency’ located at

[Context: combined, line(6786), column(0)] is valid.

The assertion ’releaseUA_r48_upConcurrency’ located at

[Context: combined, line(6807), column(0)] is valid.

The assertion ’releaseUA_r88_downConcurrency’ located at

[Context: combined, line(6828), column(0)] is valid.

The assertion ’releaseUA_r88_upConcurrency’ located at

[Context: combined, line(6855), column(0)] is valid.

The assertion ’releaseUB_r49_downConcurrency’ located at

[Context: combined, line(6882), column(0)] is valid.

The assertion ’releaseUB_r49_upConcurrency’ located at

[Context: combined, line(6903), column(0)] is valid.

The assertion ’releaseUB_r89_downConcurrency’ located at

[Context: combined, line(6924), column(0)] is valid.

The assertion ’releaseUB_r89_upConcurrency’ located at

[Context: combined, line(6951), column(0)] is valid.

The assertion ’sasb_sa12_downConcurrency’ located at

[Context: combined, line(6978), column(0)] is valid.
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The assertion ’sasb_sa12_upConcurrency’ located at

[Context: combined, line(6991), column(0)] is valid.

The assertion ’sasb_sb12_downConcurrency’ located at

[Context: combined, line(7004), column(0)] is valid.

The assertion ’sasb_sb12_upConcurrency’ located at

[Context: combined, line(7017), column(0)] is valid.

The assertion ’signalA_aGreen2_downConcurrency’ located at

[Context: combined, line(7030), column(0)] is valid.

The assertion ’signalA_aGreen2_upConcurrency’ located at

[Context: combined, line(7211), column(0)] is valid.

The assertion ’signalA_aGreen_downConcurrency’ located at

[Context: combined, line(7392), column(0)] is valid.

The assertion ’signalA_aGreen_upConcurrency’ located at

[Context: combined, line(7699), column(0)] is valid.

The assertion ’signalA_aRed_downConcurrency’ located at

[Context: combined, line(8006), column(0)] is valid.

The assertion ’signalA_aRed_upConcurrency’ located at

[Context: combined, line(8013), column(0)] is valid.

The assertion ’signalA_aYellow_downConcurrency’ located at

[Context: combined, line(8020), column(0)] is valid.

The assertion ’signalA_aYellow_upConcurrency’ located at

[Context: combined, line(8031), column(0)] is valid.

The assertion ’signalB_bGreen2_downConcurrency’ located at

[Context: combined, line(8042), column(0)] is valid.

The assertion ’signalB_bGreen2_upConcurrency’ located at

[Context: combined, line(8235), column(0)] is valid.

The assertion ’signalB_bGreen_downConcurrency’ located at

[Context: combined, line(8428), column(0)] is valid.

The assertion ’signalB_bGreen_upConcurrency’ located at

[Context: combined, line(8759), column(0)] is valid.

The assertion ’signalB_bRed_downConcurrency’ located at

[Context: combined, line(9090), column(0)] is valid.

The assertion ’signalB_bRed_upConcurrency’ located at

[Context: combined, line(9097), column(0)] is valid.

The assertion ’signalB_bYellow_downConcurrency’ located at

[Context: combined, line(9104), column(0)] is valid.

The assertion ’signalB_bYellow_upConcurrency’ located at

[Context: combined, line(9115), column(0)] is valid.

The assertion ’signalEF_eGreen_downConcurrency’ located at

[Context: combined, line(9126), column(0)] is valid.

The assertion ’signalEF_eGreen_upConcurrency’ located at

[Context: combined, line(9143), column(0)] is valid.

The assertion ’signalEF_eRed_downConcurrency’ located at

[Context: combined, line(9160), column(0)] is valid.
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The assertion ’signalEF_eRed_upConcurrency’ located at

[Context: combined, line(9165), column(0)] is valid.

The assertion ’signalEF_fGreen_downConcurrency’ located at

[Context: combined, line(9170), column(0)] is valid.

The assertion ’signalEF_fGreen_upConcurrency’ located at

[Context: combined, line(9187), column(0)] is valid.

