Tractable approximations for probabilistic models:
The adaptive TAP mean field approach
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We develop an advanced mean field method for approxi-
mating averages in probabilistic data models that is based on
the TAP approach of disorder physics. In contrast to conven-
tional TAP, where the knowledge of the distribution of cou-
plings between the random variables is required, our method
adapts to the concrete couplings. We demonstrate the valid-
ity of our approach by replica calculations for a wide class of
models as well as by simulations for a real data set.

Probabilistic models (for a review see e.g. [1]) find
widespread applications in many areas of data model-
ing. Their goal is to explain complex observed data by
a set of unobserved, hidden random variables based on
the joint distribution of both sets of variables. The price
that a modeler has to pay for the high degree of flexibil-
ity of these models is the vast increase in computational
complexity when the number of hidden variables is large.

Both statistical inference about hidden variables and
training usually require computation of marginal distri-
butions of the hidden variables which for exact calcu-
lation demands infeasible high dimensional sums or in-
tegrals. Since similar types of calculations are ubig-
uitous in the computations of thermal averages, there
is a great deal of interest in adopting approximation
techniques from statistical physics. For a variety of
cases, when a standard tool, the Monte Carlo sampling
technique reaches its limits, a simple mean field (MF)
method, which neglects correlations of random variables
has yielded good results in a variety of probabilistic data
models. The MF approximation yields a closed set of
nonlinear equations for the approximate expectation val-
ues of random variables which usually can be solved in
a time that only grows polynomially in the number of
variables. At present, there is a growing research activ-
ity trying to overcome the limitations of the simple MF
method by partly including the dependencies of variables
but still keeping the approximation tractable (for a re-
view see [2]).

Various researchers [3-12] have discussed applications
of the so-called TAP MF approach, originating in the sta-
tistical physics of disordered systems, first introduced by
Thouless, Anderson and Palmer (TAP) [13] to treat the
Sherrington-Kirkpatrick (SK) model of disordered mag-

netic materials [14]. Under the assumption that the cou-
plings (interactions) between random variables are them-
selves drawn at random from certain classes of distribu-
tions, the TAP equations become ezact in the thermody-
namic limit of infinitely many variables. Unfortunately,
the Onsager correction to the simple, naive MF theory
will explicitly depend on the distribution of these cou-
plings. Two models with the same connectivities but
different distributions for the couplings, like e.g. the SK
model and the Hopfield model [15] have different expres-
sions for the Onsager corrections (see e.g. [5], chapter
XIII).

In order to use the TAP method as a good approxi-
mation for models of real data, the lack of knowledge of
the underlying distribution of the couplings (which are
usually functions of the observed data) should be com-
pensated by an algorithm which adapts the Onsager cor-
rection to the concrete set of couplings. Simply taking
the correction from a theory that assumes a specific dis-
tribution may lead to suboptimal performance. This let-
ter presents a solution to this problem for an important
class of probabilistic models. As a check of the validity
of the approach, we show that our method leads to the
exact results in the thermodynamic limit for large classes
of probability distributions over the couplings.

We will consider probabilistic models of the type

P(S) = Z‘E(BS”)]) exp ZS“]”S] + Zszez (1)
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where the set S = (51, ..., Sn) denotes the (hidden) ran-
dom variables of the model. Any observed (i.e. fixed)
quantities are assumed to be encoded in the matrix J
and the fields 6. The term p(S) = []; p;(S;) is a prod-
uct distribution which also contains all constraints of the
S; (the range, discreteness, etc). In its simplest version,
when S is a real variable with positive measure p, the
class of models (1) contains Ising models (such the SK
and Hopfield models), Gaussian process models [3], prob-
abilistic independent component analysis [16] and combi-
natorial optimization problems [5]. If we lift the restric-
tions that all variables must be real random variables,
we can treat a variety of important models with depen-
dencies between the S; that are defined through a set of
fields Zi\;l z;;S;. We will give two examples. Bayesian
learning in single layer neural networks is described by



a Gibbs distribution P(S) oc Po(S) [T12, F(X 1, 74;S:),
where S is a weight vector of the network being trained
on a number of m data vectors with components z;; in
a N dimensional space. Py is a prior distribution of the
weights and F' is the Likelihood quantifying the good-
ness of fit to the data [8]. A second example is given
by the class of Bayesian belief networks on a directed
graph which are promising models for adaptive expert
systems. They are defined by P(S) = [], P(S:|pa(S;))
where S; € {0,1} and pa denotes the parents of S;, i.e.
the variables in the graph that feed their information
into S; via directed bonds. A specific type is the sig-
moid belief networks [17], where P(S;|pa(S;)) = fji:
with hi = 3 0(s;) %ijSj- The latter two models can be
easily brought into the form (1) by the standard ‘field-
theoretic’ trick of introducing Dirac §-functions and their
exponential representations using purely imaginary con-
jugate variables S = (Si,...,5,,). This leads to an aug-
mentation of the space of variables to the set (S,S). The
hatted variables have the complex single variable distri-
butions p(S) = [ e SheH(h) in case of the neural
network model and 4(S) = [ @e=5h/(1 + €t) for the
belief network (where m = N). The augmented coupling
A B
BT o
and A = 0 for the neural network and A;; = B;; = zy;
for the belief net.

