
DISRUPTION
MANAGEMENT
IN THE AIRLINE

INDUSTRY

Michael Løve &

Kim Riis Sørensen

LYNGBY 2001
MASTER THESIS

NR. 02/2001

IMM

Printed by IMM, DTU

iii

Preface

This M.Sc. thesis has been prepared by Michael Løve and Kim Riis Sørensen
during the period from the 1st of August, 2000 to the 28th of February,
2001. The work has been carried out at the Department of Informatics and
Mathematical Modelling (IMM) at the Technical University of Denmark
(DTU).

We have been supervised by our main advisor professor Jens Clausen and
assistant research professor Jesper Larsen. This thesis is the �nal require-
ment to obtain the degree: Master of Science in Engineering.

Readers of this thesis are assumed to have some knowledge of Operations
Research (OR). However, numerous terms are not assumed to be known
because they are adapted from the airline industry. These terms are all
de�ned in the back of this thesis and shown in boldface the �rst time they
appear.

Michael Løve & Kim Riis Sørensen
Lyngby, February 28, 2001

v

Acknowledgements

We would �rst of all like to thank Jens Clausen and Jesper Larsen. Through-
out these past 7 months they have commented, criticized and encouraged
our work in a motivating and serious manner. Thank you.

We also owe a large thanks to Thomas Stidsen, Brian Kallehauge and
Jesper Hansen for their e�orts in helping us to grasp the computer systems
at IMM. Also thanks to Allan Larsen, Alex Ross and Nicki Davis � all of
whom supplied us with airline industry insights.

A large thanks also goes to Patricia Løve for proof-reading the entire thesis
� and even picking out little mathematical inconsistencies.

We would also like to thank everybody including Rasmus Bøg, Mette
Krogh-Jespersen, Niels Jørgensen and ORSCG for making it thoroughly
enjoyable to work at IMM. We would also like to dispense one piece of
advise to ORSCG: Never relent. In time, you too may master the art.

And �nally, we would like to thank Hanne Riis Sørensen and Ursula Lind-
hart for taking extra care of us and �lling in where we did not.

Michael Løve & Kim Riis Sørensen
Lyngby, February 28, 2001

vii

Abstract

Disruption management in the airline industry involves decisions concern-
ing crew and aircraft assignments in situations where unforeseen events
have disrupted the existing �ight schedules, e.g. bad weather causing
�ight delays. Disruption management aims to recover these �ight schedules
through a series of reassignments of crew and aircraft.

The �rst part of this thesis concentrates on disruption management where
only aircraft assignments are changed � the Dedicated Aircraft Recovery
Problem. A heuristic is implemented which can generate revised �ight
schedules of a good quality in less than 5 seconds on average when applied
to 25 di�erent �ight schedules with disruptions.

In the second part of the thesis, an outline of an extended heuristic is
given. Here disruption management includes the possibility of both air-
craft and crew reassignments - the Integrated Crew and Aircraft Recovery
Problem. The outline presents a detailed description of how to construct
such a heuristic.

Throughout all the work presented here, the focus has been to develop
methods which are simple, �exible and fast.

Keywords: Disruption Management, Optimization, Airline Planning, Ded-
icated Aircraft Recovery, Integrated Recovery, Heuristic.

viii Chapter 0. Abstract

ix

Contents

Preface iii

Acknowledgements v

Abstract vii

1 Introduction 1

2 Problem Description 5

2.1 The Dedicated Aircraft Recovery Problem 5

2.1.1 Decision Costs . 6

2.2 The Integrated Crew and Aircraft Recovery Problem 9

2.2.1 Decision Costs . 10

3 Thesis Statement 11

4 Literature Review 13

4.1 Literature Review on Dedicated Aircraft Recovery 13

4.2 Literature Review on Integrated Crew and Aircraft Recovery 15

4.3 Comments on Literature . 16

4.4 Argüello et al. (1998) . 17

x CONTENTS

4.4.1 Description of the Network Representation 17

4.4.2 Formulation of the Mathematical Model 19

4.4.3 The Heuristic Design 21

4.5 Jarrah et al. (1993) . 23

4.5.1 The Delay Model . 23

4.5.2 The Cancellation Model 26

4.6 Cao and Kanafani (1997) 27

4.6.1 Graphical Representation used in the CCD Model . 27

4.6.2 Mathematical Description of the CCD Model 29

4.7 Conclusion on Chapter 4 . 34

5 Veri�cation of the CCD Model 37

5.1 Motivation . 37

5.2 Creating Problem Instances 38

5.2.1 Cost Design Principles 38

5.2.2 Parameter Values . 39

5.3 Implementing the CCD Model 41

5.4 Testing the CCD Model . 42

5.5 Errors in the CCD Model 44

5.5.1 Circuits and Ghost Aircraft 44

5.5.2 Evaluating Costs at the Third Airport in each Link 45

5.5.3 Candidate Sets . 48

5.6 Modi�cations to the CCD Model 50

5.6.1 Interpretation of Airports 50

5.6.2 Constraints to Prevent Circuits 52

5.6.3 Generating Cuts . 53

5.6.4 Involving Time . 56

5.7 Conclusion on Chapter 5 . 56

CONTENTS xi

6 Using Heuristics to Solve DARP 59

6.1 Motivation for Using Heuristics 59

6.2 Goals for Chapter 6 . 60

6.3 Basic Heuristic Design . 60

6.3.1 De�nition of Network 61

6.3.2 Basic Parameters and Decision Variables 64

6.3.3 Objective function 65

6.4 Creating Problem Instances 65

6.4.1 Cost Design Principles 66

6.4.2 Parameter Values . 68

6.4.3 Example of a Problem Instance 70

6.5 Experimental studies . 73

6.6 Iterated Local Search Heuristic 74

6.6.1 Motivation . 74

6.6.2 Implementing the ILS Heuristic 74

6.6.3 Experimental goals 78

6.6.4 Conclusions on the ILS Heuristic 84

6.7 The Revised Iterated Local Search Heuristic 85

6.7.1 Motivation . 85

6.7.2 Implementing the RILS Heuristic 85

6.7.3 Experimental goals 85

6.7.4 Conclusions on the RILS Heuristic 87

6.8 Steepest Ascent Local Search Heuristic 88

6.8.1 Motivation . 88

6.8.2 Implementing the SALS Heuristic 90

6.8.3 Experimental Goals 90

6.8.4 Conclusions on SALS 93

xii CONTENTS

6.9 Repeated Steepest Ascent Local Search
Heuristic . 94

6.9.1 Motivation . 94

6.9.2 Implementing the RSALS Heuristic 94

6.9.3 Experimental Goals 95

6.9.4 Conclusions on RSALS 95

6.10 Analysis of the Search Space 96

6.11 Conclusion on Chapter 6 . 97

7 Further Development of the DAR-heuristic 101

7.1 Aircraft Balance . 102

7.1.1 Aircraft Balance in the Current DAR-heuristic . . . 105

7.2 Flight Schedule Structure 107

7.3 Swap Costs . 111

7.4 Maintenance Considerations 112

7.5 Airport Curfews . 114

7.6 Passenger Flow . 115

7.7 Multiple �eets . 115

7.8 Ferrying of Aircraft . 116

7.9 Conclusion of Chapter 7 . 117

8 The Integrated Crew and Aircraft Recovery Problem 119

8.1 Motivation . 119

8.2 Goals for Chapter 8 . 120

8.3 De�nition of Network . 120

8.4 Outline of the ICAR-heuristic 123

8.5 The ICAR-heuristic � In Words 125

8.5.1 Step 1: Initial Solution 125

CONTENTS xiii

8.5.2 Step 2: Dedicated Aircraft Recovery 125

8.5.3 Step 3: Identify Points of Con�ict 127

8.5.4 Step 4: Resolving Con�icts 130

8.5.5 Step 5: Repeat the Process 142

8.6 Complexity of the ICAR-heuristic 142

8.7 ICAR-heuristic Example . 143

8.7.1 Step 1: The Initial Schedule 143

8.7.2 Step 2: Dedicated Aircraft Recovery 146

8.7.3 Steps 3 and 4: Identifying and Resolving Points of
Con�ict . 146

8.7.4 Step 5: Repeating the ICAR-heuristic 150

8.8 Conclusion on Chapter 8 . 151

9 Main Conclusion 153

List of Important Terms 155

Bibliography 159

A The CCD Model in GAMS 163

B ILS implemented in C++ 165

C Experimental Results 167

C.1 Results of Experiments with the Standard ILS Heuristic . . 167

C.2 Results of Experiments with the ILS Heuristic with a Dura-
tion of 24 Hours . 168

C.3 Results of Experiments with the Revised ILS Heuristic . . . 168

C.4 Results of Experiments with the Steepest Ascent Local Search
Heuristic . 168

C.5 Results of Experiments with the Repeated SALS Heuristic . 169

xiv CONTENTS

1

Chapter 1

Introduction

The ability to plan e�ectively is a major factor for gaining competitive
advantage in the airline industry today, and the use of operations research
is quickly becoming one of the most important tools to do this.

The product that airlines produce is � simply put � passenger and cargo
transportation. Within the industry itself there is �erce competition, but
this is aggravated by the fact that other modes of transportation are in-
creasingly able to compete with aircraft. Especially trains are quickly be-
coming a serious competitor, largely due to the emergence of high speed
rail networks. Buses too, are serious competitors because of the low costs
involved. Lastly, cars are a competitor on shorter distances.

Customers choosing a mode of transportation and a speci�c service provider
will typically focus on the following parameters:

• Punctuality
• Functionality
• Quality
• Price

For an airline this means that there are a series of factors, that combined
constitute a good product. Among other things, they must be on-time,
their schedules must suit the needs of the customers, check-in and baggage
handling must be e�ective, the level of service on board has to be good,
booking a �ight must be easy and �nally, the cost to the customers must

2 Chapter 1. Introduction

be low. Naturally there are trade-o�s between these factors and no airline
can excel in all of them.

Airlines require a large number of resources to deliver a product that in-
cludes all of the factors just described. The most obvious ones are aircraft,
crew, and airport facilities such as runways and gates. However, a wide va-
riety of other resources are also needed including training facilities, catering
services, maintenance facilities, etc.

A competitive edge in the airline industry lies in how well they are able
to utilize all these resources. Particularly aircraft and airport facilities
are very expensive to operate, so resources must be tightly coupled. It is
here the complexity of operating an airline arises along with the need for
planning. The complexity arises because of several factors:

• An endless number of rules, regulations, union demands and prefer-
ences apply to crew and aircraft schedules. The complexity of simply
producing cohesive �ight schedules that respect all these restrictions
is a daunting task.

• Airlines operate across time zones, cultures and continents � the op-
erational scope is enormous.

• While considering the above two factors, the airlines must create very
tight plans that utilize resources to the furthest extent possible. This
results in plans with very little slack.

• Airlines operate in an unpredictable environment where disruptions
often occur. The near absence of slack in the �ight schedules often
cause small disruptions to have multiple knock-on e�ects further down
in the �ight schedule. These have to be repaired while respecting all
the factors just described.

It is evident that planning in the airline industry takes place on many levels.
So far, operations research has mainly been used in planning with a longer
time horizon. Some of these planning horizons are illustrated in �gure 1.1.

Construction of timetables, aircraft rosters, and crew rosters are some
of the tasks in airlines where operations research is used today. It is obvious
that these planning activities take place before �ights are carried out.

This thesis focuses solely on the planning issues that arise in the immediate
vicinity of the departure time. In short, each departure is a product of years
of careful planning. Therefore, when disruptions occur, �ight controllers
want to return to the original schedule as quickly as possible � and that is
exactly what the methods developed in this thesis focus on.

3

Figure 1.1: Airline planning horizons.

So far only limited research has been carried out in this �eld. However,
there appears to be an increased demand for decision support systems that
can assist �ight controllers when they try to recover �ight schedules with
disruptions.

4 Chapter 1. Introduction

5

Chapter 2

Problem Description

The purpose of this chapter is to give a precise de�nition of the problems
dealt with in this thesis. This includes a de�nition of the terms and concepts
used as well as a description of the context in which the problems exists.

2.1 The Dedicated Aircraft Recovery Problem

The Dedicated Aircraft Recovery Problem (DARP) is not a problem, which
is well de�ned and widely recognized. Because of this, there are sev-
eral names for principally the same problem: DARP is also known as the
Flight Operations Decision Problem (FODP), the Operational Daily Airline
Scheduling Problem (ODASP), the Daily Aircraft Routing and Scheduling
Problem (DARSP), Airline Operations Control Center Problem (AOCCP),
Airline Schedule Perturbation Problem (ASPP), etc.. However, all these
names basically refer to the same problem. Throughout this thesis, the term
DARP will therefore be used to describe the problem, which is formally de-
�ned in �gure 2.1. The de�nition given here contains several concepts that
are also important to de�ne:

Flight Schedule: For a given airline, the �ight schedule includes all �ights
between any two destinations, the original departure and arrival times,
the expected �ight durations and the tail assignments.

6 Chapter 2. Problem Description

Given an original �ight schedule and one or more disruptions, the Ded-
icated Aircraft Recovery Problem consists of:

• delaying �ights
• cancelling �ights
• swapping aircraft to �ight assignments

in order to create a more preferable revised �ight schedule.

Figure 2.1: De�nition of DARP.

Disruption: Any situation where one or more activities in one or more
of the key resource areas (e.g. crew or aircraft) have deviated from
the resource plan. Subsequent activities in the a�ected lines of work
either cannot start on time � or can start on time, but only after
controller intervention.

Delaying a �ight: Purposefully preventing a �ight from departing on
time constitutes delaying the �ight.

Cancelling a �ight: If no aircraft is assigned to a given �ight, this con-
stitutes a cancellation.

Swapping: The concept of swapping is central to Dedicated Aircraft Re-
covery (DAR). Although the concept is very simple, it is important
to de�ne it as in �gure 2.2. Here, aircraft 1 and 2 are situated at
airport 1 and they are assigned to �ight 1 and 2 respectively. Flights
are static throughout this thesis, i.e. they always �y to the originally
scheduled destination. Conversely, aircraft do not always undertake
the originally intended �ights. In �gure 2.2 the �ights undertaken by
aircraft 1 and 2 are swapped so that aircraft 1 ends at destination
B and vice versa. Performing any number of swaps is also known as
rotating aircraft.

2.1.1 Decision Costs

Another central element in DARP are the decision costs. In operations
research costs must re�ect how preferable each decision possibility is. In
mathematical terms, preferable means a better objective function value.
But what does "preferable" mean?

2.1 The Dedicated Aircraft Recovery Problem 7

Figure 2.2: A swap.

If real costs are associated with each decision possibility, the objective func-
tion is a measure of how pro�table the revised �ight schedule is. However,
if costs that re�ect �ight control principles are used, the objective function
is a measure of how preferable the revised �ight schedule is � given these
principles.

The most common approach to quantifying decision costs is to estimate
the real costs associated with each decision possibilities. As mentioned, 3
decision possibilities exist when solving DARP, namely delaying, cancelling
and swapping. An estimate of the real costs associated with each of these
include:

• Delay costs.
� ill-will from customers.
� missed down-line �ights.
� passengers leaving for other �ights undertaken by di�erent air-
lines.

� compensations to passengers (hotel stay, discounts, etc.).
� crew planning issues.

• Swap costs.
� redirecting passengers to new gates.
� ill-will from customers as a consequence of changing gates (i.e.
a longer walk out to the gate).

� redirecting luggage, supplies, crew, etc. to aircraft di�erent from
those planned.

8 Chapter 2. Problem Description

• Cancellation costs.
� The costs of cancellations are similar to those of delays, but will
often be larger, i.e. there are often more costly rami�cations
associated with a cancellation than with a delay.

The abovementioned costs are only some of the more important ones to
consider when calculating the actual operating costs of an airline. Most of
them will be di�cult, if not impossible to estimate.

It may be futile to base an objective function on real operating costs.
Instead, this thesis will focus on quantifying the basic principles that
�ight controllers adhere to.

To that end, the principles are:

• Delays are preferable to cancellations.
• Some �ights have a higher priority than others. The �ights that are
cancelled or delayed have to re�ect this.

• Reassignments of aircraft to �ights in the immediate future are not
preferable if the disruptions of the schedule can be resolved by making
reassignments further down the schedule. For example, last minute
changes cause great inconvenience to both passengers and crew be-
cause of the lack of time to amend plans.

• At the end of a working day, it is preferable for the number of aircraft
at each airport to at least equal the number of aircraft needed at that
particular airport the following morning.

• Some speci�c aircraft (identi�ed by their tail number) must end at a
certain airport for scheduled maintenance.

• There are many considerations associated with each individual air-
craft that are very di�cult to consider properly in any DAR solution
method. These include maintenance considerations, whether reverse
thrusters may be needed at the destination airport, etc. The point is
that a revised and feasible schedule should be found by making the
least possible number of reassignments.

To accommodate these principles when solving DARP, costs are speci�cally
designed to re�ect the principles and not actual costs.

2.2 The Integrated Crew and Aircraft Recovery Problem 9

2.2 The Integrated Crew and Aircraft Recov-
ery Problem

The Integrated Crew and Aircraft Recovery Problem ICARP is a fusion of
the Dedicated Crew Recovery Problem (DCRP) and DARP. DCRP is also
a more complex problem that DARP for mainly 2 reasons: (i) There are
more crew members than aircraft, hence making the DCRP a large-scale
problem; (ii) There are a vast number of restrictions on crew assignments.
Naturally this makes ICARP a very large problem to solve. The de�nition
of ICARP is given in �gure 2.3.

In addition to DARP (�gure 2.1), the Integrated Crew and Aircraft
Recovery Problem consists of:

• delaying crew
• placing crew on standby
• using standby crew
• swapping crew to �ight assignments
• dead-heading standby crew to �ights at other airports

in order to create a more preferable revised �ight schedule.

Figure 2.3: De�nition of DARP.

Again, the de�nition given here contains several concepts that are impor-
tant to de�ne:

Delaying crew: If a �ight has been delayed, the crew assigned to this
�ight will be delayed as well.

Placing crew on standby: If �ights are cancelled, the crew assigned to
these can be placed on standby. Crew on standby act as reserve and
can in principle be used on any other �ight.

Swapping: The concept of swapping crew to �ight assignments is exactly
like swapping aircraft illustrated in �gure 2.2.

Dead-heading crew: Unlike aircraft, crews are sometimes transported
to where they are needed. Dead-heading means transporting crew as
passengers to �ights at other airports where a crew shortage exists.

10 Chapter 2. Problem Description

It also includes transporting crew members to their base station if
they end a crew pairing away from home.

2.2.1 Decision Costs

The decision possibilities above must also be associated with costs. Again
these costs will re�ect certain basic �ight control principles. Unlike DARP
however, these principles are not very well de�ned for crew members. Air-
lines, of course, have operating principles, but there are typically many
and their ranking is di�cult to ascertain. Consequently, the following set
of principles cannot be viewed as factual, but an interpretation of some
known �ight control principles related to crew:

• As many �ights as possible should have the necessary crew assigned.
• Crew assignments should not cause �ight delays.
• Swapping crew to �ight assignments are preferable to using standby
crew.

• When swapping crew or using standby crew, some crews are more
preferable than others.

• Restrictions on crew (e.g. minimum turn-around time) are not all
absolute. Among these, some have a higher priority than others.

• Just like DARP, it is a high priority that the number of changes are
kept to a minimum.

The listed principles are generalizations of the numerous speci�c priorities
that �ight controllers use. They vary from airline to airline which make
them di�cult to de�ne. A further description with examples is given in
chapter 8 where a possible ICARP solution method is described.

11

Chapter 3

Thesis Statement

The purpose of this thesis is to:

• �nd and describe a solution method to solve the Dedicated Aircraft
Recovery Problem (DARP).

• implement and test this solution method.

• describe a solution method to solve the Integrated Crew and Aircraft
Recovery Problem (ICARP) using the results from solving DARP.

12 Chapter 3. Thesis Statement

13

Chapter 4

Literature Review

This chapter will discuss relevant literature pertaining to disruption man-
agement in the airline industry. Literature on dedicated aircraft recovery is
covered �rst followed by literature on integrated crew and aircraft recovery.

4.1 Literature Review on Dedicated Aircraft
Recovery

Early work by Teodorovi¢ and Guberini¢ (1984) resolves DARP by
using a branch-and-bound procedure in the search of an optimal solution
that minimizes the total passenger delay. The work was not documented
on general test cases of a realistic size. A single, very simple example was
given which consisted of 8 �ights. It took more than 300 hours to �nd an
optimal solution.

In Teodorovi¢ and Stojkovi¢ (1990) the problem is solved by formu-
lating a model with two objectives using lexicographic1 optimization. The
primary objective is to maximize the number of �ights �own and the sec-
ondary objective is to minimize the total passenger delay. A greedy heuris-
tic is used to select the order in which �ight links are created for each

1Lexicographic refers to mathematical optimization where 2 or more prioritized ob-
jective functions are used.

14 Chapter 4. Literature Review

aircraft. These links are made by solving a shortest path problem for each
aircraft where the arc costs re�ect the primary and secondary objectives.
The model is highly sensitive to how the objective functions are ranked.

Jarrah et al. (1993) develop two separate mathematical models which
are solved as minimum cost network �ow problems. One model solves the
problem by delaying the necessary �ights to obtain a solution and the other
by �nding a set of �ights to cancel. The models assume that a so-called
dis-utility can be assigned to each �ight in order to re�ect lost revenue if the
�ight is cancelled. It is also assumed that the dis-utility of delaying a �ight
is assessable. This assessment is based on the number of passengers a�ected,
down-line e�ects, crew and maintenance considerations. The minimum cost
network �ow problems are solved by Busacker-Gowen's dual algorithm.

The models developed by Jarrah et al. (1993) do not allow for a trade-o�
between cancelling and delaying a given �ight in a combined decision and
it does not allow for substitution of aircraft of di�erent types either.

Yan and Yang (1996) set up the Basic Schedule Perturbation Model
(BSPM) which is designed to minimize the period in which schedule disrup-
tions exist and maximize the pro�t simultaneously. A time-space network
is used to represent the BSPM and the model is formulated mathematically
as a minimum cost network �ow problem with side constraints. The model
considers delays, cancellations and ferrying aircraft simultaneously.

BSPM is solved using a Lagrangian relaxation with a sub-gradient method
for a near-optimal solution in order to avoid long computation times. Prob-
lem instances were solved where a single aircraft was not available for a
whole week due to maintenance requirements.

Cao and Kanafani (1997) combine the possibility of making delays and
cancellations in a single model by extending the work of Jarrah et al.
(1993). The authors formulate a quadratic binary programming model
which maximizes the pro�t of the operation while taking into considera-
tion both delay costs, costs for substituting aircraft and penalties for can-
celling �ights. The authors also describe a revised Linear Programming
Approximation algorithm to solve the model in which an integral solution
is obtained if the approximation algorithm converges.

Argüello et al. (1998) describe a Time Band Approximation model
(TBA) that they solve heuristically. They justify using a heuristic approach
by showing the di�culties involved in two exact approaches: a resource as-
signment model, that treats aircraft and cancellations as resources, and a

4.2 Literature Review on Integrated Crew and Aircraft Recovery 15

multi-commodity network �ow model, where the commodities are aircraft
and cancellations. These models are assumed so di�cult to solve that an
optimal solution cannot be found, thus the development of the approx-
imation model. The TBA model is solved using a Greedy Randomized
Adaptive Search Procedure (GRASP). Experimental results on very small
�ight schedules are shown to illustrate how the heuristic works.

4.2 Literature Review on Integrated Crew and
Aircraft Recovery

ICARP was �rst considered by Teodorovi¢ and Stojkovi¢ (1995) where
they extend their previous work (see Teodorovi¢ and Stojkovi¢ (1990)) to
include crew considerations. Teodorovi¢ and Stojkovi¢ (1995) used a lexico-
graphic approach again and found that rotating crew before aircraft yielded
the best results. The optimization of the di�erent resources (crew, aircraft)
was done sequentially and each resource was only considered once.

In his Ph.D. thesis Lettovsky (1997) develops a mathematical model to
solve ICARP. The model is intractable for anything other than small prob-
lems, so he suggests solving the problem in a decomposition scheme. The
master problem (the Schedule Recovery Model) provides a cancellation and
delay plan that satisfy imposed landing restrictions and assigns equipment
types. The subproblems can now be solved independently given a solution
to the master problem.

Three subproblems are formulated. The �rst one is the Aircraft Recovery
Model (ARM) which generates new �ight links that satisfy maintenance
requirements. The second one is the Crew Recovery Model (CRM) which
generates a new crew schedule that complies with all safety and union
regulations. The third and last subproblem is the Passenger Flow Model
(PFM) in which new passenger itineraries are generated which comply to
seat availability for each �ight.

The solution algorithm applies Benders' Decomposition algorithm to a
mixed-integer programming formulation of the master problem. In the
thesis only the CRM is implemented and tested in order to show the valid-
ity of the decomposition scheme. The method appears e�ective although
more computational experiments are needed to demonstrate that larger
problems can be solved within a reasonable time frame.

16 Chapter 4. Literature Review

A technical report by Stojkovi¢ and Soumis (2000a) proposes an opti-
mization approach that simultaneously includes crew and aircraft consid-
erations. The objective function aims to minimize changes in the original
�ight schedule including departure times, aircraft to �ight assignments and
crew pairings. The model considers crew types and aircraft types sep-
arately to reduce the problem size. This is possible because it is assumed
that di�erent types of crew and aircraft cannot be interchanged.

The problem is formulated as an integer nonlinear multi-commodity mini-
mum cost network �ow problem with additional constraints. The model is
solved by a column generation scheme and a specialized branch-and-bound
technique. The subproblems are represented as shortest path problems
with time windows and linear costs on �ow and time variables. A dynamic
programming algorithm for acyclic networks is used to solve the subprob-
lems. Reasonable computational results are shown for some hypothetical
examples.

In Stojkovi¢ and Soumis (2000b) the authors elaborate further on their
previous work. Here they have added more crew types, features pertaining
to passenger connections and aircraft maintenance. The solution methods
and algorithms used to solve the problem are the same as the approach
used in Stojkovi¢ and Soumis (2000a).

Again hypothetical problem instances are used for the computational ex-
periments. The results show that extensive computer resources are needed
to resolve these instances and the response times are considerably longer.

4.3 Comments on Literature

Generally, methods to solve DARP and ICARP do not seem to be e�ec-
tive enough to be used in real-life. Most approaches involve mathematical
models that are impossible to solve e�ciently at present. For this rea-
son perhaps, a lot of the research is focused on �nding solution methods,
e.g. decomposition, that will change this. Not a lot of literature seems
focused on developing better conceptual models that ultimately can result
in models that are more straightforward to solve.

