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ABSTRACT

Music recommendation is an important aspect of many
streaming services and multi-media systems, however, it is
typically based on so-called collaborative filtering methods.
In this paper we consider the recommendation task from a
personalized viewpoint and examine to which degree music
preference can be elicited and predicted using simple and ro-
bust queries such as pairwise comparisons. We propose to
model - and in turn predict - the pairwise music preference
using a very flexible model based on Gaussian Process pri-
ors for which we describe the required inference. We further
propose a specific covariance function and evaluate the pre-
dictive performance on a novel dataset. In a recommendation
setting we obtain a leave-one-out accuracy of 76% compared
to 50% with random predictions, showing potential for further
refinement and evaluation.

Index Terms— Music Preference, Kernel Methods,
Gaussian Process Priors, Recommendation

1. INTRODUCTION

The elicitation of music preference has received a great deal
of attention the last few years. It is, however, not the pref-
erence as a fundamental aspect which is usually considered,
but the recommendation aspect. In its standard setting the
recommendation is done by a collaborative filtering approach
with is typically based on users absolute ratings of instances,
which does not take into account the fundamental features of
either the music nor the users.

From a individual viewpoint it is, however, quite inter-
esting how well human preference can be elicited and repre-
sented without relying on the help of others in order to answer
basic questions such as which properties of the music deter-
mines individual preference. Obviously the power of collabo-
rative filtering should not be discarded, but expanded in order
to answer the basic questions and hopefully provide a even
better predictive model of individual music preference.
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Based on these observations we will in this paper recon-
sider music preference by applying a Gaussian Process re-
gression model which takes into account both human ratings
and audio features. In contrast to many audio rating systems
it is not based on absolute ratings of a single track, but on a
pairwise comparisons between tracks, which is typically con-
sidered robust and have a low cognitive load (see e.g. [1]).

We furthermore propose to use covariance function moti-
vated from a generative view of audio features with a potential
multi-task part which will in turn lead to similar capabilities
as standard collaborative filtering, but with the added infor-
mation level provided by the user properties. Posterior in-
ference in the resulting non-parametric Bayesian regression
model is performed using a Laplace approximation of the
otherwise intractable posterior. The hyperparameters in the
model is learned using an empirical Bayes approach.

We evaluate the resulting model by its predictive power on
a small scale, publicly available dataset consisting of 10 sub-
jects, 30 tracks and 3 genres. We report and discuss a num-
ber of aspects of the performance such as the leaning curves
over the number of pairwise comparisons and learning curves
when leaving out a track as test set. Using the latter scheme
we find a average prediction accuracy of 76% using individual
models and considering the binary choice between two tracks.
We find the initial results encouraging, showing promise for
use in individualized audio preference applications.

2. METHODS

In this work we focus on modeling preference elicited by pair-
wise queries, i.e., given two inputs u and v we obtain a re-
sponse, y ∈ {−1, 1}, where y = −1 corresponds to a prefer-
ence for u and 1 corresponds to a preference for v.

We consider n distinct input tracks xi ∈ X denoted X =
{xi|i = 1, ..., n}, and a set of m responses on pairwise com-
parisons between any two inputs in X , denoted by

Y = {(yk;uk, vk)|k = 1, ...,m} ,

where yk ∈ {−1, 1}. uk ∈ X and vk ∈ X are option one and
two in the k’th pairwise comparison.



2.1. Likelihood Model

In a probabilistic fashion we consider the yk a stochastic vari-
able and we can then formulate the likelihood of observing a
given response as cumulative normal distribution.

p (yk|fk,θL) = Φ

(
yk
f (vk)− f (uk)√

2σ

)
, (1)

with fk = [f (uk) , f (vk)], Φ(x) defines a cumulative Gaus-
sian (with zero mean and unity variance) and θL = {σ}.
This in turn boils down to the well known probit classification
model, but with the argument being the difference between
two latent variables, functional values, and not just a single
latent variable. This in effect implies that the f parameter (or
function) encodes an internal but latent preference function
which can be learning by pairwise comparisons via the like-
lihood model in Eq. 1. This idea was already considered by
[2], but recently suggested in a Gaussian Process context by
[3].

2.2. Gaussian Process Prior

The real question remains, namely how f is modelled. We
will follow the principle suggested by [3] in which f is con-
sidered an abstract function and we can in turn place a prior
distribution over it. The natural prior is a Gaussian Process
(GP) typically defined as ”a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion” [4]. Following [4] we denote a function drawn from a
GP as f (x) ∼ GP

(
0, k(·, ·)θc

)
with a zero mean function,

and k(·, ·)θc
referring to the covariance function with hyper-

parameters θc, which defines the covariance between the ran-
dom variables as a function of the inputs X . The fundamental
consequence of this formulation is that the GP can be con-
sidered a distribution over functions, i.e., p (f |X ,θc), with
hyper-parameters θc and f = [f(x1), f(x2), ..., f(xn)]T , i.e.,
dependent on X .

