
Learning behavioural patterns in a
mobile context using smartphones

Jakub Ratajczak

Kongens Lyngby 2011
IMM-M.Sc.-2011-76

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

This thesis is focused on presenting a system for conversation and speaker detec-
tion based on the audio data collected by the smartphone devices. The system
allows to detect whether two people are participants of the same conversation
and state who was speaking when and for how long. The approach is privacy
preserving so it is not possible to state what was said during the conversation.

The system is based on already existing solution but it presents a more practical
approach. It uses audio data recorded by the smartphone’s built-in microphone
as a source of information to analyze. Smartphone application is responsible for
the voiced frames detection and it is used as an inteface for displaying conver-
sations’ information to the user. Server side web services collect audio features
data sent by the smartphone prototype and they perform conversation and
speaker detection based on comparison of a data obtained from different smart-
phones. They also provide detected conversations’ data so it can be obtained
by the smartphone application.

Firstly audio data analyzing tool has been created in order to facilitate calcula-
tions correctness verification of each part of the process. Afterwards smartphone
application and server side web services have been implemented. All parts of
the process have been thoroughly tested and the results have been analyzed.

ii

Preface

This thesis was prepared at the Department of Informatics and Mathematical
Modeling (IMM), at the Technical University of Denmark (DTU) in partial
fulfillment of the requirements for acquiring the degree of Master of Science in
Computer Science and Engineering.

The thesis supervisors are Jakob Eg Larsen, Michael Kai Petersen and Sune
Lehmann Jørgensen, Department of Informatics and Mathematical Modeling,
Technical University of Denmark.

Kongens Lyngby, September 2011

Jakub Ratajczak

iv

Contents

Abstract i

Preface iii

1 Introduction 1
1.1 Motivation . 1
1.2 Project goals . 2
1.3 Thesis structure . 3

2 Related work 5
2.1 System for wearable devices . 5

3 Analysis 7
3.1 Privacy preserving approach . 7
3.2 Features calculation . 8

3.2.1 Autocorrelation peaks . 8
3.2.2 Relative spectral entropy 9

3.3 Voiced frames detection . 10
3.3.1 Hidden Markov Model . 10

3.4 Conversation detection . 11
3.4.1 Mutual information . 12

3.5 Speaker segmentation . 12
3.5.1 Energy of the signal . 12
3.5.2 HMM for speakers turns detection 13

4 Design 15
4.1 General idea . 15
4.2 System overview . 17
4.3 Audio data analyzing tool . 18

vi CONTENTS

4.4 Mobile application prototype . 18

4.4.1 Mobile platform . 19

4.4.2 Data collection and processing 19

4.4.3 Results visualization . 20

4.5 Server side . 20

4.5.1 Google App Engine . 20

4.5.2 Time synchronization service 21

4.5.3 Sample data upload service 21

4.5.4 Conversation and speaker detection service 21

4.5.5 Statistics provider service 22

4.6 Thoughts on the final version . 22

4.6.1 Conversations . 23

4.6.2 Summaries . 24

5 Implementation 27

5.1 Overview . 27

5.1.1 Limitations . 28

5.1.2 Resources used in the project 28

5.2 Audio data analyzer . 28

5.2.1 General structure . 28

5.2.2 Supported files types . 29

5.2.3 Waveform and spectrogram visualization 30

5.2.4 Calculated features presentation 31

5.2.5 Audio samples comparison 31

5.3 Mobile application prototype . 33

5.3.1 Overview . 33

5.3.2 Voiced frames detection process 35

5.4 Server side . 36

5.4.1 Google App Engine . 36

5.4.2 Datastore entities . 37

5.4.3 Servlets . 39

6 Evaluation 43

6.1 Voiced frames detection . 44

6.1.1 Detection accuracy in a silent environment 44

6.1.2 Robustness to noise . 45

6.1.3 Conclusion . 46

6.2 Conversation detection . 46

6.2.1 Samples’ comparison . 47

6.3 Speakers segmantation . 47

6.3.1 Segmentation accuracy . 48

CONTENTS vii

7 Discussion 51
7.1 What has been accomplished . 51
7.2 Future work . 52

7.2.1 Basic improvements . 52
7.2.2 Social networking aspect 53

8 Conclusion 55

A Trained HMMs parameters 57

B Waveform samples 59

C Spectrogram samples 61

D Features dependancies 63

viii CONTENTS

Chapter 1

Introduction

During the past few years mobile devices have become integral part of human
life. People are carrying their phones everywhere they go to always be in touch
with their friends or business partners. Moreover smartphones raised mobile
communication to the whole new level by transforming simple phone into ad-
vanced handheld computer. Such transformation brought many new oportuni-
ties going far beyond the phone related aspects. One of the possible directions
is utilizing data collected from different mobile sensors.

1.1 Motivation

Nowadays data science has become very important topic as a way of developing
meaningful and well presented information. Scientists from all over the world in
many different areas are working on data analysis and visualization. There are
many different projects focused on the creation of customized visualizations of
collected data (eg. Many Eyes project conducted by IBM [11]). The main chal-
lenges to face in this field are defining what useful information can be acquired
from gathered data and how to present them in the most convenient way.

Modern smartphones are equipped with many sensors facilitating their use (ac-
celerometer, Wi-Fi, Bluetooth) or providing useful information (GPS, compass).

2 Introduction

One of the most popular areas where such data are useful is social life. Based
on the information provided by the sensors one can learn about friend’s posi-
tion (GPS), availability (phone in silent or vibrating mode), music tastes (audio
player - virtual sensor) or even motion (accelerometer).

Several projects were conducted in this area but this thesis will go beyond
their findings. It will add the microphone as a sensor for disambiguating the
context based on audio snapshots of the surrounding environment. There are
two main applications for microphone data utilization. First one is a detection
of environmental sound which can be used to determine the place where person
currently stays (e.g. bus, street, silent place).

Second application which is described in this thesis allows to detect the identity
of people in conversation and their speaking turns. Such information can be
used in many different ways, for example:

• networks of people who knows each other created automatically without
user participation;

• history of conversations presenting statistics such as who the person speaks
with most frequently, where they usually talk with each other or when was
their last conversation.

Conversation and speaker detection technique described in this thesis is based
on already existing solution created by Danny Wyatt, Tanzeem Choudhury and
Jeff Bilmes [22] but in that case special wearable devices were used instead of
smartphones. Thanks to the technical progress modern smartphones are able
to handle complex computations and as they are integral part of people’s life it
makes them perfect for this task.

1.2 Project goals

The main goal of the project is to design and implement prototype application
which is able to detect conversation between two people and indicate who has
spoken when during the conversation.

One of the most controversial aspects in processing recorded audio data is a
privacy issue [22]. It should not be possible to reconstruct conversation speech
from collected data but at the same time gathered data should give enough
information to state whether conversation occured and who was speaking at a
given time.

1.3 Thesis structure 3

One of the earliest goals is to create analyzing tool. It should run on stationary
computer and allow to perfom first tests of implemented algorithms. Moreover
creation of graphic interface will simplify analysis of correctness of all algorithms.

The prototype application should work on a smartphone and it should be able
to cooperate with server responsible for comparing data sent by other mobile
devices. Here the next goal appears - server side application creation.

The last goal is to test and evaluate results of conversation and speaker detection
of different participants and in different environments.

1.3 Thesis structure

The report is divided into several chapters presenting process of making system
for conversation and speaker detection.

At the beginning the project on which thesis is based is presented. It describes
conversation and speaker detection system which uses wearable devices as a
source of data to analyze.

Next chapter is focused on thorough analysis of requirements and steps resulting
in conversation and speaker detection. It consists of three main parts: voice and
speech detection, conversation detection and speaker segmentation.

In Chapter 4 design of the protopype application is presented. It describes
methods for data collecting, processing and visualization as well as the server
side structure for analysis of the streams obtained from different sources.

