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ABSTRACT

Human preferences can effectively be elicited using pairwise
comparisons and in this paper current state-of-the-art based
on binary decisions is extended by a new paradigm which al-
lows subjects to convey their degree of preference as a con-
tinuous but bounded response. For this purpose, a novel Beta-
type likelihood is proposed and applied in a Bayesian regres-
sion framework using Gaussian Process priors. Posterior es-
timation and inference is performed using a Laplace approxi-
mation.

The potential of the paradigm is demonstrated and dis-
cussed in terms of learning rates and robustness by evaluating
the predictive performance under various noise conditions on
a synthetic dataset. It is demonstrated that the learning rate
of the novel paradigm is not only faster under ideal condi-
tions, where continuous responses are naturally more infor-
mative than binary decisions, but also under adverse condi-
tions where it seemingly preserves the robustness of the bi-
nary paradigm, suggesting that the new paradigm is robust to
human inconsistency.

Index Terms— Pairwise Comparisons, Continuous Re-
sponse, Gaussian Processes, Laplace Approximation

1. INTRODUCTION

Traditionally, various aspects of human perception and cogni-
tion are assumed to be related to absolute psychological mag-
nitudes or intensities. This includes the classical findings by
Weber, Fechner and Stevens who, for example, investigated
the perception of light intensity. However, recently Lock-
head [1] has argued that every aspect of perception is relative,
even those apparently absolute aspects investigated by Weber,
Fechner and Stevens. In accordance with the theory in [1], we
investigate human perception from a relative viewpoint and
examine one such highly relative aspect, namely preference.

Formal treatment of relative aspects goes back to the ideas
of Thurnstone [2] and the principle of comparative judgments.

In the present context it was revisited by Chu et al. [3] who
formulated a Bayesian approach to preference learning using
Gaussian Process (GP) priors. This formulation has initiated
a number of related studies and applications, such as audio-
logical preference [4], multi-subject food preference [5] and
an extension for semi-supervised, active learning settings [6].

In this work we extend the likelihood model in [3] to sup-
port observations which in effect measure the perceived de-
gree to which one option is preferred over another. This de-
gree of preference can be obtained from a traditional paired
comparison test, which implies that a subject is asked to give
a subjective assessment of the degree to whether A or B is
preferred over the other. Specifically, we model the observed
degrees of preferences through a likelihood conditioned on a
functional value difference and support inconsistent observa-
tions by applying a re-parameterized Beta distribution.

In a traditional setting, users would not be trusted to be
able to quantify such an abstract and difficult aspect as degree
of preference. Instead, we would rely on massive repetitions
of a standard binary experiment to estimate the proportion of
A � B using this as an expression of the degree of any pref-
erences. However, we want to exploit the extra information
from continuous responses to get a faster method for pref-
erence elicitation without jeopardizing the robustness from
standard binary responses. The hypothesis is that we are able
to learn faster by (indirectly) observing the perceived proba-
bility of A � B as opposed to a binary decision. Applying
appropriate priors and noise modeling should ensure this to
be true also under adverse conditions.

In order to examine this hypothesis, we apply the novel
likelihood in a flexible Bayesian setup similar to [3] in which
the prior on the underlying preference function is defined by
a GP with a potentially complex covariance structure. The
Laplace approximation is used for inference and model se-
lection by maximum-a-posteriori (MAP) estimates. This pro-
vides a consistent probabilistic framework for making pre-
dictions and evaluating the predictive uncertainty. We use
simulations with different synthetic noise scenarios in order



to compare a standard binary decision with the novel model.
The performance of both methods is evaluated using the pre-
dictive performance.

2. MODELS FOR PAIRWISE OBSERVATIONS

In the previous section, we motivated pairwise comparisons
from a cognitive perspective, yet pairwise comparisons can
be considered more broadly. It is usually possible to describe
any aspect of a pairwise comparison, such as preference, real
difference, or perceived similarity in terms of a latent function
[2].

In the following we will model the preference of two dis-
tinct inputs, u ∈ X and v ∈ X , in terms of the difference
between two functional values, f(u) and f(v). This implies
a function, f : X → R, which defines an internal, but latent
absolute preference.

