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Abstract 
The paper analyses the nonlinear dynamics in curves of 2–axle freight wagons. Both one isolated wagon or an 
assembly of three wagons are considered. The dependence on both curve radius and vehicle speed is pointed out 
and it is shown that, considering a single 2–axle freight car, the carbody experiences periodic oscillations with 
large amplitude (up to 12 mm) at relatively high speed values, which still lie in the operating speed range. The 
interaction between adjacent vehicles is also investigated, showing that the forces exchanged trough the coupling 
elements significantly affect the dynamics of the 2–axle freight wagons. 
 
1 INTRODUCTION 
Railway represents nowadays the most efficient transport mean in terms of energy usage and conveyance of 
goods, however, the increased competition from air travel and trucks continuously requires to increase the 
capacity on modern freight wagons. In order to reach this objective two options are available, increasing the total 
hauled mass or raising the speed of the wagons. The first option would require a radical redesign of the 
infrastructure to withstand the increase of the maximum axle–load, therefore, it is necessary to explore the 
possibility of increasing the maximum speed allowed for freight wagons. Hence a deep understanding of their 
dynamical behaviour in both straight and curved track is required. The 2–axle freight wagons represent highly 
nonlinear systems due to their cheap construction. Usually energy dissipation in the suspensions is obtained by 
means of dry friction elements which also makes these systems non–smooth, due to stick/slip transitions. From a 
scientific point of view the analysis of the running properties of these wagons represents a challenge since the 
modelling of non–smooth systems is not consolidated in the railway community. In recent years the dynamics of 
2–axle freight wagons in straight track has been extensively analysed in [1, 2], whereas less attention has been 
paid to the curving behaviour of the same vehicles. Moreover, considering a complete trainset, it has been 
demonstrated [3] that forces generated in the coupling elements have a strong influence on lateral dynamics of 
freight wagons, increasing the possibility of derailment. Aim of this work is to study the nonlinear dynamics in 
curves of single 2–axle freight cars , considering both the use of one isolated wagon and of an assembly of 
wagons exchanging the forces exchanged through the buffers and the draw gear. The innovative aspects of this 
paper consist of the nonlinear analysis of the running dynamics of the vehicles in curves, which was to a large 
extent left unexplored by previous research studies, and of analysing effect of the interacting forces due to the 
coupling elements when the case of more than one wagon is considered. 
The following steps have been taken in order to achieve the aims of the work: 

• multibody modelling of the wagon including the nonlinear/non–smooth description of the behaviour of 
the UIC standard suspensions and the nonlinear/non–smooth aspects of wheel–rail contact; 

• modelling of a group of 2–axle freight wagons using existing models able to reproduce with sufficient 
accuracy the forces provided by the buffers and the draw gear; in this work, a group of three wagons 
has been considered; 

• nonlinear analysis of the running properties in curves; two tools have been used: first a map of the 
steady–state solution reached after the negotiation of curve transition is presented as a function of both 
the curve radius and the vehicle speed; moreover, bifurcations are identified for some particular values 
of the curve radius by means of the ramping method. 

The paper is organised as follows: after a brief description of the mathematical model used in this work, the 
results for the single vehicle and the composition of three wagons are presented. Finally, some concluding 
remarks are provided. 
 
2 MATHEMATICAL MODEL 
The numerical model of 2–axle freight wagon was built by means of a software named A.D.Tre.S (which is the 
Italian acronym for “dynamical analysis of the interaction between train and structure”), which was developed in 
recent years by the railway dynamics research group established at the Department of Mechanical Engineering, 



Politecnico di Milano [4]. The model is based on a multi–body schematisation of the trainset, allowing to 
analyse the non–stationary running behaviour in straight and curved track of a single rail vehicle or of a 
complete trainset and its interaction with the infrastructure. The mathematical model of train–track interaction is 
made up of four parts: a multi–body model of the rail vehicle, a simplified/complete model of the track, a wheel–
rail contact model and a model of the coupling elements between wagons, such as the traction gear and the 
buffers. For the sake of this work, which is mainly focused on the analysis of the dynamics of the vehicle rather 
than on track vibration, the assumption of infinitely rigid track is made. 
The vehicle model is divided into elementary modules of the following types: 