Implementation process is described in Chapter 5. Firstly, the analyzing tool
running on a stationary computer had been implemented to test early results
of each detection step. Working on proper mobile application started after
analyzing tool results had been successfully validated.

Next chapter presents evaluation of the prototype. Several kinds of tests were
performed including detection of voiced frames, conversations and speakers.

Finally, the discussion and conclusion chapters focuses on usefulness of collected
information and practical examples of its application.

4 Introduction

Chapter 2

Related work

So far there are only several different approaches for conversation detection
based on recorded audio data. Most of them uses Hidden Markov Model to de-
tect conversation and segment its participants [1, 2, 4, 22] but there are also other
approaches which uses Bayesian network [21] or normalized cross-correlation be-
tween raw audio signals [6].

2.1 System for wearable devices

Conversation and speaker detection process described in this thesis is based on
the work of Danny Wyatt, Tanzeem Choudhury and Jeff Bilmes [22]. They have
presented:

”...privacy-sensitive methods for (1) automatically finding multi-person
conversations in spontaneous, situated speech data and (2) segment-
ing those conversations into speaker turns.” [22]

Their earlier approach to this topic which was using Bayesian network for voicing
and speaker segmentation is described in [21], the social aspects of conversation
detection process are presented in [20].

6 Related work

Privacy-sensitive approach ensures that it is not possible to reconstruct from
collected data what was said during the conversation. Only information about
three audio features - number of autocorrelation peaks, maximum peak and
relative spectral entropy - is stored. Whole detection process is divided into
three main steps:

• voiced frames detection - based on the Hidden Markov Model whose hidden
state is a binary variable indicating whether frame is voiced or unvoiced
and whose observations are three features mentioned earlier;

• conversation detection - based on the mutual information algorithm which
compares audio streams from different sources and indicates whether they
belongs to the same conversation;

• speakers segmentation - based on the Hidden Markov Model whose hidden
state has four values indicating whether no one, first person, second person
or someone else is speaking and whose observations are log ratios of the
speaker frames energies.

Voiced frames and conversation detection part presented in [22] extends one
described by Sumit Basu [1, 2]. Detailed analysis and thorough description of
each step is presented in the next chapter.

Approach described in [22] was tested using special wearable devices. Data
was first collected and then conversation and speaker detection was performed.
Approach described in this thesis differs mainly in that it is designed for smart-
phones and detection process is performed in real-time. It makes this approach
more practical.

Chapter 3

Analysis

This chapter is focused on the detailed analysis of the conversation and speaker
detection process. One of the main assumptions for the adopted approach
is recorded data privacy preservation. To satisfy this condition an approach
based on storing only several features that characterizes recorded data is intro-
duced. Afterwards all process’s steps and required calculations are thoroughly
described.

3.1 Privacy preserving approach

To detect conversation and speakers participating in it the audio data from each
participant’s phone has to be compared. Such comparison needs to be handled
in one central point which collects samples from different sources. Therefore it
should be impossible to reconstruct from retrieved data what each participant
or person within the range of the microphone was saying.

To satisfy this condition privacy preserving approach is introduced. It ensures
that the potential intruder will not be able to obtain any sensitive information
based on the collected data.

8 Analysis

The approach is based on obtaining three audio features for voiced frames de-
tection [22]. The features are:

• non-initial maximum autocorrelation peak;

• the total number of autocorrelation peaks;

• relative spectral entropy.

One additional feature - energy - is also calculated. It is used for speakers seg-
mentation. All this features provide enough information to detect conversations
and determine who was speaking when but not what was said. They are also
robust to noise [22].

3.2 Features calculation

All features are calculated on per frame basis. Each frame consists of 256
samples with overlap of 128 samples. The frequency of recorded data is set to
8 kHz so each frame lasts 32 milliseconds.

3.2.1 Autocorrelation peaks

Autocorrelation allows to find periodic components in the signal by applying
cross-correlation with itself [14]. Voiced frames have a property that the signal
periodically repeats itself (Figure 3.1). Therefore voiced frames are charac-
terized by small number of strong autocorrelation peaks. On the other hand
unvoiced frames result in a large number of small peaks [1].

The normalized autocorrelation of the signal s of length N is calculated as
follows:

a[k] =

N∑
n=k

s[n]s[n− k]

(
N−k∑
n=0

s[n]2)
1
2 (

N∑
n=k

s[n]2)
1
2

(3.1)

To preserve all information about peaks nature, maximum peak value and num-
ber of peaks are chosen as the first two features.

3.2 Features calculation 9

Figure 3.1: Waveforms of voiced (top) and noisy (bottom) signal.

3.2.2 Relative spectral entropy

It can be observed on the spectrogram (Figure 3.2) that the fast Fourier trans-
form (FFT) magnitudes of voiced frames are easily distinguishable from un-
voiced ones. They are characterized by a series of very strong peaks while in
case of unvoiced frames the spectrum is noisy. Taking it into account it can be
stated that entropy of unvoiced frame’s spectrum is relatively high. Therefore
spectral entropy [17] analysis allows to distinguish voiced frames from other
noisy ones.

Figure 3.2: Spectrogram of unvoiced (left part) and voiced (right part) frames.

10 Analysis

Instead of calculating spectral entropy, relative spectral entropy term is intro-
duced. It is a Kullback-Leibler divergence [18] between the current spectrum
and the local mean spectrum of neighboring 500 frames [1]. It improves results
in case of constant noise presence. It is calculated as follows:

Hr = −
∑
w

p[w] log
p[w]

m[w]
(3.2)

where p[w] is normalized Fourier transform and m[w] is the mean spectrum of
neighboring 500 frames [1].

3.3 Voiced frames detection

The first step in conversation and speakers detection is to find voiced frames.
This part of the process is based on Hidden Markov Model whose hidden states
are variables indicating whether frame is voiced or unvoiced and whose obser-
vations are three features presented in the previous section.

3.3.1 Hidden Markov Model

Hidden Markov Model (HMM) is a temporal probabilistic model which is widely
used in speech recognition. In the model the state of the process is described by
a single discrete random variable where the possible values of it are the possible
states of the world. The current state of the process is unknown (hidden) but
the output dependent on this state can be obtained [16].

HMM is characterized by the following elements:

• hidden states;

• observations;

• the state transition probability matix;

• the observation probability matrix;

• the initial state probability matrix [15].

In the case of the project there are 4 hidden states specifying whether current
frame is unvoiced, voiced, contains speech or contains both voice and speech.
The graphical representation of such model is presented on Figure 3.3.

3.4 Conversation detection 11

Figure 3.3: HMM with four hidden states (figure from [5]).

As it was mentioned before three features are used as observations for HMM.
Their probabilities are modeled with a single three-dimensional, full covariance
Gaussian. Probability distributions are calculated during learning process which
uses observations sequences with manually marked speech and voiced frames.

There are three main problems which can be solved using HMM:

• calculating the probability of the observation sequence;

• finding the most likely state sequence;

• adjusting the model parameters to maximize the probability of the obser-
vation sequence [15].

HMM in this project is used to find the most likely sequence of hidden states
based on given observation sequence. It is done by the use of the Viterbi algo-
rithm [3].

3.4 Conversation detection

Comparison of states sequences acquired from different sources allows to detect
whether there was conversation between two or more people. Such comparison
can be done using mutual information algorithm.

12 Analysis

3.4.1 Mutual information

Mutual information algorithm allows to determine similarity of data from two
different sources. By performing it on the states sequences calculated by HMM
it can be determined whether conversation occured.

The mutual information between streams A and B for conversation window w
is calculated as follows:

I(Aw;Bw) =
∑
v,v′

P (Aw = v,Bw = v′)log
P (Aw = v,Bw = v′)

P (Aw = v)P (Bw = v′)
(3.3)

where P (Aw = v,Bw = v′) is the joint probability distribution function of Aw

and Bw, P (Aw = v) and P (Bw = v′) are the marginal probability distribution
functions of Aw and Bw [13].