We will derive both an adaptive TAP-like ap-
proximation for the marginal distribution P;(S)
S 11,4 dS;P(S) and the free energy F(J,0)
—InZ(J,0). The free energy corresponds to the nega-
tive log probability of the observed data which can be
used as a yardstick for deciding which model best fits to
the data.

Our derivation will be based on the cavity approach
introduced by [5]. We will assume that we are not dealing
with a glassy system with its many ergodic components,
but that all averages are for a single state. This is (as
shown for many of the teacher-student scenarios studied
in the statistical mechanics of neural networks) usually
expected to hold when the probabilistic model is well
matched to the data. Defining the field h; =}, Ji;5;,
the marginal distribution of S; can be written as

matrix is of the form J = , where B;; = x5

r(s) = [ [Las;ps) = 220em (o)
J#i

where we have introduced an effective single variable

Hamiltonian H;(S) with corresponding partition function

Z;. Defining an auxiliary average over the distribution of
the system with variable S; left out by (.. .)\i, we get

(i)
. K
—H;(8) = In(e%"),, = > ﬁsk (3)
— k!

where /z;:) are the cumulants of this cawvity distribution,

ie. k) = (hg)\; and w57 = (h2)\; — (hy)?; ete.

The basic physical assumption, which is the major in-
gredient of all cavity derivations of the TAP mean field
theory [5], is that all variables S; have only weak mu-
tual dependencies. Mathematically expressed within the
so—called clustering hypothesis [5] this becomes equiva-

lent to the vanishing of all cumulants m,(;) with k£ > 2 for
fully connected systems. In the case, where the S; are
real variables with positive measure, this corresponds to
a central limit theorem for the cavity fields. Under this
assumption, setting V; = ngz), we get

(hi) = 5 [ dSpi(S)gge ) = (i) + Vil (@

pi(S)

Fi(S) = 7,

exp (ZJZ-'(SJ')—V;)S-F%V}SQ (5)
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fori=1,...,N. For comparison we note that the naive
mean field approximation (for real random variables) is
obtained by setting V; = 0. So far, the approach is well
known. The new aspect of our paper is in the way we
compute the V;’s. Since these reaction terms account
for the weak influence between random variables, they
can be computed self-consistently from the matrix of
susceptibilities x;; = ‘96<—“2;'>.
tion that upon differentiation, the V;’s are held constant
which is consistent with the fact that the V}’s are ex-
pected to be selfaveraging quantities in the thermody-
namic limit. Under this assumption we get from eq. (5)
Xij = Xii ((Sij + Zk(‘]ik - Vkéik)xkj) which can be solved
with respect to x and yields x = (A — J)~! , where
A = diag{V; + 1/x:;} is a diagonal matrix. The Fluctu-
ation Dissipation Theorem (again assuming that we deal
with a single state), shows that x also equals the matrix
of correlations Cj; = (S;Sk) — (S;)(Sk). By specializing
to the diagonal elements, we can compute V; as a function
of (S2) — (S;)? by solving

We make the approxima-
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fori =1,...,N. The sets of equations (5) together with
(6) constitute the first main result of this letter. They
yield closed sets of equations for the first and second mo-
ments of S; which in turn enables us to approximate the
full marginal distribution of S; and the correlation func-
tions. A sanity check of the internal consistency of our
approach is obtained by the fact that the matrix x must
be positive definite. (If a group of the variables are com-
plex, this has to hold for the submatrix of the real random
variables).

The next task is to compute the adaptive TAP approx-
imation to the free energy F(J,0) = —InZ(J,0). Tt is
useful to generalize our model eq. (1) to a one parameter



class of models where the interaction J is replaced by sJ
with 0 < s < 1 and to define the Legendre transform
(Gibbs free energy) by

i
&, (m,M) =F(sJ+X,0+7)+ > _vimi+ Y 5 M,

where 7; and ); are external fields conjugate to S; and S?
which must be chosen to extremize the right hand side
and X is a diagonal matrix with entries A;. The solutions
m°® and M* of the sets of equations 0,,,®; = O, @ =
0, determine the correct equilibrium expectation values
(Si)s = m¢ and (S?), = M¢ (the index indicates that
the expectation is taken with parameter s). Our desired
approximation to the free energy is finally obtained as
F(J,0) = & (m®, M¢). To compute ®; we differentiate
d, with respect to s, to show that

1 1
R / ds § S midym; +Te(x,3) ¢ (7)
0

i,J

with xs:5 = (S:iS;)s — (Si)s(S;j)s. Inserting our TAP
approximation x, = (As; — sJ)~! and integrating, we
obtain

1
P = Pg — > ZmiJijmj + Ad (8)

ij

1 1 1
A = S Trin(A —J) - 5;‘/;Xii+§;1n)(z'i

with x;i = M; — m?. The first two terms constitute
the naive mean field approximation to ® and the last
term A® is the Onsager correction. Note, that this re-
sult is not equivalent to a truncation of a power series
expansion of ® to second order in s (a Plefka expansion
[18]) but contains terms of all orders. A different way to
derive this result is obtained from the observation that
the functional form of the Onsager term V; in the TAP
equations does not depend on the specific single variable
densities p(S). Hence, we may compute this universal
form by calculating ® for an exactly solvable model, i.e.
for a Gaussian p and subtract the naive mean field part.
This is related to the strategy used by Parisi and Potters
[19] in order to derive the TAP equations for a spin glass
model with orthogonal random matrix J.

