
Modelling And Visualization Of A
Bridge Player’s Performance

Maciej Krajowski-Kukiel

Kongens Lyngby 2011
IMM-MSC-2011-78



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk



Summary

The thesis consists of two main parts. The first one is building a model of a
bridge player’s performance. The solution used is based on a popular rating
system known as Elo. The idea is to express a skill level as a random vari-
able following a Logistic Distribution. Since the rules and scoring in bridge
are considerably complicated, an extensive amount of work has been put into
improving the basic formulas and to reflect some real life dependencies in the
model. The second part is a visualization of how the model works by apply-
ing it to real bridge players’ statistics. In the final process 22, 000, 000 games
were considered for more than 200, 000 players. Two metrics have been used
to verify the model’s correctness and usefulness - Root Mean Square Error and
Binomial Deviance. The latter one can be directly transformed into accuracy.
The final rate of correct prediction is 50,0158%, which is a little better than the
null model, with an accuracy of 50% (a model of 50/50 random outcome). Even
though it is not an impressive score, it is considered a success. Comparing to
chess, which is a two-player game and includes only one additional parameter
- the person who started the game is more likely to win - it is much harder to
predict the winner of a bridge game. The main reasons of this are that bridge
is a game of chance, in one game many independent partnerships are involved,
which results are compared to each other.
Several visualization techniques have been used to investigate what features of
the obtained model behave correctly and which appear erroneous. It also helped
in defining the problems, which are most likely to result in low accuracy. The
analysis is summarized by creating a list of future tasks.
The obtained system in its current form is not optimal, however it gives some
reasonable results and a proper base that can be extended in the future.
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Resumé

Afhandlingen best̊ar af to overordnede dele. Den første er konstruktionen af
en model af en bridgespillers præstation. Den valgte løsning er baseret p̊a
det populære rating-system kendt under betegnelsen Elo, som blev opfundet
til skak i 1978. Den grundlæggende idé er at udtrykke graden af en spillers
dygtighed som en tilfældig variabel ifølge Logistic Distribution. Da reglerne
og pointsystemet i bridge er forholdsvis komplicerede, er der blevet brugt store
ressourcer p̊a at forbedre de grundlæggende formler og p̊a at udtrykke nogle
virkelige udfald af modellen. Afhandlingens anden del er en visualisering af
hvordan modellen virker n̊ar den overføres til bridgespilleres data/statistik. I
alt blev 22, 000, 000 spil og 200, 000 spillere taget i betragtning. To m̊aleudtryk
er blevet brugt til at verificere modellens korrekthed og brugbarhed - Root
Mean Square afvigelse(RMS error) og binomial afvigelse (binomial deviance).
Sidstnævnte kan ses som et direkte udtryk for præcisionen af modellen. Den
opn̊aede rate for korrekt forudsigelse udgør 50,0158%, som er lidt bedre end
null-systemet, med en præcision p̊a 50%(en model med 50/50 chance - tilfældigt
udfald). Selvom det ikke er et imponerende resultat, kan det betragtes som en
succes. Sammenlignet med skak, som er et to-personers spil og kun indeholder
et enkelt yderligere parameter - at personen som har startet spillet, har en øget
sandsynlighed for at vinde - er det væsentligt sværere at forudsige vinderen af
et bridge-spil. Hovedsageligt er forskellen, at bridge er baseret delvis p̊a til-
fældighed, samt at i et enkelt spil er flere uafhængige partnerskaber involveret,
hvis resultater sammenlignes.
Flere visualiseringsteknikker er blevet taget i brug for at undersøge hvilke egen-
skaber ved den eksisterende model som fungerer korrekt og hvilke som er fe-
jlagtige. Dettte har ogs̊a hjulpet med at definere de problemer, der har den
største sandsynlighed for at resultere i en lav præcision. Analysen opsummeres
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med en liste over fremtidige opgaver.
Det udviklede system er ikke optimalt i dets nuværende form, men det giver et
sæt fornuftige resultater og en solid basis som kan udvides i fremtidigt arbejde.
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Chapter 1

Introduction

We live in times where a lot of resources are invested into serving selective, user-
relevant content. This approach called personalization is becoming ubiquitous.
The most common example is Amazon’s recommendation system: ”Users who
bought this product also bought this...”. It is not only the company who takes
benefit of such features by increasing sales. The user is also a winner due to
saving time browsing for products. Last.fm, a portal where you can listen to
music, went even further and developed a mechanism to measure users taste
in music. As a result, the service is able to suggest new bands or songs that
users are likely to enjoy. Taking a closer look at these two approaches, one
realizes that in fact they are very much the same. First they define a metric
to measure similarity between subjects (either users or items) and then they
present conclusions . Such concepts can be applied also to any sport or computer
game. What is most exciting for players is to challenge an opponent similar to
themselves. If the opponents are too weak or too strong, then the match is likely
to be one sided, and both sides would consider the time wasted. Hence, creating
matchmaking based on user similarity will greatly increase user experience. This
thesis provides a proposition of calculating one possible model, which can be
used to define similarity between bridge players by estimating their performance.
Besides, in the thesis graphical methods have been used to visualize some of the
results of applying the approach to real statistics from bridge games.



2 Introduction

1.1 Goals and Challenges

There are three main challenges that the thesis is facing. The first one is mod-
eling the bridge player’s performance. This will be used as a metric that defines
players similarity. Calculating, or rather estimating, it belongs to the family of
pairwise comparison problems and has been treated as such. Rather than trying
to invent the solution from scratch, the decision has been made to use one of
previously researched methods and adjust it to bridge case. Due to the com-
plexity of bridge rules and scoring, this task is challenging and is not expected
to end up with the perfect working solution.
The second goal is to apply the model to the real life statistics and analyze the
results. Such approach allows to verify the correctness of the developed model.
In addition, it exposes its weak and strong sides, making the improvement pro-
cess more effective and more reliable. There are three main challenges in this
domain. One is to acquire a data set which is large enough to be representative.
The second one, is to filter and clean the data to reduce noise that might have
occurred during the gathering process. The third challenge is to implement the
solution and process the filtered data.
Finally, the results of applying the model to the real statistics has to be visual-
ized. It should help to expose the most important features that were mentioned
in the previous paragraph, such as the correctness of the model along with its
advantages and disadvantages. It can also be used to prove that the assump-
tions made during the modeling phase were satisfied, or to realize that they were
wrong. In either case, the visualization most probably will show what should be
the next step in order to obtain better results. Challenges in this field mostly
concerns using adequate statistic measurements, analyzing the right parame-
ters, drawing the right conclusions and finally showing the results in a readable
manner.

To summarize, the goals of the Thesis can be listed as follows:

• Model bridge player’s performance

• Acquire real life bridge statistics

• Visualize the results

1.2 Potential Application

Bridge has been chosen as a point of interest mainly because of willingness to
apply players performance as the most important metric in matchmaking al-
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gorithm1. The current software that is used by most bridge players, including
many world champions, allows only to either create a complete custom match
or to wait for random players. Besides, the great majority of players have the
urge of being able to compare themselves to other players. Having a working
model of predicting the skill level of a bridge player is the first and key factor
to create such algorithm.
The second potential usage is in rating players by various bridge Federations,
take for instance American Contract Bridge League or Polish Bridge Federa-
tions. Their current systems seem old fashioned and very simple compared to
other popular logical games like Chess or Go. The current way for official mea-
suring of the performance of a bridge player is to reward him after achieving a
certain place in an event, where the rank of the event matters. In its current
form it is only possible to earn points. It means that the player is not penalized
for a bad score, implying that a weaker player just needs to play more in order
to obtain a good rating. This results in unreliability of the currently used rating
system.
Finally, the model invented in this thesis might be applied to a completely
different domain - artificial intelligence. Bridge is a very interesting case of ma-
chine learning algorithms, because of its partial observability (players are not
knowledgeable about the entire game - they can see only a limited number of
cards) and required cooperation between two agents. The obtained model might
be a good benchmark for measuring robots effectiveness, and with additional
debugging output, it is likely to detect fields that need improvement.

1.3 The Thesis Flow

The Thesis starts with a description of the various approaches that have been
developed before in order to model the performance of a player in other sports.
No similar work developed for bridge is known to the author. Chapter 3 contains
basic information about bridge rules and shows what the scoring in this game
looks like. It is crucial to have an understanding of how the results are compared
to each other, because they are the core reason of some of the most important
decisions taken during modeling. As a last part of this Chapter, there is a list
of requirements for the model and each approach described before is evaluated
based on it. Chapter 4 describes the approach that has been chosen and the way
it has been extended and applied to the bridge case. Chapter 5 uses visualization
techniques to present the results of applying the model and verify its strong and
weak sides. The last, Chapter 6, summarizes the model and visual results,
defines fields of improvement for future work and general conclusions that were

1Matchmaking algorithm is beyond the scope of this Thesis and is treated as a hypothetical
application possibility, not as a goal to achieve
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drawn.



Chapter 2

Previous Approaches of
Modelling Player’s

Performance

Modeling player’s performance falls into the problem category of pairwise com-
parison. It is well known and has been studied by many researchers. Therefore,
some of the works on topics related to data analysis (Janert, 2010), pairwise
comparison (Chebotarev and Shamis, 2006), rating building (Glickman, 1995,
2001; Ralf Herbrich and Graepel, 2007; Weng and Lin, 2011; Smith, 2006) and
network-based solutions for measuring performance (Park and Newman, 2005;
James Piette and Anand, 2011) have been analyzed in order to gain insight into
already invented techniques. Instead of reinventing the wheel, author decided to
build an approach ”standing on the shoulders of giants” and choose one of the
existing models as a starting point. This Chapter has been divided into sections,
each representing one method for calculating players performance. The first one
is the Elo rating system - the oldest but also the most popular one. The next
two are its successors - Glicko and TrueSkill. All of them are based on Gaussian
(optionally Logistic) distribution and they assume that players performance is
a random variable that follows mentioned distribution. The next two are unre-
lated with them and they have been based on network theory. One of them has
been prepared for rating the US College Football League, while the second one
measures performance of basketball players.
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2.1 Elo Rating System

The original Elo method was designed for measuring players performance in
Chess. It was created by the chess player Arpard Elo for the United States
Chess Federation to replace the Harkness system1, which was considered too
simple. Elo’s model defines performance as a random variable following Normal
Distribution. Players skill level is built around the fixed norm (for example 1500
points), and then adjusted along with players activity to better represent players
actual performance. A key part of the model is calculating the expected score
of a game between two players - probability that player 1 outperforms player 2.
After the match, the corrections are made to make the real score more likely to
happen in the future. It is done through taking away some points from the loser
and adding some to the winner. Elo’s model in its simplest form is expressed
with equation (Glickman, 1995):

Rn = Rn−1 +K ∗ (S − E) (2.1)

It is interpreted as follows: Current rating Rn is defined by adding to the
previous rating Rn−1 a difference between obtained score S and expected score
E, multiplied by importance factor K. S is either 1, if the player wins the game
or 0 if he looses. The draw is considered half a win and half a defeat, which
is represented by S = 0.5. K is a subjective element and it defines the weight
of the game. One could also interpret it as how much trust is given to the
previous rating - the bigger K, the bigger change is possible, which means that
trust is lower. The implementation of the K-factor is very different from model
to model - some systems use a K-factor based on player rating and lowering
it if it exceeds a certain value, while others take into consideration only the
number of games played by a player. The strength of the first approach is that
if the rating is high enough, it is reasonable to increase its trust, basing on the
assumption that very good players’ progress is much slower (if any) compared
to weak players. The justification for the second one is that the more games
were played, the more knowledge the system possesses about the performance
of players. Both methodologies seem to be valid according to the associations
who use them, for example FIDE (InternationalChessFederation, 2011) for the
first case and USCF for the second one. (Miller, 2003).