The mutual information algorithm result should be significantly higher for the
samples’ pair which were recorded in the same place than for the samples
recorded in different locations.

3.5 Speaker segmentation

The last step in the detection process is to determine when each person taking
part in the conversation was speaking. It is done by the use of new Hidden
Markov Model which is described in this section.

3.5.1 Energy of the signal

One of the main features used in the speaker segmentation process is the energy
of each frame. Differences between energies’ log ratios from two different sources
are used as observations for the new HMM [22].

Each frame energy eraw is calculated as follows:

eraw = (
N∑
i=1

h[n](s[n])2)
1
2 (3.4)

where N is the frame size and h[n] is a Hamming window of length N .

3.5 Speaker segmentation 13

To improve robustness to noise a regularized energy term is introduced [1]. The
regularized energy ereg of the K-frame voicing segment is calculated as follows:

ereg =
1

K
[(

K∑
i=1

eraw[i])− e2n]
1
2 (3.5)

where en2 is the per-frame energy of the noise (average per-frame energy over
non-speech regions).

Such approach decreases impact of the noise in speakers segmentation process.

3.5.2 HMM for speakers turns detection

HMM for speaker segmentation consists of the following states:

• no one was speaking;

• person A was speaking;

• person B was speaking;

• someone else was speaking.

The observations are the differences between energies’ log ratios from two dif-
ferent sources:

rs = log gAs − log gBs (3.6)

where gAs is the mean energy of frame s in stream A.

The observations values should be positive when person A was speaking and
negative when it was person B turn, whereas they should be close to 0 when
there was silence or someone else was speaking [22].

As it was with the previous HMM, learning process of this HMM is based on
observations sequence with corresponding states set manually.

14 Analysis

Chapter 4

Design

The approach presented in [22] was tested using special wearable devices. Gath-
ered data were analyzed and compared after collection process was finished.
Such approach was appropriate only for the test purposes and could not be
applied in the real world.

The approach described in this thesis aims to be much more practical and useful
in the daily life. The main difference is that smartphone devices are used as the
core of the system and detection process can be executed in real-time.

4.1 General idea

The main purpose of the conversation and speaker detection process is to provide
different useful information to the user about convesations in which he took part
and their other participants. To make this information as useful as possible it
is important to be able to acquire them up-to-date, shortly after they were
collected.

Audio recording and its analysis needs to be performed continuously so any data
about current conversation would not be lost. To provide the most recent infor-

16 Design

mation new data needs to be available continuously and in small time intervals
after they were collected. Moreover to enable comparison of the data from dif-
ferent sources (devices) one central point which will perform proper calculations
needs to be defined.

Simple client-server architecture should be able to handle all needed actions.
Each user’s smartphone will exchange information with the server which can
store all data in the database (Figure 4.1).

Figure 4.1: Proposed system architecture.

Process which will satisfy presented requirements can be described by the fol-
lowing sequence of events:

• audio recording is started on the smartphone device and is performed
continuously;

• after every certain amount of time recorded data is stored as a smaller
sample;

• appropriate calculations are performed on such sample’s data (voiced frames
detection);

• calculated data is sent to the server just after it become available;

• every certain amount of time the server compares available samples data
acquired from different devices (conversation and speaker detection);

• calculations results become available on the server;

• the results are obtained by the smartphone device and they are displayed
to the user.

4.2 System overview 17

Figure 4.2 presents described sequence as a communication flow sequence dia-
gram.

Figure 4.2: Communication flow sequence diagram.

4.2 System overview

The system for audio data collection, analysis and conversation and speaker
detection presented in this thesis is composed of three main components:

• audio data analyzing tool for early tests purposes;

• mobile application prototype for audio data collection, features extraction
and user interaction;

• web services and database for data collection, comparison and analysis.

18 Design

All these components will be implemented as a separate applications where
analyzing tool is designed to run on a stationary computers, mobile application
works on smartphone devices with Andrioid operating system, whereas web
services and database are hosted by Google App Engine.

4.3 Audio data analyzing tool

Analyzing tool designed to run on a stationary computer will be created to test
all elements of conversation and speaker detection process. It will allow to load
files containing audio signal data recorded on the smartphone and analyze their
content. Application will consist of three main views with various options for
each one:

• waveform and spectrogram analysis - its main purpose is to perform HMM
learning process, waveform and spectrogram visualization will allow to
manually mark voiced frames in the loaded sample and based on so-created
observations sequence teach new HMM, this view can be also used to check
the correctness of detected voiced frames by the smartphone prototype;

• calculated features presentation - it will allow to check correctness of de-
pendancies between calculated features and voiced frames occurences;

• audio samples comparison - its main purpose is to perform conversation
and speaker detection process and validate its correctness, it wiil allow to
compare spectrograms of two different samples.

4.4 Mobile application prototype

The main objective of the prototype application is to record audio samples, cal-
culate their features and pass this information to the server whose web services
are responsible for conversation and speaker detection. The second important
goal is to provide an interface for the user where he will be able to check differ-
ent information about detected conversations or their participants and display
other useful statistics.

4.4 Mobile application prototype 19

4.4.1 Mobile platform

Nowadays one of the most popular mobile platform is Android operating sys-
tem and mainly because of that it has been chosen as the environment for the
prototype application. Moreover by the use of Java programming language it is
easy to combine parts of code of the analyzing tool and server side web services
which are also implemented in Java language [9].

4.4.2 Data collection and processing

The first step in the conversation and speaker detection process is to collect audio
data of the surrounding environment. Such collection needs to be performed
constantly so any data about the conversation would not be lost. Moreover to
be able to display information about current conversation, collected data need
to be processed and passed to the server on the fly. Table 4.1 presents detailed
description of such case.

Table 4.1: Collect and process audio recording data use case

Name Collect and process audio recording data
Actors Smartphone application, server
Description Smartphone application is responsible for contin-

uous audio recording and collected data process-
ing.

Preconditions Application is installed and started on the mobile
device. The smartphone is equipped with micro-
phone and has active internet connection.

Steps Recording thread is started automatically. New
audio sample data is stored every 30 seconds.
Available data is processed (voiced frames detec-
tion) by a separate thread.

Post conditions Processed data is sent to the server where further
processing is performed.

To meet all conditions audio data are recorded constantly but they are stored as
a separate samples every 30 seconds. In order to send all necessary information
to the server collected data need to be firstly processed. Mobile application is
responsible for finding voiced frames in recorded sample data. As it was men-
tioned before three features need to be calculated to perform detection process.
Based on their values and by the use of Hidden Markov Model voiced frames

20 Design

are detected. Each frame energy also needs to be calculated so the server would
be able to detect speakers turns. All this calculations are performed on cur-
rently available 30 seconds samples. Afterwards information about each sam-
ple’s frames states and energies is sent to the server. Thus sample data can be
processed by the server with only small delay.

4.4.3 Results visualization

When the process of conversation and speaker detection is successfully finished
different conversation and participants information can be displayed to the user.
As this part of the process is performed on the server side all data are obtained by
the mobile application using appropriate web service. The prototype application
will provide only basic information and very simple visualization of acquired
data but different ideas for the final version of the application are pesented later
in this chapter.

4.5 Server side

Data collected by different mobile devices needs to be compared with each other
to provide any useful information about conversations and their participants.
Such comparison has to be done in one place accessible for all devices. The
reasonable solution is to store and analyze this data on the server side.

4.5.1 Google App Engine

Google App Engine has been chosen as a server for hosting different web ser-
vices of the project. It allows to run web applications written in Java language
which is very useful as all parts of the project are implemented in this lan-
guage. Reusage of different pieces of the code is very convenient. Moreover
integrated database can be used to store all data about samples, conversations
and participants [8].

To handle all needed actions four web services are introduced. Each of them is
responsible for differerent part of the process.

4.5 Server side 21

4.5.2 Time synchronization service

This web service returns current server time. It allows to synchronize time on
all devices which uses prototype application.