The assertion ’signalEF_fRed_downConcurrency’ located at

[Context: combined, line(9204), column(0)] is valid.

The assertion ’signalEF_fRed_upConcurrency’ located at

[Context: combined, line(9209), column(0)] is valid.

The assertion ’signalGH_gGreen_downConcurrency’ located at

[Context: combined, line(9214), column(0)] is valid.

The assertion ’signalGH_gGreen_upConcurrency’ located at

[Context: combined, line(9231), column(0)] is valid.

The assertion ’signalGH_gRed_downConcurrency’ located at

[Context: combined, line(9248), column(0)] is valid.

The assertion ’signalGH_gRed_upConcurrency’ located at

[Context: combined, line(9253), column(0)] is valid.

The assertion ’signalGH_hGreen_downConcurrency’ located at

[Context: combined, line(9258), column(0)] is valid.

The assertion ’signalGH_hGreen_upConcurrency’ located at

[Context: combined, line(9275), column(0)] is valid.

The assertion ’signalGH_hRed_downConcurrency’ located at

[Context: combined, line(9292), column(0)] is valid.

The assertion ’signalGH_hRed_upConcurrency’ located at

[Context: combined, line(9297), column(0)] is valid.

The assertion ’no_derailing_03_02’ located at

[Context: combined, line(9302), column(0)] is valid.

The assertion ’train_route_release_7’ located at

[Context: combined, line(9304), column(0)] is valid.

The assertion ’no_derailing_01_04’ located at

[Context: combined, line(9314), column(0)] is valid.

The assertion ’train_route_release_6’ located at

[Context: combined, line(9316), column(0)] is valid.

The assertion ’no_derailing_03_04’ located at

[Context: combined, line(9327), column(0)] is valid.

The assertion ’train_route_release_8’ located at

[Context: combined, line(9329), column(0)] is valid.

The assertion ’no_derailing_01_02’ located at

[Context: combined, line(9339), column(0)] is valid.

The assertion ’train_route_release_5’ located at

[Context: combined, line(9341), column(0)] is valid.

The assertion ’points_locked_when_occupied_03’ located at

[Context: combined, line(9352), column(0)] is valid.
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The assertion ’train_route_release_9’ located at

[Context: combined, line(9355), column(0)] is valid.

The assertion ’points_locked_when_occupied_01’ located at

[Context: combined, line(9365), column(0)] is valid.

The assertion ’train_route_release_3’ located at

[Context: combined, line(9368), column(0)] is valid.

The assertion ’no_collision_A12’ located at

[Context: combined, line(9379), column(0)] is valid.

The assertion ’train_route_release_10’ located at

[Context: combined, line(9380), column(0)] is valid.

The assertion ’no_collision_01’ located at

[Context: combined, line(9390), column(0)] is valid.

The assertion ’train_route_release_2’ located at

[Context: combined, line(9391), column(0)] is valid.

The assertion ’no_collision_02’ located at

[Context: combined, line(9402), column(0)] is valid.

The assertion ’signal_release_7’ located at

[Context: combined, line(9403), column(0)] is valid.

The assertion ’no_collision_03’ located at

[Context: combined, line(9406), column(0)] is valid.

The assertion ’signal_release_6’ located at

[Context: combined, line(9407), column(0)] is valid.

The assertion ’no_collision_04’ located at

[Context: combined, line(9410), column(0)] is valid.

The assertion ’signal_release_8’ located at

[Context: combined, line(9411), column(0)] is valid.

The assertion ’no_collision_B12’ located at

[Context: combined, line(9414), column(0)] is valid.

The assertion ’signal_release_5’ located at

[Context: combined, line(9415), column(0)] is valid.

The assertion ’points_configuration_01’ located at

[Context: combined, line(9418), column(0)] is valid.

The assertion ’signal_release_9’ located at

[Context: combined, line(9421), column(0)] is valid.

The assertion ’points_configuration_03’ located at

[Context: combined, line(9424), column(0)] is valid.

The assertion ’signal_release_3’ located at

[Context: combined, line(9427), column(0)] is valid.

The assertion ’free_B12’ located at

[Context: combined, line(9430), column(0)] is valid.