1) carbody, modelled as a single rigid or flexible body; 
2) bogie assembly, modelled as a rigid bogie frame, connected by primary suspensions to two (or more) 

wheelsets, modelled either as rigid or deformable bodies; 
3) wheelset, modelled either as rigid or deformable body; 
4) suspension, used to connect each other modules of type 1, 2 and 3, modelled as a combination of 

linear and nonlinear lumped parameter visco–elastic elements, possibly including specific models 
(with internal state variables) to reproduce the frequency dependent behaviour of special suspension 
components. 

By combining the above listed elementary units, a wide range of models can be derived, from single vehicle up 
to a complete articulated trainset. With regard to 2–axle freight wagon, the vehicle is modelled connecting the 
carbody (module type 1) to two wheelsets (module type 3) by means of four suspensions (module type 4) whose 
characteristics are highly nonlinear and non–smooth. The independent coordinates used to describe the motion of 
the i-th body are the vertical (xi) and lateral displacements (yi) of the body centre of gravity with respect to a 
moving reference system, whose origin is located on the track centreline at the same longitudinal position of the 
centre of gravity of the considered body, and the Cardan-angles (σi, βi, ρi). No longitudinal degree of freedom is 
assigned to the body since the motion is assumed to be at constant forward speed. 
The equations of motion for the trainset take the general form of : 

[ ] ( ), ,M x Q x x t=ɺɺ ɺ  (1) 

where: 
• x  represents the vector of the independent coordinates of the system; 

• [ ]M  is the mass matrix; 

• Q  is the vector of the generalized forces containing the contributions due to: 

- nonlinear elements in the suspensions;  
- nonlinear inertial terms; 
- wheel–rail contact forces; 
- forces due to coupling elements; 
- additional forces (aerodynamic forces, etc.). 

The 2–axle freight wagons are equipped with the UIC standard suspension. The suspension is made up of two 
parts: a leaf spring and a link system. The stiffness in the vertical direction is obtained by means of the deflection 
of the leaves whereas energy dissipation is introduced into the system by dry friction forces generated in between 
the leaves. The link system works as a pendular suspension system for the horizontal motion, yielding stiffness 
both in lateral and longitudinal directions. Dry friction in the joints of the link elements provides the necessary 
damping for the horizontal motion and represents the only damping mechanism in the UIC suspension. 
The model used in this paper is the one presented by Hoffman [1], based on the work by Fancher [5]. Basically it 
consists of a general model that can be used for both the trapezoidal leaf spring and two–stage parabolic leaf 
spring, governing the specific type features by means of the model parameters. The restoring force from the leaf 
spring is expressed by the following differential equation: 

x env xF F F
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where Fx is the restoring force from the leaf spring, Fenv is an envelope function, δ is the spring deflection and β 
is a decay constant.  
The UIC double–links represent the second element composing the UIC standard suspension. The behaviour of 
the UIC double–link connection can be analysed considering it as a system composed by technical pendulums. 
The technical pendulum distinguishes itself from the mathematical one in that rolling and sliding in the joints are 
taken into account. A proper model for the technical pendulum is presented by Piotrowski in [6]: the model is 
composed by a linear spring in parallel with an elastic element with dry friction obeying Coulomb’s friction law. 
Based on this simple model of the technical pendulum, a model for the UIC links with (nominal) cylindrical 
geometry was developed by Piotrowski [6] and also used by Hoffman [1]. The model for the lateral direction is 
shown in Figure 1 (left), whereas in Figure 1 (right) the model for the longitudinal direction is shown. Both 
models consist of a linear spring in parallel with elastic elements with dry friction. In the lateral direction it is 



also modelled the interaction with the suspension bracket, in fact, when the clearance of 10 mm between the 
lower link and the suspension bracket is exceeded, the stiffness of the element increases, being the pendulum 
length practically halved. This effect is taken into account in the mathematical model introducing a linear spring 
with a dead band. 