4.5.3 Sample data upload service

This web service allows to pass information about audio samples collected by
the smartphone application. Only information about each frame energy and
voiced frames states is transferred to the server. Server is storing this data in
the database from where they can be further analyzed.

4.5.4 Conversation and speaker detection service

This web service is responsible for finding conversations and users who are their
participants. It also calculates speakers turns. It runs as a cron job every
5 minutes. All samples which were not yet processed are extracted from the
database and they are analyzed together with other ones which were recorded
at the same time. Table 4.2 presents detailed description of such use case.

Table 4.2: Compare audio samples’ data use case

Name Compare audio samples’ data
Actors Google App Engine
Description Web service is responsible for comparing different

audio samples’ data in order to detect conversa-
tions and speakers turns.

Preconditions New samples’ data sent by the smartphone appli-
cation are stored in the database.

Steps All not yet processed samples’ data are obtained
from the database, the ones recorded at the same
time are compared with each other, conversations
and speakers turns are detected.

Post conditions Conversation and speaker detection data is stored
in the database and become available to obtain by
the smartphone application.

22 Design

4.5.5 Statistics provider service

This web service provides different information about found conversations and
their participants which can be presented to the user. Table 4.3 presents detailed
description of such use case.

Table 4.3: Get conversations and speakers data use case

Name Get conversations and speakers data
Actors User, Google App Engine, Smartphone applica-

tion
Description User chooses type of the information which he

wants to have displayed.
Preconditions Application is installed and started on the mo-

bile device. The smartphone has active internet
connection.

Steps User chooses type of the information. Applica-
tion invokes server’s web service responsible for
obtaining conversations and speakers data. De-
pending on the chosen information type proper
data is returned.

Post conditions Application displays information visualization to
the user.

For the purpose of this thesis the service will provide only basic information
about conversations which can be processed by the smartphone prototype. Ex-
amples of other information which could be also provided by the service are
presented in the next section.

4.6 Thoughts on the final version

For the purpose of the project only the application prototype will be imple-
mented. It will provide basic functionality with very simple user interface. In
this section ideas for the final application appearance and functionality are pre-
sented.

4.6 Thoughts on the final version 23

4.6.1 Conversations

One of the most basic data which can be presented to the user is information
about his conversations with other participants. Based on collected data such
summary can contain following information about each conversation:

• date (10.09.2011, 13:42);

• length (34 minutes, 13:42-14:16);

• participants data;

• each participant’s speaking time (12 minutes, 35%);

• speakers turns.

Figure 4.3: Conversations data visualization example.

The proposition of conversations data visualization is presented on Figure 4.3.
Each conversation is represented by a vertical bar. Each bar is divided into
several parts characterized by different colors. Each color is assigned to different
participant (eg. blue color is assigned to Tom). The size of a bar segment
represents how much time a participant was speaking during given conversation.

24 Design

For example there are two detected conversations on 10th September. First one
took place at 10:28 and finished at 10:41. There were two participants: the user
and Tom. It can be noticed that Tom was speaking twice longer than the user
(the height of the blue segment is twice higher then the green one). There was
also small amount of silence.

Such visualization could be also used to present conversations information only
with specified participant. From presented chart it can be concluded who is usu-
ally dominating during the conversations or how often is the user in conversation
with given person.

Figure 4.4: Conversation timeline visualization example.

The more detailed information about specified conversation (speakers turns) can
be presented as shown on Figure 4.4. The conversation data is displayed on a
timeline. Different segments’ colors are specifying the participants. Segment’s
width defines speaking duriaton.

4.6.2 Summaries

Beside presenting detected conversations data it would be also interesting for
the user to see different statistics and summaries of collected data. Figure 4.5
presents example of conversations summary visualization.

Figure 4.5: Conversations summary visualization example.

Each bar represents sum of user’s conversations durations in a given period of

4.6 Thoughts on the final version 25

time with a given participant. There can be more than two participants in the
conversation. That is why other users’ segments can be visible in the given
participant bar. For example John during some conversations with the user was
speaking also with Tom and Jack. That is why on the John’s bar also Tom’s
and Jack’s segments colors are visible. Kate during conversations with the user
was also speaking for a short time with Tom but she never spoke to John or
Jack.

Such summary gives information on how often the user is speaking with given
person, who is usually dominating in the conversation and how often other
people are taking part in the conversation with given person.

26 Design

Chapter 5

Implementation

As it was presented in the previous chapter conversation and speaker detection
system described in this thesis consists of three main components:

• audio data analyzing tool;

• mobile application prototype;

• server side webservices and database.

In order to test algorithms used in the process, analyzing tool was implemented
first. After successful verification of all its elements smartphone prototype ap-
plication and server side implementation have been started.

5.1 Overview

All parts of the project are implemented in Java programming language which
simplifies reuse of the analyzing tool code in the smartphone prototype and web
services. HTC Desire phone [10] with Android operating system is used as a
hardware platform for the smartphone prototype. Web services and database
are hosted by Google App Engine.

28 Implementation

5.1.1 Limitations

The implemented system is considered as a prototype. There exists some limi-
tations which would be overcame in the final version:

• smartphone prototype does not work in background, it runs as a normal
Android application;

• voiced frames algorithms can be further optimized to run efficiently;

• only conversation between two users can be detected;

• threshold for mutual informaton algorithm specifying whether conversa-
tion occured is set manually (it is not calculated dynamically);

• the server provide only basic information about detected conversations.

5.1.2 Resources used in the project

One of the most important libraries used in all parts of the project (analyzing
tool, prototype application and web services) is Jahmm library designed by Jean-
Marc François [7]. It is a Java implementation of Hidden Markov Model and
different algorithms connected with it. For the project purposes the library has
been modified to be able to handle learning process based on already specified
states for the observations sequence.

Some components also reuse small parts of the SenseBook [12] application code
(mainly HTTP connection part).

5.2 Audio data analyzer

As it was mentioned before analyzing tool has been created to provide convenient
testing environment. Through the use of graphical interface it allows to observe
results of different algorithms calculations and validate their correctness.

5.2.1 General structure

Audio data analyzer was implemented as a Java applet designed to run on a
stationary computer. It consists of several different components which overview

5.2 Audio data analyzer 29

is presented in Table 5.1.

Table 5.1: Audio data analyzer components overview

Class Description
Analyzer resposible for updating application state depend-

ing on user’s actions, it also invokes other com-
ponents actions

DataHolder stores all samples’ data during application execu-
tion

VoiceDetection performs all algorithms required by voiced frames
detection process

ConversationDetection performs all algorithms required by conversation
detection process

SpeakerSegmentation performs all algorithms required by speakers
turns detection process

Features calculates and provides all features data (to dis-
play them to the user)

Views responsible for displaying chosen view to the user
FilesManager handles creation and loading of different files used

by the application
Recording allows to record new sample using built-in micro-

phone

5.2.2 Supported files types

The analyzing tool uses data stored in several different files types (Table 5.2).
To simplify files’ load and save actions all data are stored as a serializations of
different Java classes.

The ”.hmm” file type contains learned HMM data. This file is created during
learning process which is performed only by the analyzing tool. Data from this
file is used by the smartphone prototype and server side webservices. Thus it is
not needed to perform learning process caculations on their side. They just use
already learned HMM.

The ”.sample” file type contains digital signal values of recorded sample. Such
data allows to reconstruct recorded audio (for the test purposes) and calculate
all needed features. This files are created by the smartphone application and
are used by the analyzing tool. There is also a ”.learn” file type which is used

30 Implementation

Table 5.2: Supported files types

File type Used by Action

.hmm
analyzing tool creation and utilization
smartphone application utilization
web services utilization

.sample
analyzing tool creation and utilization
smartphone application creation

.learn analyzing tool creation and utilization

.obs analyzing tool creation and utilization

.states
analyzing tool creation and utilization
smartphone application creation

in HMM learning process for voiced frames detection. It differs from ”.sample”
file type only in having different extension.