DARP is a much simpler problem than ICARP. This is probably the reason
why literature on DARP seems to have come closer to e�ective models.
This thesis will therefore initially focus on DARP. Particularly 3 articles

4.4 Argüello et al. (1998) 17

seem promising in this respect: The heuristic approach by Argüello et al.
(1998), the delay and cancellation models by Jarrah et al. (1993) and their
extension by Cao and Kanafani (1997).

4.4 Argüello et al. (1998)

In Argüello et al. (1998) an approximation model is developed to solve
DARP. The objective of this problem is to �nd a least cost response to
disruptions in the �ight schedule.

The Time-Band Approximation Model consists of two phases: (i) the con-
struction of a time-based network in which the planning horizon is parti-
tioned into so-called time bands and (ii) the development of the associated
mathematical representation. The following information is assumed given
before the construction of the network:

1. Flight data containing the �ight identi�er, origin, destination, sched-
uled times of departures and arrivals, expected duration, and a delay
cost function.

2. List of aircraft availability including time and location of the aircraft.
3. List of airport data containing an airport identi�er and airport cur-
few times.

4.4.1 Description of the Network Representation

The time bands are segments of the planning horizon. Within these bands
all activities are aggregated to occur in a single node. In other words,
the time bands are represented as nodes in the network and arrivals and
departures � so-called activities � are represented as arcs either going into
or commencing from the node. The network representation is shown in
�gure 4.1.

This �gure illustrates the time band network at a given airport. The turn-
around time is assumed to be half an hour for all aircraft and the airport's
departure curfew is set to midnight. The time segments are de�ned to be
one hour.

There are 2 types of nodes. The time segments are represented by airport-
time nodes 1, 2, and 3 and node 4, which is an airport-sink node. The

18 Chapter 4. Literature Review

Figure 4.1: Network representation used in the Time-Band Approximation
Model.

airport-time nodes have out-bound arcs that connect to other airports.
The number of these arcs for each airport-time node corresponds to the
total number of �ights scheduled to depart the airport in the considered
time horizon. This represents the availability of each �ight for each time
segment.

If a node has no incoming arcs, such as node 1 in �gure 4.1, it means
that one or more aircraft at the airport are already available in that time
segment. There are also two out-bound arcs from node 1 indicating that
two �ights are scheduled to depart from this airport after 21.00. Node 1
also has an out-bound arc that terminates in node 4. If an aircraft from
node 1 is assigned to this arc, it means that it will terminate at the airport.
Nodes 2 and 3 have two and one in-bound �ight arcs respectively. These
arcs indicate that it is possible for two �ights to arrive between 22.00 and
23.00 and for one �ight to arrive after 23.00 hours.

It should be clear from this description of the network representation that
it is not possible to determine the number of aircraft available at a given
time segment by simple inspection. Similarly, whether or not aircraft ter-

4.4 Argüello et al. (1998) 19

mination requirements are met cannot be determined by inspection.

4.4.2 Formulation of the Mathematical Model

A mathematical model is based on the time band network. This model
is used to obtain tight lower bounds when the delay cost estimates are
approximate due to wide time segments.

F = set of arcs representing �ights.

f = index for �ight arcs.

I = set of airport-time nodes.

i = index for airport-time nodes.

J = set of airport-sink nodes.

j = index for airport-sink nodes. This is also used more gener-
ally to index airport-time nodes.

G(i) = set of �ights originating at airport-time node i.

L(i) = set of �ights terminating at airport-time node i.

H(f, i) = set of destination nodes for �ight arc f originating from
airport-time node i.

M(f, i) = set of origination nodes for �ight arc f terminating at
airport-time node i.

P (f) = set of airport-time nodes from which �ight arc f originates.

Q(f) = set of airport-time nodes at the airport from which �ight arc
f originates containing the airport-sink node j, i.e. P (f) is
a subset of Q(f).

ai = number of aircraft that become available at airport-time
node i.

cf = the cost of cancelling �ight f .

df
ij = delay cost of �ight f from airport-time node i to j.

hi = number of aircraft required to terminate at airport-sink
node i.

20 Chapter 4. Literature Review

The decision variables are:

xf
ij = amount of aircraft �ow for �ight f from airport-time node

i to j.
yf = cancellation indicator for �ight f .

zi = amount of aircraft �ow from airport-time node i to the
airport-sink node at the same airport.

Using the notation above the model is formulated as follows:

min
∑
f∈F

∑
i∈P (f)

∑
j∈H(f,i)

df
ijx

f
ij +

∑
f∈F

cfyf (4.1)

subject to: ∑
i∈P (f)

∑
j∈H(f,i)

xf
ij + yf = 1 , ∀ f ∈ F (4.2)

∑
f∈G(i)

∑
j∈H(f,i)

xf
ij + zi −

∑
f∈L(i)

∑
j∈M(f,i)

xf
ji = ai , ∀ i ∈ I (4.3)

∑
f∈L(i)

∑
j∈M(f,i)

xf
ij +

∑
j∈Q(f)

zj = hi , ∀ i ∈ J (4.4)

xf
ij ∈ {0, 1} , ∀f ∈ F ∧

j ∈ H(f, i) ∧
i ∈ I (4.5)

yf ∈ {0, 1} , ∀ f ∈ F (4.6)

zi ∈ Z+ , ∀ i ∈ I (4.7)

This mathematical model is derived from the time-band network and is
in itself a minimum cost network �ow with side constraints. The objec-
tive function 4.1 minimizes costs stemming from delay and cancellations.
Equation 4.2 ensures that all �ights are covered, i.e. either the �ight must
be assigned to an aircraft or else the �ight is cancelled. Equations 4.3 and
4.4 are �ow conservation constraints. The �rst one ensures that �ow at an
airport-time node equals the number of aircraft available at that particu-
lar node while the second enforces the aircraft balance by requiring that
the �ow into the airport-sink nodes equals the number of aircraft required
to terminate at that particular airport. Equations 4.5, 4.6 and 4.7 ensure
that the decision variables are integral: xf

ij and yf are binary and zi is a
non-negative integer.

4.4 Argüello et al. (1998) 21

The model can be extended to include substitution of aircraft of di�erent
types. This extension would change the model into a multi-commodity
network �ow problem. The model can also be extended to allow ferrying
of surplus aircraft. This would increase the number of arcs in the network
along with the complexity of the problem. These arcs are assigned a cost
that corresponds to the cost of ferrying aircraft.

4.4.3 The Heuristic Design

The mathematical model just described cannot be solved e�ciently if rea-
sonably small time bands are used. Argüello et al. (1998) therefore uses a
modi�ed GRASP heuristic to solve DARP.

In the GRASP-heuristic used to solve the problem there is no construction
phase. Instead, the elements usually employed in the construction phase,
i.e. the greedy evaluation function, randomization, and adaptive updating,
are now used during the local search. There are 7 main elements to the
heuristic and these are:

Initial Solution: A feasible solution forms a starting point for the heuris-
tic. This solution can be obtained by �nding the aircraft struck out
by disruptions and cancelling the �ights they originally were assigned
to.

Neighborhood De�nition: Neighbor solutions are generated from pairs
of �ight links in the current best solution. The de�nition will be
described more thoroughly below.

Set of Best Neighbors: During the local search neighbors that compare
favorably are kept in a candidate set. The cardinality of the candidate
set is controlled arbitrarily.

Evaluation Function: A greedy evaluation function is used to compare
the solutions. The marginal costs are calculated and the degree to
which the solutions in the candidate set satisfy di�erent restrictions
is evaluated. Such restrictions include airport curfews.

Random Selection: From the candidate list a solution is elected ran-
domly.

22 Chapter 4. Literature Review

Adaptive Updating: The best solution found so far is used as a starting
point for a new iteration.

Stopping Criterion: There is no mention of the concrete criterion used
in the heuristic. Several criteria could be used, e.g. the number of
iterations, inadequate improvement in the solution, or a time limit.

Solutions with regard to the heuristic consist of �ight links for all the air-
craft in the schedule, cancellation links that corresponds to the cancelled
�ights, and null links that indicate available surplus aircraft. The latter
link type is considered as another type of �ight link in the following.

The de�nition of the neighborhood is hence:

All feasible solutions that can be generated from a pair of �ight
links or a �ight and cancellation link pair.

Neighbor solutions are generated using two methods:

1. Flight link augmentation
2. Partial link exchange

In �gure 4.2 � taken from Argüello et al. (1998) � a pair of �ight links will
be used to illustrate how these methods are applied.

Figure 4.2: Example of two �ight links.

In �ight link augmentation, a �ight or sequence of �ights in the source link
are removed and inserted in the target link. The sequence removed from
the source link can be inserted before, within, or after the target link. For
example, �ights 6 and 7 could be inserted after �ight 2 and before �ight 3
in the target link.

In a partial link exchange, a sequence of �ights in the source link is ex-
changed with a sequence of �ights in the target link. Exchanges are per-
formed that either maintain the original �nal link destinations or swap

4.5 Jarrah et al. (1993) 23

these. When the original �nal destinations are maintained, only sequences
that have the same origins and destinations are exchanged. For example,
�ights 2, 3, and 4 can be exchanged with �ights 7 and 8. When �nal desti-
nations are exchanged, both sequences include the �nal �ights in the links.
For example, �ights 9 and 10 can be exchanged with �ight 5 in the target
link.

Bounds are generated using the LP relaxation of the TBA model. Feasible
solutions generated by the heuristic are compared to these bounds, thus
providing a methodology to obtain provably good feasible solutions.

4.5 Jarrah et al. (1993)

Jarrah et al. (1993) introduce two network models to solve the problem of
aircraft shortages at an airport. The �rst model introduced is the Delay
Model. It solves the DARP by delaying �ights until the shortages are �xed.
It allows swapping aircraft among �ights as well as the use of surplus
aircraft available either at the airport in question or through ferrying
from other airports. The delay model is only able to consider one aircraft
shortage and one airport at a time.

The second model is the Cancellation Model which solves DARP by pro-
viding an optimal set of �ight cancellations. This model also makes use
of surplus aircraft and swapping aircraft among �ights. Swapping is only
allowed if neither aircraft to �ight assignment causes a delay. The cancel-
lation model is able to consider all airports simultaneously.

4.5.1 The Delay Model

The Delay Model can be viewed as a network of nodes representing either
aircraft or �ights, and arcs that represent possible assignments. A minimum
cost �ow model is applied to this network to provide the optimal aircraft
to �ight assignments. An example of such a network is shown in �gure 4.3.

The vertical axis depicts the hours of the day. Nodes on the left are called
aircraft nodes, because they represent aircraft. These nodes are placed
at the point in time when the aircraft is ready to depart. The nodes
immediately to the right of the aircraft nodes are �ight nodes and they

24 Chapter 4. Literature Review

Figure 4.3: An example of a network of �ight-to-aircraft assignments at an
airport.

represent scheduled departures of �ights. They are also placed at the point
in time when the �ight is scheduled to depart.

An arc connecting an aircraft node n to a �ight node n′ represents an
original aircraft to �ight assignment. In the example, which is taken from
Jarrah et al. (1993), an aircraft shortage at time 14:30 occurs because
aircraft 3 will need maintenance. This shortage is represented by a supply
of unity at node 3 (the supply being represented by B◦).
A recovery node, R, is placed at time 17:30 with a demand of less than
or equal to 1 (the demand being represented by ◦B). The node is placed
at the point in time when the aircraft is repaired and available for a new
assignment. Each of the �ight nodes are connected to the recovery node to
indicate that the repaired aircraft can undertake any of these �ights.

A surplus node, S, is placed at the point in time when either the surplus
aircraft at the airport is ready or a surplus aircraft ferried from another
airport can be ready to undertake a �ight. Arcs connect each of the �ights
to the surplus node. Any other surplus aircraft can be modelled in the

4.5 Jarrah et al. (1993) 25

same way. The surplus nodes all have a demand of less than or equal to 1.
There is also the general restriction, that the accumulated demand at the
surplus and recovery nodes has to equal 1.

A backward arc is used to connect a �ight node to an aircraft node if the
aircraft is di�erent from the aircraft originally scheduled to take the �ight.
Also the aircraft should be di�erent from the aircraft associated with the
shortage. Backward arcs emanating from �ight node 3 are shown in �gure
4.3. Similar arcs emanate from the other �ight nodes, but these are not
shown in order to avoid congesting the �gure.

The minimum cost �ow problem for the described network is then solved.
If there is a �ow of unity (the upper limit on the �ow capacity) in one of the
backward arcs, it means that the �ight at the tail of the arc is assigned to
the aircraft at its head. If the backward arc points upward, then no delay
is involved since the departure time of the �ight is later than the time at
which the aircraft is ready to depart. The cost associated with an upward
arc is therefore only that of swapping aircraft among the �ights. On the
other hand, if an assignment is made using a backward arc that points
downward, then it will incur a delay. Consequently, the cost associated
with a downward arc includes both swap and delay costs.

The costs just described are not described in detail anywhere in the lit-
erature. A description of a recursive cost estimate function is given that
takes into account delays, passengers leaving for other airlines, ill-will and
cost of missed connections. All these factors incur costs proportional to the
delay in minutes. However, there is no explanation of how these factors are
calculated to re�ect actual costs.

The arcs connecting the �ight nodes with the surplus node have an asso-
ciated cost that includes swapping and possibly ferrying costs. Similarly,
the arcs connecting the �ight nodes with the recovery node have an associ-
ated cost proportional to the implied delay of the �ight. Forward arcs that
connect aircraft with �ights have no cost.

An example of a possible solution to the minimum cost network in �gure
4.3 is shown in �gure 4.4. A �ow of unity follows the path 3 → 3′ → 4 →
4′ → recovery node. This means that �ight 3′ is �own by aircraft 4 and
�ight 4′ is �own by the recovery aircraft. Notice that the recovery aircraft
really is aircraft 3, which was delayed.

Without going into detail, if the delay model were applied to multiple
airports, the order in which these airports were considered would become

26 Chapter 4. Literature Review

Figure 4.4: One possible solution for the delay model shown in �gure 4.3

very important. As will be discussed in section 4.6, Cao and Kanafani
(1997) also attempt to solve this problem.

4.5.2 The Cancellation Model

When representing the Cancellation Model, multiple airports are consid-
ered. An example also taken from Jarrah et al. (1993) is shown in �gure
4.5.

In addition to the representation used in the delay model, arcs are used to
connect nodes in di�erent airports. The cost of these arcs is the revenue
that would be lost if the �ight represented by the tail of the arc were to
be cancelled. The only backward arcs allowed at each airport are those
that involve no delays (e.g. 9′ → 8). This underlying network allows
the use of a model, which determines an optimal set of �ight cancellations.
Both the underlying network and the cancellation model described are very
similar to that used in Cao and Kanafani (1997). The principal di�erence
is that in the cancellation model, aircraft cannot be assigned to �ights if
the assignment incurs a delay. The reason for this again has to do with
the order in which the airports are considered; if delays are allowed, down-

4.6 Cao and Kanafani (1997) 27

Figure 4.5: An example of a network of aircraft-�ight assignments at mul-
tiple airports.

line �ights are a�ected and neither the delay nor the cancellation model
described in Jarrah et al. (1993) are able to take this into account.

4.6 Cao and Kanafani (1997)

In Cao and Kanafani (1997) a model is presented which potentially de-
scribes an easy way to represent an airline �ight schedule for the purposes
of making decisions in a disruption situation. The model has two major
advantages compared with Jarrah et al. (1993): (i) it considers delays
and cancellations simultaneously; (ii) it considers the entire network of air-
ports as an inseparable system. The model is referred to as the Combined
Cancellation and Delay Model (CCD)

4.6.1 Graphical Representation used in the CCDModel

The CCD model is in many ways adapted from Jarrah et al. (1993) and the
graphical representation is similar. In �gure 4.6 an example of a network
used in the CCD model is shown.

28 Chapter 4. Literature Review

Figure 4.6: An example of a network as it is used by Cao and Kanafani
(1997).

Surplus or recovered aircraft are not considered explicitly. Instead such
aircraft are represented by a node placed at an airport and time when the
aircraft are ready to depart. To distinguish between the nodes, an aircraft
node is indexed by a and a �ight node by f . Notice that the values of the
indexes equals each other for all assignments in the original schedule (i.e.
a = f).

A term �ight link is used to describe the sequence of �ights performed by
one aircraft during the considered time period. In �gure 4.6 an example of a
�ight link is the sequence a−f → a′−f ′ → a′′−f ′′ = 1−1 → 5−5 → 8−8.
A connection between a �ight and an aircraft at di�erent airports is referred
to as a �ight leg, e.g. the arc between �ight node 1 and aircraft node 5
in �gure 4.6. The legs in the original schedule are �xed � only the aircraft
assignments are changed.

4.6 Cao and Kanafani (1997) 29

4.6.2 Mathematical Description of the CCD Model

Based on the �ight representation just described, the CCD can be formu-
lated. First the variables and constants involved are described:

A = set of nodes representing aircraft.

a = index for aircraft nodes.

F = set of nodes representing �ights.

f = index for �ight nodes.

Fa = subset of F consisting of candidate �ights considered for
aircraft a. If aircraft a is delayed beyond the time horizon,
Fa is set to empty. In �gure 4.6, Fa could reasonably consist
of �ights {1, 2, 3} for aircraft a = 1.

Af = subset of A consisting of candidate aircraft considered for
�ight f . In �gure 4.6, Af could reasonably consist of air-
craft {4, 5, 6} for �ight f = 5.

A1 = subset of A consisting of aircraft at the �rst airports of
all �ight links, during the considered period, according
to original schedule. In �gure 4.6, subset A1 consists of
{1, 2, 3, 4, 9}.

L(f, a′) = set of �ight legs in the schedule. In �gure 4.6 L(1, 5) = 1,
while L(1, 8) = 0 or L(2, 5) = 0.

rf = the revenue of �ight f .

saf = the swapping cost of assigning aircraft a to �ight f , in-
cluding the cost caused by changing the gate, informing
the crews and passengers of the change, ferrying surplus
aircraft, etc., but not including delay cost.

daf = delay cost at the �rst airport in each link (see later on in
this section).

daf
a′f ′ = delay cost at the second airport in each link (see later on

in this section).

daf
a′f ′(a′′) = accumulated delay cost at the third airport in each link (see

later on in this section).

The decision variables are:

xaf =
{

1 if aircraft a is assigned to �ight f
0 otherwise

30 Chapter 4. Literature Review

Constraints in the CCD Model

Cao and Kanafani (1997) list only two constraints in their model. These
constraints are:∑

f∈Fa

xaf ≤ 1, ∀ a ∈ A (4.8)

∑
a∈Af

xaf ≥
∑

f ′∈Fa′

xa′f ′ , ∀ L(f, a′) = 1 (4.9)

Equation 4.8 ensures that only one �ight is assigned to each aircraft. Equa-
tion 4.9 ensures that a given aircraft is only assigned to a �ight if the pre-
ceding aircraft to �ight assignment is made. In Cao and Kanafani (1997)
they claim that a constraint ensuring that only one aircraft is assigned to
each �ight is redundant: If equations 4.8 and 4.9 are added, the resulting
constraint will ensure exactly that. However, this is not true, because equa-
tions 4.8 and 4.9 do not cover the same indexes. Thus a third constraint
has to be introduced:

∑
a∈Af

xaf ≤ 1, ∀ f ∈ F (4.10)

However, as will be shown in section 5.5.1, these constraints are still not
su�cient to ensure a feasible solution.

Objective Function of the CCD Model

A very important part of the CCD model is the intricate objective function.
It consists of 5 parts named ϕ1, . . . , ϕ5.

Part 1: The revenue of all �ights:

ϕ1 =
∑
f∈F

rf

∑
a∈Af

xaf

 (4.11)

4.6 Cao and Kanafani (1997) 31

Part 2: Swapping costs

The swapping cost is the cost of assigning an aircraft to a �ight di�erent
from that speci�ed in the original �ight schedule:

ϕ2 =
∑
f∈F

∑
a∈Af

safxaf (4.12)

There is no swap cost associated with keeping the original assignment (i.e.
saf = 0).

Next follows the costs associated with delays. These costs have been divided
into 3 di�erent parts, namely the cost associated solely with delays at the
�rst airport in each �ight link, and likewise for the second an third airport.
The delay cost at the third airport is an accumulated delay cost of delays
at the third and all down-line airports in the �ight link.

Part 3: The delay cost associated with aircraft in subset A1:

ϕ3 =
∑

a∈A1

∑
f∈Fa

dafxaf (4.13)

The delay of aircraft at their �rst airport is a simple calculation of the
delay incurred should aircraft a be assigned to �ight f . In other words,
the ready-time of aircraft a ∈ A1 is compared to the originally scheduled
departure times of �ights f ∈ Fa. The delay cost daf in equation 4.13 is
proportional to this delay and is calculated before running the model.

Part 4: The delay cost associated with aircraft at their second airports:

ϕ4 =
∑

a∈A1

∑
f∈Fa

∑
L(f,a′)=1

∑
f ′∈Fa′

daf
a′f ′xafxa′f ′ (4.14)

Calculating the delay at airport 2 in each link is a little more complicated
than delays at airport 1, because these depend on the assignments made
previously in the �ight schedule. In �gure 4.7, an assignment scheme is
shown, and the corresponding delays are calculated in table 4.1. The as-
signment scheme and the corresponding delay costs (daf

a′f ′) are based on a
delay t0 of aircraft 1.

32 Chapter 4. Literature Review

Figure 4.7: Assignment scheme

1 → 1 1 → 1 2 → 1 2 → 1
Assignments and and and and

3 → 3 3 → 4 3 → 3 3 → 4
Delay t0 max{0, t0 − t2} t1 max{0, t1 − t2}

Table 4.1: Delay time caused by aircraft 3

According to equation 4.14, the delay cost associated with aircraft 3 at its
second airport becomes:

ϕ4 = d11
33x11x33 + d11

34x11x34 + d21
33x21x33 + d21

34x21x34

The delay cost is again proportional to delay resulting from the assignments
made.

Part 5: The delay cost associated with aircraft at their third and down-line
airports

ϕ5 =
∑

a∈A1

∑
f∈Fa

∑
L(f,a′)=1

∑
f ′∈Fa′

∑
L(f ′,a′′)=1

daf
a′f ′(a′′)xafxa′f ′ (4.15)

The delay of an aircraft at its third airport exactly corresponds to the delay
of the corresponding �ight at the second airport. However, the associated
delay cost daf

a′f ′(a′′) at a third airport, is an estimate of the costs associ-
ated with the �ight taken by the delayed aircraft at its 3rd airport and its

4.6 Cao and Kanafani (1997) 33

following down-line �ights. This estimate is based on the delay model de-
scribed in Jarrah et al. (1993), which was discussed earlier in this chapter
(see section 4.5.1).

Given a delay at airport 3 in �gure 4.8, an optimal reassignment scheme
is found by solving the delay model. The corresponding delay cost is cal-
culated based on the assignments found. The following should be noted:
(i) it is assumed that all other aircraft at airport 3 are on time; (ii) the
surplus node shown in �gure 4.8 is really just another aircraft node, but
the swap cost of using this aircraft re�ects possible ferrying costs, readying
costs, etc.; (iii) the sum of demands at the surplus and recovery nodes has
to equal 1.

Figure 4.8: Delay of aircraft at its third airport

To get an idea of the reassignment scheme, refer to �gure 4.8 where aircraft
1 is delayed by t0. If the assignment x11 and x33 is made despite the delay
to aircraft 1, aircraft 5 at airport 3 will be delayed. Given this delay, the
minimum cost network constructed at airport 3 is solved placing a supply
of 1 at aircraft 5 and a demand of 1 or less at the recovery and surplus
nodes.

The result of solving this minimum cost network is a sequence of assign-
ments. For example (5 − 5) → (5 − 4) → (4 − 4) → (4− surplus aircraft)
means that �ight 5 will be �own by aircraft 4 and �ight 4 will be �own by
the surplus aircraft. This sequence of assignments is based on the delays
incurred and the swap costs.

34 Chapter 4. Literature Review

In the example just given, the aircraft �ying the link (1 − 1) → (3 − 3) →
(5−) no longer has any assignments once it reaches airport 3, given the
reassignment scheme just found. Had the solution to the minimum cost
network instead been (5 − 5) → (5 − 5′) the original link starting with
aircraft 1 would be retained including any legs beyond �ight 5.

It is very important to realize, that given the �rst and second assignments
in a �ight link, all remaining assignments are determined by the outcome
of the delay model applied. If this were not the case, the delay cost at the
third station � which is calculated solely on the basis of the �rst and second
assignments � would not re�ect the assignments made here.

The CCD model

Below the revised CCD model is presented as a whole:

max ϕ = ϕ1 −
5∑

i=2

ϕi (4.16)

s.t. ∑
f∈Fa

xaf ≤ 1, ∀ a ∈ A (4.17)

∑
a∈Af

xaf ≤ 1, ∀ f ∈ F (4.18)

∑
a∈Af

xaf ≥
∑

f ′∈Fa′

xa′f ′ , ∀ L(f, a′) = 1 (4.19)

xaf ∈ {0, 1}, ∀ a ∈ A ∧ ∀ f ∈ F (4.20)

where ϕ1, . . . , ϕ5 are given by equations 4.11, 4.12, 4.13, 4.14 and 4.15.

4.7 Conclusion on Chapter 4

With respect to DARP, the most interesting article is the one by Cao and
Kanafani (1997) describing the so-called CCD model. They present a seem-
ingly robust model that can be solved within a reasonable time frame while
considering both delays, swaps and cancellations simultaneously. Another

4.7 Conclusion on Chapter 4 35

article by Argüello et al. (1998) presents an interesting heuristic approach,
but its complicated structure makes it less attractive than the CCD model.

ICARP seems to be an illusive problem. There are articles which present
interesting theoretical approaches, but they are a long way from solving
problems of a realistic size within a reasonable time frame.

36 Chapter 4. Literature Review

37

Chapter 5

Veri�cation of the CCD
Model

This chapter describes the attempt to verify that the CCD model by Cao
and Kanafani (1997) works as described. This includes a description of the
method of implementation and the problem instances generated.

5.1 Motivation

There are several reasons for trying to verify the results achieved by the
CCD model. These reasons are:

• The CCD model combines the possibility of delaying and cancelling
aircraft.

• It considers the airport network as an inseparable system.
• The authors ostensibly solve realistically large problem instances
within reasonable computational time.

• Assuming that the CCD model works as described, it will presumably
form a good foundation for further development.

Another article by Yan and Yang (1996) also presents a model, which seem-
ingly includes the same considerations as the CCD model. However, the
problem instances which are solved by Yan and Yang (1996) are small and

38 Chapter 5. Veri�cation of the CCD Model

based on a single disruption that lasts an entire week. This seems less op-
erational than the problem instances solved by Cao and Kanafani (1997);
these are large and include delays on 20-30% of the aircraft.