In a Bayesian setting we can directly place the GP as
a prior on the function defining the likelihood. This leads
us directly to a formulation given Bayes relation with θ =
{θL,θc}

p (f |Y,X ,θ) =
p (Y|f ,θL) p(f |X ,θc)

p (Y|θ,X )
. (2)

The prior p(f |X ,θc) is given by the GP and the likelihood
p (Y|f ,θL) is the two likelihood defined previously, with
the assumption that the likelihood factorizes as usual, i.e.,
p (Y|f ,θL) =

∏
k=1:m

p (yk|f(uk), f(vk),θL)

The posterior of interest, p (f |Y,X ,θ), is directly defined
when equipped with the likelihood and the prior, but it is un-
fortunately not of any known analytical form, thus we rely on
the Laplace approximation.

2.3. Inference & Hyperparameters

We apply the Laplace approximation and approximate the
posterior by a single Gaussian distribution, such that p (f |Y) ≈
N (f |̂f ,A−1). Where f̂ is the mode of the posterior and A is
the Hessian of the negative log-likelihood at the mode.

The mode is found as f̂ = arg maxf p (Y|f) p (f). We
solve the problem by considering the unnormalized log-
posterior and the resulting cost function which is to be maxi-
mized, is given by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f

− 1

2
log |K| − N

2
log 2π.

(3)

where Ki,j = k(xi, xj)θc
. We use a damped Newton method

with soft linesearch to maximize Eq. (3). In our case the basic
damped Newton step (with adaptive damping factor λ) can be
calculated without inversion of the Hessian (see [5])

fnew =
(
K−1 + W − λI

)−1
· [(W − λI)− f +∇ log p(Y|f ,X ,θL)] , (4)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj)
we apply the def-

inition Wi,j = −
∑

k∇∇i,j log p(yk|fk,θL). We note that
the term∇∇i,j log p(yk|fk,θL) is only nonzero when both xi
and xj occur as either vk or uk in fk. In contrast to standard
binary GP classification the Hessian W is not diagonal, which
makes the approximation slightly more involved. When con-
verged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |̂f ,

(
W + K−1

)−1)
. (5)

We refer to [5] for a full derivation and for the required deriva-
tives for the binary case, as first described in [3]. Parameters
in the likelihood and covarince function, collected in θ, are
found via evidence optimization methods described in [6].

2.4. Predictions & Evaluations

Given the model, in essence given by f , we wish to do predic-
tions of the observed variable y for a pair of test inputs r ∈ Xt

and s ∈ Xt. We are especially interested in the discrete deci-
sion, i.e., whether r � s or s � r. We first consider the pre-
dictive distribution of f which is required in both cases, and
omit the conditioning on X and Xt. Given the GP, we can
write the joint prior distribution between f ∼ p (f |Y,θMAP)

and the test variables ft = [f (r) , f (s)]
T as[

f

ft

]
= N

([
0

0

]
,

[
K kt

kT
t Kt

])
, (6)

where kt is a matrix with elements k2,i = k(s, xi)θMAP
c

and
k1,i = k(r, xi)θMAP

c
with xi being a training input. The con-

ditional p (ft|f) is obviously Gaussian as well and can be ob-
tained directly from Eq. (6). The predictive distribution is



given as p (ft|Y,θMAP) =
∫
p (ft|f) p (f |Y,θMAP) df . With the

posterior approximated with the Gaussian from the Laplace
approximation, then p (ft|Y,θMAP) will be Gaussian too and
is given as N (ft|µ∗,K∗) with µ∗ = [µ∗r , µ

∗
s]T = ktK

−1f̂
and

K∗ =

[
K∗rr K∗rs
K∗sr K∗ss

]
= Kt − kT

t (I + WK)kt,

where f̂ and W are obtained from Eq. (5). With the predictive
distribution for ft, the final prediction of the observed variable
is available from

p (yt|Y,θMAP) =

∫
p (yt|ft,θMAP

L ) p (ft|Y,θMAP) dft (7)

If the likelihood is an odd function, as in our case, the bi-
nary preference decision between r and s can be made di-
rectly from p (ft|Y).

If p
(
ft|Y,θMAP) is Gaussian and we consider the Probit

likelihood, the integral in Eq. (7) can be evaluated in closed
form as a modified Probit function given by [3]

P (r � s|Y) = Φ ((µ∗r − µ∗s) /σ∗) (8)

with (σ∗)
2

= 2σ2 + K∗rr + K∗ss −K∗rs −K∗sr

2.5. Kernels for Audio Preference

We suggest a general purpose covariance function for audio
regression tasks with GPs. It can easily integrate different
modalities and meta-data types, such as audio features, tags,
lyrics and user features. The general covariance is

k (x, x′) =

(∑Na

i=1
ki (xa, xa

′)

)
ku (xu, xu

′) (9)

where the first factor is the sum of all theNa covariance func-
tions defining the correlation structure of the audio part, xa,
of the complete instance, x. The second factor, or multi-
task part, is the covariance function defining the covariance
of the user mete-data part, xu. The practical evaluation is
limited to the a individualized setting using only xa, thus
k (x, x′) = k (xa, xa

′), where we apply the probability prod-
uct kernel formulation in [7]. The probability product ker-
nel is defined directly as an inner product, i.e., k (xa, xa