The ”.obs” file type contains information about log ratios differences between
two samples. This files are created and used only by the analyzing tool in the
HMM learning process for speaker segmentation.

Depending on the process’s current step the ”.states” files type contain informa-
tion about each sample’s frame voicing state (voiced frames detection step) or
values defining speaker turns (speakers segmentation step). This files, together
with corresponding ”.learn” or ”.obs” files, are used in the HMM learning pro-
cesses.

5.2.3 Waveform and spectrogram visualization

This view (Figure 5.1) displays waveform of the chosen frame (256 samples) and
spectrogram of 512 consecutive frames. Visual representation combined with
possibility to play audio sample allows to manually detect and mark (check-
boxes) voiced and speech states and save them as a file (Save states button).
Data from both audio signal file and states file is used in Hidden Markov Model
learning process (Learn HMM button). Files containing learnt HMMs are used
by the mobile prototype and server side web services.

This view is also used to check whether voiced frames are detected correctly
using already learnt HMM (Detect voiced frames button). Play voiced frames
button allows to play only frames marked as voiced.

5.2 Audio data analyzer 31

Figure 5.1: Waveform and spectrogram view.

5.2.4 Calculated features presentation

This view (Figure 5.2) displays visual representation of all features calculated
during detection process: maximum peak, number of peaks, spectral entropy
and energy. Based on the information about voiced frames it can be observed
what features magnitudes characterizes voiced frames.

5.2.5 Audio samples comparison

This view (Figure 5.3) displays spectrograms of two loaded samples with marked
voiced and speech frames. It allows to perform conversation and speaker de-
tection process (Detect speakers button) in order to validate its correctness.
Information about mutual infomation value and each speaking frame energy
log ratios is displayed and speakers turns are marked on the spectrograms as a
green lines. Since speakers detection process is based on Hidden Markov Model
this view contains also option to create learning data for the model and then
perform learning process (Learn HMM button). Speakers turns can be marked
using checkboxes and data about energy log ratios and speakers turns can be
saved to a file (Save speakers data button).

32 Implementation

Figure 5.2: Calculated features view.

Figure 5.3: Audio samples comparison view.

5.3 Mobile application prototype 33

The Learn HMM button also creates ”.hmm” file used by the server’s web
service responsible for speakers segmentation.

5.3 Mobile application prototype

The prototype has been designed to run on Android operating system. Its
main purpose is to perform audio recording, collect recorded data, process them
and send processed information to the server. It also provide user interface for
displaying server calculations results.

5.3.1 Overview

The prototype components are presented in Table 5.3. Application allows to
perform three basic actions:

• start/stop audio sampling;

• record training sample;

• get data about conversations from the server.

The main screen of the prototype is presented on Figure 5.4. When the ap-
plication is started learnt HMM model (provided by analyzing tool) is loaded
first. Then user can perform previously listed actions. When the Start action is
performed sampling process is started. Three different threads take part in it:

• Detector - Firstly it obtains current server time by invoking proper web
service. Then local phone time is synchronized with the server time. To
synchronize sample’s recording start times on all devices recording process
is started at the moment when current time’s seconds number reaches 0 or
30. The countdown indicating when recording will be started is displayed
to the user. When the coundown reaches 0 recorder and sender threads
are started. Thread starts to wait for the first sample to appear in the
recorded samples list. If there are new samples to process, voiced frames
detection process is performed. Processed data is added to the processed
samples list. Afterwards thread again waits for the new sample to process.

34 Implementation

Table 5.3: Prototype components overview

Class Description
Constants stores url adresses for the server web services
ConversationInfoData stores all conversation’s information obtained

from the server
ConversationsData transforms JSON format conversations data (ob-

tained from the server) into ConversationInfo-
Data objects

Detector controls all threads and voiced frames detection
process

Features calculates sample’s features
HttpHelper performs communication with web services
MainActivity Android OS activity class, responsible for the ap-

plication initialization and interaction with the
user

RecordedData stores unprocessed data about recorded sample
SampleData stores processed data about recorded sample
ServerDataCollector responsible for collecting and processing data

from the server
ServerResponse specifies whether the server response was success-

fully obtained

• Recorder - Audio recording is performed continuously but every 30 seconds
new separate sample is created based on the data recorded during last 30
seconds. Sample’s data is added to the recorded samples list.

• Sender - If there exists already processed samples (processed samples list
is not empty) their data is converted into JSON format and proper web
service with request message containing converted data is invoked. If the
web service response is successful sent sample’s data is removed from the
processed samples list. Thread starts to wait for new processed sample.

All described threads are running concurrenlty until the Stop action is per-
formed.

The REC Training sample action allows to record one minute sample which
is stored on the phone’s flash card. All recorded samples and files containing
information about detected voiced frames are also automatically stored so they
could be later analyzed using the analyzing tool.

5.3 Mobile application prototype 35

Figure 5.4: Prototype application screen.

The Last conversation info action displays information about last ten conver-
sations the user was participating in. The information include conversation’s
date, duration, participants ids and percentage of time given participant was
speaking during the conversation.

5.3.2 Voiced frames detection process

When a new sample is added to the recorded samples list, voiced frames detec-
tion process on a new sample data is performed. Part of the code responsible
for this process is presented on Figure 6.2.

Firstly sample’s data is saved as a file to allow its further analysis by the an-
alyzer tool. Then two-pass process is started. In the first pass all features are
calculated and converted to the observations vector. Afterwards using the vec-
tor and sample signal data voiced frames are detected but the process is not
finished yet because sample data improvement is performed [2]. It adds low-
power Gaussian noise signal to each frame in order to minimize infuence of small

36 Implementation

for (int i=0; i<2; i++){

for (short[] aData : sample){

float[] spectrum = features.calculateSpectrum(aData);

float spectralEntropy

= features.calculateSpectralEntropy(spectrum);

double[] peaksInfo = features.calculatePeaks(

features.calculateAutoCorrelation(aData));

if (i==0) energies[index] = features.calculateEnergy(aData);

double[] obs = {peaksInfo[0], peaksInfo[1], spectralEntropy};

observations.add(new ObservationVector(obs));

index++;

}

if (i==0){

sample = features.improveSample(

sample, getHmmResult(observations));

observations.clear();

}

}

int[] states = getHmmResult(observations);

Figure 5.5: Voiced frames detection source code.

noisy periodic signals. The amount of noise to use is estimated using non-speech
frames detected during first pass. The second pass performs the same actions
excluding signal energies calculations and sample improvement.

5.4 Server side

This part of the system consists of four web services and datastore component,
both hosted by Google App Engine.

5.4.1 Google App Engine

To simplify required web services implementation process and database man-
agement Google App Engine service was selected as a server side platform. It
offers ”fast development and deployment; simple administration, with no need
to worry about hardware, patches or backups; and effortless scalability” [8].

One of the key factor is that web services can be implemented using Java pro-
gramming language (Python and Go languages are also available). Eclipse de-

5.4 Server side 37

velopment environment used in the project allows to deploy new versions of web
services quickly and in a very convenient way (using Google App Engine plu-
gin). The database tables and their records, error logs and other information
about web application can be accessed using web dashboard. Web services are
publicly available through *.appspot.com domain.

5.4.2 Datastore entities

For the project purposes seven different kinds of entities (tables) were created in
the database. Their detailed descriptions is presented in Table 5.4. They store
all required information about samples recorded by the smartphone application
and data calculated during conversation and speaker detection process. Datas-
tore entities are firstly defined as Java classes used by the web application. The
sample class is presented on Figure 5.6.

@PersistenceCapable(identityType = IdentityType.APPLICATION)

public class States {

@PrimaryKey

@Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

private Long Id;

@Persistent

private Long SampleId;

@Persistent

private Text States;

public States(Long SampleId, Text States) {

this.SampleId = SampleId;

this.States = States;

}

[...]

}

Figure 5.6: States entity class.