5.2 Creating Problem Instances

Before describing the implementation of the CCD model, a general descrip-
tion of the problem instances and how they are generated will be given. A
problem instance in this respect is a �ight schedule covering both aircraft
and airports and including delays. The integrity of these problem instances
is vital, if the validity of the model is to be tested properly.

5.2.1 Cost Design Principles

The cost design is important for the CCD model to work as intended.
Likewise, costs determine how realistic the �ight schedules found by the
CCD model will appear. Below is a description of the principles behind
the costs used in the model.

• Revenue
� The revenue for all �ights has been set to $1000.

• Delays
� The di�erence between a �ight's original departure time and its
actual departure time constitutes the delay.

� Flights never depart before their original departure time.
� The delay costs daf , daf

a′f ′ and daf
a′f ′(a′′) are functions of the

respective �ight revenues and their possible delays measured in
minutes.

• Swaps
� A swap cost saf is used to prioritize swaps.
� For the sake of evaluating the �ight schedules found by the
heuristic, the swap cost saf have been set to 0 for all combi-
nations of a and f .

• Cancellations
� Cancellations are not speci�cally assigned a cost in the CCD
model. However, the revenues of cancelled �ights do not con-
tribute to the objective function.

5.2 Creating Problem Instances 39

Calculating Delay Costs

The delay costs are proportional to functions of the respective �ight rev-
enues and their delays measured in minutes. The functions used to calculate
�ight delays are de�ned as follows:

daf = DelayInMinutes(a, f) · DF · rf (5.1)

daf
a′f ′ = DelayInMinutes(a, f, a′, f ′) · DF · rf (5.2)

Equations 5.1 and 5.2 are calculated for all possible aircraft to �ight assign-
ments prior to running the mathematical model. The parameter
DelayInMinutes(a, f) used in equation 5.1 is the delay of a �ight f as a
consequence of aircraft a being assigned to this �ight. Likewise,
DelayInMinutes(a, f, a′, f ′) is the delay of �ight f ′ as a consequence of
2 consecutive aircraft to �ight assignments (see table 4.1). The parameter
DF is explained in section 5.2.2.

The delays associated with aircraft at their third and down-line airports
(daf

a′f ′(a′′)) are more complex. According to Cao and Kanafani (1997), the
delay cost is found after solving a minimum cost network like that described
in Jarrah et al. (1993). In this implementation a simpli�ed way of dealing
with assignments at the third airport in each link was chosen. Firstly, it
is assumed that the optimal solution to the minimum cost network always
means retaining the original assignments. In �gure 4.8 this means that
for all possible assignments leading a link to aircraft node 5, the original
assignment (5 − 5) is retained. It also means, that �ight 5 cannot be
cancelled. Naturally, these limitations may exclude the possibility of �nding
an optimal reassignment scheme. However, initially we aim only to have
the model generate a feasible solution. To this end, our limitations are
equivalent to that of calculating the optimal solution of a minimum cost
network at airport 3 in each link.

5.2.2 Parameter Values

The nature of the problem instances generated to test the CCD model de-
pends on a series of parameters. Below follows a description of the param-
eters, which change throughout the problem instances. These parameters
all have signi�cant impact on the size of the problem.

40 Chapter 5. Veri�cation of the CCD Model

Number of aircraft: The number of �ights which are �own in a gener-
ated schedule is roughly proportional to the number of aircraft. This
parameter is therefore an important factor in determining the prob-
lem size.

Number of airports: The relationship between the number of airports
and the number of aircraft determines the aircraft density at each
airport. The density is de�ned as the number of aircraft that take o�
from the airport within a speci�ed time horizon. As will be explained
below, the candidate sets are proportional in size to the aircraft den-
sity.

Candidate sets Fa: The candidate sets are very important with respect
to the size of the solution space. The smaller these sets are, the
smaller the solution space. In all the generated problem instances an
aircraft can be assigned to any �ight leaving from its current airport,
excluding those �ights which presently are a part of that aircraft's
link (see section 5.5.3).

Delay percentage: This parameter indicates the approximate number of
aircraft that are delayed. The delay percentage has been set to 20%
in all problem instances. Aircraft are always delayed at their �rst
airport. There is a good reason for this approach: If an aircraft is as-
signed to �ight such that no delays should arise, then it is not possible
to predict delays that may arise further down the link. For this rea-
son aircraft are never delayed at their second or down-line airports,
because information about such delays would only exist if the aircraft
had been delayed at its �rst airport. It is of course assumed that all
�ights down-line from a delay are delayed as well.

Number of �ights: This is not actually a parameter. It is derived after
a schedule has been created based on the above parameters.

Aside from the parameters just listed there are parameters which are not
changed throughout the problem instances generated to test the CCD
model. These are:

Time horizon: The length of a �ight link is limited by the time horizon.
The time horizon has been set to 420 minutes.

Flying time: It is assumed that all �ights have the same �ying time. This
can easily be changed, but for the sake of simplicity the �ying time

5.3 Implementing the CCD Model 41

has been set to 110 minutes for all �ights. In this implementation
the �ying time also includes the turn-around time, i.e. �ying time is
the time it takes from when the aircraft departs from one airport and
until it is ready to depart from the next airport.

Delay factor DF : The delay factor determines how much revenue to de-
duct from the objective function given a certain delay. More precisely,
the delay factor is the percentage of the revenue that is removed per
minute delay of a given �ight; DF has been set to 1%. In other words,
the entire revenue of a �ight f is subtracted from the objective value
if that �ight is delayed for exactly 100 minutes.

The values assigned to the parameters used in the CCD model are not
necessarily realistic from a practical point of view. However, their relative
size is reasonable from an experimental point of view. The purpose of this
chapter is only to test and verify the CCD model, so problem instances are
required to have a realistic structure, not necessarily realistic values. To
this end, the values assigned are acceptable.

5.3 Implementing the CCD Model

All the problem instances generated to test the CCD model are generated
by a C++-program, which writes the instances in GAMS syntax. GAMS
is then run to solve the CCD model using DICOPT. DICOPT is a solver
that solves nonlinear discrete problem types, and thus allows a quadratic
binary integer problem to be solved, although DICOPT only is capable of
�nding a local optimum, due to the nonlinearity.

The GAMS model can be found in appendix A together with the C++-
program used to generate the model.

In Cao and Kanafani (1997) they repeat the search for a local optimum
in order to �nd better solutions. Initially, the model is tested by only
completing one local search: If the solution produced is not valid, then the
CCD model does not work as described.

42 Chapter 5. Veri�cation of the CCD Model

Airport 1 Airport 2
No. Revenue Time No. Revenue Time
1 1000 12 7 1000 19
2 1000 32 8 1000 122
3 1000 118 9 1000 142
4 1000 129 10 1000 228
5 1000 232 11 1000 239
6 1000 252

Table 5.1: Scheduled departure time and revenue of the �ights in sl-2-4-11.
Note that all the �ights are �own between airport 1 and 2, i.e. �ights from
airport 2 end in airport 1.

Flight link Scheduled Actual ready- Link
link departure ready-time

number time of aircraft
1 12 34 (1-1) → (8-8) → (5-5) →
2 118 118 (3-3) → (10-10) →
3 19 19 (7-7) → (4-4) → (11-11) →
4 32 198 (2-2) → (9-9) → (6-6) →

Table 5.2: Flight links in the original schedule of sl-2-4-11.

5.4 Testing the CCD Model

Initially one problem instance sl-2-4-11 was generated to test the CCD
model. The problem instance name indicates that there are 2 airports, 4
aircraft and 11 �ights in the problem instance. In table 5.1 the schedule
and revenues of the �ights in this problem instance are shown. The column
"No." refers to both the �ight and the aircraft �ying it.

In table 5.2, the �ight links in the original schedule are shown. Each "Flight
link number" corresponds to a physical aircraft. The column "Scheduled
departure time" shows the ready-time of the respective aircraft in the orig-
inal schedule; "Actual ready time of aircraft" shows when each aircraft will
actually initiate its link after taking into consideration the imposed delays.

The revised �ight schedule is shown in table 5.3. This revised schedule was
found by the CCD model when applied to optimize the sl-2-4-11 problem
instance. The revised �ight schedule is also shown graphically in �gure 5.1.

5.4 Testing the CCD Model 43

Flight link Actual ready- Link
number time of aircraft

1 34 (1-6) →
2 118 (3-3) → (10-10) →
3 19 (7-7) → (4-4) → (11-11) →
4 198 (2-5) →

ghost aircraft ? (5-2) → (9-9) → (6-1) → (8-8) →

Table 5.3: Revised �ight links found by the CCD model when applied to the
sl-2-4-11 problem instance.

Figure 5.1: Graphical representation of the revised links shown in table 5.3.

In �gure 5.1, a black aircraft node indicates that an aircraft is located
at that particular airport at the beginning of its original link. A white
aircraft node indicates that the aircraft is situated at the present airport as

44 Chapter 5. Veri�cation of the CCD Model

a consequence of the �own �ight leg. A label a∗ indicates that the aircraft is
delayed and an upward pointing arc represents an assignment that causes
a delay (e.g. 6∗ − 1). All assignments are represented by forward arcs
between aircraft and �ight nodes. An arc from a to f , where the values of
the indexes a = f indicate that the original assignment is maintained in
the optimized schedule (e.g. 3 − 3).

In �gure 5.1, the dotted �ight link is �own by a ghost aircraft: (5 − 2) →
(9 − 9) → (6 − 1) → (8 − 8) → (5 − 2) By ghost aircraft is meant
that no physical aircraft ever initiates the �ight link represented by the
circuit. For there to exist a real aircraft in any link, it has to include node
1, 2, 3, or 7 in its path (refer to �gure 5.1). These nodes are the physical
aircraft assigned to each original link. As can be seen, none of these nodes
are included in the circuit, hence the term ghost aircraft is introduced to
describe the phenomenon. It is furthermore interesting to notice that the
ghost aircraft absorbs all the delays; none of the real aircraft are assigned
to �ights that cause them to be delayed.

5.5 Errors in the CCD Model

Naturally, a ghost aircraft �ying in a circuit like the one in �gure 5.1 is
illegal. Either there are problems with the implementation of the CCD
model or worse � the CCD model simply does not work.

When we discovered that we were unable to make the CCD model work, we
initially assumed that something was wrong with our implementation. We
then spent a signi�cant amount of time making sure that our implemen-
tation strictly followed the model described in Cao and Kanafani (1997).
Through this process we discovered several problems that mathematically
render the CCD model as described inoperable. These problems are de-
scribed in the following section. Attempted modi�cations to the CCD
model are described in section 5.6.

5.5.1 Circuits and Ghost Aircraft

The most obvious problem with the revised schedule illustrated in �gure
5.1 is the circuit and the ghost aircraft.

5.5 Errors in the CCD Model 45

First of all, this circuit is allowed because it does not violate any of the
constraints in the model presented in Cao and Kanafani (1997). Equations
4.17 and 4.18 in section 4.6 ensure that no more than one aircraft is assigned
to a �ight and vice versa. These constraints are obviously not violated.
Equation 4.19 ensures that an assignment only is made if the preceding
assignment also is made. A circuit of course ful�lls this criterion perfectly.
Thus, the ghost aircraft is not prevented by the constraints in the CCD
model.

Secondly, the objective function chooses the ghost aircraft because it is very
advantageous. Equation 4.11 described in section 4.6 is the positive part of
the objective function that the model will attempt to maximize. Obviously,
the more assignments that are made, the greater the revenue. However, in
equations 4.13, 4.14, and 4.15 costs as a consequence of assignments are
calculated on the basis of only legal links originating in an aircraft node
where a physical aircraft exists. Hence, the entire circuit made by the ghost
aircraft entails no cost, only revenue.

The fact that the CCD model does not exclude the possibility of circuits is
a very signi�cant error. In all the problem instances that were evaluated by
the CCD model, this error occurred. As mentioned, modi�cations to the
CCD model that possibly correct this problem are described in section 5.6.

5.5.2 Evaluating Costs at the Third Airport in each

Link

Another serious problem with the CCD model arises when delay and can-
cellation costs are calculated at the third airport in each link. As described
in section 4.6, a minimum cost �ow problem is used to calculate the delay
cost at the third airport in each link. This method of evaluating delay
costs was introduced by Jarrah et al. (1993), however, there were several
important limitations with the delay model introduced here:

• Only one airport is considered at a time.
• Only one delayed aircraft can be considered at a time.
• All aircraft other than the delayed aircraft are assumed to be on time.

These 3 limitations are supposedly not limitations in the CCD model. How-
ever, this cannot be entirely true since the CCD model makes use of the
delay model. Following is a more precise explanation of why there is a
con�ict.

46 Chapter 5. Veri�cation of the CCD Model

The delay cost � calculated using the delay model � is based on a series of
reassignments. It must therefore be assumed that these assignments in fact
are made. However reasonable this assumption may be, serious limitations
consequently arise .

Figure 5.2: Flight schedule according to the CCD model.

In �gure 5.2, a normal �ight schedule is illustrated. According to the CCD
model there is a certain revenue along with possible delay costs associated
with this �ight schedule. Suppose the CCD model makes a swap like that
illustrated in �gure 5.3.

Aircraft 6 is now assigned to �ight 5 and vice versa. This results in 2 new
links: α = (1 − 1) → (6 − 5) → (10 − 10); β = (5 − 6) → (11 − 11).
To evaluate the quality of the new assignments, the revenue/cost of links
α and β are calculated. If it is assumed that aircraft 1 is delayed by t0,
then the cost associated with link α according to the CCD model has the
following 3 components:

• Delay cost of the assignment (1 − 1) proportional to t0.
• Swap cost and delay cost of the assignment (6 − 5).
• Possible delay and swap cost of the assignment made at the 3rd airport
in link α and an estimate of the cost incurred to the down-line �ights.
The delay cost at the 3rd airport will be based on the solution to the
minimum cost �ow problem described in section 4.6.

Suppose there is a method of enforcing the assignments on which the delay
costs at the third airport are based � despite the limitations of the delay

5.5 Errors in the CCD Model 47

Figure 5.3: Revised �ight schedule with swap between aircraft 5 and 6. The
question mark indicates that this assignment depends on the solution to a
minimum cost �ow problem.

Figure 5.4: Con�icting assignments forced by solution to minimum cost
�ow problem at the 3rd airport in the link α.

model. This is where a problem arises and to illustrate why, look at link α
and γ = (2 − 2) → (7 − 7) → (12 − 12) both shown in �gure 5.4.

48 Chapter 5. Veri�cation of the CCD Model

The 3rd airport visited by these links are identical (airport 3). Suppose
the minimum cost �ow problem solved at the 3rd airport for link α yields
an optimal solution, where the reassignment 10− 12 should be made. This
would give rise to a con�ict with the assignment 12 − 12 of link γ. The
problem is that both links end up taking the same �ight consequently
con�icting with a basic restriction in the CCD model (see equation 4.17)
that prevents exactly that. The result is that a proper delay cost associated
with the 3rd assignment in link α cannot be found in this situation.

The situation just described is infeasible and will, hence, not appear when
using the CCD model. However, because the assignments at the 3rd airport
in each link solely depend on the previous 2 assignments, link α and γ can
never coexist. The reason is that the CCD model will not allow the 2
links to be assigned to di�erent �ights at their 3rd airport (airport 3). In
other words, large parts of a realistic solution space are cut away making
it unlikely that actual optimal solutions can be found.

Notice, there could be another interpretation to the use of the delay model.
Suppose the delay model is only used to estimate the delay costs at the
third airport. In other words, it is no longer assumed that the assignments
� on which the delay costs are based � are enforced. In such a situation
the assignments at the 3rd airport in each link would be associated with a
cost based on the delay model, but the CCD model would be able to make
other assignments. This approach is perhaps possible. However, there is
a serious risk of not being able to associate appropriate costs with the
assignments actually made at the 3rd airport, hence rendering the model
inoperable. Certainly nothing is mentioned about this issue in Cao and
Kanafani (1997).

5.5.3 Candidate Sets

Very little attention is given to the candidate set in Cao and Kanafani
(1997). It is only mentioned that smaller candidate sets yield a smaller
solution space. However, the candidate sets are in fact critical in preventing
a certain type of circuit from arising. To understand this, refer to �gure
5.5.

Figure 5.5 is a small �ight schedule. As can be seen, aircraft 1 initiates the
link illustrated by a dashed line. This link visits airport 1 twice, and it is
in this situation that the candidate set must be modi�ed. If the candidate

5.5 Errors in the CCD Model 49

Figure 5.5: Situation where aircraft 1 and 3 cannot be swapped.

set to aircraft 3 includes the possibility of assigning it to �ight 1, then an
impossible situation occurs: Aircraft 3 only exists if aircraft 1 has been
assigned to �ight 1, so naturally aircraft 1 and 3 cannot be swapped. This
situation is easily changed by modifying the candidate set of aircraft 1 and
3. However, in other situations aircraft 1 and 3 can be swapped. In �gure
5.6 a situation is illustrated where this is the case.

Figure 5.6: Situation where aircraft 1 and 3 can be swapped.

The candidate sets must therefore be dynamic if circuits, like the one shown
in �gure 5.1, are to be avoided. This is very di�cult in mathematical
modelling, because the constraints would vary in such a situation. In other
words, some change must be made to the CCD model that ensures only
feasible assignments.

50 Chapter 5. Veri�cation of the CCD Model

5.6 Modi�cations to the CCD Model

In order to possibly rectify the CCD model, modi�cations have been at-
tempted that would (i) allow only feasible solutions, (ii) retain a limited
model complexity.

There are 2 other issues with respect to the modi�cation of the CCD model.
Firstly, with regard to the problems with delay costs at the third airport
in each link, it is initially assumed that some solution can be found to
this problem. The original assignments are simply retained here for the
purposes of �nding a method of generating feasible solutions. Secondly, it
is assumed that the problems with the candidate sets can be solved if new
constraints or methods are found, which eliminate the possibility of circuits
altogether.

5.6.1 Interpretation of Airports

In the problem instance sl-2-4-11 there were only 2 airports. This means
that each of the links 1, 3, and 4 (see table 5.2) visited the same airport
twice as shown in �gure 5.7. Possibly, Cao and Kanafani (1997) did not
intend it to be possible for the same link to visit one airport more than
once because it created the possibility of circuits � despite their own data
sets having such repeated visits at the same airport. As a consequence, a
problem instance sl-5-4-11 was created. Each airport in this instance is at
most visited by each link once. However, a new circuit with a ghost aircraft
arose in the optimal solution spanning 3 di�erent airports. The conclusion
is that circuits are not prevented if links only visit the same airport once.

It is possible to interpret airports in still another way. In �gure 5.7, the
original schedule to the problem instance sl-2-4-11 is shown. In �gure 5.8,
the same problem instance is represented di�erently; airports 3 and 4 have
been created to represent airports 1 and 2 respectively. This representation
ensures that all arcs point in the same direction.

The idea behind this representation is that no reassignments can result in
a circuit provided reassignments are only made within the same airport;
for example, candidate �ights for aircraft 4 in �gure 5.8 are {4, 5, 6}. If the
model described in Cao and Kanafani (1997) is applied to problem instance
sl-2-4-11 represented as shown in �gure 5.8, a feasible solution is found.

5.6 Modi�cations to the CCD Model 51

Figure 5.7: The original schedule in problem instance sl-2-4-11.

Figure 5.8: The original schedule in problem instance sl-2-4-11 with new
airport structure.

The problem with this representation is that good solutions are likely to
be excluded because the number of candidate �ights for each aircraft is
reduced. Flights {1, 2, 3} are, for example, no longer candidates for aircraft
4, despite actually being at the same airport. If the candidate sets are
returned to their original size (i.e. A4 = {1, 2, 3, 4, 5, 6}) while retaining the
new airport structure, then the solution illustrated in �gure 5.9 is generated.

It is easily observed that a circuit appears in the optimal solution when the
original candidate sets are used. The reason for this is, that the aircraft
to �ight arcs no longer only point in the same direction. If aircraft 4 is
allowed to take �ight 3 then a backward arc is possible and circuits may

52 Chapter 5. Veri�cation of the CCD Model

Figure 5.9: Solution to problem instance sl-2-4-11 with original candidate
sets and new airport structure.

appear.

In conclusion, changing the layout of the airports and the candidate sets
does not solve the problems with the CCD model. In order to �nd feasible
solutions, the candidate sets have to be very restrictive. This will very
likely prevent optimal solutions from being found. On the other hand, if
candidate sets are not restrictive, circuits may appear yielding infeasible
solutions. Neither option seems acceptable.

5.6.2 Constraints to Prevent Circuits

Given the time horizon used in both examples sl-2-4-11 and sl-5-4-11, it
is reasonable to assume that a link in an optimal solution will not contain
more than 4 assignments for the following reason: The number of assign-
ments in each �ight link in the original assignment is limited by the time
horizon. The starting time of each link is generated randomly and the fol-
lowing sequence of airports visited by the link is also randomly selected.
The longest possible link, given the time horizon and the �ying time be-
tween airports in sl-2-4-11 and sl-5-4-11, would have 3 assignments. Hence,
a link in the optimal solution with more than 4 assignments would have
signi�cant delays. Furthermore, a mathematical model may not have in-
formation to make quali�ed guesses as to the optimal 5th assignment in a
�ight link. It is therefore reasonable to assume a maximum link length of
4 assignments in an optimal solution.

5.6 Modi�cations to the CCD Model 53

A constraint ensuring a maximum length of 4 assignments would eliminate
all circuits, because any circuit in this respect has an in�nite number of
assignments. This constraint would look like this:

xaf + xa′f ′ + xa′′f ′′ + xa′′′f ′′′ + xa′′′′f ′′′′ ≤ 4 (5.3)

∀ {(a, f, a′, f ′, a′′, f ′′, a′′′, f ′′′, a′′′′, f ′′′′) |
a ∈ A, f ∈ Fa, L(f, a′) = 1, f ′ ∈ Fa′ , L(f ′, a′′) = 1,

f ′′ ∈ Fa′′ , L(f ′′, a′′′) = 1, f ′′′ ∈ Fa′′′ , L(f ′′′, a′′′′) = 1,

f ′′′′ ∈ Fa′′′′}

To illustrate how this constraint works, refer to the circuit in �gure 5.9.
The cut which would eliminate this circuit would, according to equation
5.3, look like this:

x4,3 + x10,7 + x4,3 + x10,7 + x4,3 ≤ 4 (5.4)

In theory this would result in a maximum of approximately n5 di�erent
constraints, where n is the number of �ights in the �ight schedule. Without
dwelling any further on this issue, introducing these constraints would make
the model impossible to solve for anything but very limited �ight schedules.

5.6.3 Generating Cuts

Imposing constraints to prevent circuits (equation 5.3) results in a model
too large to solve. However, the vast majority of these constraints are
not going to be violated at any time, so it is reasonable to attempt to
solve the model by generating cuts. Hence, the original model given in
equations 4.16, 4.17, 4.18, and 4.19 is viewed as a relaxed problem where
the restriction given in equation 5.3 has been removed. Below is illustrated
the cut generation on the problem instance sl-2-4-11.

The original schedule in sl-2-4-11 is shown in �gure 5.7. When this is
solved, the solution shown in �gure 5.1 is found. The ghost aircraft �ying
the circuit (5− 2) → (9− 9) → (6− 1) → (8− 8) → (5− 2) . . . is prevented
by the following cut:

x5,2 + x9,9 + x6,1 + x8,8 + x5,2 ≤ 4 (5.5)

54 Chapter 5. Veri�cation of the CCD Model

No. of Actual ready Link
�ight link time of aircraft

1 34 (1-2) → (9-9) → (6-6) →
2 118 (3-4) → (11-11) →
3 19 (7-8) → (5-5)
4 198 Aircraft cancelled

ghost aircraft ? (4-3) → (10-7) →

Table 5.4: Optimal �ight links after solving the model.

Figure 5.10: The solution to sl-2-4-11 according to table 5.4.

Equation 5.5 is added to the model, which is solved again. The resulting
schedule is shown in table 5.4 and illustrated in �gure 5.10. As can be seen,
the solution is still not feasible because of a circuit.

The ghost aircraft �ying the circuit (4 − 3) → (10 − 7) → (4 − 3) . . . in
�gure 5.10 is prevented by the cut:

x4,3 + x10,7 + x4,3 + x10,7 + x4,3 ≤ 4 (5.6)

5.6 Modi�cations to the CCD Model 55

Equation 5.6 is therefore also added to the model, which again is solved.
This time a feasible solution is found with no circuits as shown in �gure
5.11.

Figure 5.11: A feasible solution to sl-2-4-11 found using cuts.

In conclusion, it is possible to use cuts to �nd feasible solutions when using
the CCD model. The complexity of �nding these cuts is O(n2) given a
solution to the relaxed problem (n is the number of �ights). For each �ight
f , the �ight link to which it belongs is traversed to see if this link forms a
circuit. The �ight link can at most contain n �ights, hence it takes O(n2)
to �nd a circuit.

In larger problems, a vast number of cuts may have to be generated before
a feasible solution is found. It is therefore reasonable to expect, that using
cuts will be very time consuming, especially considering that the model is
time consuming to solve even when it is relaxed. Further experiments with
this method are therefore not undertaken.

56 Chapter 5. Veri�cation of the CCD Model

5.6.4 Involving Time

If it were possible to keep track of the time, constraints could be made
to ensure that the number of aircraft in use at any time never exceeds
the actual number of aircraft. In �gure 5.1 there are actually 5 aircraft
in use despite there only being 4 available. If constraints like the one
just mentioned were implemented, perhaps only legal solutions would arise.
However, there are at least 2 problems with this approach: (i) The model
allows cancellations of �ights and even aircraft. There is nothing to prevent
the model from cancelling a real aircraft and creating a ghost aircraft that
�ies around in a circuit, thus satisfying this new constraint; (ii) There is no
way to properly de�ne the ready time of a ghost aircraft, hence it would
be very di�cult to use it in a constraint.

5.7 Conclusion on Chapter 5

The purpose of this chapter was to verify that the CCD model by Cao and
Kanafani (1997) worked as described. This has not been possible because
the CCD model contains at least 3 errors:

• Circuits are allowed in the solutions found by the CCD model.
• There is no proper way to associate the delay costs at the third airport
in each link with the actual assignments made.

• The candidate sets are not de�ned correctly.

Primarily, we were unable to �nd a satisfactory solution to the error having
to do with circuits. Either the solution simply did not work or the model
became too di�cult to solve. As a consequence, the problem concerning the
candidate sets has not been solved either. We have therefore not bothered
trying to �nd a better method of evaluating the costs at the third airport
in each link.