To calculate the expected score Elo suggested to use Normal Distribution, how-
ever letter studies on this topic showed that a Logistic Curve is also an option
(Glickman, 1995). Glickman, the author of the improvement to the Elo system
described in the next Section, claims that in practice it does not really matter
which one will be used, however it is convenient to use the letter one (Glickman,

1Information about the Harkness System can be found in the book from 1967 called ”Official
Chess Handbook” written by Kenneth Harkness.
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1995). Formulas based on Logistic Distribution to calculate expected scores for
Player A and Player B are (Glickman and Jones, 1999):
Player A:

EA =
1

1 + 10(RB−RA)/400
(2.2)

Player B:

EB =
1

1 + 10(RA−RB)/400
(2.3)

The important observation is that the result is different for each player that
agrees with the common sense. A player with the higher rating should be more
probable to win than his lower ranked opponent (or the other way around -
the low ranked player should not be probable to win versus the higher ranked
opponent).
The Elo rating system is the most popular rating system in the world. It is
used for example by FIDE (World Chess Federation) (InternationalChessFed-
eration, 2011), World Football rating (Runyan, 1997), European Go Federation
(EuropeanGoFederation, 2011), Major League Baseball and American College
Football. Moreover, it is also a very popular rating system used in On-Line
games. It has been implemented in the most popular of Blizzard’s games, such
as World of Warcraft or StarCraft II. In addition, it is used by the recent, very
successful game called League of Legions. Yahoo! Games has also adopted this
way to build players rating. The method, because of its age2 is very well un-
derstood and analyzed. This is a very big advantage of an established system,
which should not be omitted. There are a number of mathematical and statisti-
cal explanations of why this system works. However, there are some well known
issues with the system as well. Probably the biggest one is that it is designed
only for two players games. This is a serious limitation, since many games (in-
cluding bridge) involves more than two players. However, many workarounds
for this issue have been developed, which make it possible to use the Elo system
even for team games.

2.2 Glicko Rating System

The Glicko rating System is an improvement to Elo’s solution, created by Mark
Glickman. Glickman tackled the problem of the reliability of players rating.
When two players with the same rating face each other they both have a prob-
ability of winning of 0.5. The problem in this assumption, is that one of them
could not play for a a very long time while the second one could play regularly

2Elo invented his system in 1978.
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(Glickman, 2001).
He introduced another parameter that needs to be estimated - the rating un-
certainty RD. It stands for rating Deviation and is nothing more than a well
known standard deviation (σ). For his model Glickman suggests using 350 as
startup value for RD. The formula (Glickman, 2001) to recalculate it after a
certain, fixed period is:

RD = min(

√
RD2

old + c2t, 350) (2.4)

The t is the number of the rating periods between the current one and the last
activity of a player. If the player has not omitted any rating periods ( i.e. he
had played in the previous one ) then t = 1. The second variable, c is a constant,
and describes how much the uncertainty should increase for each rating period
during which the player has not participated. There are two ways described by
Glickman to derive a proper value of c. The first one - usually an expensive one
- is to analyze the data. The second one is to define how many rating periods
must pass in order to make the rating of the player as unreliable as a rating of
the new player. The example assumes that if the typical RD for a player is 50 ,
the rating period is two months, and 5 years are needed in order to completely
distrust the rating (which means, that t = 30 (30∗2 months is 60 months, which
is 5 years), the equation (Glickman, 2001) could be written as follows:

350 =
√

502 + c2 ∗ 30 (2.5)

Hence, for this case c = 63, 2.
Equation 2.4 ensures, that no matter how long a break the player would have,
his uncertainty will never be greater than the uncertainty of a new player - it is
due to the min function.
After adjusting the RD for each player that participated in the rating period,
the next step is to calculate the actual rating and the new RD. In order to
calculate the new rating r′ for each player pj facing m number of opponents,
which ratings are r1, r2, ..., rm and RDs are RD1, RD2, ..., RDm and output
of the game versus them is respectively s1, s2, ... , sm which can be either win
s = 1, draw s = 0.5 or lose s = 0, the following equation is used (Glickman,
2001):

r′ = r +
q

1/RD2 + 1/d2

m∑
j=1

g(RDj)(sj − E(s|r, rj , RDj)) (2.6)

RD′ =

√
(

1

RD2 +
1

d2
)
−1

(2.7)

The exact formulas of d2 and G(RDj) are not relevant for explaining the con-
cept and the way of calculating them can be found in (Glickman, 2001). What
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is important, is that they are based on opponents RD’ and ratings. One should
note, that there no longer exists an artificial K factor - instead the systems is
using these two variables to determine the new rating.
It might be confusing at first glance why RD is calculated twice. The expla-
nation is that the first step expressed in Equation 2.4 is focused on increasing
uncertainty depending on how many rating periods were omitted. The second
one is responsible for lowering it, based on opponents skill level and uncertainty
of their performance.

The calculation of the expected game output (Equation 2.8) is very like Elo’s way
of calculating it (Equation 2.2). The only change is taking into consideration
the uncertainty of the opponent’s rating (Glickman, 2001):

E(s|r, rj , RDj) =
1

1 + 10−g(RDj)(r−rj)/400
(2.8)

2.3 TrueSkill

Glicko, similar to Elo, has been designed for two players games. However,
TrueSkill, which has been developed by Microsoft and is based on Glicko does
not have this limitation. It allows not only for an unlimited number of players to
participate, but also makes it possible to derive the skill level for each individual
basing on the result of his team. Moreover, it explicitly models the probability
of a draw, instead of treating it half a win and half a lose.
TrueSkill is using Bayesian Statistics, which means that posterior belief is a
result of obtaining new evidence to the prior belief. The main difference between
Bayesian statistics and the classic (frequentist) approach is that no additional
assumption of repeating observations many times must be added (Janert, 2010).
In addition, the model uses factor graphs (Kschischang et al., 2001) for an
efficient inference process Ralf Herbrich and Graepel (2007). The process of
defining an updated skill level for a player after a match begins by acquiring prior
information about his skill level si, which is described by a normal distribution
with most probable performance µ and its uncertainty σ. The higher the doubt
in someone’s rating, the bigger the change to his skill after a game is possible.
To prevent the standard deviation of always going lower - meaning almost no
change is possible after playing several of games - it is artificially increased
by the dynamic factor τ . Hence, the prior information could be written as
(Ralf Herbrich and Graepel, 2007):

N (si : µi, σi
2 + τ) (2.9)
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In the next step a β factor is used to model players performance also with
Normal Distribution. The new factor can be interpreted as a number of points
by which players must differ in order to say that odds of winning are like 80%
to 20%. It is a fixed value, which depends on a game. The less random the
game is, the lower β will be. However, if a game includes a lot of randomness
- for example poker - the higher it becomes. Player’s performance is written as
(Ralf Herbrich and Graepel, 2007):

N (pi : si, βi
2). (2.10)

After this, a performance of a team ti can be calculated. It is a basic sum of all
performances of all team members pi, with additional weight wi (Ralf Herbrich
and Graepel, 2007):

ti =

N∑
i=0

wisi. (2.11)

The weight is added to increase fairness. The default value is 1, which means
that a player played 100% amount of time in a game. However, one can easily
think of a situation when someone is being disconnected from the game.
Once the performances of all teams are known, it is possible to compare them,
which is done using TrueSkill to count the difference in performance di between
teams. Based on the result, one can decide whether one team has won - meaning
that di > ε, lost - di < ε or there was a draw - di = ε, where ε is predefine num-
ber representing a threshold for a draw. For TrueSkill, it is only important who
won the match - it ignores information about by how much. Once all results are
calculated and taken into consideration, which requires a few iterations if many
teams are involved, one could update a rating and uncertainty about each indi-
vidual. The idea is relatively simple: the more likely the outcome was, the lower
change to µ and σ. On the other hand, if the result was not likely to happen,
then the change to µ is much greater, but the uncertainty is also lowered, since
there is new important evidence. The detailed math about updating ratings and
uncertainty can be found in Ralf Herbrich and Graepel (2007); Moser (2011).

Recently, another Bayesian approach for on-line rating (Weng and Lin, 2011) has
appeared. It is also based on Glicko, and gives comparable approximations as
TrueSkill, however it is superior in efficiency for a multiple team game scenario
to a system created by Microsoft. It is because it does not require iterative
calculations in such case. All main ideas however remain the same.
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2.4 Football Rating for US College League

A completely different approach has been presented in the solution for building
rating for a US College Football Team. The problem they had to tackle was to
define the best College team in the USA. This would not be challenging if the
usual procedure was applicable: Creating a tournament for X best teams and
let the winner claim the title. Instead, the result had to be based on the results
during the season. What made the task specifically difficult, was that college
teams are divided into conferences, and about 75% matches were played within
their area. As a result, many teams have never played against each other.
The previous system contained a big subjective factor, being the notes of coaches
and sport journalists. This made a lot of people feel that the process of choosing
the best team was unjust. The new approach has been based on network theory.
Here each node is defined as a team and each directed edge from node A to
node B as a representation of team’s A win over team B. The problem of the
uneven strength distribution between conferences has been solved by additional
assumption, similar to the one made in collaborative filtering. Indirect wins
have been introduced, meaning that if Team A has won versus Team B, and
Team B won versus team C, then if Team A has not played vs Team C, it is still
considered that they are better than team C. They did not limit themselves to 1-
level indirection, instead they have added an α factor, which power corresponds
to indirection level, meaning the higher indirection level, the lower influence of
such win. Their representation of win-lose scores is a matrix, where element Aij
is the number of wins of team j over team i (usually 0 and 1, but sometimes
2). The equation to calculate which team is the best is rather simple (Park and
Newman, 2005):

si = wi − li (2.12)

Where wi is score from winning and li is penalty for loosing. They are given
with formulas (Park and Newman, 2005):

wi = kouti + α
∑
j

ATijwj (2.13)

li = kini + α
∑
j

Aij lj (2.14)

The first element in equation (kouti and kiin) is the number of direct wins and
loses, while the second one defines indirect wins and loses. This approach pro-
vides a powerful way of dealing with problems, which are related to lack of
information. In addition it takes into account the strength of opponents. The
stronger the beaten team is, the higher a score will be gained. Simultaneously,
loosing versus a weak team costs a lot more than versus the strong one. The
whole approach is described in article (Park and Newman, 2005).
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2.5 Basketball Player’s Performance

The goal of this approach is to evaluate how important each basketball player
was for each team he played in, compared to his teammates. Moreover, it is
supposed to give an answer to the question of how well he performed statistically.
In order to answer this, authors have, in two steps, built a network which allows
to generate two measures.
They start with constructing a unimodal graph, where a node is a player and
weighted edge between two players exists if they have played at least once for
the same team. The weight represents the strength of their interdependency,
taking into account the team’s performance. The better the team played, the
higher a value is assigned. In order to measure the team’s effectiveness, they
analyze statistics containing the number of points scored while in offense or
allowed to score while defending. The final unimodal graph is derived through
a bipartite graph, where there are two types of nodes: Player and Unit. From
the definition of bipartite graph, no edge between player-player or unit-unit
may exist. This bipartite graph is represented by incident matrix W - a row
represents a unit, while a column a player. The value in cell i,j is referred
to as wij and it shows how well the unit has performed. The final unimodal
graph is by calculating A = WTW (James Piette and Anand, 2011). They
use eigenvector centrality with random restart. Then, they used the concept
of Latent Pathway Identification Analysis (Pham et al., 2011), which has been
originally used in biological networks. The idea is to generate random walks in
order to assess the importance of each player relative to all the others, which
exist in the network. The result of this process is a centrality score, where
the statistical significance is calculated by using a so-called bootstrap technique
(Janert, 2010; James Piette and Anand, 2011). They distinguish three different
statistics: offensive performance, defensive performance and total performance.
The process described above is used to calculate each of them, meaning that
the final output are three unimodal weighted graphs - one for each metric. The
whole approach is described in details in (James Piette and Anand, 2011).



Chapter 3

Choosing the Approach

Alongside the necessary background knowledge gained in Chapter 2, more input
is needed to develop a reliable method of tackling the problems introduced in
Chapter 1. One of prerequisites is establishing an understanding of how the
score is measured in bridge. This topic is covered by the first and the second
section of this Chapter. Grouping all the approaches described in Chapter 2,
and choosing the one that best fits bridge is covered by the last section. In
addition, it introduces a list of requirements for the model to make a meaningful
comparison between different choices possible.

3.1 Scoring in Bridge

Bridge is a card game for exactly two partnerships (4 players) at one table.
However, unlike other sports, take for instance chess, football or basketball, in
bridge, the score of a player is not solely based on the grounds of ones own
result. Instead, the same card distribution is duplicated and at least another
4 players play the same deal as the first table, and then the scores are being
compared 1. This Section will explain what it means.