The assertion ’signal_release_10’ located at

[Context: combined, line(9432), column(0)] is valid.

The assertion ’free_B12_’ located at

[Context: combined, line(9435), column(0)] is valid.
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The assertion ’signal_release_2’ located at

[Context: combined, line(9437), column(0)] is valid.

The assertion ’free_04_’ located at

[Context: combined, line(9440), column(0)] is valid.

The assertion ’point_position_ua’ located at

[Context: combined, line(9442), column(0)] is valid.

The assertion ’free_04’ located at

[Context: combined, line(9445), column(0)] is valid.

The assertion ’point_position_ib’ located at

[Context: combined, line(9447), column(0)] is valid.

The assertion ’free_03_’ located at

[Context: combined, line(9452), column(0)] is valid.

The assertion ’point_position_ub’ located at

[Context: combined, line(9454), column(0)] is valid.

The assertion ’free_03’ located at

[Context: combined, line(9457), column(0)] is valid.

The assertion ’point_position_ia’ located at

[Context: combined, line(9459), column(0)] is valid.

The assertion ’free_02_’ located at

[Context: combined, line(9464), column(0)] is valid.

The assertion ’signal_E’ located at

[Context: combined, line(9466), column(0)] is valid.

The assertion ’free_02’ located at

[Context: combined, line(9469), column(0)] is valid.

The assertion ’signal_F’ located at

[Context: combined, line(9471), column(0)] is valid.

The assertion ’free_01_’ located at

[Context: combined, line(9474), column(0)] is valid.

The assertion ’signal_B’ located at

[Context: combined, line(9476), column(0)] is valid.

The assertion ’free_01’ located at

[Context: combined, line(9479), column(0)] is valid.

The assertion ’signal_G’ located at

[Context: combined, line(9481), column(0)] is valid.

The assertion ’free_A12_’ located at

[Context: combined, line(9484), column(0)] is valid.

The assertion ’signal_A’ located at

[Context: combined, line(9486), column(0)] is valid.

The assertion ’free_A12’ located at

[Context: combined, line(9489), column(0)] is valid.

The assertion ’signal_H’ located at

[Context: combined, line(9491), column(0)] is valid.

The assertion ’occ_A12’ located at

[Context: combined, line(9494), column(0)] is valid.
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The assertion ’signal_exp_H’ located at

[Context: combined, line(9496), column(0)] is valid.

The assertion ’occ_A12_’ located at

[Context: combined, line(9503), column(0)] is valid.

The assertion ’signal_exp_A’ located at

[Context: combined, line(9505), column(0)] is valid.

The assertion ’occ_01’ located at

[Context: combined, line(9537), column(0)] is valid.

The assertion ’signal_exp_G’ located at

[Context: combined, line(9539), column(0)] is valid.

The assertion ’occ_01_’ located at

[Context: combined, line(9546), column(0)] is valid.

The assertion ’signal_exp_B’ located at

[Context: combined, line(9548), column(0)] is valid.

The assertion ’occ_02’ located at

[Context: combined, line(9580), column(0)] is valid.

The assertion ’signal_exp_F’ located at

[Context: combined, line(9582), column(0)] is valid.

The assertion ’occ_02_’ located at

[Context: combined, line(9589), column(0)] is valid.

The assertion ’signal_exp_E’ located at

[Context: combined, line(9591), column(0)] is valid.

The assertion ’occ_03’ located at

[Context: combined, line(9598), column(0)] is valid.

The assertion ’conflicting_route_2’ located at

[Context: combined, line(9600), column(0)] is valid.

The assertion ’occ_03_’ located at

[Context: combined, line(9618), column(0)] is valid.

The assertion ’conflicting_route_10’ located at

[Context: combined, line(9620), column(0)] is valid.

The assertion ’occ_04’ located at

[Context: combined, line(9633), column(0)] is valid.

The assertion ’conflicting_route_3’ located at

[Context: combined, line(9635), column(0)] is valid.

The assertion ’occ_04_’ located at

[Context: combined, line(9653), column(0)] is valid.

The assertion ’conflicting_route_9’ located at

[Context: combined, line(9655), column(0)] is valid.