Given the serious errors in the CCD model, it seems strange that no one �
especially the authors � has discovered or commented on these errors before.
It is possible that the authors overlooked the errors in the model because
of the large number of surplus aircraft used in their implementation. These
would minimize the e�ects of the disruptions signi�cantly and possibly
eliminate most circuits. However, on closer inspection, there are also errors
in the solution given in the article by Cao and Kanafani (1997) which

5.7 Conclusion on Chapter 5 57

support our claim. These errors could be attributed to printing errors,
but given the di�culties we have had in implementing the model, we �nd
ourselves convinced that the model does not work.

58 Chapter 5. Veri�cation of the CCD Model

59

Chapter 6

Using Heuristics to Solve
DARP

The exact mathematical DARP-models described in chapter 4 were di�cult
to solve within a reasonable time frame. For that reason, this chapter will
focus on new ways of handling DARP. To this end heuristics are sometimes
better at providing practical and �exible solutions to problems which arise
in the real world. This chapter describes a heuristic, which can solve DARP.

6.1 Motivation for Using Heuristics

One of the fundamental di�culties associated with DARP is the complexity
of the problem: The cost of a certain decision (e.g. reassigning an aircraft
to a �ight) depends on other decisions made earlier. This dependency along
with a vast solution space size make the problem di�cult to solve.

A related problem is the speed with which DARP has to be solved to be
of any use to �ight planners. DARP arises when sudden disruptions occur
in a planned �ight schedule. In other words, there is most likely very little
time to make recovery decisions. Flight controllers from British Airways
claim that it must not take more than 2 minutes for the computer model
to solve the DARP � otherwise they will not be able to use it.

60 Chapter 6. Using Heuristics to Solve DARP

Given these characteristics of DARP, it seems reasonable to take a new
look at solving it. Flight planners are not necessarily interested in a proven
optimal solution � they simply want a good solution, which they can start
implementing as quickly as possible. Heuristics are often good at �nding
reasonably good solutions quickly, hence the motivation for attempting this.

6.2 Goals for Chapter 6

The goal of this chapter is to create a heuristic that solves DARP e�ciently.
The scope of this heuristic will be to include the same considerations that
Cao and Kanafani (1997) did, although the heuristic setting will be a
little di�erent. The de�nition of DARP given in �gure 2.1 does not specify
a time horizon, i.e. how far into the future does the revised �ight schedule
extend. Therefore, a brief description follows of the setting in which the
DAR-heuristic is relevant:

At a given point in time during a normal working day, one or more disrup-
tions occur in the �ight schedule. This point in time is called the decision
point. Based on the original �ight schedule and the disruptions that just
occurred, the DAR-heuristic will calculate a revised �ight schedule that
spans the remaining part of that particular working day. This revised
�ight schedule will be made by delaying, cancelling and swapping aircraft
while respecting the following �ight control principles:

• Delays and cancellations should be minimized.
• Delays are preferable to cancellations.
• Only certain aircraft can be assigned each �ight.

In section 2.1.1 many more principles are listed. However, for the sake
of simplicity these will not be considered until chapter 7. Likewise, the
problem instances along with the costs are kept simple in order to estab-
lish the merits of a heuristic approach before complicating it with further
considerations.

6.3 Basic Heuristic Design

In this section the basic heuristic design is de�ned. This includes a def-
inition of the network on which the heuristic is based, a neighborhood
de�nition and the cost design principles.

6.3 Basic Heuristic Design 61

6.3.1 De�nition of Network

Figure 6.1: Underlying network to use with a DAR-heuristic.

Before the DAR-heuristic can be designed, a network is de�ned to base
the heuristic on. This network is shown in �gure 6.1 and is similar to
the network introduced by Cao and Kanafani (1997). However, there are
signi�cant di�erences.

Cao and Kanafani (1997) assume that a time horizon of 3 aircraft to �ight
assignments in a link is su�cient. However, in short-haul disruptions
management, there is a reasonably well de�ned working day. At the end
of the day, aircraft will lay over at various airports in order to carry out
the planned early morning �ights. It is therefore of great importance that
the necessary number of aircraft lay over at each airports. In other words,
a time horizon spanning the remaining part of the working day is more
practical if such layover restrictions have to be considered.

To cater for the layover restrictions, each link terminates in a sink node,
thus indicating where the aircraft will lay over. This makes it possible
to calculate how many aircraft end at each particular airport and use this
information to evaluate the quality of the revised schedule. Layover restric-
tions (see the term aircraft balance) are not introduced until chapter 7,
but the underlying network has to contain the possibility of introducing
them later.

62 Chapter 6. Using Heuristics to Solve DARP

Another new feature in the underlying network is the cancellation aircraft
node. By default, all cancellation aircraft nodes are assigned to the sink
node. However, the cancellation aircraft can be assigned to all �ights, thus
cancelling them.

Finally, there are surplus aircraft. By default, these are connected by a
forward arc to the sink node. Consequently, if the surplus aircraft is not
used, it remains at the airport. Alternately, it can be assigned to a �ight,
thus keeping it from getting cancelled or delayed.

Choice of Solution Neighborhood

Given the network shown in �gure 6.1, a neighborhood can be de�ned.
Here it becomes apparent that there are certain similarities between DARP
and the Quadratic Assignment Problem (QAP). QAP can be described as
the problem of assigning a set of n facilities to a set of n locations with
given distances between the locations and given �ows between the facilities.
The goal is to place the facilities on locations in such a way that the sum
of the product between �ows and distances is minimal. DARP could be
formulated in a similar manner with �ights corresponding to locations and
aircraft to facilities. It is therefore not strange that the neighborhood used
in the DAR-heuristics, shown later in this chapter, in principle is the one
most commonly used in QAP.

The QAP neighborhood is most commonly de�ned by the set of permuta-
tions which can be obtained by exchanging two assignments (see Taillard
(1991), Angel and Zissimopoulos (1998) and Stützle (1999)). The neigh-
borhood N to a solution ϕ can in mathematical terms be expressed as
follows:

N (ϕ) = {ϕ′ | ϕ′
r = ϕs ∧ ϕ′

s = ϕr, r 6= s ∧ ϕ′
i = ϕi ∀ i 6= r, s} (6.1)

The indexes i, r and s refer to individual assignments in the solution ϕ.
Compared with the neighborhood used in QAP, the neighborhood used in
DARP is slightly di�erent. In DARP, aircraft cannot be assigned to �ights
in di�erent airports. In the standard QAP, all assignments are legal by
default. This di�erence reduces the size of the DARP solution space. In
short, the neighborhood to a DARP solution consists of all those solutions
that can be reached by making 1 feasible swap between 2 di�erent aircraft.

6.3 Basic Heuristic Design 63

The original QAP neighborhood de�nition gives rise to n2 neighbors, where
n is the number of locations/facilities. In DARP n is the number of
�ight/aircraft nodes. However, the neighborhood in DARP is a lot smaller
because of restrictions on which �ights the aircraft can be assigned to. This
is very fortunate with respect to a fast implementation of the heuristic, be-
cause it is possible to explore more neighborhoods within the same time
frame. This advantage has naturally been utilized in the implementation.

To illustrate this, consider a problem instances with 40 airports, 80 aircraft
and approximately 300 �ights. The average number of candidate �ights
for each of the approximately 300 aircraft nodes is only 8 (see description
of candidate sets later). This results in a neighborhood size of roughly
2400 solutions. In a QAP with 300 locations/facilities the number of so-
lutions in a neighborhood would be 90,000. Hence, the size of the DARP
neighborhood is signi�cantly reduced by utilizing restrictions on aircraft
assignments.

Both the DARP and QAP neighborhood can be halved by utilizing that
only n2

2 di�erent neighbors exist. This too has of course been included in
the implementation.

Evaluating Solutions

The time it takes to explore a neighborhood also depends on how e�ectively
the objective value is calculated for each solution. A reasonable way of
doing this would be to track each aircraft through its link and calculate the
contribution to the objective value. Cancellations would also be included
this way, because cancellation aircraft are treated as a normal aircraft in
this respect. In other words, each �ight would be considered once, causing
this method to result in a complexity of O(n), where n is the number of
�ights. It is possible, however, to reduce this calculation signi�cantly by
only recalculating the cost of those links between which the reassignments
occurred. This too is utilized in the DAR-heuristic implementation.

The advantage of this reduction is best illustrated by applying it to the ex-
ample just used. By only recalculating the �ights in the modi�ed links, the
solution evaluation only has to consider approximately 8 �ights as opposed
to 300 for each solution in the neighborhood.

Given the neighborhood size and the complexity of evaluating a single so-
lution, the overall complexity of evaluating all solutions in a neighborhood

64 Chapter 6. Using Heuristics to Solve DARP

is O(n3) where n is the number of �ights. In practical terms, however, the
complexity is signi�cantly smaller. Hopefully, this means that the chosen
design of the network and the consequent problem structure allows any
heuristic to be fast.

6.3.2 Basic Parameters and Decision Variables

Following is a de�nition of the variables, parameters and sets used in all
the heuristics that have been implemented to solve DARP.

A = set of nodes representing aircraft.

a = index for aircraft nodes.

F = set of nodes representing �ights.

f = index for �ight nodes.

Fa = subset of F consisting of candidate �ights considered for
aircraft a. If aircraft a is delayed beyond the time horizon,
Fa is set to empty. In �gure 6.1, Fa could reasonably consist
of �ights {4, 5, 6, 7} for aircraft a = 4.

Fc = dynamic set containing �ights f that have been cancelled.

rf = the revenue of �ight f .

daf = the delay incurred if aircraft a is assigned to �ight f . daf

is calculated as needed and takes all relevant previous as-
signments into consideration. daf is measured in minutes

cf = cancellation cost incurred if �ight f is not �own. cf is a
function of rf and βf .

αf = delay cost multiplier associated with each �ight f .

βf = cancellation cost multiplier associated with cancelling �ight
f .

The decision variable is:

xaf =
{

1 if aircraft a is assigned to �ight f
0 otherwise

To illustrate how the decision variable works, refer to �gure 6.1. Here
x1,1 = 1 because aircraft 1 is assigned to aircraft 1. Conversely, x1,8 = 0
because aircraft 1 is not assigned to aircraft 8.

6.4 Creating Problem Instances 65

6.3.3 Objective function

Given the network from �gure 6.1 and the basic parameters and decision
variables, the objective function can be de�ned.

Objective =
∑
a∈A

∑
f∈F

rf · xaf

−
∑
a∈A

∑
f∈F\Fc

αf · DF · rf · daf · xaf

−
∑
a∈A

∑
f∈Fc

βf · rf · xaf (6.2)

The �rst component in the objective function is the total revenue. The
second component is the total cost of delays. The constant DF is the
percentage of the revenue rf which is subtracted per minute delay of �ight
f (see section 6.4.2). The third component is the cost associated with
cancellations.

In both the second and third component of the objective function, the
revenue rf is used directly to measure the cost because it seems a natural
way to prioritize the �ights. In principle this renders α and β unnecessary.
However, a true revenue rf is typically not calculated until several weeks
after the �ight has been �own � only then is the necessary data available. A
revenue rf calculated before the actual �ight can only be based on forecasts,
e.g. the number and types of passengers, the airports between which the
�ight is �own, the aircraft type carrying out the �ight, etc. Disruptions to
the �ight schedule may render these forecasts obsolete, which is why α and
β are relevant. They can quickly be assigned values which encourages a
heuristic to �nd solutions that prioritize the �ights according to the actual
situation on hand.

6.4 Creating Problem Instances

Before describing the di�erent heuristics, that have been implemented to to
solve DARP, a general description of the problem instances is given along
with a brief description of how they were created. The integrity of these
problem instances is vital if the validity of the heuristic is to be tested
properly.

66 Chapter 6. Using Heuristics to Solve DARP

In �gure 6.2 an outline of the test instance generator is given. Simply
put, a link is created for each aircraft by repeatedly selecting a destination
airport at random until the time horizon is exceeded. This limits the length
of a link to a maximum of 5 �ights. It is important to notice that because
airports are randomly selected, �ights will not be concentrated around a
few airports like they would be in a hub-and-spoke system � instead
they will be more evenly distributed. Likewise, aircraft will typically not
travel back and forth between the same two airports. These 2 factors mean
that the generated �ight schedules do not resemble real �ight schedules
from a practical point of view. However, it seems reasonable to assume
that the complexity remains unchanged.

procedure Test Instance Generator
repeat

Select an aircraft
Select an initial ready-time
Select airport randomly where aircraft will start
Decide if the aircraft is delayed
repeat

Select a destination airport randomly
Update clock according to original ready-time

until extending the link will exceed time horizon
until the desired number of aircraft are in use

end

Figure 6.2: Test instance generator outline.

In table 6.1, the problem instances used to test the DAR-heuristics are
listed. Each problem instance is created randomly based on a series of
problem parameters. The in�uence of these parameters on the generated
problem instance is explained in section 6.4.2.

6.4.1 Cost Design Principles

The cost design is very important if the solutions found by the heuristic have
to appear realistic. Below is a description of how the costs are designed and
the parameters which are used to weigh the various decision possibilities
against each other.

6.4 Creating Problem Instances 67

Instance Number of Number of Number of
No. Airports Aircraft Flights

1 10 10 38
2 10 20 80
3 10 30 125
4 10 40 166
5 10 50 206
6 20 20 78
7 20 40 158
8 20 60 231
9 20 80 306

10 20 100 382
11 30 30 111
12 30 60 221
13 30 90 326
14 30 120 440
15 30 150 559
16 40 40 148
17 40 80 290
18 40 120 432
19 40 160 588
20 40 200 741
21 50 50 195
22 50 90 333
23 50 110 404
24 50 150 562
25 50 200 753

Table 6.1: Dimensions of the problem instances.

• Revenue
� Revenues are randomly generated for each �ight.
� The revenue for a �ight lies between $3000 and $6000.

• Delays
� The di�erence between a �ight's original departure time and its
actual departure time constitutes the delay.

� Flights never depart before their original departure time.
� The delay cost is a function of the �ight revenue and the delay
measured in minutes (see objective function in equation 6.2).

� A delay cost multiplier α is used to prioritize �ights.
• Cancellations

� A cancellation cost multiplier β is used to prioritize cancella-
tions.

68 Chapter 6. Using Heuristics to Solve DARP

The idea is that �ight planners adjust the values of α and β in order to
achieve an acceptable �ight schedule. For example, if βf for �ight f is set
to a large number, then that particular �ight is unlikely to be cancelled. If
αf for �ight f likewise is increased, then the heuristic is unlikely to delay
that �ight signi�cantly � if it can be avoided.

Overall, the presumption is that no computer model will be able to factor
in all in�uences on the costs. The only way to arrive at an acceptable
and feasible revised �ight schedule is if the �ight planners can interactively
adjust the cost assignments, i.e. adjust the values of α and β. This way
even minor in�uences can be considered by the computer model.

6.4.2 Parameter Values

Below follows a description of the parameters, which change throughout the
the problem instances listed in table 6.1. In many ways these parameters
are similar to those described in chapter 5, however, due to their signi�cant
impact on the size of the problem and solution space, they will brie�y be
described again.

Number of aircraft: The number of �ights which are �own in a gener-
ated schedule is roughly proportional to the number of aircraft. This
parameter is therefore an important factor in determining the prob-
lem size.

Number of airports: The number of airports has an indirect in�uence
on the solution space size. The reason for this is that the relationship
between the number of airports and aircraft determines the aircraft
density at each airport. The aircraft density at each airport deter-
mines the size of the candidate sets (see below).

Candidate sets Fa: The candidate sets are very important with respect
to the size of the solution space. The smaller these sets are, the
smaller the solution space. In all the generated problem instances, an
aircraft can be assigned to any �ight leaving from its current airport,
excluding those �ights which presently are a part of that aircraft's
link. This means that the size of the candidate sets is proportional
to the number of airports. This feature is changed in chapter 7 to
see what e�ect it has on the computing time. However, as illustrated

6.4 Creating Problem Instances 69

earlier in this section, the solution neighborhood is reduced if the
number of �ights, that an aircraft can be assigned to, is reduced.

Number of surplus aircraft: Surplus aircraft are aircraft which are
ready to �y but have not been assigned to any �ight. Surplus aircraft
are rare in real life aircraft schedules, so to ensure a certain realism
in the problem instances, these are only used sparingly; each problem
instance has 1 surplus aircraft.

Delay percentage: This parameter indicates the approximate number of
aircraft that are delayed; 20% in all problem instances. This also
means that on average 20% of all �ights are delayed.

Number of �ights: This is not actually a parameter. It is derived after
a schedule has been created based on the above parameters.

Aside from the parameters just listed, there are parameters, which are
not changed throughout the problem instances listed in table 6.1. These
parameters are listed below along with their assigned values.

Time horizon: The length of a �ight link is limited by the time horizon.
The time horizon has been set to 600 minutes.

Flying time: Unless otherwise mentioned the �ying time is de�ned as
the time it takes an aircraft to travel the distance from the origin to
the destination airport. It is assumed that all �ights have the same
�ying time. This can easily be changed, but for the sake of simplicity
the �ying time has been set to 100 minutes.

Turn-around time: This parameter indicates the minimum time, that
the aircraft must spend on the ground at a given airport before it is
ready to �y again. For all aircraft at all airports, this time has been
set to 10 minutes.

Delay factor DF : The delay factor determines how much revenue to
deduct from the objective function given a certain delay. The delay
factor is the percentage of the revenue that is removed per minute
delay of a given �ight; DF has been set to 1%.

α and β: The purpose of these constants were described in connection
with the objective function (see equation 6.2). α has been set to

70 Chapter 6. Using Heuristics to Solve DARP

1 to indicate that all aircraft have the same priority with respect to
delays. β has been set to 1.5 to indicate that a �ight has to be delayed
so much, that more than 1.5 times its revenue is lost due to delay
costs, before the heuristic will cancel the aircraft. The possibility of
changing α and β was incorporated in the implementation.

The values assigned to the parameters used in this heuristic are not realistic
from a practical point of view. However, given the structure of the problem,
most of these values do not in�uence the problem complexity. In other
words, we believe that our problem instances are realistic enough to test
the merits of our implemented heuristic and underlying network.

6.4.3 Example of a Problem Instance

An example of a �ight schedule generated by the algorithm outlined in
�gure 6.2 is illustrated in �gure 6.3.

The problem instance generator feeds the heuristic algorithm with the prob-
lem illustrated in �gure 6.3. Below is a print-out of the same �ight schedule.

FLIGHT LINKS

Flight Scheduled Actual Assignments
link take- Ready-

off time

1 188 188 (3-3) -> (14-14) -> (8-9)
2 97 357 (10-10) -> (4-4) -> (15-17)
3 143 143 (2-2) -> (12-12) -> (6-9)
4 69 369 (1-1) -> (11-11) -> (5-5) -> (16-17)
5 0 275 (13-17)
6 0 0 (7-9)
7 0 0 (9-9)
8 0 0 (17-17)

6.4 Creating Problem Instances 71

Figure 6.3: Example of a problem instance with 2 airports, 4 normal aircraft
and 2 surplus aircraft.

72 Chapter 6. Using Heuristics to Solve DARP

Here link 2 and 4 are delayed. As a consequence of this delay, the revenue
of link 2 and 4 su�ers:

Link First First Link
No Aircraft Aircraft Revenue

in Link Type

1 3 normal 10100
2 10 normal -17760
3 2 normal 11200
4 1 normal -31200
5 13 surplus 0
6 7 surplus 0
7 9 cancel 0
8 17 cancel 0

TOTAL OBJECTIVE VALUE = -27660

This problem instance is very simple, but it serves to illustrate the network
used and the solutions found by any heuristic used later. The solution
shown below was derived using the ILS heuristic described in section 6.6,
but it could probably easily have been derived using common sense. The
optimized �ight schedule derived by the model is shown below:

FLIGHT LINKS
--
Flight Scheduled Actual Assignments
link take- Ready-

off time
--

1 188 188 (3-3) -> (14-14) -> (8-9)
2 0 357 (10-17)
3 143 143 (2-2) -> (12-12) -> (6-5) -> (16-17)
4 0 369 (1-9)
5 179 275 (13-11) -> (5-9)
6 69 0 (7-1) -> (11-10) -> (4-4) -> (15-17)
7 0 0 (9-9)
8 0 0 (17-17)

__

6.5 Experimental studies 73

And the revenue achieved by each link:

Link First First Link
No Aircraft Aircraft Revenue

in Link Type

1 3 normal 10100
2 10 normal 0
3 2 normal 12656
4 1 normal 0
5 13 surplus 184
6 7 surplus 7398
7 9 cancel 0
8 17 cancel 0

TOTAL OBJECTIVE VALUE = 30338

Both surplus aircraft have been used, because they incur smaller delays
than the aircraft originally assigned. The result is a signi�cantly improved
�ight schedule.

With this description of the problem instances, this chapter will move on
to set up some basic principles for experimenting with heuristics before
describing the heuristics applied to solve DARP.

6.5 Experimental studies

In Barr et al. (1995) guidelines are set up which encourage the scienti�c
community to follow some basic principles when experimenting and report-
ing on di�erent heuristics. It is argued that experimenting with heuristics
should show the in�uence of di�erent factors. A factor is any controlled
variable in an experiment that in�uences the outcome or result. Such fac-
tors include:

Problem factors are various problem characteristics � such as dimen-
sions, structure, distributions � that can a�ect the results of the
heuristic.

Algorithm factors are for example strategies used in the heuristic
method (e.g. search strategy) and parameters that control such
strategies.

74 Chapter 6. Using Heuristics to Solve DARP

Test environment factors concerns the kind of hardware, software, op-
erating system and for that matter also the programmer used for the
experiments.

Barr et al. (1995) also cite the steps of the experimental process, which
are:

1. De�ne the goals of the experiment
2. Choose the measures of performance and factors to explore
3. Design and execute the experiment
4. Analyze the data and draw conclusions
5. Report on the experimental results

Following the guidelines of Barr et al. (1995), experiments are designed
that only adjust problem and algorithm factors. Factors concerning the
test environment are not change throughout the experiments.

All the algorithms are programmed in C++ using the Gnu compiler avail-
able on the HP Unix operating system version 10.20. The experiments are
all performed on a HP J7000, 440 MHz workstation.

6.6 Iterated Local Search Heuristic

6.6.1 Motivation

The Iterated Local Search (ILS) heuristic is well described in Stützle (1999)
who uses it on QAP. Because of the similarities in the nature of DARP and
QAP, it is reasonable to assume that an ILS heuristic would work well on
DARP. Presumably, several other heuristics would work well too, but as is
the case with many heuristics, there is no well documented way to evaluate
which method will work best.

6.6.2 Implementing the ILS Heuristic

The simpli�ed program structure of the ILS heuristic is shown in �gure 6.4.

As can be seen from the ILS algorithm, there are six main elements to
implementing this heuristic. These will be described in the following:

6.6 Iterated Local Search Heuristic 75

procedure Iterated Local Search
x0

af = GenerateInitialSolution
xaf = LocalSearch(x0

af)
repeat

x′
af = Modify(xaf , history)

x′′
af = LocalSearch(x′

af)
xaf = AcceptanceCriterion(xaf , x′′

af , history)
until termination condition met

end Iterated Local Search

Figure 6.4: Outline of an ILS Algorithm

GenerateInitialSolution: The initial solution is simply the original �ight
schedule including the delays/cancellations.

LocalSearch: This procedure �nds the local optimum in the neighborhood
of the current solution/schedule.

Modify: This procedure makes some modi�cations in the current solution
to enable the LocalSearch procedure to search other regions of the
solution space.

AcceptanceCriterion: This procedure determines which solution to ac-
cept as a starting point for the next iteration.

history: This parameter will be explained at a later point.

termination condition: The termination condition will be time based.
There may be other criteria which help to generate di�erent revised
schedules, but ultimately, the termination criteria will depend solely
on the time allowed by �ight planners.

Below follows a more in depth description of the procedures LocalSearch,
Modify and AcceptanceCriterion.

Choice of LocalSearch

The local search procedure is initiated by a solution xaf in the form of
a �ight schedule. A best improvement strategy is chosen so that all of

76 Chapter 6. Using Heuristics to Solve DARP

the neighbors to xaf are evaluated before the best solution x′
af among the

neighbors to xaf is used as a starting point for the next iteration.

Choice of Modify

The purpose of this procedure is to ensure that the heuristic does not get
trapped in a local optimum. The key to using local search heuristics e�ec-
tively lies in how this is avoided (e.g. the stochastic element of simulated
annealing or the taboo list in taboo search). In very general terms, any
heuristic making use of local search will, once it has reached a local op-
timum, select a new solution from which to conduct a new local search.
This selection is either done by randomly selecting a new solution or by
modifying an existing one.

In this case, Modify changes the current solution xaf by making a number
of random swaps. The local search is then applied to the modi�ed solution
x′

af : Because of the random swaps just made, it is possible for the local
search to �nd new and better local optima. If not, a number of new random
swaps can be made in xaf . This continues until some termination condition
is met. In short, Modify chooses which swaps to make and how many.

Choice of AcceptanceCriterion

The acceptance criterion is very simple. A function Better(xaf , x′′
af) is used

and is de�ned as follows:

xaf := Better(xaf , x′′
af) =

{
x′′

af if f(x′′
af) > f(xaf)

xaf otherwise
(6.3)

f(xaf) is the objective function value of the solution xaf . This is according
to Mladenovi¢ and Hansen (1997) the most common way to de�ne the
acceptance criterion. Allowing moves to worse solutions may yield better
heuristic performance as the case is with most metaheuristics, but this will
not be explored here.

Final ILS Outline

To control the number of swaps made by Modify, a Variable Neighborhood
Search (VNS) is embedded in the ILS framework. VNS is well described

6.6 Iterated Local Search Heuristic 77

in Mladenovi¢ and Hansen (1997) and provides a method of selecting how
many random swaps are made in the current solution.

When a new local optimum is reached, it seems reasonable to search for
better solutions in the vicinity of this optimum before exploring more dis-
tant solutions. In the ILS/VNS framework this means that the number of
random swaps made in the current solution increases every time a better
solution has not been found using LocalSearch. This principle is formalized
in in �gure 6.5 which illustrates the ILS procedure with VNS embedded.
Steps a, b and c correspond to Modify, LocalSearch, and AcceptanceCrite-
rion respectively.

Initialization Variable Neighborhood Search
(1) Select a set of neighborhood structures Nk, k = {1 . . . kmax}
(2) Select an initial locally optimal solution xaf

Main Procedure Variable Neighborhood Search
(1) Set k := 1
(2) repeat

a. generate at random a solution x′
af in the kth neighborhood

of xaf

b. conduct local search from x′
af ; denote locally optimal

solution x′′
af

c. if x′′
af is better than xaf :

continue search from N1, (k := 1)
else:
set k := k + 1

until k = kmax or other termination criterion is met.

Figure 6.5: Outline of the ILS procedure incorporating VNS.

The outline in �gure 6.5 contains two elements that require a brief ex-
planation. Firstly, the variable k needs to be explained. This variable
corresponds to the history variable used in �gure 6.4. Simply put, k keeps
track of how many random swaps to perform in the Modify procedure.