 
 

Figure 1 Model of the UIC links for the lateral (left) and longitudinal (right) direction. 
 
Based on the work by Melzi et al. [3, 7], a mathematical model of both the buffers and the draw gear has been 
developed and introduced into the multi-body model of the trainset. In order to describe the dynamical behaviour 
of the buffers the introduction of additional degrees of freedom is needed. In particular, for each couple of 
buffers, a further degree of freedom (ξr,i), associated to the displacement of each rear buffer of the i-th vehicle, is 
considered. The model, described in details in [7], is based on laboratory experiments both in quasi-static and 
dynamic conditions. The parameters of the model are derived in order to obtain a best fit of the measured buffer 
forces. 
The traction gear considered in this work is made up by two hooks and a chain. The dynamical behaviour of this 
component is reproduced by means of the nonlinear model proposed by Melzi [8]. Broadly speaking it consists 
of a nonlinear visco–elastic element, which takes into account also the initial load given to the chain by means of 
the releasing screw, described by the following equation: 

( ) ( )4 3 2
4 3 2 1 0 1 0g sF k l k l k l k l k l r l r l F= ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ +ɺ  (3) 

where sF  is the force due to the deformation on the elastic elements of the hook after the preload is applied by 

means of the screw. In many countries, with regard to freight trains, the authorities prescribe not to tighten the 
screw coupling, therefore the force sF  is set to a zero value. 

 
3 SINGLE VEHICLE ANALYSIS 
The running properties of 2–axle freight wagons are not always satisfactory on straight track due to the well 
known and unwanted hunting motion [1, 2]. Using the model developed in this work, it is possible to investigate 
also the dynamics of these vehicles during curve negotiation. Time domain simulations and bifurcation diagrams 
provide the basic approach of analysis because they allow to account for the nonlinear effects which are 
demonstrated to have a very important role in the hunting of a railway vehicle. Steady–state solutions of curve 
negotiation belong to a space of codimension–3, the three parameters which span this vectorial space are the 
curve radius, the vehicle speed and the track cant. The track cant deficiency can be obtained by combining in a 
suitable way the parameters forming the basis of the space. In order to reduce the problem dimension the track 
cant has been considered fixed to the usual value of 150 mm, hence only dependencies on the curve radius and 
vehicle speed have been investigated. 
In this work two kinds of analysis are carried out, first of all time domain simulations imposing different curve 
radius values and different vehicle speed values have been performed and steady-state solutions are found. No 
arbitrary initial condition is imposed to the vehicle in curve, but it is the result of curve transition negotiation. In 
fact the track is designed considering three different sections: 100 m of straight track, 100 m of curve transition 
and an infinitely long fully developed curve. Based on the results of the first analysis it is possible to identify 
some particular conditions corresponding to a change in the steady–state solution, either in the amplitude of the 
motion or in its shape. In order to find bifurcations in the codimension–2 space spanned by the curve radius and 
the vehicle speed, simulations in time domain are performed using the so-called ramping method, where the 
curve radius is fixed to a constant value and the vehicle speed varies linearly with time after steady–state 
conditions are reached. In this way it is possible to identify the bifurcation type and also to determine the vehicle 
speed corresponding to the bifurcation point. 
All results presented here are obtained considering one specific 2–axle freight wagon, i.e. the Hbbills 311 which 
is a wagon equipped with sliding sidewalls, in tare configuration. The wheels are shaped to the standard S1002 
wheel profile and, on the other side, the European UIC60 rail profile is used. In this work the effect of rail 
inclination on the nonlinear solution of the problem is not investigated as in [1], since only the 1/20 rail 
inclination is considered. Being interested in finding the steady–state solution no stochastic irregularity on 
neither the wheels nor the rails is considered. 