1There is one very common variation of bridge scoring called rubber bridge, in which there
is no comparison taking place. However, in general there is at least one other table, to which
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The description starts by showing the flow of playing a deal and the basic terms
involved. A deal is a certain concrete distribution of 52 cards between four
players - each player receives 13 cards. These 13 cards are referred as a hand.
Each of the players sit at one of four positions - North, South, East or West.
In fact, one might well establish, that the hand belongs to the position, not
to the player. A set of 4 players is called table and a match between them
is referred as a game. One deal must be played by at least two independent
tables. Players sitting opposite each other are partners and their goal is to
obtain the highest possible amount of points. Hence, by saying that in one deal
N tables are participating, one thinks about exactly N ∗4 players and N ∗2 pairs.
Partnerships are commonly referred to as line at which they sit: North-South or
just NS and East-West or just EW. It is of significance which hand belongs to
which position. If the cards between position N and S were swapped, it would
be considered a completely different deal. To calculate the total number of deals
that can be produced the following equation must be solved:(

52

13

)
∗
(

39

13

)
∗
(

26

13

)
∗4! = 1, 287, 473, 706, 371, 731, 028, 141, 698, 560, 000 (3.1)

This is an extremely large number. Hence making the assumption that each
deal is unique is very reasonable, since it is not probable, even in the long run,
that the same deal is randomized twice.

After the distribution of the cards, the actual play begins. The person who dealt
the cards becomes a dealer and he starts the Auction. It is not necessary to de-
scribe this part of the game in details, only to mention that the partnership who
bids the highest contract has won the auction, and one of the players becomes
a declarer and his partner becomes a dummy. The dummy is not participating
in the deal anymore. Each of their opponents will be now a defender. The
observation can be made that the dummy participates only in the first phase of
the game, while the declarer plays alone against two players. The declarer’s goal
is to make his contract, which means he tries to take at least as many tricks,
as he has claimed to during the auction, while the defenders do everything in
their power to avoid this. A trick is when each of four players play a card. The
trick belongs to the person who has played the highest card in the suit, or the
highest trump colour.

Depending on the final number of tricks, if the declarer has made his contract,
he and his partner get a certain number of plus points (while defenders get the
same amount of minus points). The amount of points depends on the contract,
the number of tricks taken and the vulnerability2. If the declarer fails to take

you compare your result. Only this scenario is taken into account in this thesis - it is called
”duplicated bridge”.

2There are two possible vulnerabilities - vulnerable, commonly described as red and not
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the required number of tricks, the defenders get a plus score, depending on how
many of the tricks declared were missed and whether the contract was doubled
or redoubled, while he and the dummy get the same amount of minus points.
Knowing the exact rules of giving points is not relevant to the solution, hence it
will be omitted. What is however important is the way of calculating the final
score, and this is the subject of the next section.

3.2 Comparing Results in Bridge

It is not hard to get many points by a partnership who posses all good cards.
Thus they should not be awarded for just being lucky and getting a lot of Aces
and Kings. Rather it is their intellectual effort, which should give them a good
score. Duplicate bridge tries to minimize the randomness of cards distribution
by duplicating a hand to multiple tables and comparing the results. The effect
is that the term ”opponents” refers not only to the second pair at the table.
All players at the same line are challenged simultaneously as well. Achieving
the best score means more than just beating a pair who is faced directly. In
fact it is outperforming (indirectly) all other pairs holding the same cards. It
is important to notice that players at other tables who sit at opposite lines
are actually teammates, because they prevent opponents in achieving a good
score. This observation is an important one, and should be the used in the final
approach.

3.2.1 IMPs and Matchpoints

There are many ways in which partnerships’ scores can be referred to each other,
however two of them are most commonly used in bridge. The first one is called
Matchpoints. A partnership gets 2 matchpoints for each score that is lower
than their, 1 matchpoint for each tie and 0 otherwise3. Hence, if a partnership
beats all other pairs, it gets 100% (commonly referred to as top). The worst
pair receives 0% (which is known as bottom). This type of scoring generally
encourages an aggressive style of playing, since it does not matter how much
the result differs from the others; it is only important how many it outscores or

vulnerable, commonly described as green. There are hence four possible combinations - either
both are red, both are green or one of the sides is red and the second one is green. Vulnerability
simply means, that you can get more points if you win the auction and make your contract,
but you are risking a higher amount of minus points if you win the auction and fail to collect
the required number of tricks.

3In the USA instead of 2,1 and 0, partnership obtains respectively 1, 0.5 and 0.
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Figure 3.1: Table to look up the number of IMPs for given difference in points
range.

ties. Hence, even a small difference in the number of points, for example 120
instead of 110, may bring a lot of matchpoints.

By contrast, the second method called International Match Points (IMP) gener-
ally favours a more ’safe’ style of playing. A pair gets points based on how much
it differs compared to other pairs. The lookup table is presented in Figure 3.1.
The calculation is quite simple when only two tables are involved. The result
of N-S from table 1 is deducted from the score in table 2, and a proper score
is assigned based on the lookup table. However, if there are more pairs in play,
then there are more choices. For example, the average result could be calculated
(summing all results and dividing the sum by the number of tables) or one could
use the median instead. Some algorithms discard a few top and bottom results
from the calculations. Another approach is to calculate imp difference for each
possible pair of results (if there are 5 tables, then the result from table 1 is
compared to table 2, 3, 4 and 5, then result from table 2 is compared to the one
achieved in tables 3, 4 and 5 etc.) and thus getting an average.

In duplicate bridge, events (for example tournaments, championships etc.) might
be played in three categories: individual, pairs and teams. In the first two, all
players results are compared to each other. The difference between them is, that
in the first case partnerships change in every round (which is usually 2-3 deals)
and in the second one, the partnerships are constant. Any type of scoring is
appropriate to use - matchpoint and IMP, though the first one is probably more
popular. Things change in case of a team event, which is considered the most
prestigious. During such an event, each team is represented by 2 partnerships,
hence there are two tables. Pairs from the same team must play at different
tables at different lines. The results from each table are later compared to each
other (based on the table showed in Figure 3.1 and the winner is the team with
the higher score. Even though matchpoints could be a viable approach, it is too
imprecise. The only possible scores in case of two tables are: 100%, 50% or 0%.
It means that difference of 10 points in a result is equally important as a 2000



3.2 Comparing Results in Bridge 17

points difference, what is unjust. Hence, IMP is used during all important (and
usually also unimportant) team events.

3.2.2 Average Cross-IMPs Algorithm

Because IMPs are more reliable and might be applied to any event type, it seems
natural to use IMPs scoring in the thesis. There are many methods that can
transform a set of results in points into IMPs. The one that will be used in the
thesis is called average cross-imps. The example below explains how it works:
Assume there are 5 tables that are playing the same deal - all North players
have the same cards, all South players have the same cards etc.
The results from table 1 to table 5 are as follows (all points are relative to NS):

-100, 600, -50, 620, -100

In order to get imps for table 2 (which got 600 points), its result is compared
to all of the others:

to table 1: 600 - (-100) = 700
to table 3: 600 - (-50) = 650
to table 4: 600 - 620 = -20
to table 5: 600 - (-100) = 700

To change the difference in points into imps, one should do a proper lookup in
the table showed in Figure 3.1. In this case, the proper values are as follows:

Versus table 1: 700 = 12 imps
Versus table 3: 650 = 12 imps
Versus table 4: -20 = -1 imp
Versus table 5: 700 = 12 imps

The final score of this deal for NS from Table 2 is the average of imps calculated
before. Hence, it is:

(12 + 12 + 12− 1)/4 = 35/4 = 8, 75 (3.2)

The score for EW can be obtain by multiplying the result for NS by by -1, which
is -8,75 imps.

There is an important thing that should be pointed out before finishing this
chapter. The NS pair from table 2 might have got a relatively high final score



18 Choosing the Approach

of 8,75 imps not only because of their great play or their opponents mistake. It
could happen because the other pairs sitting at their line - NS - have done a
relatively poor job or the pairs that were sitting at opposite lines - EW - have
done a relatively good job. It is important to note, that actually NS from table
2 would like all other pairs sitting on NS to be as weak as possible, while all
EW pairs, except their direct opponents, as strong as possible.

3.3 Possibilities of Applying Existing Approaches
to Bridge

After getting familiar with the basic bridge rules it should now be possible to
get an overview of the problems and traps that have to be avoided. The range
of requirements, that should be satisfied by the model of player performance is
listed below:

1. Distinguish between good and bad opponents

2. Distinguish between good and bad partner

3. Take into account how many games partnership played together

4. Take into consideration the skill level of players at other tables

5. It is not only important, who win/lose, but also by how much

6. Consider extreme cases, when world champions win (lose) against begin-
ners

The first one is about awarding/penalizing players differently if they play versus
a weak or a strong opponent. Similarly, the skill level of the partner should be
taken into consideration to avoid being penalized/awarded too much by someone
else’s mistakes/correct decisions. In addition, partners understanding of each
other is very important. Two regular partners are able to win with much better
opponents who play against each other for the first time. The fourth requirement
is reducing penalty for ”being at the wrong place at the wrong time”. It covers
those cases, when a weaker opponent at the other table plays against a strong
one and they generate unnatural high scores. Requirement 5 has to be satisfied
in order to reward players that make a decision that will bring plus score in the
long run, even though they could often lose by a very small number of IMPs.
Moreover, if a player loses a lot of imps several times, it is a strong indication that
his opponent is much better. Requirement 6 indicates that extreme scenarios
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should be verified. It is quite common, especially while playing on-line, that
situations where beginners play with champions occur and the model should
take such cases into consideration.

3.3.1 Analysis of Various Rating Systems

The list of requirements defined above has been used to compare and analyze
approaches introduced in Chapter 2. Starting from Elo, the method to deter-
mine whether an opponent and partner are high skill players or not is built-in
by default, because it is a rating system. However, the limitation of the model
being only applicable to two players games complicates a comparison. There
are, however, solutions to reduce bridge into a scenario, where two ”players” are
playing versus each other. One such method is to treat the pair as one player, as
suggested in an on-line article (Curley, 2010). The idea is to count every exist-
ing pair combination as completely separate players. It means, that if player A
plays together with players B and C, the two artificial players are created, rep-
resenting these two partnerships. Choosing this approach would make it hard to
derive the skill level of individuals, which is the final goal. However, what can
be done, is to find the average rating of players and use it in the calculations.
There are no difficulties taking into account the number of games played with
each partner. An additional parameter might be introduced, which modifies
expected score. Requirement 4 make things a little bit more complex, since it
also requires to take into consideration all other pairs that played the same deal
on other tables. However even for that solutions have been found, for example
by the Days of Wonders(Allen and Appelcline, 2006). Their approach is to split
one game, in which many different players without teams participated (so called
FFA - Free For All) into many duels (player vs player). The winner of the game
has won with all other players, the player in the second plays with all except one
etc. Hence, it is possible to calculate new ratings for each artificially created
duel and take the average as a final result. Actually, the described way does not
differ from computing IMPs in the example in the previous Section!
Requirement 5 is relatively easy to solve by editing the K factor. Such approach
has been used for example to calculate ratings of World Football (Runyan, 1997).
Elo has no difficulties with extreme examples, which are the subject of Require-
ment 6. If the difference between players is very big, then one of them gets
almost no points at all, while the second one gets a very large number. Intu-
itively this is what should happen.
To sum up, the Elo rating system is able to satisfy all requirements that have
been defined. Moreover, it is worth stressing again that it is well established,
deeply analyzed and broadly used on many platforms.
TrueSkill and Glicko are improvements to Elo, hence they automatically satisfy
all requirements.
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3.3.2 Analysis of Network-Based Approaches

Separate analysis is required for network based approaches. The solution ap-
plied to the case of the US College Football League is a very tempting one.
There is however the question, how this approach might be applied to bridge
to satisfy all requirements. The second concern is whether this solution will be
scalable for a huge amount of players. It is due to the main assumption, on
which the approach is based, that if A won with B and B won with C then A
won with C. One additional deal requires rebuilding a very large part of the
graph, depending on how many levels the assumption is to be applied to. One
should remember that one deal, in which take for instance 16 tables are involved,
requires changing the rating of 64 players, and because of the above assumption,
modifications have to be done to all players that have played at least one game
with any of them.
As it goes about applying this approach to bridge, one possible graph represen-
tation is to define each node as a partnership, and each weighted directed edge
between two partnerships would indicate by how much (in IMPs) one partner-
ship won (lost) with the other one. It could also be necessary to add a second
weight which would indicate how many deals have been played, because it makes
a difference whether a small advantage on one side is due to a few games played
between two partnerships or because of very close matches. Then, the per-
formance of each player could be a weighted (by the number of deals played)
average of all partnerships to which this player belongs. However, this way of
defining graph does not provide a way to take into account the skill level of the
partner and all other players involved in the game. It treats the partnership
as one unit, meaning it does not matter whether it consists of players with the
same skill or not.
Another way of defining the network would be to create a node that represents
a deal. It would be created for each deal in the dataset. Next, for each table
participating in it, four nodes will be created and they will be connected to each
other with an edge, indicating they were playing at the same table. The names
of those nodes could be the position, from which a player plays - North, South,
East and West. Beside, a node that represents a player should be created, in
order to keep track of which player played what deals. Figure 3.2 should demon-
strate the idea and how it could look for one hand played by three tables. This
interpretation would allow to store all necessary information about partners and
opponents of the player in each deal. It will allow to introduce a technique to
apply a partner’s skill level and to opponents, for example by using theirs wi
and li. However, an additional issue occurs - the bootstrap problem. It is not
known from which player one should start calculating the score. The size and
traversing complexity of the graph will be very large even without taking into
account when each deal has been played. Depending on this, the results might
vary dramatically. Moreover, it would not be possible to model the progress of
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a player - only pure result (score?).

