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Abstract
Human preferences can effectively be elicited using pairwise comparisons and in this paper current state-of-the-art based on binary decisions is extended by a new
paradigm which allows subjects to convey their degree of preference as a continuous but bounded response. For this purpose, a novel Beta-type likelihood is proposed
and applied in a Bayesian regression framework using Gaussian Process priors. Posterior estimation and inference is performed using a Laplace approximation.
The potential of the paradigm is demonstrated and discussed in terms of learning rates and robustness by evaluating the predictive performance under various
noise conditions on a synthetic dataset. It is demonstrated that the learning rate of the novel paradigm is not only faster under ideal conditions, where continuous
responses are naturally more informative than binary decisions, but also under adverse conditions where it seemingly preserves the robustness of the binary paradigm,
suggesting that the new paradigm is robust to human inconsistency.

Methods
Introduction

According to Lockhead [1] every aspect of human
perception is relative. Formal treatment of relative
aspects goes back to the ideas of Thurnstone [2]
and was revisited by Chu et al. [3] who formulated
a Bayesian approach to preference learning with
Gaussian Processes, which has initiated various
applications and studies [4], [5] and [6].

To accelerate the preference learning
task, we formulate a likelihood model
that describes not only which of two

presented options that is preferred, but
additionally the degree to which the

prevailing option is preferred as a
continues but bounded response.

Pairwise setup
We consider n distinct inputs xi ∈ X denoted
X = {xi|i = 1, ..., n} and a set of m responses yk
on pairwise comparisons between any two inputs uk
and vk in X , denoted by

Y = {(yk;uk, vk)|k = 1, ...,m} .
We consider two types of responses

• binary (BR):
yk = dk, dk ∈ {−1, 1}

• continuous & bounded (CBR):
yk = πk, πk ∈ ]0, 1[

Model
The preference for each input xi is modeled by a
latent function f : X → R defining an internal but
latent reference. Given a function f we define the
likelihood functions for each of the two responses as

• binary (BR) - State-of-the-art [3]

p (dk|fk) = Φ

(
dk
f (vk)− f (uk)√

2σ

)
• continuous & bounded (CBR) - Novel

p (πk|fk) = Beta (πk| νµ(fk), ν(1− µ(fk)))

with µ (fk) = Φ

(
f (vk)− f (uk)√

2σ

)
where we have defined fk = [f(uk), f(vk)]> as
the vector of function values for the two compared
options uk and vk.

Gaussian Process Prior
We model the latent function f(x) with a zero-
mean Gaussian Process (GP) [7] f(x) ∼ GP(0, k(·, ·))
with a squared-exponential (SE) covariance function
kSE(x, x′). A fundamental consequence of this
formalism is that the GP defines a prior over
functions p(f |X ), which leads us directly to a
formulation given Bayes rule

p (f |Y,X ) =
p(f |X )

∏m
k=1 p (yk|fk)

p (Y|X )
.

where p (yk|fk) is any of the two pairwise likelihood
functions, f = [f(x1), f(x2), . . . , f(xn)]> and we
have assumed that the likelihood factorizes over
observations.

Exact inference is intractable for both
likelihood functions. Instead, the Laplace

approximation is used for inference,
parameter optimization and prediction.

Fig. 1: Illustration of the proposed likelihood with p(πk|fk) shown as a color level. The likelihood parameters are
σ = 0.1 and left: ν = 3, middle: ν = 10 and right: ν = 30

Simulation Results

Fig. 2: Mean error test rates (MER) as a function of the number of experiments over 100 different realizations of the
training set generated with different νD. In the red and top green area MER are worse and better, respectively, than
those obtained with the BR model on the noisy data. In the lower green area MER are also better than those obtained

by the BR NoiseFree, and finally, the grey area corresponds to unrealistic MER better than those obtained with a
CBR NoiseFree model with ν →∞ evaluated with ν = 103 on a noise-free data set. The six rows of markers indicate

if the MER of the corresponding CBR model are significantly different from those resulting from the BR (squares)
and from the BR NoiseFree (circles). If solid, the zero-hypothesis of the two means being equal is rejected at the 5%

level using a paired t-test.

Conclusions and Directions
The learning rates (Fig. 1) show that

• As expected, CBR outperforms BR
under (near) ideal conditions.
• In noisy conditions, CBR outperforms

corresponding BR.
• Actually, CBR shows similar or better

performance in noisy conditions than
BR in noise-free conditions.

This suggests that the CBR model

• is robust to user inconsistency.
• can effectively exploit the additional

information in continuous responses.
• reduces the number of required exper-

iments/observations (faster learning
rate).

Future research includes

• Real world experiments, e.g., listening
personalization.
• Suitable active learning criterion to

increase the learning rate.
• More flexible Beta mean functions ac-

counting for different user behaviors.
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