In order to analyse the steady–state behaviour of the Hbbills 311 freight wagon different simulations varying 
curve radius and vehicle speed are performed. The amplitude of the lateral motion Ay, defined as follows, is used 
to characterize the solutions of the nonlinear problem: 

( ) ( )max min

2y

y y
A

−
=  (4) 

where y represents the lateral displacement of each body. Essentially Ay 
 is half the peak-to-peak amplitude, so, if 

the steady-state solution is stationary, Ay 
 is equal to zero, whereas, if it is simple periodic, then Ay 

 is the 
amplitude of the oscillation. 
Curve radius varying from 250 m to 2000 m are considered, with a step of 50 m. For each curve radius 
simulations with different speeds are performed, in particular the minimum value corresponds to -0.8 m/s2 cant 
deficiency and the maximum one corresponds to a value of 0.8 m/s2. The maximum value here simulated 
exceeds the maximum one allowed for this type of train, since, at least in Italy, freight trains are not allowed to 
negotiate curves obtaining a track cant deficiency larger than 0.6 m/s2. For each simulation, the amplitude of the 
steady-state motion Ay is calculated to define the dependence on both the curve radius and the vehicle speed. 
In Figure 2 a contour plot for the lateral motion amplitude of the carbody is reported. The colours range from 
blue, corresponding to the smallest motion amplitude, to red, corresponding to the largest motion amplitude. In 
particular, the minimum value is equal to zero, that is a stationary solution is found. Analysing the results 
reported in Figure 2 it is observed that considering small values of curve radius, ranging from 250 m to 
approximately 800 m, the trend with regard to speed is practically the same, the larger the speed the larger the 
amplitude of the motion. On the contrary, as far as larger curve radii are concerned, the maximum amplitude of 
motion is obtained for a speed value lying approximately in the middle of the considered range. 
 

 

Figure 2 Map of the lateral motion amplitude of the carbody. 
 
Focusing the attention on the 300 m radius curve it is possible to go into more depth analysing simulations 
performed with the ramping method. Essentially the vehicle speed is varied linearly with time, starting from an 
initial value and considering a constant acceleration of 1 m/s2 or deceleration of -1 m/s2. Figures 3 and 4 show 
the lateral displacement of the carbody (on the top) and the vehicle speed (on the bottom), considering 
respectively increasing and decreasing speed. 
With regard to Figure 3 it is observed that the carbody, starting from an off-centred lateral position, moves 
outwards, due to the increased lateral acceleration, and then begins to oscillate when the speed is approximately 
equal to 22 m/s. On the contrary, considering the simulation with decreasing speed (Figure 4), it is observed that 
the carbody starts from a steady-state periodic motion which, when the speed is decreased, decreases its 
amplitude until a stationary solution is reached when the speed is approximately 12 m/s. 
Taking into account that the ramping method leads to an overestimate or an underestimate of the bifurcation 
speed depending on whether the speed is increased or decreased, it is possible to state that the periodic solution 
is created by means of a tangent bifurcation, whereas the stationary solution loses its stability due to a Hopf 
subcritical bifurcation. In the range between 12 m/s and 22 m/s two attractors coexist. This information can be 
summarised in the bifurcation diagram shown in Figure 5, where all the solutions are plotted as a function of the 
speed. The stable branches are plotted in continuous line, whereas the unstable branches are represented by 
means of dashed line. The diagram obtained for the curve negotiation has the same shape of the one obtained by 
Hoffmann [1] considering straight track conditions, but obviously the speed values corresponding to the 
bifurcation points are different, in particular both the tangent bifurcation and the subcritical Hopf bifurcation 
take place at lower speeds in curves. 



 

 

Figure 3 Lateral displacement of the carbody 
(R=300 m, increasing speed). 

 

Figure 4 Lateral displacement of the carbody 
(R=300 m, decreasing speed). 

 

 

Figure 5 Carbody attractors (R=300 m). 
 