38 Implementation

Table 5.4: Datastore entities

Entity kind Field Field description

Sample

Id entity id
Processed specifies whether sample was already

used in conversation detection pro-
cess

Timestamp sample’s recording time
ConversationId conversation id (updated after detec-

tion process)
UserId user’s id that sample belongs to

States

Id entity id
SampleId sample’s id that states belongs to
States array containing each sample’s frame

state (voiced or unvoiced)

Energies

Id entity id
SampleId sample’s id that energies belongs to
Energies array containing each sample’s frame

energy

Conversation
Id entity id
StartTime conversation start time
EndTime conversation end time

ConversationInfo

Id entity id
ConversationId conversation id
ParticipantId conversation’s participant id
StartTime the time when participant has joined

the conversation

Participants

Id entity id
ConversationId conversation id
Timestamp beginning of the conversation be-

tween two users
User1Id first participant id
User2Id second participant id

SpeakersTurns

Id entity id
ConversationId conversation id
Timestamp beginning of the conversation be-

tween two users
ParticipantsId Participants entity id
Sample1Id id of the first sample used in speaker

detection process
Sample2Id id of the second sample used in

speaker detection process
MI mutual information value

5.4 Server side 39

Datastore entity is created in the database at a time when web service invokes
makePersistent() method on a given entity class object (Figure A.2).

States st = new States(sampleId, new Text(states.toString()));

pm = PMF.get().getPersistenceManager();

try {

pm.makePersistent(st);

} finally {

pm.close();

}

Figure 5.7: Creating new entity in the database.

Data from the database are obtained using simple Java Data Objects queries.
The sample query is presented on Figure 5.8.

private List<ConversationInfo> getConversationsInfo(long userId){

javax.jdo.Query query = PMF.get().getPersistenceManager()

.newQuery(ConversationInfo.class, "this.ParticipantId==id");

query.setOrdering("this.StartTime desc");

query.declareParameters("Long id");

query.setRange(0, 10);

List<ConversationInfo> conversationsFound

= (List<ConversationInfo>) query.execute(userId);

return conversationsFound;

}

Figure 5.8: Query for obtaining customized ConversationInfo entities data.

5.4.3 Servlets

As it was previously described in the Design chapter four different web services
were implemented:

• time synchronization service (GetTimeServlet);

• sample data upload service (CreateSampleDataServlet);

• conversation and speaker detection service (FindConversationsServlet);

• statistics provider service (GetDataServlet).

40 Implementation

All web services are implemented as a Java servlets (they are extensions of
HttpServlet class). Request data needs to be send in JSON format via post
request method. Response data are returned also in JSON format. Sample
servlet class code with JSON parsing example is presented on Figure 5.9.

public class CreateSampleDataServlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws IOException {

String content = getPostData(req);

try {

JSONObject allData = new JSONObject(content);

String userId = allData.getString("userId");

JSONArray samples = allData.getJSONArray("samples");

[...]

}

}

[...]

}

Figure 5.9: Sample web service class with JSON parsing example.

Time synchronization service is the simplest one. It does not take any request
data and it only returns current server time. Smartphone application calculates
difference between phone’s local time and the server time so it could set sample’s
recording time regarding to the server time.

Sample data upload service takes samples’ data array as a request (Figure 5.10).
Then it creates appropriate database entities which store all required samples’
information (time, states, energies). At the end information specifying whether
sample was successfully stored in the database is returned.

Unlike other services which are invoked by the smartphone application, con-
versation and speaker detection service runs as a cron job. It means that it is
automatically invoked by the server every specified amount of time. This service
uses only already stored data in the database and does not need any user’s in-
teraction. It goes through all not yet processed samples data. Then it compares
this data with other samples’ data recorded at the same time by other devices.
It performs mutual information algorithm to detect conversations and then it
finds speakers turns in the discovered conversations. Finally it stores obtained
data in the database and finishes its execution if there is no any unprocessed
samples.

5.4 Server side 41

{

"userId":355302048213764,

"samples":

[

{

"energies":[503.76126166000915,661.9734903993069,...],

"states":[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,...],

"timestamp":1313920320000

},

{

"energies":[4086.4310881789934,4277.28339284066,...],

"states":[1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,...],

"timestamp":1313920350000

}

]

}

Figure 5.10: JSON request containing two samples’ data.

{

"isSuccess":true,

"errorMessage":"",

"cids":

[

{

"id":74034,

"startDate":1313670420173,

"endDate":1313670450173,

"participants":["355302048199989","355302048213764"],

"durations":[0,66,166]

},

{

"id":79034,

"startDate":1313670000664,

"endDate":1313670030664,

"participants":["355302048213764","355302048199989"],

"durations":[0,231,1]

},

[...]

]

}

Figure 5.11: JSON response containing two conversations’ data.

42 Implementation

The last service is responsible for providing the user with different statistics
about already detected conversations in which he was participating. Different
kinds of data are obtained by specifiying the type of the information in the
JSON request. One of the sample data provided by the service are presented on
Figure 5.11. It contains information about ten last user’s conversations - start
time, end time, participants and durations (how many frames were unvoiced,
how many of them were voiced by the first participant and how many by second
one).

Chapter 6

Evaluation

There are three main parts of the system which were tested to check how ac-
curate the whole detection process is. The first part concerns voiced frames
detection performed by the smartphone application. Two other parts are re-
sponsible for conversation and speaker detection performed on the server side.
The calculations results verification process was performed in the following or-
der:

• the calculations result is obtained;

• the manual detection is performed using the analyzer tool;

• both results are compared in order to check calculations correctness.

HMM learning process was performed using couple minutes long conversation
between two people (including environmental noise) who have not participated
in the evaluation process.

44 Evaluation

6.1 Voiced frames detection

Voiced frames detection process is performed by the smartphone application.
To verify results correctness, the accuracy of frames detection in a silent and
noisy environment was calculated. The manual detection was performed using
waveform and spectrogram view of the analyzer tool (Figure 6.1). Voiced frames
were marked based on a waveform and spectrogram appearance.

Figure 6.1: Waveform and spectrogram analysis.

6.1.1 Detection accuracy in a silent environment

This part presents voiced frames detection correctness between two people in
a silent environment. Detailed results are presented in Table 6.1. The test
was performed on ten 30 seconds long samples. Each sample consisted of 1874
frames.

Based on the test results it can be observed that there is only slight difference in
the number of voiced frames detected manually and by the use of implemented
algorithms. The number of incorrectly detected voiced frames is also small which
results in high accuracy.

6.1 Voiced frames detection 45

Table 6.1: Voiced frames detection correctness in silent environment

Voiced frames detected Incorrect
Accuracy

Manual detection Calculations result detection
695 674 39 98%
728 659 76 96%
634 591 51 97%
539 491 50 97%
699 666 33 98%
746 701 46 98%
729 689 45 98%
846 796 56 97%
839 755 85 95%
1016 953 64 97%

6.1.2 Robustness to noise

This part presents voiced frames detection correctness between two people in
noisy environment. Two first samples were recorded with low-level noise (quiet
background music, approximately 40dB), the other two with loud background
noise (urban noise [19], approximately 60dB).

Table 6.2: Voiced frames detection correctness in noisy environment

Voiced frames detected Incorrect
Accuracy

Manual detection Calculations result detection
1084 1133 53 97%
1043 1073 40 98%
341 679 364 81%
400 565 303 84%

In contrast to silent environment test, smartphone application detected more
voiced frames than when manual detection was performed. This is because
some noisy frames were detected as voiced ones. Low-level noise has only slight
effect on the detection result, the number of incorrectly detected voiced frames is
similar to the one observed in the previous test. Loud noise discrupts detection
process significantly but the accuracy is still quite high.

46 Evaluation

6.1.3 Conclusion

Figure 6.2 presents graphical representation of both tests results. Samples 9
and 10 were recorded with loud background noise.

Figure 6.2: Voiced frames detection.