To check the significance of our approach, we will next
show that it will give the correct results for the statis-
tical mechanics in the thermodynamic limit N — oo
for a large class of distributions of the random matrix
J. For simplicity, we specialize to models with only
one type of single variable distribution p;(S) = p(S5).
Selfaveraging properties of the models can be computed
within the replica framework by averaging the free en-
ergy over the distribution of the random matrix J. This
requires the calculation of the asymptotic scaling of

the function Kn(A) = - 1n [e%T’(AJ)]J for the matrix

Aij = 2221 SiaSja, where the S,, are n replicas of the
variables. Following Ref. [19] and assuming the scaling
Kn(A) ~ TrG(A/N) as N — oo where the function G
characterizes the random matrix ensemble, the averaged
free energy will depend only on the single set of orderpa-
rameters given by q.p = % > ; SiaSip- This is character-
istic for models with matrices J of extensive connectivity.
E.g., the SK-model with coupling matrix of independent
components of variance % has G(r) = @ and the Hop-

field model with J;; = ZZ‘IZVI z§'z} and independent z}
with variance % leads to G(r) = —§(In(1 — gr) + Gr).
Under the assumption of replica symmetry, the averaged

free energy f = —+[In Z]; is obtained by extremizing
f(g,A) = =G(A) + A(gG"(A) + G'(A))  (9)

_ / Dzln / dSp(S) exp [V2GT(B)=5 +C'(4)S7]

with respect to the off-diagonal orderparameter ¢ = qgp
and to A = g,, — q, where Dz = sz_ﬂ e /2.

We can show the correspondence for N — oo of the
adaptive TAP method and replica theory. A disor-
der average gives the conventional TAP result for the
Onsager coefficients: V; = V = 2G'(x) , with ¥ =
%+ >ilxiils- To compare the TAP Gibbs free energy
eq. (8) with the replica symmetric free energy (9), we
compute f = — limp, ;00 ,YLN [In [ dm dM exp(—y®)];,
where the paths of integration must be chosen such
that the integral converges. The integral will be dom-
inated by the values for m and M which fulfill the TAP
equations. Evaluating this expression using the replica
method shows that both free energies coincide, i.e. f = f.
It is also possible to translate the condition of positive
definiteness of the susceptibility matrix x into the ther-
modynamic limit. We can show that this stability is sat-
isfied for 1—2G" (X) % >_;[xi]3 > 0, which coincides with
the well known AT stability condition of replica theory
[5].

We have performed two types of simulations of the
TAP approaches on Bayesian neural network learning
problems. For the first case (Fig. 1) we test the self-
consistency of our method on a real data set, ‘Sonar —
Mines versus Rocks’ [20] of size m = 104 with with binary
class labels y; = +1 and a N = 60 dimensional input
space. The prior is Py(S) o exp(—S - S/2) and the like-
lihood F(ﬁ]) = ¢(yiilj/a), with ilj = 3% Si, o(t) =
/5, Dz and 62 = 0.5. We compute the prediction for the

- V?(SJ)J

average (conjugate) cavity field (h;)\; = (ﬁ,)
using eq. (4). The fraction of negative terms y;(h;)\;
equals the ‘leave-one-out’ estimate €,, which provides
an important practical estimator for the generalization
error of the network. If our theory takes the reaction of
the remaining variables correctly into account, this pre-
diction should be close to the ‘exact’ average cavity field
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FIG. 1. Test of self-consistency of TAP — y;(h;)\; versus
yj(fzj)i’;a“. The stars/circles are for adaptive/conventional
TAP. The inset shows the distribution of V; with the thick
line indicating the conventional TAP solution.

obtained by leaving one example out and solving the TAP
egs. for the remaining m — 1 examples. Fig. 1 shows ex-
cellent agreement between the two computations and we
find €10, = €3¢t = 33/104. For comparison, the conven-
tional TAP approach [8], which assumes a distribution of
input data vectors with independent components, leads
to a wrong result, €, = 41/104 and €X2°* = 33/104.

In the second set of simulations Fig. 2 we demonstrate
that the adaptive TAP method yields the correct statisti-
cal physics for the case of the linear Ising perceptron [22].
This has prior distribution P(S) = 16(S—1)+36(S+1)
and likelihood F(h;) o exp(—(y; — h;)?/20?), where we
have chosen 02 = 0.2 and N = 60 in the simulations. See
Ref. [21] for a discussion of this model in the context of
demodulation in communications systems. To compare
with the replica results [22], we have generated inputs at
random and outputs using a noise free teacher percep-
tron sampled from the same prior. The small deviations
between theory and TAP simulations close to the first
order transition are attributed to hysteresis effects.
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