To sum up, the approach used by College Football is very interesting, however
it does not really apply to bridge. The rating system seems to be superior in
every aspect and no single advantage of the network approach has been found.
The same reasoning applies to the last approach - measuring Basketball players
performance. It introduces a lot of additional problems, inaccuracy without
giving anything in return.

3.3.3 Why Elo

The only concern left is which of the three rating systems: Elo, Glicko or
TrueSkill should be used. The advantage of Glicko over Elo is taking into ac-
count the player’s performance reliability. However, this is not that important
in bridge. What really matters is the uncertainty of a combined performance
of partners, which should be based on the number of games played together
and when they were played. This is due to the fact that measuring trust in an
individual rating is not very useful - there is a great difference between players
who play everyday but with different partners and players who play seldom but
always with the same partner. In case of bridge, the second one playing with
his regular partner is much more reliable than the first one.
TrueSkill can be considered as a generalization of the Elo and Glicko systems. It
introduces a lot of new features, like team handling, draw probability, Bayesian
statistics instead of frequentist. It is probably the one that will be able to give
the best predictions. The problem with TrueSkill is that it requires a very good
understanding of the previous approaches to be used correctly. Such knowledge
can be gained only while working with Elo itself. Going with such powerful, but
also complex solution without previous experience with rating systems does not
seem to be the correct approach. In the worst case it might lead to completely
wrong conclusions. In addition, there is no research known to the author, on
applying rating system to bridge, which would compensate lack of insight into
rating systems. It is another reason to be rather careful of putting all resources
into a technique that is likely, but not guaranteed to work.

After considering all pros and cons, Elo has been chosen to be used. Even
though TrueSkill is more likely to give more accurate predictions, it is dangerous
to choose this method without any prior knowledge about the problem domain.
Such insight might be gained only during work on the solution. That is why
it was chosen to first develop a prototype of the solution built over a basic
Elo model. Such approach is usually chosen by companies who would like to
test a new product without risking too much. Moreover, it would allow not
only to become familiar with the underlying statistics and to explore the bridge
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Figure 3.2: The figure contains sample graph. There are 6 node types: ’North’,
’South’, ’East’ and ’West’ indicate the position in the particular deal, ’Deal’
represents a deal played by many tables and ’Player’ is a representation of a
player. North, South, East and West are connected if they played at the same
table. A player is connected to each position on which he played. He is hence
indirectly connected to certain number of deals. Such graph representation has
the advantage of storing very detailed information, but the price is an enormous
number of nodes.



3.3 Possibilities of Applying Existing Approaches to Bridge 23

domain, but it will also be possible to reconsider the list of requirements and
set the priorities of what is the most important in bridge. It is important to
notice, that TrueSkill does not resolve the most important problem of predicting
bridge outcome - namely the partnership history. It also ignores by how much
one team won over the second one. It means that a lot of extensions would
have to be done to TrueSkill to apply it to the domain of bridge. It should
be observed that using a basic method would allow to perform much more
experiments, from which it will be possible to draw more precise conclusions.
It is because the only parameters in Elo is rating difference and K-factor and
there is no overlap between these two. It is also important to note that if for
some reason it turns out the rating system is not possible to use for bridge,
there would still be enough time to switch to another approach. Finally, the
most important argument: nothing can be lost by choosing Elo. If it turned out
that the rating system is applicable, however Elo gives poor predictions, all the
knowledge and insight gained from the first try of applying it could always be
migrated into TrueSkill. Also, developed statistics for measuring accuracy will
also be applicable to TrueSkill. Even certain parts of the implementation will
be able to be re-used (even though it will be necessary to greatly extend it).
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Chapter 4

Modeling the performance

The input from the previous chapter is crucial for building a proper model.
From many reasons it was decided to use the Elo rating system (See Chapter 3)
as a starting point. Hence, the start-up formula is:

Rn = Rn−1 +K ∗ (S − E) (4.1)

The description is divided into two sections. The first one discusses one of two
parameters - E - the expected score of a game. The second section describes in
details the K factor.

One of the most important things that has to be decided regardless of these two
parameters is how to define a winner. The simplest and most intuitive approach
is to let the pair who got a plus score become the winner. However, in such case
the draw will almost never happen if many tables participate in a deal. The
solution is to provide a 1 IMP margin, which would protect pairs from outliers
without harming the real winners. Hence, there is a winner if one of the pairs
gained more than 1 IMP, otherwise the result of the game is considered a draw.

Another very important decision to make is how often ratings will be updated.
The excessive amount of time has been spent to be able to calculate ratings
after every game, so the player will not have to wait for an update. A number
of experiments were performed on the whole filtered data set (See Section 5.1)
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to measure the model’s effectiveness, enhancing predictions of expected score
and proper weighting by the K-factor. The metric used initially to compare the
model’s results was Root Mean Square Error (RMSE) and it has been used in
the first competition called ”Elo versus the Rest of the World” (Sismanis, 2010):

RMSE =

√√√√ 1

N

N∑
i

(θ̂i − θi)
2

(4.2)

The N is the total number of hands played at all tables for 10, 000 deals. The
idea was that the higher number of iteration, the lower the average total error
should be. Unfortunately, even though one could determine which coefficients
work better than the others, the model did not seem to behave correctly. The
more games played, the bigger the error was. There were no exceptions. The
conclusion has been drawn that it should not be possible to give reliable results
with a rating period of 1 game. The justification seems to be intuitive: in
one game anything can happen and adjusting the score based on one game will
be very prone to noise. In the end, the rating period has been extended to 3
days. It is because the data that have been gathered contain statistics from 21
Feb to 13 May, which is 82 days, which makes 27 rating periods. It has been
taken into account that some periods have to be considered as a training set -
otherwise there will be very large noise at the beginning and the final score will
be polluted.

Having chosen a rating period of 3 days and with a clear definition of winner and
loser, one can proceed to the description of two components of the Elo system:
rating difference and K-factor.

4.1 Rating difference

To repeat, the most important assumption made by Elo was that it is possible to
build a players ratings distribution around the norm. Further research showed
that instead of Normal Distribution, it is also possible to use Logistic Distribu-
tion, however according to Glickman (Glickman, 1995) it does not really matter
which one will be used:

”For practical purposes, the two curves are indistinguishable.”

The shapes of these two are a little bit different, as shown in Figure 4.1, however
the whole approach remains the same. The assumption made by Elo is used to
calculate the probability that player PA outperforms (in the long run) PB .
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Figure 4.1: The Figure shows the difference between two distributions - Normal
and Logistic (with base 10).
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However, so far it was not explained exactly how predicting scores works. This
is done in subsection 4.1.1. After describing the statistics behind predicting
the output of the game, the following subsections describe the improvement of
the basic Elo formula, introducing new parameters that are meant to enhance
predictions.

4.1.1 Predicting Score

The formula I have chosen to predict the output of the bridge game is the one
suggested by Glickman and which is used in plenty of other systems (Glickman,
1995):

E =
1

1 + 10rd/400
(4.3)

The 400 is a standard deviation σ (or s) and rd is rating difference, which is
calculated as ropponent−rplayer. could be set to any other value, some examples of
such and their corresponding winning probabilities are presented in Figure 4.2.
The reason why 400 is being used is a matter of convention and does not influence
on accuracy. Because of choosing this exact value, the player who is ranked
200 points higher than his opponent is considered as one class better and his
probability of winning is 76%, while that of loosing, only 24%. This can be
verified by solving the equations:

EA =
1

1 + 10−200/400
=

1

1 + 10−1/2
=

1

1 + 1/
√

10
= 0.76 (4.4)

EB =
1

1 + 10200/400
=

1

1 + 101/2
=

1

1 +
√

10
= 0.24 (4.5)

It might be noticed that the value of 200 is corresponding to the σ of players
rating distribution and that is why the value of 200 is considered a different class.
One can derive this conclusion after realizing that Equation 4.3 is corresponding
to the logistic distribution obtained from subtracting two logistic distributions
with different µ (player’s rating) and the same σ (fixed standard deviation).
According to the definition, the output distribution is given with µo = µ1 − µ2

(which in the Equation 4.3 is described as rd - rating difference) and σo = 2σ
(what in the Equation 4.3 is 400). Since 2σ = 400, then each of players rating
distribution has standard deviation σ = 200.
To illustrate this graphically, a Figure 4.3 has been created. It represents a
match between two players, one with µ = 1300 and the second one with µ =
1500. As explained above, both have the same fixed standard deviation σ =
200. Player 1 wins when his performance (showed in x axis) will be greater
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Figure 4.2: Graph shows how the logistic cumulative distribution function with
mean zero looks for three different σ: 200, 400 and 600. The one used in the
thesis is 400.
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Figure 4.3: Graph shows the rating distributions of 2 players that play a match
versus each other. One is rated at 1300 points, while the second one at 1500
points. Hence, the difference in their performance is equal to σ, which is 200.
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than his opponent’s. To get the better overview, player 1’s distribution has
been subtracted from player 2’s, shown in Figure 4.4. The new mean for the
obtained distribution is µ = 1500−1300 = 200, and standard deviation becomes
σ = 2 ∗ 200 = 400. To calculate the probability that player 1 will win, one have
to count the highlighted area to the left of x = 0. According to the definition
of logistic distribution and putting x = 0, µ = 200 and σ = 400 to the following
equation:

P (p1 > p2) =
1

1 + 10(x−µ)/σ
(4.6)

one would obtain equation exactly the same as Equation 4.4.
This shows the main idea of predicting the output with Elo and how logistic
distribution is used to achieve this goal.

An important observation according to expected score is that when the rating
difference between players grows to infinity (See Figure 4.2, the expected score
converges to 1 (or 0). One should make a correction to this, because it is never
true that there is almost a 100% chance for win/lose, even if world champions
play versus beginners. The similar concept in chess is known as the ”rule of
400”, which says that the maximum rd used in calculations might be 400. If the
difference between players’ ratings is bigger than 400 (lower than -400) then it is
artificially ”rounded” to 400 (or -400). In practice it means that the maximum
(minimum) expected score is around 0.91 (and 0.09). This rule has been applied
to this model as well.

In chess the usual approach to enhance the rating system’s predictions is to
extend it with one additional parameter, which is responsible for slightly in-
creasing chances of a player who plays with white. It is natural, because it was
proved that the player who starts the game has an advantage. In bridge there
are plenty of more factors, what makes it much harder to develop an accurate
system. The following subsections introduce some of the most important factors
that have to be taken into consideration, along with a proposition for including
them into the model.