Secondly, Nk needs to be de�ned. The kth neighborhood structure to a
solution xaf is de�ned as:

The neighborhood to a solution xaf where k random swaps have
been made.

78 Chapter 6. Using Heuristics to Solve DARP

The modi�cation of the best solution so far is what makes the ILS heuristic
iterative. By searching neighborhoods of solutions generated from the cur-
rent solution, it is likely that positive characteristics are retained. Often
successive generated neighborhoods (Nk) will be nested, but if kmax is large
enough, the heuristic is likely to eventually escape the local optimum.

6.6.3 Experimental goals

To test the ILS heuristic, a set of experiments have been designed with the
following goals:

• Show the in�uence of kmax on the quality of the solutions produced
and possibly determine which kmax give the best solutions.

• Analyze the degree of improvement as a function of the running time.
• Design experiments that run for a duration of 24 hours in order to
possibly �nd better solutions than have previously been found.

• Show which values of k actually yield improvements during the search.
• Show if there is a correlation between the size of the problem (i.e. the
number of �ights in the schedule) and the best kmax.

The resulting data from the experiments is documented in 2 places: In the
case of the 3-minute test runs, the resulting data can be found in appendix
C.1; the 24-hour test runs can be found in appendix C.2.

Results of the Analysis of the Parameter kmax

The histogram shown in �gure 6.6 illustrates the results from the 3-minute
test runs. Here the number of times the best solution was found for a
given kmax are counted. For example, in 6 of the problem instances, the
best solution found in the 3-minute test runs was found with kmax = 1.
Notice that the total number of observations in �gure 6.6 is greater than
25 (the number of problem instances). The reason for this is that identical
best solutions to certain problem instances were found for several di�erent
values of kmax.

It is reasonably clear, that there is no value of kmax, which repeatedly
�nds the best solution. However, there does seem to be a slight tendency
for smaller values of kmax to result in good solutions. In the histogram in
�gure 6.7 a di�erent principle was applied: If identical best solutions to a

6.6 Iterated Local Search Heuristic 79

Figure 6.6: The number of times the best solution was found for a given
kmax.

certain problem instance were found for several values of kmax, only the
smallest kmax is counted.

Figure 6.7: The number of times the best solution was found for a given
kmax when only the smallest kmax for each problem instance is counted.

The histogram in �gure 6.7 still fails to determine the best value of kmax.
However, smaller values of kmax may on average produce better results. To
analyze the average quality of the solutions found by the heuristic, another
analysis is made. The objective values found for each value of kmax are
normed relative to the best objective value ever found for that test instance.
The normed values for each value of kmax are then accumulated over the

80 Chapter 6. Using Heuristics to Solve DARP

25 test instances and the result of this analysis is shown in �gure 6.8.

Figure 6.8: Graph of the accumulated normed values as a function of kmax.

Due to the very narrow interval of the abscissa axis the analysis only shows
a weak correlation between the quality produced and the various values of
kmax. It seems the quality decreases with an increasing value of kmax, i.e.
the smallest average deviation from the best objective value is found for
kmax = 1.

In table 6.2 the best results found for each problem instance by the 3-
minute ILS test runs are listed. For the sake of comparison, these results
are compared to the best solutions ever found to the problem instances.
With an average gap of only 0.68% between the results, the ILS heuristic
is remarkably close.

Run-time Analysis

In the 3-minute test runs, the best objective value found so far is logged
at speci�ed points in time. This is done in order to see the degree of
improvement as a function of the running-time.

In �gure 6.9 the result of the run-time analysis is illustrated. For each kmax

the total number of seconds spent on �nding a solution for each problem
instance is shown. It is only the time it took to �nd a solution within 5% of
the best objective value ever found that is counted. As it can be seen the
average time it takes ILS to �nd such a solution for each problem instance
increases with increasing kmax. Based on this alone, a small kmax seems
most e�ective in the 3-minute runs.

6.6 Iterated Local Search Heuristic 81

Instance Number of Best Standard Gap
No. Flights Result ILS (in %)

1 38 72697 72697 0.00
2 80 264051 264051 0.00
3 125 402593 398337 1.06
4 166 614664 610489 0.68
5 206 690592 689158 0.21
6 78 201030 201030 0.00
7 158 508363 500279 1.59
8 231 814305 811805 0.31
9 306 1096463 1091002 0.50
10 382 1292384 1277930 1.12
11 111 376766 376766 0.00
12 221 782862 778197 0.60
13 326 1110793 1106776 0.36
14 440 1569761 1564826 0.31
15 559 1763103 1752311 0.61
16 148 437393 423691 3.13
17 290 963745 962878 0.09
18 432 1521388 1521328 0.00
19 588 1954775 1940366 0.74
20 741 2407012 2350704 2.34
21 195 612507 610775 0.28
22 333 1127078 1124859 0.20
23 404 1473042 1458897 0.96
24 562 1773247 1761924 0.64
25 753 2595359 2560917 1.33

Avg. gap between best solution and ILS (3 min): 0.68

Table 6.2: Overview of the best results found by ILS when given a running
time of 3 minutes.

Results of the 24-hour Experiments

The 24-hour test runs were conducted in order to examine how well the
ILS heuristic performed if it were given an increased run-time. A kmax = 8
was chosen to ensure the heuristic a reasonable possibility of escaping local
optima. The results of these test runs can be seen in appendix C.2, however,
they are also summarized in table 6.3.

Interestingly, table 6.3 shows that the ILS heuristic does not �nd better
solutions given a longer run-time. Reasons for this will be explored in
section 6.8.

82 Chapter 6. Using Heuristics to Solve DARP

Figure 6.9: The average number of seconds used by the ILS heuristic to �nd
a solution for each problem instance. By solution is meant one which has
an objective value of more than 95% of the best objective value ever found.
This is done for each kmax.

Analysis of k-values

Besides examining which values of kmax yield good results, it would be
interesting to see which values of k actually yield improvements. The vari-
able k is described in �gure 6.5 and takes on all integer values between
1 and kmax. The observations of k that yield improvements are accumu-
lated during the 24-hour test runs for all the test instances; the resulting
histogram is shown in �gure 6.10.

It can be seen that for k = 1, more than 80% of the improvements are made.
A total of only 16 improvements were made for k ≥ 4, which means that
in at least 9 problem instances, improvements were only made for k ≤ 3.
Furthermore, no improvements were found at all for k = 8, so a kmax > 7
should do nothing to improve the solutions generated by the ILS heuristic.
Figure 6.8 illustrates something else; on average, better solutions are found
with kmax = 8 than with kmax = 7. This does not necessarily indicate

6.6 Iterated Local Search Heuristic 83

Instance Number of Best Standard Gap
No. Flights Result ILS (in %)

1 38 72697 72697 0.00
2 80 264051 263450 0.23
3 125 402593 386736 3.94
4 166 614664 607477 1.17
5 206 690592 688226 0.34
6 78 201030 201030 0.00
7 158 508363 500279 1.59
8 231 814305 803270 1.36
9 306 1096463 1095148 0.12
10 382 1292384 1276954 1.19
11 111 376766 376766 0.00
12 221 782862 778559 0.55
13 326 1110793 1100193 0.95
14 440 1569761 1569378 0.02
15 559 1763103 1763103 0.00
16 148 437393 423691 3.13
17 290 963745 963691 0.01
18 432 1521388 1506861 0.95
19 588 1954775 1954775 0.00
20 741 2407012 2407012 0.00
21 195 612507 610155 0.38
22 333 1127078 1126976 0.01
23 404 1473042 1472573 0.03
24 562 1773247 1761621 0.66
25 753 2595359 2595359 0.00

Avg. gap between best solution and ILS (24 hours): 0.67

Table 6.3: Overview of the results found by ILS when given a running time
of 24 hours.

a contradiction because of the randomized selection of which �ights and
aircraft to swap. Put simply, ILS may simply have been more fortunate
with its swaps when kmax = 8.

Correlation Between Problem Size and kmax

All the attempts to determine the values of kmax that yield the best results
are somewhat inconclusive. There only seems to be a slight tendency for
smaller values of kmax to work better. However, it is possible that there is
a correlation between the values of kmax, which yielded the best solutions,
and the problem instance size. In �gure 6.11 kmax is plotted as a function
of the number of �ights. However, given our present test instances, there
is no signi�cant correlation between the two parameters.

84 Chapter 6. Using Heuristics to Solve DARP

Figure 6.10: Frequency of the k which yielded the actual improvements in
the solution during the search.

Figure 6.11: Plot of the values of the kmax as a function of the number of
�ights. Only the kmax which yielded the best solutions were included.

6.6.4 Conclusions on the ILS Heuristic

The experiments with the ILS heuristic are not able to establish a single
most e�cient value of kmax. On average the best solutions are produced
when kmax = 1, but the quality only decreases slightly when kmax increases.

The run-time analysis showed that the average amount of time spent by
ILS on �nding solutions close to the best solutions ever found increased as
kmax increased.

6.7 The Revised Iterated Local Search Heuristic 85

Experiments that run for a duration of 24 hours do not yield better solutions
on average. In other words, increased running time does not improve the
solutions produced by the ILS heuristic. This may indicate that the ILS
heuristic is unable to escape local optima. It may also indicate that the
ILS �nds solutions quickly that are close to being globally optimal.

The analysis of the k values, which actually yielded improvements, only
con�rmed that kmax should be set to a relatively small value.

There is no correlation between the size of each problem instance and the
associated kmax, which yielded the best solutions

6.7 The Revised Iterated Local Search Heuris-
tic

6.7.1 Motivation

It is reasonable to assume that the quality of the solutions produced by ILS
depend on the initial solution given. In this section, the ILS heuristic is
modi�ed by conducting a Steepest Ascent Local Search �rst. The solution
reached this way is used as the starting point for the ILS heuristic. Possibly,
the Revised Iterated Local Search (RILS) is more e�ective and the optimal
values of its parameters easier to identify.

6.7.2 Implementing the RILS Heuristic

The modi�cations to the structure of the ILS heuristic only concerns the
initials steps. The general outline can be seen in �gure 6.12.

An outline of the procedure SteepestAscentLocalSearch used in the Revised
ILS is described later in �gure 6.16. The other functions are all identical
with the ILS heuristic outline shown in �gure 6.4.

6.7.3 Experimental goals

The goals of experiments with RILS are similar to those of the experiments
with ILS. However, aside from the in�uence of kmax, the RILS heuristic is

86 Chapter 6. Using Heuristics to Solve DARP

procedure Revised Iterated Local Search
x0

af = GenerateInitialSolution
xaf = SteepestAscentLocalSearch(x0

af)
repeat

x′
af = Modify(xaf , history)

x′′
af = LocalSearch(x′

af)
xaf = AcceptanceCriterion(xaf , x′′

af , history)
until termination condition met

end Revised Iterated Local Search

Figure 6.12: Outline of the Revised ILS Algorithm

assumed to behave like ILS. For this reason there are only 2 experimental
goals:

• Show the in�uence of kmax on the quality of the solutions.
• Compare the quality of solutions achieved by RILS and ILS.

The resulting data from the experiments are documented in appendix C.3.

Results of the Analysis of the Parameter kmax

With regard to the optimal value of kmax, there seems to be a clearer
tendency in RILS. In �gure 6.13 a histogram is shown. In this histogram,
the number of times the best solution is found for a given kmax is counted.
As in �gure 6.7 only the smallest kmax, for which the best solution was
found, are counted.

In �gure 6.13 it can be seen that over 50% of the best results were found
with kmax = 1.

As with the Standard ILS, an analysis of the average quality of the solutions
produced is conducted and the result of this analysis is shown in �gure 6.14.

Here the interval on the abscissa axis is even smaller than for the graph
in �gure 6.8. It seems like the Revised ILS produces solutions of the same
quality regardless of the value of kmax. This indicates that the parameter
for this type of problem is super�uous.

6.7 The Revised Iterated Local Search Heuristic 87

Figure 6.13: The number of times the best solution was found for a given
kmax when only the smallest kmax for each problem instance are counted.

Figure 6.14: Graph of the accumulated normed values as a function of kmax.

Results of the RILS Heuristic

The results of the experiments with a time duration of 3 minutes are sum-
marized in table 6.4. As can be seen, the gap between the solutions achieved
by RILS and the best solution is slightly better than that achieved by ILS.

6.7.4 Conclusions on the RILS Heuristic

The in�uence of kmax is virtually non-existent. Figure 6.14 clearly illus-
trates that RILS produces solutions of similar quality regardless of which

88 Chapter 6. Using Heuristics to Solve DARP

Instance Number of Best RILS Gap
No. Flights Result (in %)

1 38 72697 72697 0.00
2 80 264051 264051 0.00
3 125 402593 397670 1.22
4 166 614664 614664 0.00
5 206 690592 690592 0.00
6 78 201030 196291 2.36
7 158 508363 507352 0.20
8 231 814305 808205 0.75
9 306 1096463 1091895 0.42
10 382 1292384 1292384 0.00
11 111 376766 376766 0.00
12 221 782862 776675 0.79
13 326 1110793 1105155 0.51
14 440 1569761 1556952 0.82
15 559 1763103 1748860 0.81
16 148 437393 423560 3.16
17 290 963745 963745 0.00
18 432 1521388 1512786 0.56
19 588 1954775 1934650 1.03
20 741 2407012 2401028 0.25
21 195 612507 608430 0.67
22 333 1127078 1127078 0.00
23 404 1473042 1473042 0.00
24 562 1773247 1769231 0.23
25 753 2595359 2579740 0.60

Average gap between best solution and RILS (3 min): 0.57

Table 6.4: Di�erence between Revised ILS and best result obtained by any
of the heuristics implemented.

kmax is chosen. This renders kmax super�uous from a practical point of
view.

The experiments with the RILS heuristic are not able to show its superi-
ority over the ILS heuristic. A di�erent initial solution is therefore not a
worthwhile modi�cation to the ILS heuristic.

6.8 Steepest Ascent Local Search Heuristic

6.8.1 Motivation

Both ILS algorithms illustrated that reasonably good solutions were found
quickly � typically within the �rst 10 seconds. Moreover, when kmax = 1,

6.8 Steepest Ascent Local Search Heuristic 89

the solutions found by the heuristics were slightly better on average than
those solutions found for all other values of kmax. The interesting thing
about this fact is that an ILS algorithm with kmax = 1 is very similar to a
Steepest Ascent Local Search (SALS) algorithm (see �gure 6.16). The only
di�erence is the function Modify shown in �gure 6.4; when kmax = 1 the
modi�cation made by Modify is very small. If a modi�cation is made that
worsens the solution signi�cantly, then the following LocalSearch function
will most likely undo that modi�cation. Hence, there is very little di�erence
between ILS and SALS for kmax = 1 � except that SALS presumably is
faster.

Another interesting observation is that the 24-hour test runs did not im-
prove the solutions found by either ILS heuristic signi�cantly. One reason
for this could be that the solution space has a shape like that illustrated in
�gure 6.15.

Figure 6.15: Geometric �tness landscape as a function of all combinations
of values assigned to the decision variables

If the �tness landscape of the problem instances looks like that illustrated
in �gure 6.15, then increased computational time is not going to improve
the results signi�cantly. This is because signi�cantly better solutions do
not exist once the "hill has been climbed".

A SALS algorithm "climbs the hill" very quickly, though it easily risks
getting trapped in a local optimum like the one also illustrated in �gure
6.15. However, it might �nd reasonably good solutions very quickly, which
is the motivation for implementing a SALS algorithm.

90 Chapter 6. Using Heuristics to Solve DARP

6.8.2 Implementing the SALS Heuristic

The simpli�ed program structure of the SALS algorithm is shown in �gure
6.16. There are 3 main elements and these are:

procedure Steepest Ascent Local Search (SALS)
xaf = GenerateInitialSolution
repeat

x′
af = LocalSearch(xaf)

xaf = AcceptanceCriterion(xaf , x′
af)

until a better solution cannot be found
end SALS

Figure 6.16: Outline of a SALS procedure

GenerateInitialSolution: The initial solution is the original �ight sched-
ule including the delays/cancellations � as in the ILS algorithm.

LocalSearch: This procedure �nds the best local optimum in the neigh-
borhood of the current solution/schedule.

AcceptanceCriterion: This procedure determines which solution to ac-
cept as a starting point for the next local search. Just like in the
ILS algorithm, the acceptance criterion in SALS uses a function
Better(xaf , x′

af) shown in equation 6.4.

xaf := Better(xaf , x′
af) =

{
x′

af if f(x′
af) > f(xaf)

xaf otherwise
(6.4)

6.8.3 Experimental Goals

There are 2 experimental goals:

• Investigate the quality of the solutions generated by SALS when com-
pared to the solutions generated by the 2 ILS heuristics.

• Investigate the run time of SALS.

6.8 Steepest Ascent Local Search Heuristic 91

Instance Number of Best SALS Gap Time
No. Flights Result (in %) (in secs.)

1 38 72697 59008 18.83 0.01
2 80 264051 255213 3.35 0.09
3 125 402593 375699 6.68 0.12
4 166 614664 594911 3.21 0.50
5 206 690592 675224 2.23 0.90
6 78 201030 196291 2.36 0.03
7 158 508363 507043 0.26 0.26
8 231 814305 803711 1.30 0.63
9 306 1096463 1086028 0.95 1.29
10 382 1292384 1268061 1.88 3.16
11 111 376766 369218 2.00 0.02
12 221 782862 776675 0.79 0.34
13 326 1110793 1100121 0.96 1.12
14 440 1569761 1538055 2.02 2.62
15 559 1763103 1683127 4.54 6.77
16 148 437393 417642 4.52 0.07
17 290 963745 958332 0.56 0.57
18 432 1521328 1506960 0.94 1.70
19 588 1954775 1917987 1.88 5.19
20 741 2407012 2336639 2.92 12.15
21 195 612507 602827 1.58 0.15
22 333 1127078 1104572 2.00 0.63
23 404 1473042 1449719 1.58 0.85
24 562 1773247 1721653 2.91 4.05
25 753 2595359 2547788 1.83 9.42

Average gap between best solution and SALS: 2.22 (secs.) 2.11

Table 6.5: Overview of the SALS heuristic results

Solution Quality of SALS

In table 6.5 the results achieved by the SALS algorithm are listed.

Firstly, there appears to be a something di�erent about problem instance
1. It is the smallest problem instance and presumably one swap can make a
very large di�erence. Thus, SALS probably ended in a local optimum early
and therefore did not make a few more swaps that would have changed
the result signi�cantly. Because the result achieved problem instance 1 is
so di�erent from all other results, it has not been included in any of the
statistics.

In relation to the �rst experimental goal, SALS �nds solutions that are
almost as good as the best solutions found by either ILS heuristic. The
average gap percentage between the best solution ever found and the best
solution found by the SALS and ILS heuristics are listed in table 6.6.

92 Chapter 6. Using Heuristics to Solve DARP

SALS Standard ILS Revised ILS
Average run time 2.11 secs. 3 min. 3 min.
Average gap 2.22% 0.68% 0.57%

Table 6.6: Average gap between the best solution ever found for each problem
instance and the best solution found by SALS and ILS respectively.

It is clear that both ILS heuristics �nd better solutions than SALS. How-
ever, they are only better by a very small margin. The ILS gap percentages
listed in table 6.6 are also based on the best results found. These results
were only found for some values of kmax; as mentioned, it was not possible
to discern any correlation between the problem instance characteristics and
the kmax which yielded the best solutions. In other words, there is no way
of predicting which kmax �nds the optimal solution. It would therefore
be more accurate to compare the SALS results with the average solutions
found by ILS for each problem instance. This is done in table 6.7.

SALS Standard ILS Revised ILS
Average run time 2.11 secs. 3 min. 3 min.
Average gap 2.22% 1.75.% 1.27%

Table 6.7: Average gap between the best solution ever found for each problem
instance and the average solution found by both ILS heuristics.

The di�erence in the quality of the solutions found by SALS and ILS are
very small � even smaller if the SALS results are compared with the av-
erage ILS results. However, it is also important to analyze if they behave
similarly, i.e. how do the result found by SALS compare with those found
by ILS for each problem instances?

As can be seen in �gure 6.17, all three heuristics seem to behave similarly
in all the problem instances � irrespective of the problem size. This fact
also justi�es the gap comparison in �gure 6.7 and 6.6.

It should be noted that the best solutions found to the problem instances
listed in table 6.1 improved the revenue of the original �ight schedule by
59.0% on average. In other words, whether it is ILS or SALS that is used,
the revenue improvement is still approximately 57% on average.

6.8 Steepest Ascent Local Search Heuristic 93

Figure 6.17: The gap between three heuristic approaches and the best solu-
tions ever found as a function of the problem size.

Run-time Analysis

In relation to the second experimental goal, SALS is clearly very fast. ILS
was run for 3 minutes for all problem instances, whereas SALS stops when it
has reached a local optimum. In table 6.5, it takes 2.11 seconds on average
to �nd a local optimum using SALS and never more than 13 seconds. It is
therefore obvious that SALS is a lot faster than ILS.

6.8.4 Conclusions on SALS

All other things equal, the ILS heuristics produce better results than SALS.
However, the speed with which SALS �nds solutions makes it very attrac-
tive. With respect to practical implementation at an airline, SALS would
certainly be the most well-suited algorithm to solve DARP.

94 Chapter 6. Using Heuristics to Solve DARP

6.9 Repeated Steepest Ascent Local Search
Heuristic

6.9.1 Motivation

Given the success of SALS, it seemed reasonable to try SALS with di�er-
ent initial solutions � a Repeated Steepest Ascent Local Search Heuristic
(RSALS). This would most likely allow SALS to �nd other local optima,
possibly even ones which were better than those previously found by ILS.

6.9.2 Implementing the RSALS Heuristic

The simpli�ed program structure of the RSALS algorithm is shown in �gure
6.18.

procedure Repeated Steepest Ascent Local Search (RSALS)
x0

af = GenerateInitialSolution
repeat

xaf = Modify(x0
af)

repeat
x′

af = LocalSearch(xaf)
xaf = AcceptanceCriterion1(xaf , x′

af)
until A better solution cannot be found
x∗

af = AcceptanceCriterion2(xaf , x∗
af)

until Stopping criterion is met
end RSALS

Figure 6.18: Outline of an RSALS procedure

As can be seen from the RSALS algorithm illustrated in �gure 6.18, there
are 5 main elements. These are:

GenerateInitialSolution: The initial solution is the original �ight sched-
ule including the delays/cancellations � as in the ILS algorithm.

Modify: This procedure modi�es the original �ight schedule by making up
to 35 random swaps in the original solution. This assures a di�erent
starting point for each SALS.

6.9 Repeated Steepest Ascent Local SearchHeuristic 95

LocalSearch: This procedure �nds the best local optimum in the neigh-
borhood of the current solution/schedule.

AcceptanceCriterion1: Same as AcceptanceCriterion described for
SALS earlier.

AcceptanceCriterion2: This function ensures that the best solution
found overall is stored. This is again done through a function like
that shown in equation 6.4.

RSALS made 2000 iterations for each problem instance. One iteration
refers to one SALS algorithm like that described in �gure 6.16.

6.9.3 Experimental Goals

There are 2 experimental goals:

• To see if it is possible to �nd better solutions to the 25 problem
instances in table 6.1 than have previously been found.

• Gather data for a �tness landscape analysis.

Results of the RSALS Tests

In table 6.8 the results achieved by the RSALS algorithm are listed.

In several cases RSALS �nds a better solution to a problem instance than
had been found before. On average the solutions found were also very good
with an average gap of only 0.18% between the best solutions ever found
and the solutions found by RSALS. RSALS spent anywhere between 30
minutes and 6 hours on making 2000 iterations in each problem instance,
so for practical purposes it is not very well suited for �ight operations
decision planning.

6.9.4 Conclusions on RSALS

On average RSALS found the best solutions compared with any of the
other heuristics. However, due the computational time needed, RSALS is
not practical. With respect to the �tness landscape analysis, this is covered
separately in the following section.

96 Chapter 6. Using Heuristics to Solve DARP

Instance Number of Best RSALS Gap
No. Flights Solution ILS (in %)

1 38 72697 72697 0.00
2 80 264051 264051 0.00
3 125 402593 402593 0.00
4 166 614664 614116 0.09
5 206 690592 689971 0.09
6 78 201030 201030 0.00
7 158 508363 508363 0.00
8 231 814305 814305 0.00
9 306 1096463 1096463 0.00
10 382 1292384 1287860 0.35
11 111 376766 375777 0.26
12 221 782862 782262 0.00
13 326 1110793 1110793 0.00
14 440 1569761 1569761 0.00
15 559 1763103 1761276 0.10
16 148 437393 437393 0.00
17 290 963745 963534 0.02
18 432 1521388 1512388 0.59
19 588 1954775 1949106 0.29
20 741 2407012 2382363 1.02
21 195 612507 612507 0.00
22 333 1127078 1122299 0.42
23 404 1473042 1471853 0.08
24 562 1773247 1773247 0.00
25 753 2595359 2569895 0.98

Average gap between best solution and RSALS: 0.18

Table 6.8: Overview of the RSALS heuristic results.

6.10 Analysis of the Search Space

The speed with which SALS found a good solution calls for a further anal-
ysis of the nature of the solution space. It is unusual that a relatively
simple SALS algorithm �nds very good solutions compared to customized
heuristics that run for 24 hours. However, the results show this.

In �gure 6.19 �tness landscapes have been made for 5 problem instances
(refer to table 6.1). The data for these �tness landscapes were generated
using the RSALS heuristic described in the previous section.

Each �tness landscape uses the best solution ever found for a particular
problem instance as a reference point. Technically this reference point is the
point (0,0) in each �gure. All the other points represent other local optima
found by RSALS. In all, there are 2000 such local optima in each �tness
landscape. For each of these local optima the distance to the reference

6.11 Conclusion on Chapter 6 97

optimum is calculated. Here distance is a simple count of the number of
assignments in the local optima, which are di�erent from the assignments
in the reference optimum. This value is plotted against the numerical
di�erence in the corresponding objective values. The result is a scatter
diagram, which may show some correlation between the objective values
and the distances.

In all the �tness landscapes in �gure 6.19 there is a remarkably clear corre-
lation: The further the distance to the best solution ever found, the worse
the objective values get. To illustrate this, a linear �t has been made in all
the �tness landscapes. This �t does not explain so much of the observed
variation. However, the tendency is clear and statistically signi�cant. In
other words, the �tness landscapes give a strong indication that the solution
space may indeed look like that illustrated in �gure 6.15.

It can be noticed in each �tness landscape that local optima seem to be
grouped a certain minimum distance from the reference point. In �gure
6.19(a) there are no local optima with a distance of less than 20 to the
reference optimum. Although no data exists to prove it, it is reasonable
to assume that the common distance between all local optima is at least
20 in �gure 6.19(a). This is also supported by the fact that the minimum
distance to the reference optimum increases as the problem size increases:
It seems reasonable that the common distance between local optima in
large problems is greater than that of small problems.