It can be concluded that the voiced frames detection in a silent environment
is precise and the error ratio is very small. Low-level noise does not affect the
calculations results, however loud noise has moderate impact on the detection
process which results in greater amount of incorrectly detected voiced frames.
Notwithstanding the accuracy in all tested cases is high which makes the voiced
frames detection correctness satisfactory.

6.2 Conversation detection

Conversation detection process is performed by the proper server side web ser-
vice. The accuracy of samples’ allocation to different conversations is the most
important issue to check in this case.

6.3 Speakers segmantation 47

6.2.1 Samples’ comparison

Figure 6.3 presents mutual information values of ten samples’ pairs comparisons
made using audio data recorded at the same time by two smartphones. It also
contains information about differences in number of detected voiced frames.
First seven samples’ pairs were part of the same conversation whereas pairs
8,9 and 10 were recorded in different locations. Each sample consisted of 1874
frames.

Figure 6.3: Samples comparison.

It can be observed that mutual information for samples’ pairs of the same cov-
ersation have significantly higher values than for samples which were recorded
in different locations. Differences are also visible in the detected voiced frames
dissimilarities. It is higher for samples’ pairs recorded in different places.

It can be concluded that the mutual information values clearly state whether
samples’ pair belongs to the same conversation.

6.3 Speakers segmantation

Speakers segmantation process is performed by the proper server side web service
just after conversation detection. The accuracy of speakers turns detection is

48 Evaluation

examined in order to verifiy results correctness for this part of the process.

6.3.1 Segmentation accuracy

Speakers turns are detected using differences between energies log ratios of the
signals obtained from two different sources. The segmentation results correct-
ness was analyzed using audio samples view of the analyzer tool (Figure 6.4).
Ten 30 seconds long samples’ pairs were recorded for the test purposes, each
one contains conversation between two speakers.

Figure 6.4: Speakers segmentation analysis.

Figure 6.5 presents calculations results for each conversation participant. The
charts shows the difference between the number of speaking frames detected
manually and by the use of implemented algorithms.

It can be observed that usually the differences are quite small, however for
samples’s pairs 3 and 6 they are more observable as they result in assigning
significantly more speaking time to the Speaker B and taking part of Speaker
A time. Such situation was caused by the very small distance between two
participants (sitting side by side). The difference in energies log ratios were so
small that based on them it could not be clearly stated who was speaking when.

6.3 Speakers segmantation 49

Figure 6.5: Speakers segmentation.

Table 6.3 presents the accuracy of all samples’ pairs. As expected the accuracy
is quite low for pairs 3 and 6 but it is high for other pairs.

Table 6.3: Speakers segmentation detection correctness

Samples’ pair Accuracy
1 93%
2 100%
3 70%
4 89%
5 90%
6 57%
7 98%
8 92%
9 82%
10 92%

It can be concluded that the speaker segmentation is highly dependent on the
distance between the conversation’s participants. If it is very small (approxi-
mately less than 1 meter) then it can result in incorrect speakers turns detection.
In the other cases accuracy of spekers segmentation is high.

50 Evaluation

Chapter 7

Discussion

The aim of this thesis was to design and implement the prototype of the system
for conversation and speaker detection based on the audio data recorded by the
users’ smartphones.

7.1 What has been accomplished

Firstly analyzing tool designed for the early tests purposes has been created. It
allowed to verify in a convinient way correctness of different algorithms and parts
of the system. It consisted of three main components which included waveform
and spectrogram visualizations, detected features charts and samples compar-
ison. It also allowed to create training samples and perform HMM learning
process.

Afterwards the smartphone application prototype and server side web services
have been designed and created. Smartphone application has been designed
to run on Android operating system, whereas web services and database were
hosted by the Google App Engine.

Smartphone prototype was responsible for continuous audio data recording and

52 Discussion

processing collected data in order to detect voiced frames. It was also used as
an interface for the user to display different conversation information.

Data processed by the smartphone application was transferred to the server
using proper web service. Web services were responsible for data storage (in the
provided database), processing collected samples’ information in order to detect
conversations and their participants and provide information about them back
to the smartphone application.

At the end three main parts of the conversation and speaker detection process
(voiced frames detection, conversation detection, speakers segmentation) has
been tested and the results were presented.

7.2 Future work

From the start the system created for the project purposes was defined as a
prototype. It can not be treated as a complete system since it misses many
components which should be taken into account for the final version considera-
tions. The complete system should be efficient, secure and most importantly it
should provide the user many different information displayed in an interesting
form.

7.2.1 Basic improvements

Since the prototype system can handle only conversations between two people,
one of the main improvements would be to enable conversation detection be-
tween different number of participants. In the current version if there are more
participants then each pair is considered as a participants of different conversa-
tion.

The prototype is running as a normal application and the calculations are not
optimized enough to be able to run in the background without phone’s per-
formance drop. The next important improvement would be to optimize the
algorithms to enable operating in the background so the voiced frames detec-
tion process could be perfomed continuously without interrupting the user.

Smartphone application has limited functionality which is useful only for the
tests purposes. It allows to record training sample, start/stop sampling pro-
cess and display simple information about already detected conversations. It

7.2 Future work 53

includes conversation date, duration, participants ids and percent of time each
participant was speaking. The main feature which would make the smartphone
application interesting for the user is conversation data presentation. Informa-
tion should not be displayed as a text but it should be visualized in a clear
and simple to understand way using different charts forms. Such visualizations
examples were presented in section 4.6.

7.2.2 Social networking aspect

Collecting data about user’s conversations gives opportunity to automatically
create connections between different users. If two users are taking part in the
same conversation then it means that they probably know each other. Based
on this information connection between these users can be created. By checking
how often users are speaking with each other it can be also defined how strong
relation between the users is.

Interesting infomation could be concluded from analysing the time of day when
the users are usually in conversation with each other. For example if the con-
versations occurs only during the working hours then it probably means that
users are working or studying together. On the other hand if the conversation
occurs only in the morning, in the evening and during the weekends then it is
very likely that the users are living together (family). When the conversations
occurs occasionally in the evening and during the weekends then it can mean
that the users are colleagues or friends (frequent conversations). These are only
examples on how could be the time of day information used.

The more accurate information can be acquired by combining processed audio
data with other sensors information. There already exist applications which are
collecting information from different phone’s sensors and utilizing them (e.g.
SenseBook application [12]). In the case of conversations data utilization, loca-
tion information seems to be most useful. It could give information about the
places where the user meets given person, where the conversations with given
person usually take place or what is a chance to meet given person in a given
place at given time.

54 Discussion

Chapter 8

Conclusion

This thesis presented practical look on the conversation and speaker detection
process. So far similar systems were implemented only using special wearable
devices. The system presented in this thesis introduced the smartphone devices
as a source for audio data collection. It made the process convenient to apply
in a people’s daily life.

The tests results indicate that there is strong potential for further development.
Detection results are characterized by high accuracy, however there are some
cases which need to be improved. There is still a lot of work to make the system
useful for the ordinary user. This thesis gave strong foundations for it and
they have proved that the modern smartphones are capable to handle complex
computations associated with the voiced frames detection process.

Further system development can result in creation of very useful applications for
those who like to be updated with different information about themselves or their
friends. As it was presented in this thesis, conversation data can provide many
useful information. Not only different summaries about user’s conversations
can be created. There are also many opportunities to explore on the social
networking field.

56 Conclusion

Appendix A

Trained HMMs parameters

State 0

Pi: 0.875 Aij: 0,982 0 0,017 0

Opdf: Multi-variate Gaussian distribution --- Mean: [0,125 1,086 4,129]

State 1

Pi: 0.0 Aij: 0,25 0,25 0,25 0,25

Opdf: Multi-variate Gaussian distribution --- Mean: [0 0 0]

State 2

Pi: 0.125 Aij: 0,016 0 0,901 0,083

Opdf: Multi-variate Gaussian distribution --- Mean: [0,836 10,758 4,098]

State 3

Pi: 0.0 Aij: 0,002 0 0,109 0,89

Opdf: Multi-variate Gaussian distribution --- Mean: [0,268 2,763 4,214]

Figure A.1: HMM parameters for voiced frames detection, Pi - probability
of being inital, Aij - transition probability (from state i to state j), Opdf -
observation probability function.