4.1.2 Rating of partner, opponents and players at other
tables

The key question that occurs at this moment is how to satisfy the requirements
listed in the previous chapter. First of all, the model is created for only two
players and the number of bridge players in one deal is 4. Hence, the way to
include partner’s performance and second opponent has to be found. Moreover,
the skill levels of all players at other tables should affect the predictions as well.
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Figure 4.4: Graph shows the distribution of expected scores between two players
whose rating difference is 1 class (200). The marked area is the probability that
the lower ranked player will outperform his opponent.
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For the first problem, two different approaches have been tested, in order to see
which predicts better. One of the ideas was to generate artificial matches, based
on one deal. The example should clarify this concept.
Assume, that in one game 6 tables are participating. Each of the tables consist
of 4 players - two pairs playing versus each other. Instead of counting IMP
averages, one can consider that each of the tables played 5 matches. It means,
that Table 1 played vs Table 2, ..., Table 5 and Table 2 played vs Table 1, Table
2, ... , Table 5 etc. What is achieved, is that each of those matches could for
a moment be considered as a separate events. One can then treat North-South
from Table 1 and East-West from Table 1 as one team, that plays vs North South
from Table 2 and East-West from Table 1 (An explanation for such definition
has been given in Section 3.2. Because each player is equally important, one
can just take the average of ratings from Team 1 and Team 2. The average
ratings are applied to Equation 4.3 and this generates temporary points ∆ for
each player. The operation is repeated until no more matches can be created
and all results are summed up for each player. The final point change for Player
i the sum of all temporary points divided by the number of matches played.
The described approach satisfies all requirements related to players rating. The
results were satisfying - at the top of the rating were people, who won a lot of
matches and in total had a high plus imps score. On the other hand, the bottom
of the table was occupied by players with very poor results. However, there was
one theoretical bias, which lead to inventing another approach. The flaw is that
too much weight is given for players at other tables. It is reasonable to claim
that if there are only two tables in the game then it is crucial how corresponding
teammates are playing. No matter how good score would be obtained at table
1, the second table could just generate very odd results, especially if one of the
players is very low. However, the more tables are involved in the game, the less
important is the skill level of players at other tables. It still matters, but in
order to punish one pair, most of the others must generate odd results.
Such reasoning leads to another solution. Instead of creating artificial matches,
a new parameter γ has been invented, which is meant to adjust predictions if
one of the pairs sit in favorable lines. Such advantage occurs, when players at
the opposite lines are stronger than ones playing at the same one. The γ is
calculated for each table separately. For table t it is defined as follows:

γt =
(Ro − rto)− (Rp − rtp)

2.5N
(4.7)

where Rp is a total rating of players sitting at the same line (NS or EW) as pair
for who the rating is being calculated and Ro is for their opponents. The rtp is
the average of ratings of pairs for who the rating is being calculated and rto is
the average of ratings of their opponents. The N is the number of tables, which
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participated in the deal.
Interpretation of γ > 0 is that opponents have advantage, γ < 0 means that
opponents are in a worse position and for γ = 0 no one is favorable to win. As
intended, the weight is much higher for two tables than for 16. The γ should be
applied to the main equation of calculating expected score as follows:

E =
1

1 + 10
rd+γ
400

(4.8)

4.1.3 Difference in partners ratings

Another problem that should be addressed by the model and cannot be over-
looked, is the difference in skill level in scope of pair. As for now, if pair 1
consists of players with ratings 1300 and 1700 plays versus a pair with both
players with rating 1500, the win probability for both of them is 50%. The first
impression was that the first pair is less probable to win. Such conclusion has
been strengthen after imagining a more extreme example - the highest ranked
player playing together with the lowest player against two averages players.
Intuition was that the higher ranked player cannot use all of his knowledge -
bridge is a partnership game and both players must be on the same page most
of the time. Secondly, if the lower ranked player makes an error, there is usu-
ally nothing that the better player can do to fix it, especially in the bidding
phase. A new parameter called ρ has been introduced, which was supposed to
cover this situation. After a number of tests it turned out that data suggest a
completely opposite solution - the first pair is more likely to win. Concept that
might justifies that counter-intuitive behavior might be somehow similar with
the idea about neighbors presented in Elo++ (Sismanis, 2010). A translation
to bridge would be that if a player plays with a higher ranked partner it most
probably means that his rating is underrated. It is reasonable if one assumes
that good players play only with good ones. The assumption becomes weaker
for intermediate players, meaning that it intermediate players are more likely
to play with beginners. Hence, the skill level of a higher player should be taken
into consideration while defining ρ. As for now, the equation is:

ρ =


0 if 0 ≤ rdpair| ≤ 20

max(
|rdpair|

12 − MAX(rp1,rp2)−1500
10 ) if 20 < |rdpair| ≤ 400

max( 400
12 −

MAX(rp1,rp2)−1500
10 ) if |rdpair| > 400

(4.9)

The notation has not been changed: rdpair is the rating difference within pair,
rp1 and rp2 are players’ ratings, hence rdpair = rp1 − rp2. The difference of
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20 proved to be a reasonable margin to tolerate and no penalty is given for it.
However, the toleration increases along with lower rating, what can be noticed
in Figure 4.5. The max() function has been put to avoid minus penalty. To
sum up, the current form of ρ takes into consideration tolerance to low rating
differences and the skill level of the higher player. However, more data should
be gathered in the future to verify also the second case - when the rating should
be lowered. Hence, the way of computing ρ is not optimal and should be further
explored.

4.1.4 Partnership experience

The last adjustment that has to be covered by the model is the number of games
played. For every game it is generally natural that the person with rating 1500,
achieved after 800 games, is more probable to win than the opponent with the
same estimated performance, but on the basis of very few games. However, one
cannot forget that bridge is a partnership game. What really matters is not
the pure number of games in general. Instead, one should focus on the number
of games played with the current partner. However, not every game is equally
important. There is a great difference between a pair who plays for the first time
and the ones that have already played 100 deals, but there is almost no difference
between partnerships with 1500 and 1600 games together. This suggests using
some kind of logarithmic function to compute an additional parameter - λ.
Number of tests were performed to find a value that best describes the obtained
data, and the result was:

λ =

Np1,p2∑
i=3

1

log10 3i
∧ λ ≤ 150 (4.10)

where Np1,p2 is the number of games played together. The first few games
are ignored, because there must be at least little evidence that the two players
indeed want to cooperate. Figure 4.6 shows how the logarithmic function used
to calculate λ looks like.

4.1.5 Summary of rating prediction

To put everything together, the following final equation for predicting the score
has been modeled:

E =
1

1 + 10
((ro1+ro2)/2+λo+ρo)−((rp1+rp2)/2+λp+ρp)+γ

400

(4.11)
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Figure 4.5: Graph shows ρ parameter, which is adjusting the pair average rating,
depending on how big the difference between players is. The higher skill of the
better player, the bigger adjustment is made. It is because good players tend
to play with good players, which means that if their partner has a low rating,
most probably it is underrated. In addition it takes into consideration what is
the rating of a higher player, since there is a big difference if the higher ranked
player is an expert or beginner - for the second one the reasoning is much weaker.
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Figure 4.6: Graph shows how the value of i-th game counts less to λ - Partner-
ship understanding coefficient.
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The parameters that are taken into consideration during calculating the pre-
dicted score:

• Skill level of the partner and both opponents - the ratings of each pair are
averaged

• Skill level of all other players via γ parameter

• Difference between partners skills - ρ

• Number of games that partnership has played together - λ

4.2 K factor

Having a formal way of calculating expected scores, one can proceed to defining
the second and last part of the model: The K factor. There might be various
interpretations of it, the most important being:

• Weight of how important the game was

• How big an influence should the game have in modifying players rating

• How much trust do we have in the player’s previous rating

• What is the maximal/minimal amount of points that can be added/de-
ducted

• How fast player is believed to make progress

However all of them lead to one, very specific goal: optimize future predictions.
It is important not to set it too high, otherwise each player’s rating will be
changing all the time and will never be established. On the other hand, if it will
be too low, then it will take too much time to arrive at the proper value.

4.2.1 Defining K

The process of choosing the right default value of K starts at drawing 6 functions
(Figure 4.7) for various values of K to see how the points change ∆ is affected
by the rating difference rd. An immediate conclusion is, that when the rating
difference is 0, meaning both players have the same probability to win, the
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Figure 4.7: Graph shows how the rating difference affects the amount of points
that are gained by the winner for different K values. On x axis there is rating
difference rd and the function value can be derived by putting the argument to
Equation 4.3 and its result together with s = 1 into Equation 4.1. The reason of
choosing an argument range from −400 to 400 is that these are the only values
for rating difference, as explain in Section 4.1.
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number of points to be gained (lost) is K/2. On the other hand, if one player
had 100% chance of winning, then the ∆ would be exactly K1.

Further research showed that the K-factor (Ralf Herbrich and Graepel, 2007;
Moser, 2011) can also be written as:

K = αβ
√
π (4.12)

Where α is the trust to the new rating and β is standard deviation, which can
be interpreted as a skill width (Moser, 2011). Since the β has been set to 200
(as explained in Section 4.1), one can generate a plot of what trust corresponds
to various K: In the case of chess, for default Elo, the reasonable and often
used value is K = 24 - which is assigning about 7% trust to the new rating.
Based on experience, one could definitely say that this value is too much for
bridge. The reason is that in chess the only additional parameter for predicting
score, beside opponents rating, is who played with white. In bridge on the
other hand, it matters whether a player played with his regular partner (if he
has one), what was the skill of the partner, what is his skill level, how much
difference there is between him and his partner, what is the difference of the
skill level with opponents, are the opponents regular partners or not and so on.
One can end up with a really long list of other factors, which makes the case
very complicated. Trying to define optimal an K-factor manually would not
be possible to do. Hence, many experiments were run in order to find a value
that works best for sample of 250, 000 deals. The K-factor that has given the
lowest prediction error was very low - about 2. It is not probable that such low
value should really be assigned, since the point change is very low in such case.
Most probably the result is related in the known problem with optimizing rating
systems called overfitting (Sismanis, 2010). Finally, the value of 4 was chosen,
since it provided a good trade-off between dynamic and accuracy.

4.2.2 K-factor modified - Kd

Another usage of the K-factor is to satisfy requirements about not only who won,
but also by how much. One can do it by increasing K if the score difference
was high and make it lower if the match was close. Such adjustment has been
already used by World Football Rating (Runyan, 1997) - they modified K on
the grounds of a goal difference in a match. In bridge, judgment whether the
match was one-sided or not depends on the scoring type. To remind, the one
used in this thesis is IMPs (See Section 3.2). It means that it varies from 0
to 24. Figure 3.1 might suggest that only integers are possible, however one

1It will never be the case that winning probability will be greater than about 91% due to
applying the rule of 400 - See 4.1
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Figure 4.8: Graph showing how much trust each K-factor assigns to the new
rating.
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should remember that an average is taken. The decision was made to group all
possible outcomes into five categories. The first one is when the score difference
is very small - less or equal one IMP. It is considered a draw, as explained at
the beginning of this Chapter and hence the K-factor will not be modified for
this range. The next group contains scores less than 5 IMPs. It is considered
a very close victory. The next range is from 5 to 13 imps and it defines typical
situations for treating it as a significant win over opponents. If the score was
between 13 and 19, it means that opponents have been dominated and hence is
a little bit more important than the previous. The last range - 19 and above -
shows complete out-performance. The reason for such ranges lies in the bridge
scoring. There are some typical situations in which the final score falls exactly to
the given sets. Unfortunately there does not exist (and cannot be provided) any
mathematical explanation of them. It is a subjective element that I introduce
to the model, however I base it on over five years experience of playing bridge.
Based on the explanation above, the mathematical definition of m, which can
be described as K factor modificator, for each possible value of score difference
D (measured in IMPs) is defined as follows:

m =


1 if 0 ≤ |D| ≤ 1
(0.5 + (|D| − 1)/50) if 1 < |D| < 5
(1 + (|D| − 5)/50) if 5 ≤ |D| < 13
(1.6 + (|D| − 13)/50) if 13 ≤ |D| < 19
(1.8 + (|D| − 19/50) if |D| ≥ 19

where 0 ≤ |D| ≤ 24 (4.13)

The base and denominators have been chosen through the number of experi-
ments and they were proved to reduce the error in predictions.
The visualization of how m increases is shown in Figure 4.9 (the draw scenario
has been excluded from the chart). Such modifications are done for each game
separately. Since in the rating, each of the players will play many games, it is
necessary to keep track of each games score. The simple approach of taking an
average of all K-factor calculated for each game is however erroneous, and leads
to very wrong behavior of the rating system. If a player has lost 10 games by
20 imps, but he won the next 11 games with only 2 imps, he will gain a high
boost even though he should not. As a solution, the rating system keeps track
of two different sums: for winning games and loosing games. Additionally, to
distinguish if the good / bad score was gained versus a good or bad player, a
weight is assigned based on expected score versus opponents. Finally, if many
games were won (lost) high, and all the others have been lost (won), but were
very close, then the penalty should be lower than if the won (lost) matches were
also very close. The final way of computing the K-factor for the rating period
is:

Kpositive =

N∑
i=0

Wi ∗K ∗ di −
N∑
i=0

(1−Wi)K ∗ (
1− Ei

2
) (4.14)
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Figure 4.9: The graph represents how the K-factor is modified based on score
difference, which is measured in IMPs. The x axis represents whether the match
was close or not. The higher argument, the less close and the more dominant
were the winners. The y shows the value of the K-factor multiplicator - d.
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Knegative =

N∑
i=0

Li ∗K ∗ di −
N∑
i=0

(1− Li)K ∗ (
1− Ei

2
) (4.15)

Kd = G ∗ Kpositive

W∑
i=0

Wi

+ (1−G) ∗ Knegative

L∑
i=0

Li

(4.16)

The Wi and Li are either 1 or 0 and they symbolize win and lose. The following
is always true: Wi ⊕ Li = 1 (draws are ignored). The N is the number of
games played by the player, Ei is expected score and di is the multiplicator
obtained from Equation 4.13. The interpretation of the first two equations
is that whenever a player wins a game (Wi = 1 and Li = 0), his Kpositive

increases, while the Knegative. If the opposite is true - the player lost a game -
then analogically the negative sum is increased, while positive decreased. The
value by which the second sum is lowered depends on the expected score and
the imps - the more likely the player was to win, the less modification is done
and the more imps are gained, the higher change in rating is possible. The final
K depends on G, which is either 1 or 0. The first option means that the player
overperformed at the end of rating period - his real score S was greater than the
expected score E. In that case, the positive sum of K is taken into consideration
and negative does not count anymore. If the player underperformed, then the
negative one is taken.

4.2.3 Provisional and established players

Clearly it would not be right to set one global K for each player. For the
special treatment especially deserves two types of players. The first one is the
very new player, who did not play many games. Generally their start-up rating
should be trusted much less than the same rating for players who played several
hundreds games. That is why it is generally encouraged to increase K for so-
called ”provisional players”. What seems to be the most reasonable choice, is to
make the K factor really big for the first game, and then step by step decrease
it with every game until users have play enough games to no longer be treated
as provisional players. For the purpose of the thesis 10 has been chosen as a
sufficient value. The way of modifying K is defined as follows:

Kp = 4 + round(
10

N
) (4.17)

For the first game, the K value for provisional players - Kp - will be 14, the
second one 9 etc.
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On the other hand, it is very common that experts, who achieved a relatively
high skill, tend to improve much slower than the others. That is why it is rea-
sonable to put more trust in their ratings and prevent too large rating changing
by lowering the K-factor if they reach certain rating. As alternative, some chess
federations decided that the K should strictly depend on the number of games
that a player has played - the more games, the lower K. Such concept seems also
reasonable, however it is not clear how to apply it to bridge. More important
than total number of games is how many games have been played with a regular
partner. However many players, even those who have one partner with whom
they play the most important events, have many others partners as well. It
would be unfair to punish players for playing with weaker and new partners, on
the other hand player’s skill level should not only depend on the real partner.
Moreover, there is no clear way of how to find player’s regular partner - the
intuitive metric which is the ratio of games played with each player is not very
reliable. Hence, the first approach has been used, and the K-factor is modified
based on the player’s rating. If the player ever reached a rating of 1700, his
default K value becomes 4/1.5, which is 2.(6), and if he reached 1900 then it
becomes 4/2 = 2.

4.2.4 Final K

To sum up, the K-factor’s default value is 4, which corresponds to about 1.1%
trust in the new rating. If the player have not played 10 games, then his K is
artificially increased. On the other hand, if at least once in his career, a player
reaches 1700 or 1900 rating points, then his K factor is lowered, respectively, by
a factor of 1.5 or 2. Additionally, the K-factor might be increased or decreased,
depending on how close a player’s matches were. The system rewards high wins
and punishes high loses by transforming K into Kd.
As it can be noticed, the K-factor does not depend on the number of games,
but only on ratings. It is because of the complexity produced by involving
partnerships instead of individuals. Any trials of involving number of games
into a definition of the K-factor drastically increased prediction errors instead
of lowering them. Even though it is probably possible to do, the focus has been
put on adjusting parameters for rating predictions.

4.3 Summary

The final model is an extended version of the Elo model and adjusted to the
nature of the bridge game. The rating period has been set to three days, meaning
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that the expected scores and real scores are stored temporarily and used in
the final calculations. New players’ rating can be mathematically described as
follows:

Rn = Rn−1 +Kd ∗ (S − E) (4.18)

Interpretation of S did not change at all, and it is still 1 for win, 0.5 for draw
and 0 for lose. The only modification that had to be done is treating any result
not greater than 1 as a draw. Many more changes were introduced to the way
of calculating the expected score E. First of all, ”player’s rating” from the Elo
point of view (which is the base to predict a score) is an average of the ratings
of two partners. Moreover, there are three additional factors that should help
predict the output of the game. First of them is γ, which defines how big an
advantage or disadvantage the opponents have, due to the strong partners and
weak opponents. The next parameter λ is calculated separately for both pairs
and it estimates how well partners understand each other, basing on their game
history. The last modification is done by ρ, is also calculated for each pair
separately. It is assuming that if one of the partners has weaker score, it means
that he is underrated and the probability of winning should be slightly increased.
The final equation for expected score E has been introduced in Equation 4.11.
The K-factor is modified based on how high wins / loses were and versus who
they were encountered.



Chapter 5

Applying the Model

Once the calculations were done, the results have been stored partially in the
database and partially exported to the CSV1 to make it easier to visualize
various features of the data. Most of the plots described in this chapter have
been performed using open source and a very powerful statistical platform - R
- along with many external libraries, from which the most important one was
ggplot2 (Wickham, 2006).
The chapter begins with a short section about the data set, which contains
information about the first three steps of the visualization process (Fry, 2008):
acquiring, parsing and filtering. Next, the measurement of error prediction is
visualized and commented. The last section contains a visualization of players’
statistics.

5.1 The Dataset

The data were supposed to be delivered by a company owning software, which
is used by the great majority of all bridge players, including world champions.
There are a few thousand of simultaneous players On-line, who produce plenty
of real life data to analyze. Unfortunately, due to the communications issues it

1CSV stands for Comma Separated Value
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was necessary to implement web crawling technique (Segaran, 2007) in order to
obtain necessary statistics.
The chosen approach was to recursively web-crawl a free accessible public statis-
tics archive located at http://www.bridgebase.com/myhands/index.php. The
method can be summarized with a very short pseudo code:

s ta r tupPlayer = ” p layer ”
whi l e playerName do

g e t S t a t i s t i c s F o r P l a y e r ( playerName )
p a r s e A n d S t o r e S t a t i s t i c s ( content )
storePlayersNames ( content )
markPlayerAsChecked ( p laye r )
playerName = getFirstUncheckedPlayer ( )

end

However, this algorithm in pessimistic scenario does not ensure obtaining the
gaming history of all players. One consider a graph, where a node represents
a player and an edge between two players indicates that they have played to-
gether at least one game. Then, if there is no path between two players, one
of them would not be found. However, the results indicate that this is not the
case for larger communities, because for the time span of 82 days there were
over 25, 000, 000 million games records obtained for more than 200, 000 players.
It might be the case that a very small community has not been detected. How-
ever, extending the algorithm by checking an additional condition, which would
ensure obtaining data for all players, would result in increasing the number of
HTTP requests by the number of deals - 2, 000, 000. The simple approach needed
two weeks of data gathering for a timespan of 30 days and it was necessary to
perform only as many queries as there are unique players - about 200, 000.

The parsed data that have been used to apply the model described in the pre-
vious chapter are:

• Time at which a deal has been played - it was used to determine to which
rating period the game belongs.

• Names of 4 players that played deal

• Points achieved from a deal

• Id of the hand - to be able to know which hands should be grouped together
and compared to each other

• Analysis name - it stores information if the points are given for EW or
NS. If the name of the player for whom statistics were crawled was not

http://www.bridgebase.com/myhands/index.php
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stored, all the results would be useless, because it would not be possible
to define a winner.

The process of acquiring the data was unexpected and time-consuming, however
the relatively simple approach turned out to be very efficient. After two months
of acquiring data, this process was stopped and the last step has started: filtering
the data. Unfortunately, this process required deleting a significant amount of
the dataset, however without it, future output would be erroneous. The first
thing that needed correcting was a hidden issue, which was not spotted during
the process of web crawling. It probably occurred because of using a personal
notebook instead of a dedicated machine. Due to the very long time required
to accomplish the task, the necessity of using the computer for other purposes
interrupted the process as the application was forced to pause, and some players
that participated in the game have not been stored in the database. This had
the unfortunate effect of having to remove about 2, 000, 000 games, which were
all missing one player. The decision to remove them was not made immediately,
however after many trials and failing experiments because of too much noise, it
was decided to do so. Moreover, it was also necessary to delete the hand records
for games, which contained a GIB2. The system from which the data has been
obtained allows robots to play at three positions simultaneously, however it does
not provide any way to distinguish between them. As a result, the interpretation
is that GIB might play versus himself. Beside those two cases, during the data
analysis it turned out that the platform from which data was obtained has a
quite serious implementation error, which rarely allows players to play the same
hand two times. Such situation should not be possible and erroneous deals
have been deleted. Last but not least, all deals, which were played at only one
table, have been removed from the database. The reason why such deals do not
provide any meaningful information and hence can be deleted is that there is
no other players to compare the result (See Section 3.2). This issue concerned
mostly the deals that have been downloaded at the end of the process. The final
amount of games that were used in the model is 21, 684, 154 (2, 226, 279 deals)
played by 203, 279 players.

5.2 Accuracy and RMSE

The metric that was used during the accuracy measurement is called Binomial
Deviance. It is given with the following equation (Sonas, 2011):

D = −[S ∗ log10E + (1− S) ∗ log10(1− E)] (5.1)

2GIB is the name of the robot that might be hired by the players who want to practice
certain elements of a game.
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It was computed for each game for N-S line. The S is the real score and E is the
expected score. Once the Binomial Deviance is calculated, the average is taken.
The lower the value, the more precise the system is. In order to obtain accuracy
in percentages, one should just put 10 to the power of −D (Sonas, 2011):

A = 10−D (5.2)

Besides Binomial Deviance, a second metric - RMSE - has been computed si-
multaneously. Its definition has already been introduced in equation 4.2. To
verify the correctness of D, a simple test has been performed. A null system
has been implemented, meaning that for each game the expected score was al-
ways 0.5. It was run on the a sample consisting of 230000 deals. The obtained
D was 0.30102999566567600, what after applying to Equation 5.2 gave result
0.49999999999, which can be easily rounded to 50%.

The total accuracy of the system after processing all deals in the system is
50.018%. It is not a shocking improvement, however if one takes into consid-
eration all factors that occur in bridge, any improvement of the null system
might be considered a success. However, it would be a mistake to claim that
the system works perfectly only on the basis of this metric. A few additional
visualizations have been performed to verify its correctness.
First of all, the accuracy and RMSE for each period have been plotted. Theoret-
ically, the perfect rating system would always enhance its predictions, meaning
that there should be a negative correlation between the number of periods and
predictions error. Both measures were started after period 2 to reduce noise
in the data. Because all of the players in period 1 have the same rating, all of
them will have the probability to win 50%, hence it will not provide any useful
insight into the data - only noise. The second period is ignored as well, to let
the system make corrections if necessary. The results are shown in Figure 5.1
and Figure 5.2.