4 VEHICLE COMPOSITION ANALYSIS 
Generally speaking, the interaction between adjacent vehicles is usually not taken into account as far as 
dynamics in straight track is concerned. On the contrary, considering curve negotiation, the side buffers mounted 
on each carbody are compressed due to track curvature, thus generating forces which can significantly affect the 
dynamics of the vehicle [3]. 
In this work a composition of three freight wagons is analysed. Each freight wagon in the composition is the 2–
axle wagon with sliding walls Hbbills 311. If the longitudinal dynamics during braking manoeuvres is not taken 
into account, as in this work, a composition of three wagons can be considered as sufficient to investigate the 
dynamics of a generic vehicle present in the composition. The first vehicle in the composition analysed does not 
represent any real condition, since in normal running conditions the first vehicle of the trainset is the locomotive, 
whereas the second vehicle is representative of any vehicle placed in the middle of the composition, being 
coupled by means of the buffers and the hook and chain coupler to the front and rear vehicles. The third vehicle, 
finally, represents the last vehicle of the trainset, since it is coupled to the rest of the trainset only by means of 
the front buffers and draw gear. All the vehicles in the composition analysed are in tare configuration. The 
procedure used to analyse the nonlinear behaviour of all the vehicles in the composition is the same applied in 
section 3, therefore simulations with different curve radii and speed values are performed in order to obtain the 
maps of the lateral motion amplitude. The cant of track is set to the usual value of 150 mm. For the sake of 
brevity only results for the wagon placed in the middle of the composition (which will be referred to as wagon 2 
in the following) are reported. 
In Figure 6 a contour plot of the lateral motion amplitude of the carbody is reported. Analogously to the map 
shown in section 3, the colours range from blue, corresponding to the smallest motion amplitude, to red, 
corresponding to the largest motion amplitude and, therefore, the scale of colours differs from the one used in 
Figure 2. Analysing the results reported in Figure 6 it is observed that considering large curve radii, in the range 
from 800 m to 2000 m, the carbody settles on the stationary solution, without oscillations; whereas, considering 
smaller curve radii, from 350 m to 800 m, the steady-state solution is oscillatory, even if its amplitude is 
relatively small (not exceeding 3 mm). Comparing these results to the ones obtained for the single vehicle 
(shown in section 3), it is possible to state that the effect of the buffers and the draw gear is very relevant. The 
periodic oscillations with large amplitudes observed for the single vehicle are suppressed and only small 
oscillations take place when the vehicle is coupled to the others in a composition. 
Essentially, the coupling system works as a constraint between the wagons, increasing in a significant way the 
total stiffness generalized to the carbody degrees of freedom. In fact the UIC standard suspensions are relatively 



soft and the elastic elements of both the buffers and the draw gear can be considered as having comparable 
stiffness with regard to the yaw motion of the carbody. 
 

 

Figure 6 Map of the lateral motion amplitude of the carbody (wagon 2). 
 
5 CONCLUSIONS 
A mathematical model of the dynamics of a 2–axle freight wagon was presented in this work and used to 
investigate the running properties of these wagons on curved track. The forces provided by the UIC standard 
suspensions are non-smooth, being a consequence of dry friction but also the forces at wheel-rail interface are 
non-smooth due to the geometry of the contact between wheel and rail. Additionally the model accounts for the 
forces due to the coupling elements between the cars, so that both the dynamics of a single vehicle and of a 
group of three vehicles can be investigated. The wagon analysed in this work is the Hbbills 311, a 2–axle freight 
wagon with a long wheelbase (10 m), wheel and rail are shaped to the theoretical S1002 – UIC60 1/20 profiles. 
With regard to the running properties of the single vehicle in curves tare condition was analysed. It was 
demonstrated that the running properties of the 2–axle freight wagons cannot be considered satisfactory when 
narrow curves are negotiated at relatively high speed values, which still lie in the operating speed range. Under 
these conditions the carbody settles into a periodic attractor with large amplitude (up to 12 mm). It was shown 
that the periodic attractor is generated by a tangent bifurcation and the stationary solution loses its stability in a 
subcritical Hopf bifurcation. The analysis performed on the group of three vehicles in tare condition showed that 
the effect of the coupling forces on the dynamics of 2–axle freight wagons is important, since the amplitudes of 
motion for the carbody of the second vehicle, which is representative of any wagon in the middle of the 
composition, are significantly reduced at higher speeds compared to the ones obtained for the single vehicle. 
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