The general setup is as follows: We consider n distinct
inputs xi ∈ X denoted X = {xi|i = 1, ..., n}, and a set of m
responses on pairwise comparisons between any two inputs
in X , denoted by

Y = {(yk;uk, vk)|k = 1, ...,m} ,

where yk ∈ Y. uk ∈ X and vk ∈ X are option one and two
in the k’th pairwise comparison, respectively. The main topic
of this paper is how the domain of the response variable influ-
ences the learning rate of the latent function f in relation to
the number of paired comparisons. As previously indicated,
we will consider two cases:

• binary where yk = dk, dk ∈ {−1, 1}
• continuous and bounded where yk = πk, πk ∈ ]0, 1[.

In both cases we consider y a stochastic variable, infor-
mally implying the definition of the conditional density
given by p (yk|fk (uk) , f (vk)), denoted by p(yk|fk) with
fk = [f (uk) , f (vk)]

>.

2.1. Binary Response

When restricting the response variable to be a discrete, two-
alternatives, forced choice, paired-comparison between the
two presented options, we define the response variable as
dk ∈ {−1, 1}. A preference for either uk or vk is indicated
by −1 or +1, respectively.

When considering noise on the forced decisions the re-
sulting random variable can be modeled by a classic choice
model such as the Logit or Probit [7, chapter 6]. In the cur-
rent setting we restrict ourself to the Probit model mainly for
analytical reasons.

Given a function, f , we can define the likelihood of ob-
serving a discrete choice dk directly as the conditional den-
sity.

p (dk|fk,θL) = Φ

(
dk
f (vk)− f (uk)√

2σ

)
, (1)

where Φ(x) is the cumulative Gaussian (with zero mean and
unity variance) and θL = {σ}. This classic Probit likeli-
hood is by no means a new invention and can be dated back
to Thurstone and his fundamental definition of The Law of
Comparative Judgment[2]. However, it was first considered
with GPs in [3] and later in e.g. [5] and [6].

2.2. Continuous Response

The primary contribution of this paper is a novel response
model allowing for more subtle judgments, where the re-
sponse variable describes the degree to which the prevailing
option is preferred.

For this purpose we formally define a continuous but
bounded response π ∈ ]0; 1[ observed when comparing u and
v. The first option, u, is preferred for π < 0.5. The second
option, v, is preferred for π > 0.5 and none is preferred
for π = 0.5. Hence, the response captures both the choice
between u and v, and the degree of the preference.

Instead of using the Probit function directly as the choice
model, it is used as a link function mapping from functional
differences to continues bounded responses. More precisely,
the Probit is used as a mean function for a Beta type distribu-
tion with parameterized shape parameters α and β, thus

p (πk|fk) = Beta (πk|α(fk), β(fk)) .

To express the shape parameters of the Beta distribution as a
function of the Probit mean function µ(fk), we apply a well-
known re-parametrization of the Beta distribution [8].

α(fk) = νµ(fk), β(fk) = ν(1− µ(fk)), (2)

where ν relates to the precision of the Beta distribution and is
not parameterized by f . Finally, our novel likelihood depicted
in Fig. 1 is described by

p (πk|fk,θL) = Beta (πk| νµ(fk, σ), ν(1− µ(fk, σ))) , (3)

where θL = {σ, ν} and µ(fk, σ) is given by

µ (fk, σ) = Φ

(
f (vk)− f (uk)√

2σ

)
.

The precision term ν in Eq. (2) and Eq. (3) is inversely related
to the observation noise on the continuous bounded responses.
In general, ν can be viewed as a measure of how consistent
the scale is used in a given comparison.

2.3. Gaussian Process Priors

At this point we have not specified any form, order or shape
of f , but referred to f as an abstract function. We maintain
the abstraction by considering a non-parametric approach and
use a Gaussian process (GP) to formulate our beliefs about f .



Fig. 1. Illustration of the proposed likelihood with p(πk|fk,θL) shown as a color level. The likelihood parameters θL are
σ = 0.1 and left: ν = 3, middle: ν = 10 and right: ν = 30

A GP is typically defined as ”a collection of random vari-
ables, any finite number of which have a joint Gaussian distri-
bution” [9]. Following [9] we denote a function drawn from
a GP as f (x) ∼ GP

(
0, k(·, ·)θc

)
with a zero mean function,

and k(·, ·)θc referring to the covariance function with hyper-
parameters θc, which defines the covariance between the ran-
dom variables as a function of the inputs X . The fundamental
consequence of this formulation is that the GP can be con-
sidered a distribution over functions, i.e., p (f |X ,θc), with
hyper-parameters θc and f = [f(x1), f(x2), ..., f(xn)]T , i.e.,
dependent on X .