6.11 Conclusion on Chapter 6

It is clear that all the heuristics e�ectively are able to solve DARP. More
speci�cally, two di�erent ILS heuristics on average found better solutions
than SALS, though by a very small margin. In fact, the margin is so small
that from a practical point of view, it does not make any signi�cant dif-
ference. SALS was extremely fast compared to the ILS algorithms, which
makes it very suitable for disruption management. The speed with which
the 25 problem instances were optimized would indicate that a series of
further considerations could be added while retaining acceptable computa-
tional time.

A �tness landscape analysis clearly justi�ed using a SALS algorithm; pro-
vided the landscapes look like that shown in �gure 6.19, SALS can be

98 Chapter 6. Using Heuristics to Solve DARP

expected to do well. However, when further considerations are added,
the �tness landscape may change rendering SALS less e�ective. Further
analysis would be needed to con�rm this. In chapter 7 a number of such
considerations are discussed.

6.11 Conclusion on Chapter 6 99

(a) Fitness landscape for problem
instance 4

(b) Fitness landscape for problem
instance 9

(c) Fitness landscape for problem
instance 14

(d) Fitness landscape for problem
instance 19

(e) Fitness landscape for problem
instance 24

Figure 6.19: Fitness landscapes for 5 of the problem instances listed in table
6.1.

100 Chapter 6. Using Heuristics to Solve DARP

101

Chapter 7

Further Development of the
DAR-heuristic

The previous chapter described a successful implementation of a DAR-
heuristic. However, a lot of considerations were not included explicitly. It
seemed reasonable to test the merits of the heuristic approach with only
the basic elements of DARP, before adding more detailed considerations.
Such considerations include:

• Aircraft balance
• Flight schedule structure
• Swap costs
• Maintenance
• Airport curfews
• Passenger �ow
• Multiple �eets
• Ferrying of aircraft

This chapter will describe how these considerations can be included in a
DAR-heuristic. It should be mentioned that none of these considerations
have been implemented: Doing so is in some cases relatively easy, but to
verify the e�ect of adding more considerations, more realistic problem in-
stances are needed. These are very di�cult and time consuming to create
and are in themselves not very interesting with regard to this thesis. How-
ever, a description of how the considerations could be added is interesting.

102 Chapter 7. Further Development of the DAR-heuristic

7.1 Aircraft Balance

A certain number of aircraft are supposed to end at each particular airport
according to the original �ight schedule. If the originally intended number
of aircraft end at each airport, then there is said to be aircraft balance.
Aircraft balance is necessary in order to service out-bound �ights the next
day and if there is an imbalance, some of these will have to be cancelled.

None of the DAR-heuristics implemented in chapter 6 explicitly considered
aircraft balance. it is however, possible to include such considerations,
although it should be noted that there is a direct trade-o� between aircraft
balance and �ight cancellations.

Imbalance only arises when �ights are cancelled. A simple swap between
two normal aircraft will never cause an imbalance because the same number
of aircraft end at each airport. However, a single swap between a normal
aircraft and a cancellation aircraft will most often cause an imbalance. The
trade-o� between cancellations and imbalance is illustrated in �gure 7.1 and
7.2.

Figure 7.1: Basic �ight schedule.

Figure 7.1 illustrates a basic original schedule. There are two links in this
schedule � each being initiated by aircraft 1 and 5 respectively. In case

7.1 Aircraft Balance 103

Figure 7.2: Basic �ight schedule with 2 di�erent swaps.

A in �gure 7.2 a swap has been made between aircraft 1 and 2. If each
link is examined it should be clear that one aircraft ends at each airport
� in accordance with the original solution. However, in case B a swap is
made between aircraft 2 and cancellation aircraft 4. Now both links end in
airport 1, i.e. an imbalance has occurred.

Therefore, if the possibility of imbalances is unacceptable, then the heuristic
is limited to a certain type of cancellation. This kind of cancellation is
illustrated in �gure 7.3.

This �gure illustrates that cancellations can be made, which do not cause
imbalances to occur. Aircraft 1 has been swapped with cancellation aircraft
4, however, the same number of aircraft still end at airport 1. In short,
these cancellations are possible if the cancelled �ight is part of a link that
ends at the airport from which the cancelled �ight should have departed,
e.g. the link initiated by aircraft 1 ends at airport 1 and �ight 1 likewise
departs from airport 1. Changing the current DAR-heuristic design to only
make this kind of cancellation is possible and relatively uncomplicated.

Some types of cancellation are not possible if the above method is used.
Again this is best explained in an illustration as in �gure 7.4. Here a set of
cancellations is made: Flights 2 and 6 have been cancelled, but one aircraft
still ends at each airport, thus maintaining the aircraft balance.

This type of cancellation cannot be made given the current neighborhood
de�nition (see equation 6.1) and the restriction that no swaps may cause

104 Chapter 7. Further Development of the DAR-heuristic

Figure 7.3: Example of a cancellation in the basic �ight schedule which does
not cause an imbalance.

Figure 7.4: Example of a set of cancellations that does not cause an imbal-
ance.

an imbalance to arise. The reason is that a neighbor to a solution is found
by making one swap � and making just one of the two swaps in �gure 7.4
will cause an imbalance. This limitation on possible cancellations may not
be a serious problem. This depends on the structure of the �ight plan as
will be discussed in section 7.2.

7.1 Aircraft Balance 105

It should be mentioned that the set of swaps in �gure 7.4 could be made if
the neighborhood de�nition was changed to include all those solutions that
can be reached by making two swaps. The disadvantage of this approach is
a signi�cant increase in computational time; in the worst case, the number
of neighbors increase from n2 to n4 where n is the number of �ights (see
section 6.3.1).

7.1.1 Aircraft Balance in the Current DAR-heuristic

Before altering the current DAR-heuristic, it would be interesting to eval-
uate how it actually performs with regard to aircraft balance. For this
purpose the RSALS-heuristic described in section 6.9 is modi�ed to count
the aircraft shortfall at each airport in the revised �ight schedule. Short-
fall here refers to the di�erence between the original and revised number
of aircraft that end at each airport.

In table 7.1, the total shortfall is listed for each of the problem instances de-
scribed in table 6.1. The objective function, costs, parameters and settings
are the same as those used in the RSALS-heuristic. The only di�erence is
that 5 iterations are made.

As can be seen in table 7.1 there is an aircraft shortfall in most problem
instances. There also seems to be a correlation between the size of the
problem and the size of the shortfall, which is reasonable to expect. A �ight
planner would probably consider most of these revised �ight schedules to be
of poor quality. However, the size of the aircraft shortfall is � as explained
� directly associated with the number of cancellations. Therefore, if the
cancellation cost is increased, fewer cancellations should appear along with
a decreased aircraft shortfall. The cancellation cost is therefore increased
from 1.5 to 2.5 times the �ight revenue and all problem instances are solved
again using the exact same approach as before. The result can be seen in
table 7.2.

As shown, the total aircraft shortfall decreases from 80 to 61 when the
cancellation cost is increased. Whether these revised �ight schedules are
more acceptable than those in table 7.1 is very di�cult to estimate. Flight
planners might actually be willing to accept the shortfall in table 7.2 if
the associated �ight schedule resolves a large number of problems. They
may also just prefer that cancellations are made so that aircraft shortfall
does not occur at all � even if this means that there are more cancellations

106 Chapter 7. Further Development of the DAR-heuristic

Instance Aircraft
No. shortfall

1 0
2 0
3 1
4 1
5 1
6 1
7 1
8 2
9 2
10 4
11 1
12 4
13 4
14 1
15 5
16 3
17 4
18 4
19 7
20 8
21 3
22 4
23 4
24 8
25 7

Total: 80

Table 7.1: Aircraft shortfall found in 25 problem instances using the
RSALS-heuristic.

and increased delays. This will ultimately be up to the airline using a
DAR-heuristic of this kind.

It should also be noted that simply increasing the cancellation cost to a
point where shortfalls never occur will not work. This will in e�ect render
the DAR-heuristic incapable of making any cancellations at all, which of
course is unacceptable.

7.2 Flight Schedule Structure 107

Instance Aircraft
No. shortfall

1 2
2 0
3 2
4 1
5 1
6 1
7 2
8 2
9 1
10 3
11 0
12 1
13 2
14 2
15 5
16 0
17 2
18 2
19 3
20 7
21 2
22 2
23 3
24 5
25 4

Total: 61

Table 7.2: Aircraft shortfall found in 25 problem instances when the can-
cellation cost is increased.

7.2 Flight Schedule Structure

As mentioned in section 6.4, �ights are distributed equally across the air-
ports in all the problem instances. This is not realistic from a practical
point of view.

Most airlines structure their �ight plans in a hub-and-spoke system.
Here �ights are concentrated around a few large airports from which a
whole range of destinations are serviced. The central airport is referred to
as the hub and the other destinations are the spokes. There are typically
very few �ights between those destinations; travelling between them will

108 Chapter 7. Further Development of the DAR-heuristic

be done via the hub airport. A simple hub-and-spoke system is illustrated
in �gure 7.5.

Figure 7.5: A hub-and-spoke �ight schedule.

This �gure illustrates that if a person wishes to travel from A to B, this
person will �rst have to �y to the hub airport and then to destination B. It
should clear that a lot of �ights are concentrated at the hub for this reason.

The concentration of �ights around a few hub airports increases the aircraft
density at these airports (see section 6.4.2) and consequently the neighbor-
hood size. The local search will therefore have to search through a greater
number of solutions, requiring increased computational time. It is therefore
expected that a hub-and-spoke �ight schedule structure will increase the
time it takes to �nd a local optimum using the SALS or RSALS.

A number of problem instances were generated where 50% of all �ights
were concentrated around three airports. These problem instances were
similar in size to those in table 6.1. The computational time needed to �nd
one local optimum was 2-4 times greater than the time it took to �nd a

7.2 Flight Schedule Structure 109

local optimum in the problem instances with an even �ight distribution.
The average computational time needed to �nd local optima in these prob-
lem instances was 2.22 seconds (see table 6.5). It is therefore reasonable
to expect an average increase in computational time to approximately 10
seconds given hub-and-spoke �ight schedule structure.

Another important in�uence that the �ight schedule structure has on a
DAR-heuristic involves cancellations. In hub-and-spoke systems links are
typically made up of �ights between the same two airports, namely the hub
airport and a spoke airport. This is illustrated in �gure 7.6.

Figure 7.6: A typical link in hub-and-spoke �ight schedule systems.

As mentioned in section 7.1 some cancellations can be made which do not
cause aircraft imbalance to occur. In �gure 7.6 �ights 1, 2 and 3 can all
be cancelled while maintaining aircraft balance. Suppose aircraft 1 is very
delayed, hence delaying the entire link signi�cantly. A �ight controller
would probably choose to simply cancel �ight 1 and 6 so that the aircraft
could "catch up" with the remaining �ights in the link. It would of course
be preferable if the DAR-heuristic behaved the same way.

If a �ight �ight is delayed beyond a certain time limit it will be cancelled
by the DAR-heuristic. If it is the �rst �ight in a link which is delayed, all

110 Chapter 7. Further Development of the DAR-heuristic

down-line �ights will also be delayed. In that case, the heuristic will always
choose to cancel the �rst �ight, thus cancelling the entire link. By doing so,
it removes the largest possible delay by making only one swap (see �gure
7.7).

Figure 7.7: One swap which cancels the entire original link.

Revenue of cancelled �ights does not add to the objective function, so the
heuristic will try to "un-cancel" some of the �ights just cancelled. Suppose
the delay of each �ight becomes acceptable if aircraft 1 is assigned to �ight
2. This corresponds to a swap between aircraft 1 and 2 and by making this
swap all �ights except 1 and 6 are again active. This is illustrated in �gure
7.8.

In other words, if the cancellations that do not cause imbalances are allowed
and the �ight schedule has a hub-and-spoke structure, the DAR-heuristic
can be expected to arrive at solutions which are in line with common �ight
control principles. Indeed, it seems that a hub-and-spoke structure makes
cancellations much easier to handle while taking aircraft balance into ac-
count.

7.3 Swap Costs 111

Figure 7.8: One swap restores 4 �ights and maintains aircraft balance.

7.3 Swap Costs

In dedicated aircraft recovery literature, the concept of swap costs is often
mentioned. However, the purpose of these is not easily de�ned and using
them in a meaningful way is not as straightforward as it may seem.

Swap costs are �rst of all used to control the number of swaps made in
a revised �ight schedule. In general, changes to a �ight schedule are un-
desirable because of the di�culties involved. A cost can be assigned to
all swaps that encourages a heuristic to make as few changes as possible.
Unfortunately, using swap costs is not that simple. Suppose an aircraft is
swapped to a new link and later swapped back again to its original link.
This is exactly what happens in �gure 7.7 and 7.8. The latter swap is very
attractive, because it returns the aircraft to its original link (see section
7.4). Therefore, it does not make sense to punish the latter swap with a
swap cost. On the contrary, a swap cost should � if anything � encourage
the latter swap.

Consequently, the challenge with regard to swap costs is to discourage swaps
in general while encouraging swaps that return an aircraft to its original

112 Chapter 7. Further Development of the DAR-heuristic

link. Applying costs uniformly to all swaps will not achieve this.

A possible method of dealing with this challenge is to update swap costs
every time the �ight schedule is changed. This may be possible to do
automatically, but it will make the heuristic slower. It would instead be
faster if swap costs were static. This is possible if swap costs are a function
of the actual aircraft and the �ight to which it is assigned. This way, swaps
that assign aircraft to any of the �ights in its original link can be associated
with zero cost. A swap cost matrix of this kind would be static, because
it is based on the original links � which of course do not change. In �gure
7.8, this means that the assignment of aircraft 1 to �ight 2 has no swap
cost. The objective function introduced in section 6.3.3 is easily modi�ed
to include the swap costs:

Objective =
∑
a∈A

∑
f∈F

rf · xaf

−
∑
a∈A

∑
f∈F\Fc

αf · DF · rf · daf · xaf

−
∑
a∈A

∑
f∈Fc

βf · rf · xaf

−
∑
a∈A

∑
f∈F

saf · xaf (7.1)

The parameter saf was de�ned in section 4.6. In summary, swap costs
are relatively easy to implement that discourage swaps in general while
encouraging aircraft to remain/return to their original link.

7.4 Maintenance Considerations

Some aircraft have to end at a speci�c airport for maintenance purposes.
Including such considerations will complicate the swapping procedure. In
�gure 7.2, a swap is made in case A that respects aircraft balance restric-
tions. However, the two aircraft end at new airports after the swap. Any
maintenance restriction on either aircraft would therefore be violated.

Earlier in this chapter, methods to handle aircraft balance and swap costs
were discussed. Both of these methods increase the likelihood that aircraft
end at their original �nal airports. However, it may still be necessary

7.4 Maintenance Considerations 113

to speci�cally include maintenance considerations in the DAR-heuristic.
Below is a description of how this can be done.

Not all aircraft will have maintenance restrictions. The aircraft which do
not have these restrictions are in principle free to end in any airport. This
freedom represents combinatorial possibilities that the DAR-heuristic can
use � and should use. Consequently, swaps between aircraft without main-
tenance restrictions are made in some cases even if they end in di�erent
airports.

Those aircraft with maintenance restrictions are now limited to swaps such
as those illustrated in �gure 7.7 and 7.8, i.e. swaps that do not cause an
aircraft to end in new airports. However, there is one more possibility.

When swaps are made involving aircraft with maintenance restrictions, a
simple search could be conducted. This search would try to �nd swaps
further down-line in the link, which could return the aircraft to a link �
possibly its own � that ended at the original �nal airport. This is illustrated
in �gure 7.9, 7.10 and 7.11

Figure 7.9: Two aircraft with maintenance restrictions.

Implementing the possibility of �nding swaps that return aircraft to their
original �nal airports is relatively easy. Every time a swap is made involv-
ing aircraft with maintenance restrictions, this feature is activated, so the
current neighborhood de�nition does not need to be changed. If no swaps
are found which respect the restrictions, it is simply not carried out.

114 Chapter 7. Further Development of the DAR-heuristic

Figure 7.10: A single swap violates the maintenance restrictions because
neither aircraft end at their original �nal airport.

Figure 7.11: By searching through �ights further down-line in each link, a
swap is identi�ed that returns each aircraft to their original �nal airports.

7.5 Airport Curfews

Most airports in Europe have curfews, i.e. no aircraft can land or take
o� for a certain period of time every night. Some �ights may therefore not
be allowed to take o� if they are delayed: The curfew at the origin airport
may be violated or the aircraft will arrive too late at its destination airport.
Flights that violate airport curfews will under normal circumstances be

7.6 Passenger Flow 115

cancelled.

Including airport curfew considerations in a DAR-heuristic is relatively
easy. In its current form the DAR-heuristic re-evaluates the entire link of
both involved aircraft every time a swap is made. This includes updating
departure and arrival times. Given this information, it would be simple
to cancel those �ights in each link that violate curfew restrictions. In this
way, the cost of a given swap would include the cancellation costs needed
to respect curfews.

7.6 Passenger Flow

There are two aspects involved when discussing passenger �ow. Firstly,
aircraft may not be assigned to �ights if there are more passengers than
seats. Secondly, when cancelling or delaying aircraft, some passengers will
miss their connecting �ights further down-line.

The �rst aspect is easily considered in a DAR-heuristic. When an aircraft is
assigned to a �ight, the seat capacity is simply compared with the number
of passengers. If there are too many passengers, the swap is not allowed
and vice versa.

However, the second aspect is more di�cult to deal with. It is most likely
impossible to cancel and delay aircraft without upsetting the itinerary
of some passengers. The objective would therefore be to minimize these
itinerary disturbances when constructing a revised �ight schedule. How-
ever, including such an objective explicitly would probably not improve the
revised �ight schedule signi�cantly: Itinerary disturbances arise because of
delays and cancellations, which is exactly what the DAR-heuristic attempts
to minimize. In other words, the objective of minimizing itinerary distur-
bances is almost identical with the objectives in the current DAR-heuristic.
It therefore seems reasonable not to include speci�c itinerary considerations
at this stage in the DAR-heuristic.

7.7 Multiple �eets

Certain aircraft cannot be swapped and there may be numerous reasons for
this. Some reasons that have not been mentioned yet are associated with

116 Chapter 7. Further Development of the DAR-heuristic

the type of aircraft. Airlines typically have several �eets consisting of dif-
ferent aircraft types. Aircraft in di�erent �eets can often not be swapped,
e.g. the seating arrangements in two aircraft may be very di�erent. Like-
wise, a number of other technical circumstances may prevent aircraft from
being swapped. Some of these circumstances are exotic and impossible to
incorporate in a heuristic because they rarely arise. Other technical cir-
cumstances are general enough to be included, e.g. the gates at which two
aircraft are located may exclude the possibility of swapping them.

General technical circumstances can be considered by the heuristic. This
would simply be done through swap costs like those described in section 7.3,
i.e. very large swap costs can be assigned to swaps which are unacceptable.
This could also be made interactive through cost multipliers, such as it was
described in section 6.3.3.

7.8 Ferrying of Aircraft

Another concept mentioned often in dedicated aircraft recovery literature
is ferrying aircraft. This feature may be a interesting from a theoreti-
cal point of view, but apparently not in normal �ight control. At British
Airways, ferrying is almost never considered an option due to the cost
of carrying out �ights with no passengers. The circumstances in which
British Airways actually do ferry aircraft are always extraordinary. There-
fore, including the option of ferrying in a DAR-heuristic would be virtually
impossible, not to mention super�uous.

It is possible that other airlines use ferrying often enough to justify the
ferrying feature. If so, the feature is relatively easy to implement: The
set of candidate �ights considered for each aircraft is simply augmented to
include all �ights, including those at other airports. However, as explained
in section 6.4.2 the computational time increases when the size of the can-
didate sets is increased. In the extreme, all aircraft could be assigned to all
�ights. This would increase the size of the solution space dramatically and
most likely increase the computational time accordingly (see section 6.3.1).

7.9 Conclusion of Chapter 7 117

7.9 Conclusion of Chapter 7

To make a DAR-heuristic function in a real context, a number of consid-
erations must be added to the heuristic implemented in chapter 6. These
considerations are all discussed in this chapter and a description of how
they can be included is given. It appears relatively simple to add most of
these to the current DAR-heuristic. In short, the simplicity of the underly-
ing network and the heuristic design seems to allow the necessary �exibility
to add the extra considerations.

118 Chapter 7. Further Development of the DAR-heuristic

119

Chapter 8

The Integrated Crew and
Aircraft Recovery Problem

Chapters 6 and 7 described a heuristic approach to solving DARP where
only aircraft are considered. This chapter describes a possible method of
integrating crew and aircraft considerations in an Integrated Crew and Air-
craft Recovery Problem (ICARP) using heuristics. A more exact de�nition
of ICARP was given in chapter 2.

8.1 Motivation

Crew and aircraft considerations with respect to disruption management
are completely interconnected. Decisions concerning only one of the two
will most likely a�ect the other, i.e. rotating crews might delay an aircraft
if the relevant crews are not made available on time. Conversely, rotating
aircraft might delay crews, which again may delay other aircraft. In other
words, the DAR-heuristic described in the previous two chapters can only
provide a revised �ight schedule, after which �ight planners have to con-
struct new crew pairings and rosters. For this reason, �nding methods for
considering crew and aircraft simultaneously will ultimately help provide
�ight planners with a revised aircraft and crew schedule (henceforth re-
ferred to as the �ight schedule), thus increasing the speed with which they
can repair the schedule disruptions.

120 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

8.2 Goals for Chapter 8

The purpose of this chapter is to describe a method of including both crew
and aircraft considerations in an ICAR-heuristic.

8.3 De�nition of Network

The ICAR-heuristic is based on an underlying network (see �gure 8.1). This
network is identical with the DARP-network in �gure 6.1 except for the
addition of crew nodes. In other words, all features pertaining to aircraft
and �ights remain unchanged in relation to their de�nition given in chapter
6.

Notice that all the �ight nodes are placed at the point in time when they
should have left, whereas the aircraft nodes are placed at the point in time
where they are actually ready. Hence, an upward arc indicates a delay.
Notice also that this is not true for the crew nodes. These are placed close
to the aircraft nodes, from which the relevant crew disembarks, but their
location does not indicate the time at which the crew units are ready.

The crew nodes in �gure 8.1 are simpli�ed representations. In fact each
crew node holds information about the assignment of each crew unit.
Units are one or more crew members of the same crew type. There are
several types of crew, i.e. captains, 1st pilots, stewardesses, etc.. A certain
number of units of each type are required to operate an aircraft. However,
the whole crew on an aircraft does not necessarily stay together during
the entire working day. In principle, each individual crew unit could be
assigned to a distinctly di�erent pairing. For example, 2 stewardesses who
are both assigned to �ight 1 in �gure 8.1 are not necessarily both assigned
�ight 5 at airport 2.

Crew nodes are placed so that they are close to the aircraft nodes, from
which the relevant crew units disembark, but the location does not indicate
the time at which the crew units are ready.

In this chapter, it is assumed that only 2 crew types exist, namely cockpit
crew and cabin crew. It is furthermore assumed that 1 cockpit crew unit
and 2 cabin crew units are needed to operate an aircraft. In �gure 8.2, a
closeup of �gure 8.1 is shown to exemplify the underlying crew node design.

8.3 De�nition of Network 121

Figure 8.1: Underlying network to use with an ICAR-heuristic that includes
both aircraft and crew considerations

As can be seen in �gure 8.2, the crew node actually consists of the 3 crew
units required to operate the aircraft. The arcs pointing to these unit
nodes will always come from the same aircraft � the logic being that once
the aircraft has landed and the crew units have disembarked, they are all
placed in the crew node symbolizing their availability. In the case of crew
supply nodes, there is no upper bound on the number of crew units. All
crew units that initiate their pairing from a particular airport are placed in
the supply node. Likewise, depending on the number of �ights departing
from a particular airport, a suitable number of standby crew units of all
types are placed here. Notice that crew units are always assigned to �ights
� never to aircraft.

122 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Figure 8.2: Closeup of �gure 8.1 to illustrate the exact crew node design.

In �gure 8.1, crew pairings are ultimately assigned to sink nodes just like
aircraft. Each individual crew unit is supposed to end at a certain airport
at the end of a working day. By using the sink nodes, each crew unit can be
tracked to its �nal destination. It is a speci�c goal of the heuristic that as
many of the crew units as possible end at their original �nal destinations.
By ending each crew unit in a sink node, this can be achieved.

An important di�erence between aircraft links and crew pairings should be
noted here. As discussed in chapter 2, when aircraft are rotated it is less
important that an aircraft ends at its original �nal destination as long as
some other aircraft does. More importantly, a certain number of aircraft
should end at a particular airport. With crew units a similar but tighter
restriction exits. Here the speci�c crew unit has to end at a speci�c airport.
As will be discussed in this chapter, this limits the possibilities of rotating
crew signi�cantly and thus, makes the dedicated crew recovery problem
more complex and di�cult to solve.

8.4 Outline of the ICAR-heuristic 123

8.4 Outline of the ICAR-heuristic

The ICAR-heuristic can be summed up as follows: (i) Optimize the �ight
schedule with respect to aircraft only; (ii) Modify the crew pairings and
rotations to accommodate the revised �ight schedule found in the previous
step; (iii) Repeat this process to produce di�erent revised �ight schedules.

The idea is that the SALS heuristic used to solve DARP in chapter 6 is
applied to step (i) above. SALS is extremely fast when applied to DARP so
this hopefully leaves enough time to �nd suitable crew pairings and rosters
in step (ii). A general outline of the ICAR-heuristic is shown in �gure 8.3.
Note that x refers to a complete �ight schedule.

procedure ICARP
x0 = GenerateInitialSolution
repeat

x = ModifyAircraftAssignments(x0)
repeat

x′ = LocalSearchAircraft(x)
x = AcceptanceCriterion1(x, x′)

until A better solution cannot be reached by
rotating aircraft only.

repeat
CrewType = SelectCrewType()
IdentifyPointsOfCon�ict(x, CrewType)
repeat

x′ = ResolveCon�icts(x, CrewType)
x = AcceptanceCriterion2(x, x′)

until A better solution cannot be reached by
rotating this type of crew only.

until All crew type pairings have been optimized.
x∗ = AcceptanceCriterion3(x, x∗)

until Stopping criterion is met
end ICARP

Figure 8.3: Outline of the ICAR-heuristic procedure.

As can be seen from the ICAR-heuristic illustrated in �gure 8.3, there are
9 main elements. These are:

124 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

GenerateInitialSolution: The initial solution consists of the original
�ight schedule including any delays/cancellations that may exist.