The assertion ’occ_B12_’ located at

[Context: combined, line(9668), column(0)] is valid.

The assertion ’conflicting_route_5’ located at

[Context: combined, line(9670), column(0)] is valid.

The assertion ’occ_B12’ located at

[Context: combined, line(9688), column(0)] is valid.
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The assertion ’conflicting_route_8’ located at

[Context: combined, line(9690), column(0)] is valid.

The assertion ’direction_A12’ located at

[Context: combined, line(9703), column(0)] is valid.

The assertion ’conflicting_route_6’ located at

[Context: combined, line(9706), column(0)] is valid.

The assertion ’direction_01’ located at

[Context: combined, line(9724), column(0)] is valid.

The assertion ’conflicting_route_7’ located at

[Context: combined, line(9727), column(0)] is valid.

The assertion ’direction_02’ located at

[Context: combined, line(9740), column(0)] is valid.

The assertion ’con_01_04’ located at

[Context: combined, line(9743), column(0)] is valid.

The assertion ’direction_03’ located at

[Context: combined, line(9746), column(0)] is valid.

The assertion ’con_02_03’ located at

[Context: combined, line(9749), column(0)] is valid.

The assertion ’direction_04’ located at

[Context: combined, line(9752), column(0)] is valid.

The assertion ’con_01_02’ located at

[Context: combined, line(9755), column(0)] is valid.

The assertion ’direction_B12’ located at

[Context: combined, line(9758), column(0)] is valid.

The assertion ’con_03_04’ located at

[Context: combined, line(9761), column(0)] is valid.

The assertion ’con_03_B12’ located at

[Context: combined, line(9764), column(0)] is valid.

The assertion ’con_A12_01’ located at

[Context: combined, line(9767), column(0)] is valid.

F.3 Output of Tests

F.3.1 Station Layout Diagram

[isWfIdentifiers_fail] true

[isWfIdentifiers_succeed] true

[neighbours_OnlySections_fail] true

[neighbours_OnlySections_succeed] true

[neighbours_EverySection_fail] true
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[neighbours_EverySection_succeed] true

[neighbours_Irreflexive_linear_fail] true

[neighbours_Irreflexive_points_fail] true

[neighbours_Antisymmetrical_fail] true

[neighbours_Antisymmetrical_succeed] true

[linears_1or2Neighbours_fail_1] true

[linears_1or2Neighbours_fail_2] true

[linears_1or2Neighbours_succeed_1] true

[linears_1or2Neighbours_succeed_2] true

[points_3Neighbours_fail_1] true

[points_3Neighbours_fail_2] true

[points_3Neighbours_succeed] true

[pointsNotNeighbours_fail] true

[pointsNotNeighbours_succeed] true

[branchNeighbours_areNeighbours_fail] true

[branchNeighbours_areNeighbours_succeed] true

[branchNeighbours_FirstIsPoints_fail] true

[branchNeighbours_FirstIsPoints_succeed] true

[branchNeighbours_everyPoints_fail] true

[branchNeighbours_everyPoints_succeed] true

[signalLocation_UsesExistingSignals_fail] true

[signalLocation_UsesExistingSignals_succeed] true

[signalsArePlacedAtValtIdNeighbours_fail] true

[signalsArePlacedAtValtIdNeighbours_succeed] true

[pointMachines_areSymmetrical_fail1] true

[pointMachines_areSymmetrical_fail2] true

[pointMachines_areSymmetrical_fail3] true

[pointMachines_areSymmetrical_succeed] true

[pointMachines_ExistingTrackSections_fail] true

[pointMachines_ExistingTrackSections_succeed] true

F.3.2 Train Route Table

[noOverlap] true

[overlapNotPartofRoute] true

[overlapPartofRoute] true

[overlapNotConnected] true

[overlapConnectedA] true

[overlapConnectedB] true

[overlapNotEOR] true

[overlapEOR] true

[nonExistingSignals] true
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[existingSignals] true