In a Bayesian setting we can directly place the GP as
a prior on the function defining the likelihood. This leads
us directly to a formulation given Bayes relation with θ =
{θL,θc}

p (f |Y,X ,θ) =
p (Y|f ,θL) p(f |X ,θc)

p (Y|θ,X )
. (4)

The prior p(f |X ,θc) is given by the GP and the likelihood
p (Y|f ,θL) is either of the two likelihoods defined previously,
with the assumption that the likelihood factorizes as usual,
i.e., p (Y|f ,θL) =

∏
k=1:m

p (yk|f(uk), f(vk),θL)

The posterior of interest, p (f |Y,X ,θ), is directly defined
when equipped with the likelihood and the prior, but it is un-
fortunately not of any known analytical form in either the bi-
nary nor the continuous case.

3. INFERENCE & PREDICTIONS

Since the likelihoods considered in this paper do not result
in closed form solutions to the posterior in Eq. (4), we must
resort to approximations, such as the Laplace approximation,
Expectation Propagation or sampling. Since the main focus
of this work is to examine the general properties of the like-
lihood proposed in Sec. 2.2, we use the well-know and rela-
tively simple Laplace approximation. The required steps have
previously been derived for the binary likelihood [3] (see [10]

for a detailed derivation), and in the following it will be de-
rived for the proposed likelihood from Sec. 2.2.

3.1. Laplace Approximation

The main idea is to approximate the posterior by a single
Gaussian distribution, such that p (f |Y) ≈ N (f |̂f ,A−1).
Where f̂ is the mode of the posterior and A is the Hessian of
the negative log-likelihood at the mode. The mode is found
as f̂ = arg maxf p (f |Y) = arg maxf p (Y|f) p (f).

The general solution to the problem can be found by con-
sidering the unnormalized log-posterior and the resulting cost
function which is to be maximized, is given by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f

− 1

2
log |K| − N

2
log 2π.

(5)

where Ki,j = k(xi, xj)θc . We use a damped Newton method
with soft linesearch to maximize Eq. (5). In our case the basic
damped Newton step (with adaptive damping factor λ) can be
calculated without inversion of the Hessian (see [10])

fnew =
(
K−1 + W − λI

)−1
· [(W − λI)− f +∇ log p(Y|f ,X ,θL)] , (6)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj)
we apply the def-

inition Wi,j = −
∑
k∇∇i,j log p(yk|fk,θL). We note that

the term ∇∇i,j log p(yk|fk,θL) is only nonzero when both
xi and xj occur as either vk or uk in fk. In contrast to stan-
dard binary GP classification the Hessian W is not diagonal,
which makes the approximation slightly more involved.

When converged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |̂f ,

(
W + K−1

)−1)
. (7)

In the Beta case the required two first derivatives of the like-



lihood are given by:

∇i log p(πk | fk,θL) = I(xi) · ν · N (fk)

· [log(πk)− log(1− πk)− ψ(α) + ψ(β)] and (8)

∇∇i,j log p(πk | fk,θL) = −I(xi)I(xj) · ν2 · N (fk) ,

·
[
N (fk) ·

(
ψ(1)(α) + ψ(1)(β)

)
+
f(vk)− f(uk)

2νσ2

· (log(πk)− log(1− πk)− ψ(α) + ψ(β))] , (9)

where we for convenience write α and β without the de-
pendency on fk Eq. (2). ψ(z) and ψ(1)(z) are the digamma
function of zero’th and first order, respectively, N (fk) =

N
(
f(vk)−f(uk)√

2σ

∣∣∣ 0, 1) and I(z) is an indicator function de-
fined by

I(z) =

 1 if z = uk
−1 if z = vk

0 otherwise.
(10)

We refer to [10] for a full derivation and for the required
derivatives for the binary case as first described in [3].

3.2. Hyper-parameter Estimation

So far we have simply considered the hyper-parameters θ =
{θL,θc} variables on which we can condition the primary
posterior, and not worried about their values or distributions.
In the following, we consider the hyper-parameters random
variables on which we place a prior and the full posterior
would be p (f ,θ|Y). However, since the focus in this work
is p (f |Y,X ,θ) we only use the prior on θ to make point
estimates of the hyper-parameters in terms of maximum-a-
posteriori (MAP) estimates.