The results are not perfect, however they are not very bad either. One can see
that the system tries to act as desired, however it has some serious problems
with few last periods. There might be many explanations for that. It might be
because of the quality of the data gained for the last time span, which might
contain much more noise than for the previous ones. It could easily result in
poor predictions. The other reason might be that players are unstable - in some
periods they win a lot and then they start to loose, what confuses the system
about theirs true skill.
After seeing how the accuracy and RMSE look for each period, it seemed in-
teresting to verify how the system predicted the games results for each player.
To filter some noise, the requirement has been made, that a player had to play
at least 10 games in a period to be taken into consideration. The results are
presented in Figure 5.3 and Figure 5.4
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Figure 5.1: Figure shows RMSE for each period starting from 2. The desired
situation is would be if there were a very strong trend of lowering RMSE. Un-
fortunately, it hardly can be said about this figure.
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Figure 5.2: For each rating period starting from 2, the accuracy of the system
has been measured. The system acted as desired to some point, however the last
few periods had a much lower accuracy. However, it should be noted, that each
of the period had total predictions greater than a null system would provide.
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Figure 5.3: The plot shows how well the system predicted the output of players
games. In addition, it shows how many games the player played. The color
indicates how many distinct players who played the same amount of games had
the same RMSE. One can see a very heavy trend in area between e6 (403) and
e8 (2980) games played. The more games were played, the worse prediction -
RMSE was bigger.
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Figure 5.4: The figure visualizes what was the accuracy for each player. The x
axis is the number of games played by the player. The additional color is there
to show how often predictions happened for a given number of games. For a low
number of games there were incredibly high accuracy for a lot of players - 100%.
However, the more games players played, the more accuracy dropped. Most of
the players played from e6 (403) and e8 (2980) games and there is a very clear
trend for them as well.
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The trend is extremely clear in both figures - the more games are played, the
poorer the results. There are two characteristic areas. The first one is for
players who played only about e3 (20) games. There is quite a lot of them and
for almost each of them the accuracy was about 100% and RMSE close to 0.
The second one is area between e6 (403) and e8 (2980). One sees that it is very
typical for all players near e8 to have a lower game predictions accuracy than e6.
The fact that outliers do not exist, is very interesting. Only a few of them occur
between e6.5 and e8 in the accuracy plot and some between e4 and e5 for RMSE.
This might indicate that there is a systemic bias in the model. The good thing
about these plots is that it does not seem that if players would had played more
games than they actually did, it would result in significant lowering accuracy.
This assumption is reasonable, especially if it will be taken into consideration
that it is already a logarithmic scale and the players that played most amount
of games break the trend.
The reason of obtaining such trend at the beginning is very clear - the more
games, the harder it is to predict all of them, which would result in error.
However, at some point this pattern is expected to be broken and the accuracy
should start rising a little. One reason why it does not look like that is that
bridge is a game of chance and even good players have to lose a lot, because
there is no other possibility. This results in high expectations for good players,
which does not come true, what lowers the accuracy. In the next period, after
lowering the expectations, they actually had very good session what makes the
process repeatable for many players.

Another plot that is worth to see is a boxplot for accuracy for each player for
each period. Its interpretation is that at least 50% of all observations lie inside
the box - between Q1 and Q3. The median (Q2) is represented by a horizontal
line within the box. It has been shown in Figure 5.5. An important conclusion
from this plot is that only maximum 25% of players have an accuracy lower than
50% - however usually it does not drop below 40%. Accuracy for all other players
varied from 100% to about 50%, which is likely to be due to the high variance
of numbers of games played within the period. As shown in the previous two
figures, players with a low amount of games usually have a 100% accuracy, and
the more games, the more it tends towards 50%. It is also important to see,
that periods (starting from 2) do not really differ from each other. There are
some small changes, but the general behavior is all the same.

For the completeness of the analysis, the correlation coefficients between accu-
racy, RMS, Period and Games have been calculated. The visualization of them
is shown in Figure 5.6. Two choices of a way of calculating correlation were
considered - Pearson’s and Spearman’s coefficients. The second one has been
used to check where correlations exist and where not (Bolboaca and Jantschi,
2006). The minimum value for correlation is -1, which means that there is per-
fect inverse correlation - higher arguments produce lower y. It is represented by
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Figure 5.5: The created boxplot shows accuracy computed for each single player,
grouped by period. It shows that for each period there are a lot of of outliers.
An interesting fact is that nearly all of the vertical line is covered by outliers.
The reason to this is very likely to be the high variance of the number of games
played within period and the correlation between games and accuracy seen in
the previous plots.
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Figure 5.6: Visualization of Spearman’s correlation coefficients. The blue el-
lipses indicate positive value, while the red are negative. The more the ellipse
looks like a circle, the closer value it is to 0. It confirms that there certainly
is positive correlation between Games (number of games played) and RMSE
accuracy. There is also small, but still, negative correlation between period and
accuracy.

red, skewed in the left side line. The highest is 1, which means that pattern of
getting higher y for higher x is perfect. It is represented by the blue line, skewed
in the right side. The value 0 means that no pattern could be found and it is
represented as a white circle. The result is shown in Figure 5.10 As expected,
the positive correlation between RMSE and number of games exists, as well as
a negative one between accuracy and periods.

To sum up, the results are not really great. There is a lot of noise and chaos
during predictions. The fact that number of games and periods are strongly
(negatively) correlated with accuracy is not a good feature, since the opposite
was desired. There is however very good justification, which should be stressed
again. In bridge, plenty of different factors matter. Including and optimizing all
of them is certainly far beyond the scope of the thesis. What would probably
have resulted in an increase in relatively high accuracy is using more advanced
optimization methods, like for example the stochastic gradient descent tech-
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nique (Spall, 2003), which has been successfully been adopted for the current
best chess rating system called Elo++ (Sismanis, 2010; Sonas, 2011). Counter-
intuitive was the fact that reducing duration of the rating period - what results
in analyzing less amount of games during each period - did not provide any
boost to the prediction and all diagrams showed in the section were very sim-
ilar. There is one more reason of why there might be a negative correlation
between period and accuracy - it is the fact that different players might play
in these. What should have been done is choosing a sample of all players that
have played in the same periods and then compare the results. The assumption
that the noise would average out most likely does not hold for this particular
data set.

5.3 Players’ Statistics Visualization

The following statistics about player have been measured about each player:

• Name - Players name

• Ranking - Players rating

• Periods - How many distinct periods has a player played

• Games - How many games has a person played

• RMSE - What is the total average error of predicting the score calcu-
lated by dividing the difference between Total Real and Total Expected
by Games

• BD - another metric to calculate average error of predicting the score

• Wins - How many times the player won

• Loses - How many times the player lost

• Draws - How many times there was a draw

• Win ratio - How many % of the games have been won

• Imps - What is the total number of imps gained (lost)

• Partners - With how many different partners a player played real score
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The aim of the first visualization is to present an overview of the statistics
of top and bottom players. One way of doing it is to draw a table and put
all the numbers there. However, even though such data presentation will be
useful, it will not be very usable to find data patterns and grasp a fast overview
- especially, if table will contain many players. As it is not important what
the exact values are, but more so, their distribution, it was decided to create a
heatmap. The result of the visualization can be observed in Figure 5.7. There is
one very clear pattern - players with a high rating also have a lot of imps, while
lower ranked players have less. This is a very desired behavior, because what
distinguishes a good player from a bad one is the total number of imps in the
long run. This indicates that the right players are at the top and bottom of the
leaderboard. Another observation is that there might be a case of the players
being penalized too heavy. It is because there is a much clearer distinction
between top and bottom players on the grounds of number of loses than based
on wins. Finally - which is a relief - the rating does not seem to depend on
the number of games nor periods. The previous visualizations showed a very
strong correlation between accuracy and this value, which could have very strong
consequences, directly polluting the final results.

The next visualization will show how ratings are distributed between players.
In related works (Sismanis, 2010; Glickman, 1995) the histogram was used to
show the rating distribution and hence such approach has been chosen as well.
However, not the whole subset of the data will be taken. There is a lot of
noise generated by players who played very few games, which is why only those
players who played more than 70 games in total will be taken into account. This
requirement goes for all other visualizations as well. The obtained histogram is
shown in Figure 5.8.

As expected, the most common rating is the default value - 1500 - and ratings
near it. What is interesting, is that it is very asymmetric. There are many more
players whose rating is below average than players whose rating is above it.
Interesting fact is that the Elo histogram for chess looks exactly opposite - there
are a lot more players with a high rating than players with a rating below average
(Sismanis, 2010). The more detailed plot about players’ rating distribution
could be useful to a draw more reliable conclusion, since the histogram will not
be able to reveal the reasons of such behavior. On the other hand, one of the
main flaws of the current system of Bridge Federations is that it not only rates
performance, but also frequency. It means that the more a player plays games,
the more likely he is to have a high rate. It is possible to present both of these
cases in one plot - namely how rating spread depends on the number of games.
Output can be seen in Figure 5.9. The Figure shows that the model seems to
not count the frequency, which was expected. What can be seen is that the less
number of games, the less spread within ratings. It is natural, because some of
them are out of reach. The more games are played, the wider the range is. Also
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Figure 5.7: Figure shows a heatmap that visualizes 15 best and 15 worst play-
ers, order from the best to the worst. Top 15 are separated from bottom 15
with white space. All values have been scaled by corresponding column. The
dark green color represents the maximum value (within the column), the white
neutral and dark violet the minimal one.
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Figure 5.8: The histogram shows the rating distribution of players who have
played at least 70 games. One can see that it is a little bit asymmetric. The
left tail is heavier than the right one.
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Figure 5.9: Figure shows the plot between loge of number of games at x axis and
the corresponding rating at y. Color indicates how often each rating occurred
for a certain number of games. An important observation is that the number
of games determines only how wide the range of ratings is, but it does not look
like it is correlated with rating.
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Figure 5.10: Visualization of Spearman correlation coefficients for player’s statis-
tics. The blue ellipses indicate positive value, while those with a red hue being
negative. The more an ellipse looks like a circle, the closer value it is to 0.

the asymmetry can be seen quite well. One can see that most of the players
have rating around y = 1500, however there are more outliers who have a lower
rating than the histogram showed. The reason for this remains unclear for now,
however further visualizations should provide more input to be able to explain
this behavior.

Interesting insight provides the correlation matrix, hence it is shown in Fig-
ure 5.10. It is similar to the one created in the previous subsection. Once again,
the Spearman’s correlation coefficient has been used. Many interesting things
can be spotted. First of all, there is a final proof that the model does not de-
pend on frequency - the correlation coefficient between rating and the number of
games/periods played is close to 0. The rating is definitely correlated with the
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amount of imps and the win ratio. This is a very desired behavior, as described
during the discussion about heatmap. Also, the assumption drawn at the be-
ginning that there is some pattern about number of loses and ratings, seems to
be consistent with the correlation coefficient - there seems to be a negative cor-
relation between these two. At the first glance it might indicate that awarding
and penalizing the player is not even. However, a closer look at the correlation
matrix gives a more reliable answer - there is a correlation between loses and
imps. Since rating is correlated with imps and imps are correlated with loses, it
seems natural that rating and loses are also correlated. It means, that it is not
necessarily caused by a flaw in the model - it is simply the nature of the data.
However, the first reasoning that the players are too heavy penalized could be an
explanation explanation for the histogram being asymmetric. A clear flaw can
be spotted when looking at the correlation between accuracy and the number
of different partners. The more partners, the less accurate the model is. This
indicates, that λ needs re-considering and modification.

The last series of visualizations is about time series and how players statistics
vary over time. Three players have been chosen who played in all periods.
The first plot shown in Figure 5.11 would present how the rating was changing
overtime. There are a few interesting observations about this plot. The main
impression is that the ratings are relatively stable. For each player, there is
one general trend that seems to continue. The green player has definitely the
least amount of noise - he tends to progress in each rating period with a few
minor exceptions. On the other hand, the red player seems to have a lot of big
jumps - both on plus and on minus. The biggest one is between 13th March
and 16th March. The blue player was constantly loosing rating half of the time,
after which he had a small regular progress for a few rating periods and then he
started to loose the rating again. To find the reason of the jumps of these two
players, two additional time series have been created: one with IMPs and the
second one with win ratio. They are presented in Figure 5.12 and Figure 5.13.