ModifyAircraftAssignments: This procedure modi�es aircraft assign-
ments in the original schedule by making a number of random swaps.
This assures a di�erent starting point for each iteration. An iteration
is considered to be exactly one pass through the outermost loop in
�gure 8.3.

LocalSearchAircraft: This procedure �nds the best local optimum in the
neighborhood of the current solution/schedule with respect to aircraft
only.

AcceptanceCriterion1: Same as AcceptanceCriterion described for
SALS earlier (see section 6.8.2).

SelectCrewType: This function selects a crew type, whose pairings and
rosters have not yet been optimized, and returns this type to the
variable CrewType.

IdentifyPointsOfCon�ict: Once a local optimum has been found con-
sidering aircraft only, there will be con�icting crew assignments which
have to be resolved. This function identi�es these con�icts for each
crew type.

ResolveCon�icts: While the aircraft roster is retained, this function at-
tempts to resolve all points of con�ict for each crew type.

AcceptanceCriterion2: If a feasible or better crew pairing modi�cation
is found, this function returns the revised solution.

AcceptanceCriterion3: This function ensures that the best solution
found overall is stored. This is again done through a function like
that shown in equation 6.4.

Aside from IdentifyPointsOfCon�ict, ResolveCon�icts, AcceptanceCrite-
rion2 and SelectCrewType the functions described above are basically the
same as those described for the SALS heuristic in section 6.8. The follow-
ing section describes the general idea behind these 4 functions and the how
they are integrated in the ICAR-heuristic.

8.5 The ICAR-heuristic � In Words 125

8.5 The ICAR-heuristic � In Words

This section is devoted to explaining the ideas behind the outline illustrated
in �gure 8.3. This outline can also be formulated in words, as it is done in
�gure 8.4. The remaining part of section 8.5 will describe each of the steps
here in detail.

1. Generate an initial �ight schedule.
2. Optimize the �ight schedule with respect to aircraft only.
3. For each crew type, �nd all points of scheduling con�icts.
4. Resolve the con�icts to the furthest extent possible.
5. Repeat these steps for di�erent initial solutions.

Figure 8.4: ICAR-heuristic outline - in words.

8.5.1 Step 1: Initial Solution

The initial solution used by the ICAR-heuristic is the original �ight schedule
including all delays and cancellations of crew and aircraft. This means that
all the aircraft to �ight assignments and crew to �ight assignments are
retained in the original schedule � even if the original schedule is infeasible.
This approach allows the heuristic to �nd revised �ight schedules, which
di�er as little as possible from the original schedule.

8.5.2 Step 2: Dedicated Aircraft Recovery

The ICAR-heuristic outline is based on the assumption that resolving air-
craft disruptions is a �rst priority, followed by resolving crew disruptions.

In theory there are 2 other approaches. The most obvious one is that the
heuristic could attempt to consider crew and aircraft rotations simultane-
ously. However, the complexity of doing so is vast due to the endless number
of combinatorial possibilities � most of which will result in infeasible �ight
schedules. It is also di�cult to de�ne a meaningful neighborhood given
the current heuristic design, because aircraft, cockpit crew and cabin crew
cannot be swapped indiscriminately. Possibly, the use of constraint pro-
gramming could be used to construct neighborhoods consisting of feasible

126 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

solutions, but certainly this would be a di�cult task. Finally, evaluating
solutions is time consuming, especially if both the aircraft and crew assign-
ments are evaluated. Given the number of combinatorial possibilities and
the evaluation time, considering both aircraft and crew assignments simul-
taneously, seems a very di�cult approach to solving ICARP � certainly
within the framework used in this thesis.

The other alternative approach is, of course, to consider crew assignments
before aircraft assignments such as Teodorovi¢ and Stojkovi¢ (1995) did
in their attempt to solve ICARP. Here they argued that this approach
resulted in faster solution time. However, it seems more reasonable to
resolve the problem with the least options �rst, which is why their approach
seems unattractive. Flight planners have to resolve aircraft disruptions by
rotating aircraft that are already in use. Airlines rarely have a surplus
aircraft due to the costs of having one, so using such an aircraft to resolve
a disruption is almost never an option. For similar reasons, dead-heading
aircraft is not an option that airlines use. The only 3 options are therefore
to delay, cancel and swap aircraft. When crew disruptions are resolved,
there are 5 options available: delaying, placing crew on standby, swapping,
using reserve crews and dead-heading crews. In other words, �ight planners
have more options when they try to resolve crew disruptions than aircraft
disruptions. It therefore makes sense to resolve the aircraft disruption �rst
and then see if feasible crew rosters/pairings can be made on that basis.

Teodorovi¢ and Stojkovi¢ (1995) may be correct that rotating crew before
aircraft results in faster solution times. However, their method of doing so
leaves a lot of unanswered questions. In particular it is not explained how
they retain as much of the original schedule as possible � one of the most
important quality parameters in crew and aircraft recovery for European
airlines. Likewise, the extent to which their algorithm is able to minimize
the number of cancellations and the delays is not discussed explicitly � it is
only mentioned that these are the main priority. For these reasons, it is very
di�cult to evaluate the work of Teodorovi¢ and Stojkovi¢ (1995). Despite
their conclusions, it is reasonable to assume that considering aircraft before
crew can lead to a fast ICAR-heuristic when considering the successful
implementation of the DAR-heuristic in chapter 6.

At British Airways they typically consider aircraft before crew when dis-
ruptions occur. The disruptions are resolved for aircraft �rst after which a
suitable crew solution is found. If a revised crew roster cannot be found,
a di�erent solution is found for the aircraft disruption and the pattern is

8.5 The ICAR-heuristic � In Words 127

repeated. Naturally some disruptions occur which involve crew only, i.e.
if one crew is delayed, a reserve crew can be used instead and the �ight
plan remains unchanged. However, in such cases a mathematical tool like
a heuristic may be super�uous and the disruption can instead be resolved
manually by a �ight planner. This heuristic is designed to resolve those
disruptions, which cause a series of delays/cancellations due to the inter-
connection between aircraft, �ights and crews.

Initially a SALS heuristic exactly like the one in section 6.8 is used to �nd
a local optimum for the aircraft assignments only. Throughout SALS the
crew units remain assigned to their original �ights � even if the �ights are
signi�cantly delayed or even cancelled.

8.5.3 Step 3: Identify Points of Con�ict

Four types of con�icts may arise during step 2 in the ICAR-heuristic pro-
cedure. These con�icts are:

1. Crew may be assigned to �ights, which have been cancelled.
2. Some �ights may have an insu�cient number of crew units assigned.
3. After the aircraft optimization, some crew assignments may cause

�ights to be delayed.
4. Some crew pairings may con�ict with restrictions imposed by unions

or general regulations.

These 4 types of con�icts are each described below.

Type 1 Con�ict: Cancelled Flights

Figure 8.5 illustrates a �ight schedule segment before and after the dedi-
cated aircraft recovery of step 2. It can be seen that aircraft 5∗ has been
delayed in the original schedule. After the aircraft optimization, aircraft
5∗ is assigned to the sink node and no other aircraft is assigned to �ight 5.
This means that �ight 5 is cancelled, yet the incoming crew on aircraft 5∗

is still assigned to �ight 5.

Type 2 Con�ict: Crew Shortage

Figure 8.6 illustrates the same segment as in �gure 8.5. However, after
the dedicated aircraft recovery, the incoming �ight to aircraft node 5∗ has

128 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Figure 8.5: Illustration of con�ict type 1.

been cancelled and some other aircraft has been assigned to �ight 5. Just
as before, the crew from aircraft 5∗ is still assigned to �ight 5. This is
impossible, because the incoming �ight was cancelled leaving no crew to
assign. Nevertheless, the assignment remains � this is called an empty crew
assignment. The node to which this empty crew is assigned is called an
empty crew node. Delayed crew units are not considered as crew shortage
at this point in the heuristic, irrespective of the delay size.

Type 3 Con�ict: Delays Caused by Crew Assignments

Assume that �gure 8.7 again illustrates a small segment of a schedule before
and after the dedicated aircraft recovery. Before DAR aircraft 5∗ is assigned
to �ight 5 and likewise for aircraft 6 and �ight 6. However, aircraft 5∗ is
delayed, which again causes �ight 5 to be delayed. After DAR, aircraft
5∗ and 6 have been swapped, but the crews have not. The result is that
despite aircraft 5∗ and 6 having been swapped, �ight 5 is still delayed as
much as before, but now �ight 6 is also delayed.

8.5 The ICAR-heuristic � In Words 129

Figure 8.6: Illustration of con�ict type 2.

Type 4 Con�ict: Crew Restriction Violations

The �nal type of con�ict involve pairings that violate restrictions on crew
units. This type of con�ict is most likely present even before DARP is
solved due to the delays/cancellations in the original schedule.

There are numerous crew restrictions. For example, if a standby crew unit
was placed in the crew supply node because its �ight was cancelled (see
�gure 8.8), this crew unit will have to end at the airport where it was
originally supposed to end.

Other restrictions exist that are similar for all crew units, i.e. the length
of a pairing measured in time must not exceed a certain limit. At British
Airways for example, if a crew member has been on standby for 5 hours,
its pairing length must not exceed 7 hours and 30 minutes (see British
Airways (2000)). Likewise, there are tight restrictions on the crew unit
turn-arounds, maximum number of �ights in a pairing, etc..

It should be clear that a vast number of restrictions on crew units exist.

130 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Figure 8.7: Illustration of con�ict type 3.

In order to deal e�ectively with the complexity of these restrictions the
ICAR-heuristic places all restrictions into 2 categories:

Hard restrictions: These restrictions must be respected entirely. A vio-
lation of these renders the �ight schedule infeasible.

Soft restrictions: These are restrictions that can be violated if absolutely
no other options exist.

Hard restrictions include those described above, i.e. restrictions on pairing
length, crew turn-around time, number of �ights in a pairing, crew unit
certi�cation, etc. The soft restrictions include crew assignments that cause
delays, minor crew shortages, which languages the crew units speak, etc..
An exact listing of how crew unit restrictions are categorized will ultimately
have to be decided on by the airline using the ICAR-heuristic.

8.5.4 Step 4: Resolving Con�icts

The key to an ICAR-heuristic lies in how the before mentioned con�icts are
resolved. Con�icts 1 and 2 are resolved in that order, however, con�icts

8.5 The ICAR-heuristic � In Words 131

3 and 4 are resolved simultaneously. Below follows a description of how
each con�ict is attempted resolved and the guiding principles behind every
decision possibility.

Resolving Type 1 Con�icts

Type 1 con�icts � crew assigned to cancelled �ights � occur every time a
�ight has been cancelled. The way the ICAR-heuristic resolves this con�ict
is by assigning the crew to the crew supply node at the airport from which
the cancelled �ight should have left according to the original schedule. This
is illustrated in �gure 8.8.

Figure 8.8: Resolving con�ict type 1.

By reassigning crew that were assigned to cancelled �ights to the crew
surplus node, 2 important things are achieved: Firstly, this crew can be
made available to other �ights. Secondly, this crew can be dead-headed to
their �nal destination if they remain unassigned. It should be noticed that
all type 1 con�icts can be resolved without exception, because resolving it
is a simple matter of reassigning the crew.

132 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Resolving Type 2 Con�icts

Type 2 con�icts � crew shortages � are reasonably straightforward to re-
solve. These con�icts arise when dedicated aircraft recovery has taken place
and all type 1 con�icts have been resolved. Unlike type 1 con�icts, there is
no guarantee that all crew shortages can be resolved. Instead these con�icts
are resolved to the furthest extent possible.

Type 2 con�icts arise on 2 occasions: Firstly, if a �ight has been cancelled
then all down-line �ights, where crew from the cancelled �ight were sup-
posed to have been assigned, will have a crew shortage. Secondly, if a crew
member fails to show up, e.g. because of illness, the �ight to which this
crew member was assigned will have a crew shortage � including all the
down-line �ights in the crew pairing. The general method of resolving type
2 con�icts for each crew type is listed below:

1. Identify all �ights, where a crew shortage exists and retain all the
associated empty crew assignments.

2. Find the earliest �ight, with a crew shortage.
3. Examine if standby crew exists in the crew supply node at the same

airport, who can be assigned to this �ight.
4. If such crew units exist, assign them to the �ight in question.
5. Update the �ight schedule.
6. Repeat until no crew shortages exist or no further crew shortages can

be repaired.

These steps are simple statements of what actually happens when type 2
con�icts are resolved. Below follows a more detailed description of each
step.

Step 1

The primary function of this step is simply to identify the �ights with crew
shortages. However, it is important that the empty crew assignments are
retained in this process.

There is a very important reason behind retaining these assignments: They
represent original legal pairings (or parts thereof) where all rules, regula-
tions, preferences, etc. have been considered and included. Therefore, if
at all possible, these pairings should be retained. Retaining the empty
assignments also enables the heuristic to evaluate the down-line e�ects of
assigning standby crews to �ights with crew shortages (see step 2).

8.5 The ICAR-heuristic � In Words 133

Step 2

Once the �ights with crew shortages have been identi�ed, the order in which
they are resolved becomes important. This is illustrated in �gure 8.9.

Figure 8.9: The order in which type 2 con�icts are resolved is important.
In case A, all con�icts are resolve through one crew assignment where only
one con�ict is resolved in case B. The remaining con�icts in case B will
have to be resolved through other crew assignments.

In this simpli�ed schedule, the crew units originally assigned to �ight 4
had a pairing identical with the link undertaken by aircraft 4. Suppose
a disruption has occurred, which results in �ight 4 having no crew units
assigned to it. As a consequence, there is also no crew available for each
of the down-line �ights. Suppose also that su�cient standby crew exist at
both airport 1 and 2. It is then clear that the standby crew assignment in
case 1 is better than in case 2.

When a standby crew is assigned to �ight 4, as in the �rst case in �gure 8.9,
this crew can undertake the entire pairing, thus eliminating the need for

134 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

more standby crew. However, if a standby crew from airport 1 is assigned
�ight 2, as in the second case, the crew shortage will only be resolved
for that �ight. At least one more complement of standby crew units will
therefore be needed for the �ights further up-line in the link. For this
reason, the earliest crew shortages should generally be resolved �rst. Other
strategies could be attempted, for instance: Select an airport at random
and resolve the earliest crew shortage here. Whether or not this strategy
will work better is di�cult to estimate without empirical evidence, but the
earliest-crew-shortage-�rst-strategy seems most logical.

Step 3

The purpose of step 3 is to identify crew units that can man the earliest
�ight with a crew shortage taking into consideration the hard restrictions
only. Such crew units are referred to as eligible and are searched for in
the crew supply node (see �gure 8.1). Note that such crew units do not
necessarily exist for each unmanned �ight. Conversely, there may be more
eligible crew units than necessary. The soft restrictions are not considered
explicitly until type 3 and 4 con�icts are resolved.

Step 4

The result of step 4 depends on the three possible outcomes of step 3:

• No eligible crew units are found.
� In this case, the �ight is simply left unmanned. Later adjust-
ments may resolve this crew shortage through dead-heading crew
or cancelling the �ight.

• The exact number of eligible crew units needed are found.
� The crew units are assigned to the �ight.

• Several eligible crew units are found, which could resolve the crew
shortage.
� In this case, the heuristic selects the crew unit, whose assign-
ment to the �ight in question will resolve the greatest number
of down-line crew shortages, cause the least delays and has been
on standby for the longest period of time.

� There is a trade-o� between these 3 priorities that an airline
using this heuristic would have to quantify.

8.5 The ICAR-heuristic � In Words 135

Step 5

Step 5 consists of updating the �ight schedule with the crew unit assign-
ments made in step 4. This is illustrated in �gure 8.10. Assume that the
eligible crew units are assigned to �ight 4. After the update there no longer
exists any type 2 con�icts, so when the heuristic continues to resolve crew
shortages, it will no longer have to consider these � and that is the purpose
of step 5. The example used here is, of course, based on the assumption
that none of the hard restrictions are violated at any time in the pairing.

Figure 8.10: Updating �ight schedule after crew assignment.

Step 6

The purpose of step 6 is to ensure that all crew shortages are resolved to
the extent possible before the heuristic continues. It therefore repeats the
5 steps just described until this is achieved.

136 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Resolving Type 3 and 4 Con�icts

This is the �nal part of the ICAR-heuristic. Here the delays caused by
crew assignments and crew restriction violations (type 3 and 4 con�icts
respectively) are dealt with simultaneously. The reason for this is that
these 2 types of con�ict are completely interdependent. Situations will
arise, where type 3 and 4 con�icts are mutually inclusive, i.e. to avoid
one the other must appear. Where hard restrictions are not involved, there
will be a trade-o� between the two con�icts and the priorities involved here
must ultimately be decided on by the airline using this heuristic.

It is important to understand this stage of the �ight schedule. The original
�ight schedule has a number of delays/cancellations. After the dedicated
aircraft recovery, some of these delays have most likely been reduced and
the number of cancellations may also have changed. As a result, some crew
pairings have become legal � others illegal. In other words there are a series
of problems that have to be resolved and because they are interdependent,
a priority list of which problems to resolve �rst is listed below.

Problem 1: Violations of hard restrictions.

Problem 2: Unacceptable crew shortages on �ights which were not can-
celled during the dedicated aircraft recovery.

Problem 3: Crew assignments that cause delays.

Problem 4: Violations of soft restrictions.

How these problems are resolved will be described in detail later. However,
there is a general principle that applies to resolving any of the 4 problems:
For each problem the ICAR-heuristic will initially identify all �ights where
the particular problem occurs. It will then attempt to resolve these prob-
lems starting with the earliest problem �rst. This principle was described
in section 8.5.4 and illustrated in �gure 8.9.

For each item in the problem list above, there are a series of possible solu-
tions methods. However, which of these to apply is also a matter of priority.
These solution methods are listed below in their order of priority:

1. Swapping active crew units.
2. Swapping active crew and standby crew units at the same airport.
3. Dead-heading standby crew.
4. Delaying �ights.

8.5 The ICAR-heuristic � In Words 137

5. Cancelling �ights.

The application of these solutions to each of the problems requires a com-
prehensive explanation.

Solving Problem 1

It is imperative that the violations of hard restrictions are resolved com-
pletely. This is done by applying each of the solution methods to the
problems in their order of priority.

Applying Solution Method 1 � Swapping Active Crew Units

The �rst solution method involves swapping active crew units. This cannot
be done indiscriminately, so the concept of re-linking is introduced (see
Larsen et al. (2001)). Re-linking is illustrated in �gure 8.11.

In step 1 of �gure 8.11, pairing A violates a hard restriction � namely the
minimum turn-around time is not respected. Assume that both �ight a2
and b2 originate at airport 1 and end at airport 2. In step 2, therefore, crew
A and B are swapped so that the minimum turn-around time is respected
for both crews. However, neither crew ends at the airport where they were
originally supposed to end � hard restriction violation 2. The last step
therefore involves swapping the crews back to their original pairing, thus
resolving all hard restriction violations. This particular re-link could be
described as a 2-swap, because 2 pairings were involved. However, situa-
tions where swaps (re-links) between 3 or more pairings resolved restriction
violations are certainly possible - although di�cult to implement.

It is di�cult to estimate how many con�icts can be resolved using re-linking.
However, it has been demonstrated that re-linking can be used successfully
on a dedicated crew recovery problem where real data from British Airways
was used (see Larsen et al. (2001)).

In their work, the �ight schedule is static with respect to aircraft. In other
words, no crew reassignments are made that cause delays. Conversely,
should crew reassignments be made so that �ights become less delayed �
rolled up � this is not utilized. The ICAR-heuristic could make use of
this. To understand this, refer to �gure 8.7. Here both �ights are delayed
as a consequence of crew assignments. Assume that the two crew units can
be swapped such as it is shown in �gure 8.12.

138 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Figure 8.11: Illustration of the re-linking concept.

Figure 8.12 illustrates that sometimes it is possible to make swaps that
reduce delays. Naturally, these should be utilized, so anytime where the
ICAR-heuristic makes a feasible swap that achieves this, it will retain this
assignment � even if it does not speci�cally solve a problem (in this case a
hard restriction violation).

Applying Solution Method 2 � Using Standby Crew

If hard restriction violations still exist after the application of re-linking,
the ICAR-heuristic will attempt to use standby-crew from the same airport
where the violation has occurred. In basic terms, this involves swapping

8.5 The ICAR-heuristic � In Words 139

Figure 8.12: Making delays smaller by making a crew swap.

standby crew units with the crew units, whose pairing has a hard restriction
violation. The replaced crew is by default assigned to the supply node. Here
they may be assigned to new �ights if no restrictions are violated, or they
may simply be dead-headed to their �nal destination.

Applying Solution Method 3 � Dead-heading Crew

This solution method is very similar to the previous one. The only di�er-
ence is that in this case standby crew units do not come from the airport
where the hard restriction violation has occurred. Instead, eligible crew
units are dead-headed to the airport where they are needed. The crew
units that they replace are again assigned to the supply node at the airport
where the violation occurred.

Dead-heading crew is also used to ensure that crew units end at their
original �nal destination. In other words, if a complement of crew units
were delayed and corresponding standby crew units replaced them, then the
delayed units would no longer be assigned to the pairing which returned
them to their base station. In such case, dead-heading is used to return
them if possible.

140 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Applying Solution Method 4 � Delaying Flights

If the above 3 methods do not resolve all hard restriction violations, then
further �ight delays are made acceptable. This means that the above 3
methods are reapplied, but this time crew unit assignments that cause
delays are permitted.

Delaying �ights may in itself resolve some hard restriction violations. For
example, if a crew is assigned to a �ight that leaves before their turn-
around time is over, the �ight can simply be delayed, thus resolving the
crew violation. This is illustrated in �gure 8.13. Crew violations that can
be resolved this way are of course resolved before repeating any of solution
methods 1 through 3.

Figure 8.13: Resolving hard restriction violations by delaying �ights.

Figure 8.13 also illustrates another important challenge. When delays are
used to resolve hard restriction violations, there may be serious down-line
e�ects. For instance, delaying one �ight may result in delaying all down-line
�ights. This situation may be aggravated if pairing lengths as a consequence
become too long, thus creating new hard restriction violations.

Real �ight schedules have a certain amount of slack built into them. For
this reason, it may be possible to delay a �ight � including all a�ected
down-line �ights � without violating any new hard restrictions. If delaying
all a�ected down-line �ights does cause new hard restriction violations,
these can possibly be resolved by repeating solution methods 1 through 3.
If that does not work, then one or more �ights have to be cancelled.

8.5 The ICAR-heuristic � In Words 141

Applying Solution Method 5 � Cancelling Flights

If none of the 4 previous solution methods are able to resolve a hard re-
striction violation, the only option left is to cancel one or more �ights. In
this case, there is no obvious order in which to cancel �ights that are a
part of those pairings with hard restriction violations. From the point of
view of passengers, it is most convenient if cancellations take place as far
into the future as possible. This way passengers will have time to change
their plans or the airline can possibly arrange other travel arrangements for
them. However, passenger convenience may not be a priority if the point
is reached, where cancelling �ights is the only option left. The priorities in
such a situation will be:

1. Minimize the number of cancellations needed to resolve the hard re-
striction violation. Cancellations will most likely involve a set of
�ights, i.e. here-and-back trips in a hub-and-spoke system, because
such cancellations implicitly take crew considerations into account.

2. If several possible solutions exist involving the same number of cancel-
lations, select the solution that causes the fewest new hard restriction
violations.

3. Select the solution with the latest cancellation(s).

It is important to realize that a cancellation almost always will cause new
hard restriction violations, in particular, crew units will end at the wrong
airports. The idea is that these can be resolved by repeating the 4 previous
solution methods. It is also important to realize, that some feasible solution
can always be found. In theory, all �ights can be cancelled thus leaving a
feasible � but very unattractive � �ight schedule.

Solving Problems 2, 3 and 4

The 5 solution methods applied to solve problem 1 work in exactly the same
way when applied to the other three problems. These are consequently
resolved to the furthest extent possible in their listing order. In using
any of the solution methods to do this, the heuristic must not make �ight
schedule changes that cause an earlier problem to arise again. For example,
when the heuristic makes �ight schedule changes to resolve problem 2, those
changes must not cause problem 1 to arise again.

142 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

8.5.5 Step 5: Repeat the Process

This is the �nal step of the ICAR-heuristic. At this point there is a revised
�ight schedule where no infeasibilities exist. However, there may, of course,
be �ight schedules that are even better. This step retains the best solution
and repeats the algorithm for di�erent initial solutions until some criterion
is met, e.g. a time limit. Flight controllers would like several di�erent re-
vised �ight schedules to choose from and this function is easily incorporated
into this step. A series of criteria could be set up and the best solution
with respect to each of these could be saved. This way, solutions with for
example the smallest delay, fewest cancellations, best aircraft balance, etc.
can be retained.

8.6 Complexity of the ICAR-heuristic

The complexity of the ICAR-heuristic is di�cult to estimate properly be-
cause the running time depends on the number of con�icts and crew types
involved. The ICAR-heuristic is in essence initiated by the DAR-heuristic,
which had a complexity of O(n3), where n is the number of �ights (see
section 6.3.1). Since DARP and the remaining part of the ICAR-heuristic
are solved separately, it is interesting if the complexity of the latter part
exceeds that of the DAR-heuristic.

The latter part of the ICAR-heuristic consists of three main activities: (i)
Identifying crew con�icts; (ii) Resolving those con�icts; (iii) Updating the
�ight schedule accordingly. In (i), all crew/�ight nodes are traversed to
locate the con�icts. Likewise in (ii) where �nding suitable crew units to
resolve the con�ict could require an inspection of all crew/�ight nodes.
Finally in (iii), the schedule must be updated, which in theory requires
that all crew and �ight nodes are traversed again. Activity (i) is repeated
once for every crew type and activity (ii) and (iii) once for every con�ict. If
it is assumed that the number of crew types is constant with regard to the
complexity, then the complexity of the the latter part of the ICAR-heuristic
becomes O(number of conflicts · n). The total ICAR-heuristic complexity
therefore becomes the greater of O(n3) and O(number of conflicts · n).
However, the number of con�icts will most likely not exceed n2 � that would
correspond to 2 con�icts for every �ight. Therefore, it seems reasonable
that the ICAR-heuristic has the same complexity as the DAR-heuristic,
namely O(n3).

8.7 ICAR-heuristic Example 143

8.7 ICAR-heuristic Example

This section is devoted to illustrating how the ICAR-heuristic works on an
actual test instance. To do this, a small test instance has been generated
where some of the situations described in the previous section can be il-
lustrated. Not everything can be illustrated, because a test instance where
all types of problems and solution methods become relevant is di�cult to
create � and most likely very large. The example below follows the exact
steps discussed previously.