′) =∫
[p (xa) p (xa

′)]
q
dx, where p (xa) is a density estimate of

each audio track feature distribution. In this evaluation we fix
q = 1/2, leading to the Hellinger divergence [7]. As custom
in the audio community, see e.g. [8], we will resort to a (fi-
nite) Gaussian Mixture Model (GMM) in order to model the
feature distribution. So p(x) is in general given by p (x) =∑Nz

z=1 p (z) p (x|z), where p (x|z) = N (x|µz, σz) is a stan-
dard Gaussian distribution. The kernel can be calculated in
closed form [7] as.

k (pa (x) , pa (x)) =∑
z

∑
z′

(pa (z) pa′ (z′))
q
k̃ (p (x|θz) , p (x|θz′)) (10)

where k̃ (p (x|θz) , p (x|θz′)) is the probability product kernel
between two single components, which can also be calculated
in closed form [7].

3. EXPERIMENT

In order to evaluate the model proposed in section in 2 we
consider a small-scale dataset publicly available [9]. Specifi-
cally it consist of 10 test subjects, 30 audio tracks and 10 au-
dio tracks per genre. The genres are Classical, Heavy Metal
and Rock/Pop.

The design of the experiment is based on a partial, full
pairwise design, so that only 155 out of the 420 combinations
was evaluated by each of the 10 subjects. We extract stan-
dard audio features from the audio tracks, namely MFCCs
(26 incl. delta coefficients), Zero-Crossing Rate and Spectral
Flatness. A GMM was fitted to each track distribution with
a fixed model complexity of Nz = 2 and parameters where
fitted using a standard, maximum likelihood based EM algo-
rithm.

The experiment itself was conducted using a Matlab in-
terface in a 2-Alternative-Forced-Choice setup inline with the
model. The interface allowed subject to listen to the two pre-
sented tracks as many times they wanted before making a
choice between them. A questionnaire gathered user meta-
data such as, age, musical training, context and a priori genre
preference. This data is, however, not used in this individu-
alized evaluation, but can easily be applied in the multi-task
kernel suggested in Sec. 2.

In the evaluation we are primarily interested in two as-
pects. The first a main result is an estimate of the generaliza-
tion error on new unseen tracks, e.g., relevant for recommen-
dation purposes. In order to evaluate this, we make an exten-
sive cross-validation on the present dataset. We use a 30-fold
cross-validation in which each track (incl. all connected com-
parisons) is left out once; the model is then trained on 10 ran-
dom subsets of tracks for each training set size, which results
in an unbias estimated of the test error when evaluated on the
left out track and averaged. The resulting learning curve is
shown in Fig. 1. When considering Ntracks = 29 we obtain an
average prediction performance of 76.4% (-/+ 5%), which is
the main result in a typical recommendation scenario with the
present dataset.

Secondly we investigate how many pairwise comparisons
the model require in order to learn the preference over the
dataset. This is evaluated using a standard 10-fold cross-
validation over the comparisons which gives the learning
curve in Fig. 2. We notice that on average we only require
approximately 0.4 · (155 · 90%) ∼ 56 comparisons, cor-
responding to approximately two comparisons per track, in
order to reach a 25% level (a prediction error on every four
hold-out datapoint/comparison).
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Fig. 1. Mean learning curve (blue line) and box plot over
subjects. Leave-one-(track)-out test error as a function of the
number of tracks in the training set. Thus, there can maxi-
mum be 29 tracks in the training set to predict the preference
between the left out track and the rest. The baseline is 0.5
corresponding to a random guess.

4. DISCUSSION & CONCLUSION

We have proposed a pairwise regression model based on
Gaussian Process priors for modeling and predicting the
pariwise preference of music. We outlined a appropriate co-
variance structure suitable for audio features such as MFCCs
based on generative models of audio features. The general
version of the covariance function allows for multi-task sce-
narios and feature integration, although here evaluated in a
individual user scenario.

We evaluated the setup in a individual scenario using a
novel and publicly available dataset on which we showed a
76% average accuracy, and demonstrated that there might
very well be a promising upper bound on the number of re-
quired pairwise comparisons in this music setting which in
effect implies that the specified correlation structure makes
sense. The model naturally calls for effective active learn-
ing methods to select the most informative comparisons, to
further improve the learning rate. A second extension is an
evaluating of other query types, e.g., a pairwise comparison
on continuous scales [6].

We observe a large difference among the different sub-
jects indicating that some subjects may have a very consistent
preference, possibly aligning well with the applied covariance
function, while others seem very difficult to predict. It may
further indicate that music preference is only effectively pre-
dictable for certain groups of subjects, which is to be investi-
gated in future research and on larger datasets.

Based on the initial results reported in this paper, we
find the paradigm and model promising for the elicitation
and modeling of music preference, and the evaluation should

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of training set

E
rr

or
R

at
e

Fig. 2. Mean learning curve (red line) and box plot over
subjects. Test error as a function of the number of pairwise
comparisons in the the training set. Notice that a fraction of
one corresponds to (155 · 90%) /420 ∼ 33.2% of all possible
pairwise experiments.

certainly be extended to a larger dataset.
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