[stopEntry] true

[proceedEntry] true

[nonexistingPointMachine] true

[existingPointMachines] true

[pointMachinesNotInTRT] true

[pointMachineNotInTRT] true

[pointMachinesInTRT] true

[pointsInRouteLocked_fail] true

[pointsInRouteLocked_success] true

[pointsNotInCorrectPos] true

[pointsInCorrectPos] true

[nonexistingTrackSections] true

[tooFewTrackSections] true

[tooManyTrackSections] true

[existingTrackSections] true

[emptyTrainDetection] true

[noSectionInRoute] true

[atLeastOneSectionInRoute] true

[notConnectedRoute] true

[connectedRoute] true

[justOneBranchNeighbour_fail] true

[justOneBranchNeighbour] true

[nonexistingSignal] true

[existingSignal] true

[nonexistingTrackSection] true

[existingTrackSection] true

[signalNotFollowedByTrackSection] true

[signalFollowedByTrackSection] true

[notReverseTrackSections] true

[reverseTrackSections] true

[notReverseRelayState] true

[reverseRelayState] true

[trackSectionNotPartOfRoute] true

[trackSectionPartOfRoute] true

[improperRelayState1] true

[improperRelayState2] true

[improperRelayState3] true

[properRelayState] true

[notEveryExistingRoute_few] true

[notEveryExistingRoute_wrong] true

[notEveryExistingRoute_many] true

[everyExistingRoute] true

[notconflictingIfShareSectionB] true
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[conflictingIfShareSection] true

[notConflictingWhenDifferentPos] true

[conflictingWhenDifferentPos_samePos] true

[conflictingWhenDifferentPos] true

F.3.3 Transition System

[emptySystemName] true

[nonemptySystemName] true

[identicalIds] true

[uniqueIds] true

[invalidIds] true

[validIds] true

[emptyTransitionName] true

[nonemptyTransitionName] true

[identicalTransitionNames] true

[uniqueTransitionNames] true

[nonExistingIdsInGuard] true

[existingIdsInGuard] true

[emptyAssignment] true

[nonemptyAssignment] true

[assignToNonexistingIds] true

[assignToExistingIds] true

[idUpdMoreThanOnce] true

[idUpdOnlyOnce] true

[emptyAssertionName] true

[nonemptyAssertionName] true

[identicalAssertionNames] true

[uniqueAssertionNames] true

[nonexistingVars] true

[existingVars] true

F.3.4 Object Relay Associations

[noRelayVariableOverlap_failA] true

[noRelayVariableOverlap_failB] true

[noRelayVariableOverlap_failC] true

[noRelayVariableOverlap_failD] true

[noRelayVariableOverlap_failE] true

[noRelayVariableOverlap_failF] true
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[noRelayVariableOverlap_failG] true

[noRelayVariableOverlap_failH] true

[noRelayVariableOverlap_ok] true

[routeAssoc_fail] true

[routeAssoc_ok] true

[trackAssoc_fail] true

[trackAssoc_ok] true

[pointAssoc_existing_fail] true

[pointAssoc_different_fail1] true

[pointAssoc_different_fail2] true

[pointAssoc_ok] true

[signalAssoc_existing_fail] true

[signalAssoc_different_fail] true

[signalAssoc_ok] true

F.3.5 Train Movement Associations

[noRelayVariableOverlap_failA] true

[noRelayVariableOverlap_failB] true

[noRelayVariableOverlap_failC] true

[noRelayVariableOverlap_failD] true

[noRelayVariableOverlap_failE] true

[noRelayVariableOverlap_failF] true

[noRelayVariableOverlap_failG] true

[noRelayVariableOverlap_failH] true

[noRelayVariableOverlap_failI] true

[noRelayVariableOverlap_ok] true

[conVarsValidDomain_fail] true

[conVarsValidRange_fail] true

[connectionVars] true

[cntVarsValidDomain_fail] true

[cntVarsValidRange] true

[counterVars] true

[fwdVarsValidDomain_fail] true

[fwdVarsValidRange_fail] true

[directionFwdVars] true

[bwdVarsValidDomain_fail] true

[bwdVarsValidRange_fail] true

[directionBwdVars] true

[directionsValidDomain_fail] true

[bothDirections_fail] true

[directions] true
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