8.7.1 Step 1: The Initial Schedule

This initial schedule consists of 3 aircraft that service 12 �ights between 3
airports. The original links carried out by the 3 aircraft look as follows:

--

Flight Scheduled Actual Assignments

link take- Ready-

off time

--

1 56 354 (12-12) -> (2-2) -> (15-15) -> (5-5) -> (17-18)

2 36 36 (11-11) -> (7-7) -> (14-14) -> (4-4) -> (16-18)

3 25 25 (10-10) -> (1-1) -> (13-13) -> (3-3) -> (8-9)

__

Flight link 1 should have left 56 minutes from the decision point, but the
aircraft is delayed, hence the �rst �ight in link 1 is delayed to 354 minutes
from the decision point. This means that each of the down-line �ights also
are delayed by 298 minutes. Link 1 is illustrated in �gure 8.14.

In �gure 8.14, all the crew units remain assigned to the �ights which are
a part of their original pairings. All the crew units originate in supply
node 15 and are initially assigned to �ight 12. They then follow the link
undertaken by aircraft 12 and end back at airport 3 approximately 800
minutes from the decision point. They should have arrived back at airport
3 approximately 500 minutes from the decision point, but the delay of
aircraft 12 causes them to be delayed as well.

Unlike link 1, link 3 is not delayed at all. This link is illustrated in �gure
8.15. Here, some crew units do not follow the entire link. All the crew
units originating in supply node 15 undertake �ight 10 and 1 in that order.

144 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Figure 8.14: Original link 1.

However, at airport 3 a crew unit disembarks and is replaced by a new crew
unit from the supply node. This is also the case at airport 1 after �ight 13.

A �gure illustrating the entire schedule with all �ights and crew unit as-
signments is very congested and will not be shown. Link 2 is not shown,

8.7 ICAR-heuristic Example 145

Figure 8.15: Original link 3.

because it does not illustrate anything new.

146 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

8.7.2 Step 2: Dedicated Aircraft Recovery

Following the heuristic outline described in �gure 8.3 the �ight schedule is
now optimized until a better solution cannot be reached by only rotating
aircraft. This results in the following �ight links:

--

Flight Scheduled Actual Assignments

link take- Ready-

off time

--

1 276 354 (12-15) -> (5-5) -> (17-18)

2 36 36 (11-11) -> (7-7) -> (14-14) -> (4-4) -> (16-18)

3 25 25 (10-10) -> (1-2) -> (15-13) -> (3-3) -> (8-9)

__

CANCELLED FLIGHTS:

Flight No: 12

Flight No: 1

Flights 12 and 1 (in original links 1 and 3 respectively) have been cancelled.
Flight 1 was not delayed at all in the original schedule. However, it may be
better to cancel this �ight if, for example, �ight 2 can be undertaken instead
with no delay at all. In any event, the heuristic found this combination of
swaps, delays and cancellations to be the best possible given the set of
parameters discussed in section 6.3.2.

8.7.3 Steps 3 and 4: Identifying and Resolving Points

of Con�ict

Step 3 is the �rst step that is repeated several times during the ICAR-
heuristic. It identi�es the di�erent types of con�icts in the order they are
resolved. The reason is that none of the con�icts are static; depending
on the choices made while running, new con�icts may arise. Step 4 then
resolves the con�icts in the same order that step 3 �nds them.

Type 1 Con�icts

Type 1 con�icts are identi�ed �rst (crew assigned to cancelled �ights).
These points of con�ict are located by simply marking all those �ights

8.7 ICAR-heuristic Example 147

to which no aircraft are assigned. In this example there are two such
occurrences, which are both resolved by reassigning the crews to the supply
node. This is illustrated in �gure

8.16.

Figure 8.16: Type 1 con�icts: Flights 1 and 12 are cancelled, so the crew
units are reassigned to the supply node.

Type 2 Con�icts

Type 2 con�icts (crew shortages) occur when incoming �ights are cancelled
or if crew units become unavailable. Type 2 con�icts are also easy to iden-
tify. Unless caused by crew units failing to show up, they will always occur
down-line from a cancellation. The ICAR-heuristic will simply traverse all
these down-line empty crew assignments (original crew pairings) and mark
the �ight nodes that it passes. All these will have a crew shortage.

148 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

Once the con�icts are identi�ed, these can in principle be resolved in any
order. However, only one strategy is applied here, namely that the earliest
con�icts are resolved �rst.

The earliest crew shortage in this example occurs at �ight 2. Flight 2 was
down-line from �ight 12 in the original �ight schedule, but �ight 12 was
cancelled, so no crew units are in e�ect assigned to �ight 2. This is resolved
by assigning crew units from the supply node at airport 1. The most suit-
able crew, with respect to the number of con�icts they resolve, happens to
be the crew originally assigned to �ight 1, which was cancelled. It is as-
sumed that no hard restriction violations arise due to this assignment. This
crew was placed in the supply node when the type 1 con�icts were resolved
in step 3. The �ight 2 crew shortage and consequent crew reassignment is
illustrated in �gure 8.17.

Figure 8.17: Resolving a type 2 con�ict: Assigning a real crew to �ight 2.

After DAR in step 2 (section 8.7.2), �ight 2 is a part of link 3. As a
consequence, when the necessary crew units are assigned to this �ight, all
the down-line �ights in this link are manned to the furthest extent possible
without violating hard restrictions. This is due to the fact that the �ight
link is traversed and con�icts are resolved down-line in accordance with the
con�ict just resolved.

As can be seen in the original link involving the crew just assigned to �ight
2 (�gure 8.15), one of the crew units is supposed to end its pairing at
airport 3 approximately 300 minutes from the decision point. Likewise,
approximately 350 minutes from the decision point, another crew unit is
supposed to end its pairing at airport 1. It is assumed that these are hard
restrictions, so they must be respected.

Link 3 � as it is after DAR � is illustrated in �gure 8.18. Here a real crew

8.7 ICAR-heuristic Example 149

Figure 8.18: Link 3: After DAR, crew assignment to �ight 2 and update of
down-line crew to �ight assignments.

has been assigned to crew node 2. In principle, �ight 13 and 3 still only
have empty crew units assigned to them. However, once a real crew is
assigned to �ight 2, this crew "�ows" through the network in e�ect "�lling
out" the empty crew assignments � this is what is referred to as an update.

150 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

In �gure 8.18, 2 cabin crew units and 1 cockpit crew unit are assigned
to �ight 2. They are then �own to airport 3 (crew node 12). Originally,
a cabin crew unit ended its pairing here while the other two crew units
continued along with a new crew unit from the crew supply node. This
is not changed in the revised solution, even if the crew member ending at
airport 3 could have continued. Again, this has to do with retaining as
much as possible of the original schedule. This situation appears again at
airport 1 in the same �gure (crew node 3). Determining which crew unit
should continue the pairing in these situations depends on who will resolve
the most con�icts further down-line and cause the least delays.

In this example, the crew units from crew node 2 in airport 1 are in fact
the crew units that originally undertook �ight 13 (see �gure 8.15). For that
reason this link is completely restored, and deciding which crew units go
where becomes a simple matter of respecting the hard restrictions. The
only upset is that �ight 13 is delayed approximately 50 minutes.

This leaves only two other crew shortages, namely �ight 15 and its down-
line �ight 5. The aircraft assigned to �ight 15 also originates from airport 3,
so the crew has to be supplied from the crew supply node. The crew units
that were assigned to take �ight 12 before it was cancelled are an obvious
choice. Flight 15 is in �ight link 1 updated in the manner described above.

Type 3 and 4 Con�icts

These two con�icts (hard and soft restriction violations and �ight delays
caused by crew assignments) are very di�cult to illustrate in an example.
The test instance described in this section does not have any type 3 and
4 con�icts � resolving type 1 and 2 con�icts were su�cient to create an
optimized and feasible schedule. A test instance could possibly have been
created that contained type 3 and 4 con�icts after resolving type 1 and 2
con�icts. However, to illustrate the workings of the ICAR-heuristic on such
a test instance would be extensive and di�cult. The general principles are
all illustrated earlier and hopefully the idea behind them was made clear
then.

8.7.4 Step 5: Repeating the ICAR-heuristic

The �nal step involves repeating the whole process for di�erent initial solu-
tions. For the purposes of this test instance, this is not relevant. However,

8.8 Conclusion on Chapter 8 151

note that di�erent initial solutions would be generated by simply making
random swaps among the aircraft in the original schedule. This will result
in di�erent solutions after DAR as was demonstrated in section 6.9.

8.8 Conclusion on Chapter 8

This chapter describes a method to solve ICARP. The method suggested
separates ICARP into two problems, namely an aircraft and a crew recov-
ery problem. DARP is solved �rst by using the SALS heuristic described
and implemented in chapter 6. The crew pairings and assignments are then
modi�ed to �t the revised �ight schedule. The two problems are not com-
pletely separated, i.e. some DAR decisions can be made during the crew
recovery. Speci�cally these include delaying �ights, rolling �ights up or can-
celling �ights. Only the aircraft to �ight assignments cannot be changed
during the crew recovery.

The most promising feature of the ICAR-heuristic is its �exibility. Its de-
sign is modular and each module is applied in a sequential manner. The
�rst module � the DAR-heuristic � already exists in a version which seems
to work well and fast. Further modules can be built to identify and resolve
each of the con�icts de�ned in section 8.5.3 and 8.5.4. Each of these mod-
ules can be subdivided into more modules, i.e. di�erent solution methods
applied to resolve each con�ict. The possibility of subdividing the ICAR-
heuristic into modules achieves two important things with respect to imple-
mentation: (i) The order in which modules are applied can be interchanged
to accommodate di�erent airline priorities, i.e. when should standby crew
be applied � as opposed to re-linking � to resolve a crew scheduling prob-
lem? (ii) New features in the ICAR-heuristic could be added as modules
without changing the existing heuristic structure.

There are of course a number of uncertainties associated with the ICAR-
heuristic. Firstly, it is not fully integrated because aircraft and crew are
considered separately. This may ultimately exclude the possibility of �nd-
ing optimal solutions to ICARP. Similarly, it may be di�cult to �nd suit-
able crew pairings/rosters if DARP is solved �rst without taking any crew
considerations into account. Only empirical evidence can show whether or
not this is the case.

152 Chapter 8. The Integrated Crew and Aircraft Recovery Problem

153

Chapter 9

Main Conclusion

The purpose of this thesis was to:

1. �nd and describe a solution method to solve the Dedicated Aircraft
Recovery Problem (DARP).

2. implement and test this solution method.

3. describe a solution method to solve the Integrated Crew and Aircraft
Recovery Problem (ICARP) using the results from solving DARP.

With respect to the �rst goal, several methods were explored. A thor-
ough examination of literature on disruption management revealed that a
number of researchers have developed methods that solve DARP. However,
there were problems with most of these, e.g. the models were too com-
plicated to solve or the decision possibilities were unrealistic. One model
developed by Cao and Kanafani (1997) did seem promising. However, an
attempt to verify this demonstrated that several errors existed which could
not be corrected e�ectively. In the end, none of the models found in the
literature seemed to form a good base on which to make further devel-
opments. Instead, a new way of representing DARP was developed (see
section 6.3.1) along with a heuristic solution method (DAR-heuristic).

With respect to the second goal, 25 problem instances were generated to
test the DAR-heuristic. These consisted of �ight schedules of di�erent
sizes (50 � 800 �ights) with 20% of all �ights being delayed for di�erent

154 Chapter 9. Main Conclusion

lengths of time. Various versions of the DAR-heuristic were then applied
to each of the problem instances in order to �nd revised �ight schedules
of a better quality. The fastest DAR-heuristic � a steepest ascent local
search (SALS) � was able to �nd revised �ight schedules in less than 5
seconds on average that were signi�cantly improved. Other versions of
the DAR-heuristic did �nd marginally better revised �ight schedules, but
given the speed of SALS, it was not enough to justify using those instead.
Furthermore, a solution space analysis in the form of �tness landscapes
demonstrated that the structure of the solution space is very well-suited
for SALS. A number of extensions of the DAR-heuristic were also discussed.
Although they were not implemented, it appears that these extension are
relatively easy to implement.

With respect to the �nal goal, a detailed outline of an integrated crew
and aircraft recovery heuristic (ICAR-heuristic) was given. It was not
implemented, but it was made probable that it could be. It was also made
probable that the complexity of an ICAR-heuristic is reasonably small, thus
allowing a reasonable computational time frame.

155

List of Important Terms

The terms below are all speci�c to the airline industry. They are shown in
boldface when they �rst appear in the text. Likewise, the page number
where each term �rst appears is listed � possibly along with pages where
the term is very important. Terms that have no page reference are only
found here in the list of terms.

Aircraft balance (p. 20 and 102): Describes the situation where the
number of aircraft actually terminating at a certain airport equals
the number of aircraft that should terminate at this airports.

Airport curfew (p. 17 and 114): Most airports are closed for a period
of time during the night. All aircraft arrivals and departures must
occur outside this curfew period.

Aircraft density (p. 40): The number of aircraft that depart from an
airport within a speci�ed time horizon.

Aircraft roster (p. 2): The plan for each aircraft, i.e. the �ights it will
undertake that day.

Aircraft shortfall (p. 105): A situation where fewer aircraft terminate
at an airport than should have (see also aircraft balance).

Aircraft to �ight assignment (p. 6): In �gure 6.1, an arc connecting
an aircraft node to a �ight node is called an aircraft to �ight assign-
ment. It infers that the aircraft will undertake the �ight to which it
is assigned.

Aircraft turn-around: When aircraft arrive at an airport, a certain
amount of time is spent on safety checks, minor maintenance, clean-

156 Chapter 9. Main Conclusion

ing, etc. The time it takes to complete these activities and make the
aircraft ready for its next �ight is known as the turn-around time.

Aircraft type (p. 16 and 116): Each aircraft is characterized by, for
example, a seating capacity and license requirements for both cock-
pit and cabin crew. Hence, aircraft di�er from each other (see also
�eet).

Base station (p. 10): The airport(s) from which crew initiate and end
their crew pairings. It is typically also the airport where an airline,
for example, has its repair facilities.

Crew assignment (p. 10): When an individual crew unit is assigned to
�ight. A crew pairing thus consists of any number of such assign-
ments.

Crew pairing (p. 10): A sequence of crew assignments that can be
undertaken by a single crew member.

Crew roster (p. 2): A list of the exact crew units assigned to each crew
pairing.

Crew schedule: All the crew rosters as a whole is referred to as the crew
schedule.

Crew shortage (p. 9): When crew required to undertake a �ight are not
available. This may occur if earlier �ights have been cancelled or crew
members fall ill.

Crew to �ight assignment (p. 9): In �gure 8.1, an arc connecting a
crew unit to �ight is called a crew to �ight assignment. It infers
that the crew unit in question will undertake the �ight to which it is
assigned.

Crew turn-around (p. 130): The time a crew unit rests before it is as-
signed to the next �ight.

Crew type (p. 16 and 120): There several types of crew members in a
crew, e.g. captain, 1st o�cer, customer service director, stewards,
and stewardesses etc. In this thesis, two types are considered: (i)
cockpit crew and (ii) cabin crew.

157

Crew unit (p. 120): The unit is a model speci�c term. It denotes that
one or more crew members of the same crew type are grouped in a
team.

Dead-heading (p. 9): Dead-heading means transporting crew to �ights
at other airports where a crew shortage exists (see also crew short-
age). It also includes transporting crew members to their base sta-
tion if they end a pairing away from home.

Decision point (p. 60): The point in time when the heuristic is applied
to resolve disruptions that have occurred.

Disruption (p. 2): Any situation where one or more activities in one or
more of the key resource areas (e.g. crew or aircraft) have deviated
from the resource plan. Subsequent activities in the a�ected lines of
work (see note under �ight link) either cannot start on time � or
can start on time, but only after controller intervention.

Ferrying aircraft (p. 14 and 116): When an aircraft is transported
from one airport to another without taking any passengers. This
option may be used if an aircraft is needed at another airport.

Fleet (p. 116): Denotes a series of aircraft of the same aircraft type.

Flight leg (p. 28): In �gure 6.1, �ight legs are the arcs connecting �ight
nodes in one airport to aircraft nodes in other airports.

Flight link (p. 13 and 28): A number of �ight legs are assembled
through aircraft to �ight assignments to form a schedule for an air-
craft. At this stage in the planning process a speci�c tail is not
assigned to the link (see tail assignment).

Flying time (p. 69): The time it takes an aircraft to complete a �ight
leg, i.e. to travel the distance from the origin to the destination
airport.

Here-and-back (p. 141): Flights in a hub-and-spoke system are ar-
ranged as round-trips, where one �ight is �own from the hub to the
destination airport and the other is �own back to the hub again.

Heuristic setting (p. 60): During a working day one or more disrup-
tions may occur. Given these disruptions the heuristic is applied to

158 Chapter 9. Main Conclusion

solve the problem. The decision point is set to the current point in
time and the time horizon spans the remainder of the day.

Hub-and-spoke system (p. 66 and 107): This system is a special way
to arrange the �ights in the �ight schedule. A few airports are selected
as hubs and �ights are then �own here-and-back from the hub to
the destination airports and back to the hub again.

Out-station: The out-station is simply all other airports than the base
station with regard to a resource.

Ready-time aircraft (p. 31): The point in time when the aircraft is
ready to undertake a �ight.

Ready-time crew: The point in time when crew units are ready to man
a �ight.

Rolled up (p. 137): Denotes that an aircraft is delayed at the decision
point, but through reassignments, the delay is reduced, thus the air-
craft is rolled up.

Round-trip: A round-trip is a pair of �ights �own from one airport to
the destination airport and back again.

Short haul (p. 61): In short-haul operations, all the short distance �ights
are serviced. A short-haul operation could be all European desti-
nations for a European carrier or the domestic destinations for an
American carrier.

Standby crew (p. 9): Crews on standby are crew members in reserve
who are not yet assigned to any pairings. These crew members can
be assigned to �ights that have been delayed or cancelled due to a
disruption, thus resolving the problem.

Surplus aircraft (p. 23): Surplus aircraft are aircraft in reserve that can
be substituted with aircraft that are disrupted.

Swap (p. 6 and 23): A swap is when a pair of aircraft to �ight as-
signments are interchanged, e.g. the original assignments 1�1 and
2�2 are swapped to 1�2 and 2�1.

Tail assignment (p. 5): Denotes that a speci�c aircraft is assigned to a

159

�ight link, thus yielding an aircraft roster.

Turn-around time (p. 10): The time it takes for either an aircraft or
a crew to have a turn-around (see aircraft turn-around and crew
turn-around respectively).

160 Chapter 9. Main Conclusion

161

Bibliography

Angel, E. and V. Zissimopoulos (1998). On the Quality of Local Search
for the Quadratic Assignment Problem. Discrete Applied Mathemat-
ics 82, 15�25.

Argüello, M. F., J. F. Bard, and G. Yu (1998). Models and Methods for
Managing Airline Irregular Operations. In G. Yu (Ed.), Operations
Research in the Airline Industry. Boston: Kluwer Academic Publish-
ers.

Barr, R. S., B. L. Golden, J. P. Kelly, M. G. C. Resende, and
j. W. R. Stewart (1995). Designing and Reporting on Computational
Experiments with Heuristic Methods. Journal of Heuristics 1, 9�32.

British Airways (2000, February). Euro�eet Cabin Crew Manual. British
Airways.

Cao, J.-M. and A. Kanafani (1997). Real-Time Decision Support for
Integration of Airline Flight Cancellations and Delays Part I & II.
Transportation Planning and Technology 20, 183�217.

Jarrah, A. I. Z., G. Yu, N. Krishnamurthy, and A. Rakshit (1993). A De-
cision Support Framwork for Airline Flight Cancellations and Delays.
Transportation Science 27, 266�280.

Larsen, J., A. Larsen, T. Hultberg, and A. Ross (2001, February). Ded-
icated Crew Recovery in Descartes. Technical report, Informatics
and Mathematical Modelling (IMM). Techical University of Denmark
(DTU).

Lettovsky, L. (1997). Airline Operations Recovery: An Optimization Ap-
proach. Ph. D. thesis, Georgia Institute of Technology, Atlanta, USA.

Mladenovi¢, N. and P. Hansen (1997). Variable Neighborhood Search.
Computers & Operations Research 24, 1097�1100.

Stojkovi¢, M. and F. Soumis (2000a, January). An Optimization Model
for the Simultaneous Operational Flight and Pilot Scheduling Prob-

162 BIBLIOGRAPHY

lem. Technical Report G-2000-01. Technical report, GERAD and
École Polytechnique de Montreál.

Stojkovi¢, M. and F. Soumis (2000b, June). The Operational Flight and
Multi-Crew Scheduling Problem. Technical Report G-2000-27. Tech-
nical report, GERAD and École Polytechnique de Montreál.

Stützle, T. (1999). Iterated Local Search for the Quadratic Assignment
Problem. Technical report, Darmstadt Technische Hochschule.

Taillard, E. (1991). Robust Taboo Search for the Quadratic Assignment
Problem. Parallel Computing 17, 443�455.

Teodorovi¢, D. and S. Guberini¢ (1984). Airline Optimization. European
Journal of Operational Research 15, 178�182.

Teodorovi¢, D. and M. Stojkovi¢ (1990). Model for Operational Daily
Airline Scheduling. Transportation Planning and Technology 14, 273�
285.

Teodorovi¢, D. and M. Stojkovi¢ (1995). Model to Reduce Airline Sched-
ule Disturbances. Journal of Transportation Engineering 121, 324�
331.

Yan, S. and D.-H. Yang (1996). A Decision Support Framework for Han-
dling Schedule Pertubations. Transportation Research 30, 405�419.

163

Appendix A

Implementation of the CCD
Model in GAMS

The CCD model was implemented and tested using GAMS. The model is
named: airmodel.gms, and can be found in the directory:

/home4/proj/proj48/Public/CCD_model/

A C++-program was used to generate most of the parameters used in the
CCD model. The data �le containing these parameters are found in the
same directory named: problem.dat.

When the model is solved aGAMS �le writes the solution in a data �le. The
former is named: solution.gms, and the latter is named: solution.dat.

The C++-program itself is also found in the directory. Below is the main
�le listed along with the header �les used (all the standard header �les are
not mentioned):

�rst_schedule.cpp uses the following header �les:
• �rst_schedule.h � declares a few global variables.
• dtypes.h � declares all the data types used.
• init_var.h � initiate all the variables.
• make_data.h � generates the data.
• output.h � writes the �le problem.dat among other things.

164 Appendix A. The CCD Model in GAMS

• input.h � reads the �le solution.dat to interpret the solution
found by GAMS.

The header �les only contain the external function declarations (except the
�le dtypes.h) and the respective source code �les are found in the same
directory changing the extension ".h" to ".cpp".

Finally, a �le is used to compile and link all object �les (i.e. the �les with
the extension ".o"). This �le is named: make�le.

The GAMS model was implemented using approximately 300 lines of code,
while the C++-program contained more than 800 lines of code.

165

Appendix B

Implementation of the
Iterated Local Search (ILS)
in C++

The Iterated Local Search (ILS) heuristic was implemented using more
than 2000 lines of C++-code, and the source code is found in the following
directory:

/home4/proj/proj48/Public/ILS_heuristic/

Below is the main �le listed along with the header �les used (all the standard
header �les are not mentioned):

ils.cpp uses the following header �les:
• dtypes.h � declares some of the data structures used. Here all
constants are also de�ned.

• links.h � declares a class which contains the �ight links of the
original schedule.

• stations.h � declares a class which contains data on the di�erent
�ights in the schedule.

• solution.h � declares a class which contains the solution data
structure.

166 Appendix B. ILS implemented in C++

The header �les contain the declarations of the classes (i.e. their attributes
and methods), except the �le dtypes.h, and the respective source code
�les are found in the same directory changing the extension ".h" to ".cpp".

Finally, a �le is used to compile and link all object �les (i.e. the �les with
the extension ".o"). This �le is named: make�le.

167

Appendix C

Experimental Results

The following experiments has been conducted with the standard and re-
vised versions of the ILS heuristic. All the experimental results can be
found in the following directory:

/home4/proj/proj48/Public/Experimental_results/

C.1 Results of Experiments with the Standard
ILS Heuristic

The following 13 �les contain the tables with the results of the runs with
the ILS heuristic for 3 minutes.

• ILS_table1.ps � contains the test instances 1 and 2.
• ILS_table2.ps � contains the test instances 3 and 4.
• ILS_table3.ps � contains the test instances 5 and 6.
• ILS_table4.ps � contains the test instances 7 and 8.
• ILS_table5.ps � contains the test instances 9 and 10.
• ILS_table6.ps � contains the test instances 11 and 12.
• ILS_table7.ps � contains the test instances 13 and 14.
• ILS_table8.ps � contains the test instances 15 and 16.
• ILS_table9.ps � contains the test instances 17 and 18.
• ILS_table10.ps � contains the test instances 19 and 20.

168 Appendix C. Experimental Results

• ILS_table11.ps � contains the test instances 21 and 22.
• ILS_table12.ps � contains the test instances 23 and 24.
• ILS_table13.ps � contains the test instance 25.

C.2 Results of Experiments with the ILS Heuris-
tic with a Duration of 24 Hours

A text �le is produced that contains the results of the runs with the ILS
heuristic for 24 hours. This �le is named: 24hour_test_results.txt.

C.3 Results of Experiments with the Revised
ILS Heuristic

The following 13 �les contain the tables with the results of the runs with
the RILS heuristic for 3 minutes.

• RILS_table1.ps � contains the test instances 1 and 2.
• RILS_table2.ps � contains the test instances 3 and 4.
• RILS_table3.ps � contains the test instances 5 and 6.
• RILS_table4.ps � contains the test instances 7 and 8.
• RILS_table5.ps � contains the test instances 9 and 10.
• RILS_table6.ps � contains the test instances 11 and 12.
• RILS_table7.ps � contains the test instances 13 and 14.
• RILS_table8.ps � contains the test instances 15 and 16.
• RILS_table9.ps � contains the test instances 17 and 18.
• RILS_table10.ps � contains the test instances 19 and 20.
• RILS_table11.ps � contains the test instances 21 and 22.
• RILS_table12.ps � contains the test instances 23 and 24.
• RILS_table13.ps � contains the test instance 25.

C.4 Results of Experiments with the Steepest
Ascent Local Search Heuristic

A text �le is produced that contains the results of the experiments with
the Steepest Ascent Local Search (SALS) heuristic. The �le is named:

C.5 Results of Experiments with the Repeated SALS Heuristic 169

SALS_test_results.txt.

C.5 Results of Experiments with the Repeated
SALS Heuristic

A text �le is also produced that contains the results of the experiments with
the Repeated SALS heuristic. This �le is named: RSALS_2000_overview.txt.

170 Appendix C. Experimental Results

C.5 Results of Experiments with the Repeated SALS Heuristic 171