58 Trained HMMs parameters

State 0

Pi: 0.4 Aij: 0,798 0,069 0,134 0

Opdf: Gaussian distribution --- Mean: 0 Variance 0

State 1

Pi: 0.2 Aij: 0,041 0,924 0,035 0

Opdf: Gaussian distribution --- Mean: 0,618 Variance 1,166

State 2

Pi: 0.4 Aij: 0,068 0,023 0,909 0

Opdf: Gaussian distribution --- Mean: -0,828 Variance 1,829

State 3

Pi: 0.0 Aij: 0,25 0,25 0,25 0,25

Opdf: Gaussian distribution --- Mean: 0 Variance 1

Figure A.2: HMM parameters for speakers segmentation, Pi - probability of
being inital, Aij - transition probability (from state i to state j), Opdf - obser-
vation probability function.

Appendix B

Waveform samples

Figure B.1: Waveforms of a voiced signals. Repetitive parts are clearly visible.

60 Waveform samples

Figure B.2: Waveforms of a noisy signals. Repetitive parts are not present.

Appendix C

Spectrogram samples

62 Spectrogram samples

Figure C.1: Spectrogram of 30 seconds long sample. Yellow line - energy mag-
nitude, bottom blue line - speech regions, top blue line - voiced frames.

Appendix D

Features dependancies

64 Features dependancies

Figure D.1: Each line represents one feature magnitudes. Yellow line - energy
(calculated only for the speech frames), blue line - number of peaks, green line
- maximum peak, red line - spectral entropy, black line - voiced frames.

Bibliography

[1] Sumit Basu. Conversational scene analysis, 2002.

[2] Sumit Basu. A linked-HMM model for robust voicing and speech detection,
2003.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, 1st ed. 2006. corr. 2nd printing
edition, October 2007.

[4] Oliver Brdiczka, Jérôme Maisonnasse, and Patrick Reignier. Automatic
detection of interaction groups. In 2005 International Conference on Mul-
timodal interaction, ICMI ’05, Trento It, pages 32–36, 2005.

[5] Tim Carstens. What is a Hidden Markov Model? http://intoverflow.

wordpress.com/2008/05/27/what-is-a-hidden-markov-model/, ac-
cess: May 2011.

[6] S. R. Corman and C. R. Scott. A synchronous digital signal processing
method for detecting face-to-face organizational communication behavior.
In Social Networks, vol. 16, pages 163–179, 1994.

[7] Jean-Marc François. Jahmm - an implementation of Hidden Markov Models
in Java (v.0.6.2). http://jahmm.googlecode.com, access: April 2011.

[8] Google. Google App Engine. http://code.google.com/appengine/, ac-
cess: June 2011.

[9] Google. Android developers. http://developer.android.com, access:
May 2011.

http://intoverflow.wordpress.com/2008/05/27/what-is-a-hidden-markov-model/
http://intoverflow.wordpress.com/2008/05/27/what-is-a-hidden-markov-model/
http://jahmm.googlecode.com
http://code.google.com/appengine/
http://developer.android.com

66 BIBLIOGRAPHY

[10] HTC. HTC Desire specification. http://www.htc.com/us/products/

desire-cellularsouth, access: April 2011.

[11] IBM. Many Eyes. http://www-958.ibm.com/, access: July 2011.

[12] Jakob Hommelhoff Jensen and Regin Larsen. Collecting, Analysing and Vi-
sualising Context Data for Enriching Relationships - Using a Mobile Social
Networking Application. Master’s thesis, Informatics and Mathematical
Modelling, Technical University of Denmark, DTU, 2007.

[13] Alexander Kraskov, Harald Stögbauer, Ralph G. Andrzejak, and Peter
Grassberger. Hierarchical clustering based on mutual information. Cor-
nell University Library, 2003.

[14] Geoff Martin. Introduction to sound recording - autocorrelation. http:

//www.tonmeister.ca/main/textbook/node715.html, access: May 2011.

[15] Lawrence R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. In Proceedings of the IEEE, pages 257–
286, 1989.

[16] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, Englewood Cliffs, NJ, 3rd edition, 2010.

[17] Liang sheng Huung and Chung ho Yung. A novel approach to robust speech
endpoint detection in car environments. In Proc. ICASSP, 2000.

[18] Jonathon Shlens. Notes on Kullback-Leibler Divergence and Likelihood
Theory. http://www.snl.salk.edu/∼shlens/kl.pdf, access: June 2011.

[19] The Noise of New York. Online video clip. http://www.youtube.com/

watch?v=CslD 6L4oTs, access: September 2011.

[20] Danny Wyatt and Jeff Bilmes. Towards the automated social analysis of
situated speech data, 2008.

[21] Danny Wyatt, Jeff Bilmes, Tanzeem Choudhury, and Henry Kautz. A
privacy-sensitive approach to modeling multi-person conversations. In Proc.
of IJCAI-07, 2007.

[22] Danny Wyatt, Tanzeem Choudhury, and Jeff Bilmes. Conversation detec-
tion and speaker segmentation in privacy-sensitive situated speech data. In
Proc. of Interspeech, 2007.

http://www.htc.com/us/products/desire-cellularsouth
http://www.htc.com/us/products/desire-cellularsouth
http://www-958.ibm.com/
http://www.tonmeister.ca/main/textbook/node715.html
http://www.tonmeister.ca/main/textbook/node715.html
http://www.snl.salk.edu/~shlens/kl.pdf
http://www.youtube.com/watch?v=CslD_6L4oTs
http://www.youtube.com/watch?v=CslD_6L4oTs

	Abstract
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Project goals
	1.3 Thesis structure

	2 Related work
	2.1 System for wearable devices

	3 Analysis
	3.1 Privacy preserving approach
	3.2 Features calculation
	3.2.1 Autocorrelation peaks
	3.2.2 Relative spectral entropy

	3.3 Voiced frames detection
	3.3.1 Hidden Markov Model

	3.4 Conversation detection
	3.4.1 Mutual information

	3.5 Speaker segmentation
	3.5.1 Energy of the signal
	3.5.2 HMM for speakers turns detection

	4 Design
	4.1 General idea
	4.2 System overview
	4.3 Audio data analyzing tool
	4.4 Mobile application prototype
	4.4.1 Mobile platform
	4.4.2 Data collection and processing
	4.4.3 Results visualization

	4.5 Server side
	4.5.1 Google App Engine
	4.5.2 Time synchronization service
	4.5.3 Sample data upload service
	4.5.4 Conversation and speaker detection service
	4.5.5 Statistics provider service

	4.6 Thoughts on the final version
	4.6.1 Conversations
	4.6.2 Summaries

	5 Implementation
	5.1 Overview
	5.1.1 Limitations
	5.1.2 Resources used in the project

	5.2 Audio data analyzer
	5.2.1 General structure
	5.2.2 Supported files types
	5.2.3 Waveform and spectrogram visualization
	5.2.4 Calculated features presentation
	5.2.5 Audio samples comparison

	5.3 Mobile application prototype
	5.3.1 Overview
	5.3.2 Voiced frames detection process

	5.4 Server side
	5.4.1 Google App Engine
	5.4.2 Datastore entities
	5.4.3 Servlets

	6 Evaluation
	6.1 Voiced frames detection
	6.1.1 Detection accuracy in a silent environment
	6.1.2 Robustness to noise
	6.1.3 Conclusion

	6.2 Conversation detection
	6.2.1 Samples' comparison

	6.3 Speakers segmantation
	6.3.1 Segmentation accuracy

	7 Discussion
	7.1 What has been accomplished
	7.2 Future work
	7.2.1 Basic improvements
	7.2.2 Social networking aspect

	8 Conclusion
	A Trained HMMs parameters
	B Waveform samples
	C Spectrogram samples
	D Features dependancies