After taking a look at the number of imps there is no doubt that the model
definitely puts a low weight to numbers of imps scored during the period. Con-
sidering the red player, who is actually known world champion, one can observe
that he has a very high imp score after each period. His amount of imps differs
a lot, but it is impossible to keep winning a lot of imps. What is the most
important, is that looking at the imps time series, there is no real evidence that
his skill was overrated. What the model seems to do, is that it expects a much
higher win/lose ratio from him and hence it penalize him, even though his score
is good. On the other hand, the green player scores only a little above 0. Actu-
ally, the blue player gains more imps than him. Looking at the win ratio time
series clarifies the ratings of the players. The green one - who has the highest
rating, has a comparable win ratio with the green player, however there is no
doubt that he is worse in this metric as well. The blue one clearly is worse from
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Figure 5.11: The figure shows how the rating has been changing over time for
few chosen players.
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Figure 5.12: The figure shows the total IMPs balance after each rating period for
three players whose rating have been presented in Figure 5.11. The important
conclusion is that the ratings do not really reflect the total amount of imps
gained.
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Figure 5.13: The figure shows how the win ratio changes over time for the same
three players. After comparing this time series with the previous two presented
in Figure 5.11 and Figure 5.12, one can observe a tendency to penalize a player
even if his win ratio is really impressive.
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both of them, what justifies his low position- he cannot get a high rating with
a very poor win ratio. The very interesting fact remains, that the red player,
even though he leads in both of the most important statistics - the ones that
are correlated with the rating - is only a little below average. It seems that he
is penalized too much for not keeping an extremely good shape, which results
in treating him as an average player. This bias could be corrected by assigning
much greater weight to the total imps statistic and less to the win ratio.

5.4 Visualization Summary

A number of different visualization techniques have been used in order to verify
and analyze the results of the model. From the first part of the visualization,
the most important conclusion was that there is an extremely big correlation
between the number of games played and RMSE and the prediction accuracy.
For each period about 50% players were outliers and their expected score was
matching the real one from 100% to around 40%, with some additional outliers
in 30% and 20% as well. It also showed that there is a little negative correlation
between rating period and accuracy, which is also not desired behavior.
The second part was more optimistic. It was proven that there is no correlation
between statistics that should not affect rating - most importantly, the rating
was not correlated with the number of games. On the other hand, the expected
correlations exist - between rating and win ratio and imps. This is desired,
because these statistics characterize a good player. The correlation coefficient
also showed an issue with estimating the combined strength of partners. On
the other hand, the time series revealed a problem with weighting imps and win
ratio. Even though both are important, the first one is generally considered
more reliable in bridge. As for now, the win ratio has greater influence on the
final ratings.
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Discussion

The main goals of the thesis were:

• Acquire real life bridge statistics

• Model bridge player’s performance

• Visualize the results

All of the goals have been addressed by the thesis. The statistics of real life play-
ers have been acquired by web-crawling freely accessible services. The process
was extremely time-consuming, however relatively simple to carry out. After
filtering the noise and erroneous or incomplete data, the total number of players
was 203, 278 who played in total 21, 684, 154 games for 2, 226, 279 deals that
took place during the period of Feb 21st to 13th of May - 82 days. The ac-
quired, parsed and filtered data has been used to achieve two remaining goals:
To verify the invented model of a bridge player’s performance and to measure
its reliability, optimizing it and finally visualize the results.

The summary of the modeling part is described in section 6.1 and a summary
of the visualization in section 6.2. Section 6.3 is ending this thesis and contains
a description of planned future work.
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6.1 Summary of the Model

The first goal has been achieved by extending the Elo rating system, which has
been created for two-player games like chess. It models the performance of each
player as a random variable following Logarithmic Distribution. Since two pairs
always participate in bridge, they are mapped to the two-player scenario by
averaging ratings of players within the partnerships. To enhance predictions,
the base model has been extended by four new parameters. The final version of
the model is given with the formula:

Rn = Rn−1 +Kd ∗ (S − 1

1 + 10
((ro1+ro2)/2+λo+ρo)−((rp1+rp2)/2+λp+ρp)+γ

400

) (6.1)

Where

• (ro1 + ro2)/2 - Is the average of opponents’ ratings

• (rp1 +rp2)/2 - Is the average of players’ ratings, for who the computations
take place

• γ - Is the adjustment based on the skill level of all players at other tables

• λ - Is the adjustment for the rating of a pair basing on how many number
of games two players played together

• ρ - Is the adjustment of the rating difference between partners

• Kd - Is modified K-factor based on the obtained scores during whole rating
period

In addition, the unreliability of close wins has been referred by extending con-
sidering a game draw if the score is between −1 ≤ s ≤ 1.

To be able to asset and compare different versions of a model, two metrics have
been used: Root Mean Square Error and Binomial Deviance. The final accuracy,
that have been counted on the basis of matches played by all non-provisional
players1 is 50, 018%. It means that the predictions are slightly better than the
null system, which always sets probability of winning for both players to 50%.
The results of the model might not look impressive. However, any improvement

1Players who played more than 10 games
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of the random system has been considered as a success. One should observe
that chess, for which the basic Elo system has an accuracy of 55%, is a two-
players game and the only additional factor is who had the first move. Bridge,
on the other hand, is not only a partnership game, as the scores are calculated
by comparing results of many independent tables. This introduces an incredible
amount of noise and a lot of additional questions and greatly complicates the
problem, which resulted in poor - but still better than random - predictions.
One can also realize that if the task was easy, most probably some variation of
Elo rating system would be applied to bridge already, as it was for many other
systems.

6.2 Summary of Visualization

The last part of the thesis - visualization - discovered a few interesting features
about the data. First of all it showed that the more players play, the less ac-
curate the system is. Such conclusion has been reached by plotting accuracy
in many different ways, including for each period, for each player, and for each
player in each period. The visualized matrix of Spearman’s correlation coeffi-
cients confirmed that fact. Also, there is a lot of noise for predicting scores -
according to boxplot, for each period there is incredibly wide range of accuracy
- from 100% to even 30%. However at least half of all players in each period had
about 50% accuracy. The most likely reason is not that effective predictions and
not enough quality data. Even though there are a lot of games played, there are
also a lot of different players, some of them play only few periods, not necessary
regularly. This makes it hard to make reliable measurements between periods.
Secondly, it was showed that the histogram of rating distribution between play-
ers is asymmetric. Its left tail is heavier than the right one, which means that
there are more players below an average rating than players above. It is not clear
what the reason for this is, however one very likely idea is that players are too
heavily penalized. This seems to be confirmed by the conclusion reached after
visualizing time series for three parameters for three players. The statistics that
were used for drawing them were: rating, imps and win ratio. It is clear why
the rating has been chosen - after all it is the player’s performance. The second
two were proved to be correlated to it, using Spearman’s correlation coefficient.
The results of the analysis of these three graphs were that a player who scored
the biggest amount of imps and had the best win ratio has been rated by the
system only a little above average. The reason is that a bigger weight is assigned
to the win ratio, while it is imps which is the more reliable metric. Bridge is a
card game, which means it is hard to predict a winner during a short period.
However, good players will very often have a lot of imps on plus, while their win
ratio can vary a lot. Even if it is reasonable high, the system stills penalize for
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underperformance.
Another observation was that opposite to the current rating system used of-
ficially by many federations, the obtained model measures only bridge players
performance and not the frequency by which players play. Such conclusion could
be made based on the 3D plot of ratings and the number of periods played.
Again, the Spearman’s correlation coefficient was used to ensure a proper con-
clusion.

6.3 Future Work

The obtained model has been proved to perform better for the given data set
than the null system. However, the visualization process revealed many flaws,
which should be corrected. The most crucial one was the unclear convergence of
the rating system. Proving such property is probably the most important goal.
The second one is to enhance predictions and make them more accurate. A first
step towards achieving this goal could probably be to explicitly model teams
and draws. These features are already implemented by TrueSkill (Ralf Herbrich
and Graepel, 2007). It would allow to analyze the pairs at other tables in a
much more generic way than what is done now. Another one is to assign lower
weight to the win ratio and higher to imps scored. Next improvement is to
not only count the number of games with partner, but also consider when they
played together last time. It was not that important for the current data set,
since it contained statistics for only 82 days. However it is definitely required
for a serious system which is supposed to replace a Masterpoint system used
by Bridge Federations. Last, but not least, it would be important to apply
more scientific methods to optimize parameters, for example stochastic gradient
descent technique (Spall, 2003).
To sum up, the following list of the most important tasks for future work has
been defined:

• Migrate from Elo to TrueSkill to calculate players combined strength more
accurate and to define draw in more formal way

• Lower the weight for win ratio and increase importance of IMPs

• Take into account not only how many games partnership played together,
but also when it was

• Use more advanced methods for parameters optimizations



Bibliography

Allen, C. and Appelcline, S. (2006). Collective Choice: Competitive Ranking
Systems. [online].

Bolboaca, S. D. and Jantschi, L. (2006). Pearson versus Spearman, Kendall’s
Tau Correlation Analysis on Structure-Activity Relationships of Biologic Ac-
tive Compounds. Leonardo Journal of Sciences, 5:179–200.

Chebotarev, P. Y. and Shamis, E. (2006). Preference fusion when the number
of alternatives exceeds two: indirect scoring procedures. Technical report,
Institute of Control Sciences of the Russian Academy of Sciences.

Curley, J. (2010). [online].

EuropeanGoFederation (2011). Egf official ratings system.

Fry, B. (2008). Visualizing data. O’Reilly Series. O’Reilly Media, Inc.

Glickman, M. E. (1995). A comprehensive guide to chess ratings.

Glickman, M. E. (2001). The Glicko system. [online].

Glickman, M. E. and Jones, A. (1999). Rating the chess rating system. Chance,
12.

InternationalChessFederation (2011). The working of the fide rating system.

James Piette, L. P. and Anand, S. (2011). Evaluating Basketball Player Per-
formance via Statistical Network Modeling. In MIT Sloan Sports Analytics
Conference 2011.

Janert, P. (2010). Data Analysis with Open Source Tools. O’Reilly Series.
O’Reilly Media.



74 BIBLIOGRAPHY

Kschischang, F. R., Frey, B. J., and Loeliger, H. A. (2001). Factor graphs
and the sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498–519.

Miller, S. C. (2003). The uscf elo rating system.

Moser, J. (2011). The Math Behind TrueSkill.

Park, J. and Newman, M. E. J. (2005). A network-based ranking system for US
college football. Journal of Statistical Mechanics: Theory and Experiment,
2005(10):P10014+.

Pham, L., Christadore, L., Schaus, S., and Kolaczyk, E. D. (2011). Network-
based prediction for sources of transcriptional dysregulation using latent path-
way identification analysis. Proceedings of the National Academy of Sciences,
108(32):13347–13352.

Ralf Herbrich, T. M. and Graepel, T. (2007). TrueSkill: A Bayesian Skill Rating
System. In Advances in Neural Information Processing Systems 20, pages
569–576. MIT Press.

Runyan, B. (1997). The World Football Elo Rating System. [online].

Segaran, T. (2007). Programming Collective Intelligence: Building Smart Web
2.0 Applications. O’Reilly, Beijing.

Sismanis, Y. (2010). How I won the Chess Ratings - Elo vs the Rest of the
World. CoRR, abs/1012.4571.

Smith, M. R. (2006). Modeling the performance of a baseball player. Offensive
production. Master’s thesis, Brigham Young University.

Sonas, J. (2011). Deloitte/fide chess rating challenge.

Spall, J. C. (2003). Introduction to Stochastic Search and Optimization. John
Wiley & Sons, Inc.

Weng, R. C. and Lin, C.-J. (2011). A Bayesian Approximation Method for
Online Ranking. Journal of Machine Learning Research 12 (2011), pages
267–300.

Wickham, H. (2006). An introduction to ggplot: An implementation of the
grammar of graphics in R.


	Summary
	Resumé
	Preface
	Acknowledgments
	1 Introduction
	1.1 Goals and Challenges
	1.2 Potential Application
	1.3 The Thesis Flow

	2 Previous Approaches of Modelling Player's Performance
	2.1 Elo Rating System
	2.2 Glicko Rating System
	2.3 TrueSkill
	2.4 Football Rating for US College League
	2.5 Basketball Player's Performance

	3 Choosing the Approach
	3.1 Scoring in Bridge
	3.2 Comparing Results in Bridge
	3.3 Possibilities of Applying Existing Approaches to Bridge

	4 Modeling the performance
	4.1 Rating difference
	4.2 K factor
	4.3 Summary

	5 Applying the Model
	5.1 The Dataset
	5.2 Accuracy and RMSE
	5.3 Players' Statistics Visualization
	5.4 Visualization Summary

	6 Discussion
	6.1 Summary of the Model
	6.2 Summary of Visualization 
	6.3 Future Work