We obtain the MAP estimates by iterating between the
Laplace approximation with fixed hyper-parameters, i.e.
finding p (f |Y,X ,θMAP), followed by a maximization step
in which θMAP = arg maxθp (θ|Y,X , f).

We first consider the standard evidence approach which
seeks to optimize the marginal likelihood given by

p(Y|θ,X ) =

∫
p(Y|f ,θL)p(f |X ,θc)df

= p(θ|Y,X )p(Y|X )/p(θ|X ). (11)

Our interest is in the posterior term, p(θ|Y,X ), so consid-
ering Eq. (11) in terms of the log-posterior of θ we obtain
log p (θ|Y,X ) = log p (θ|X )+log p (Y|θ,X )−log p (Y|X ),
where p (θ|X ) is the prior and typical considered indepen-
dent of X . The evidence term, log p(Y|θ,X ), is analytical
intractable in both likelihood cases, but we can approximate
it using the existing Laplace approximation to obtain [10]
log p (Y|θ) ≈ log p(Y|̂f ,θL)− 1

2 f̂
TK−1f̂− 1

2 log |I + KW |.
Now θMAP is found by maximizing log p (θ|Y,X ) with re-
spect to θ and noting that p(Y|X ) is independent of θ. We
perform the optimization using a BFGS gradient method. The
required derivatives and details are provided in [10].

The choice of particular priors is left for the simulations
in Sec. 4, however, if p(θ) is the Uniform distribution, we
obtain the traditional evidence optimization [9] as expected.
It is noted that the complexity of the posterior inference is of
the same order as standard GP regression described in [9].

3.3. Prediction

The main task is to estimate the latent function, f , with the
end goal to do predictions of the observable variable y for a
pair of test inputs r ∈ Xt and s ∈ Xt. In this paper, we are
especially interested in the discrete decision, i.e., whether r �
s or s � r. This can be obtained from both likelihood models,
thus allowing for direct comparison of the two formulations
in terms of predictive performance.

We first consider the predictive distribution of f which
is required in both cases, and for notational convenience we
omit the conditioning on X and Xt. Given the GP, we can
write the joint prior distribution between f ∼ p (f |Y,θMAP)

and the test variables ft = [f (r) , f (s)]
T as[

f

ft

]
= N

([
0

0

]
,

[
K kt
kTt Kt

])
, (12)

where kt is a matrix with elements k2,i = k(s, xi)θMAP
c

and
k1,i = k(r, xi)θMAP

c
with xi being a training input. The con-

ditional p (ft|f) is obviously Gaussian as well and can be ob-
tained directly from Eq. (12). The predictive distribution is
given as p (ft|Y,θMAP) =

∫
p (ft|f) p (f |Y,θMAP) df . With the

posterior approximated with the Gaussian from the Laplace
approximation then p (ft|Y,θMAP) will be Gaussian too and is
given as N (ft|µ∗,K∗) with µ∗ = [µ∗r , µ

∗
s]
T = ktK

−1f̂ and

K∗ =

[
K∗rr K∗rs
K∗sr K∗ss

]
= Kt − kTt (I + WK)kt,

where f̂ and W are obtained from Eq. (7). With the predictive
distribution for ft, the final prediction of the observed variable
is available from

p (yt|Y,θMAP) =

∫
p (yt|ft,θMAP

L ) p (ft|Y,θMAP) dft (13)

If the likelihood is an odd function, as in both our cases, the
binary preference decision between r and s can be made di-
rectly from p (ft|Y). In contrast, evaluation of the integral in
Eq. (13) is required for, e.g., soft decisions, reject options and
sequential designs.

3.3.1. Binary Likelihood

If p
(
ft|Y,θMAP) is Gaussian and we consider the Probit like-

lihood, the integral in Eq. (13) can be evaluated in closed form
as a modified Probit function given by [3]

P (r � s|Y) = Φ ((µ∗r − µ∗s) /σ∗) (14)

with (σ∗)
2

= 2σ2 + K∗rr + K∗ss −K∗rs −K∗sr
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Fig. 2. The Griewangk function used to evaluate the predic-
tive performance. Crosses indicate discrete samples. The cen-
ter peak is slightly higher than the two others.

3.3.2. Continuous Likelihood

In the continuous case the observed variable, π, does not di-
rectly define the discrete observation which is the main focus
of this work. However, a binary preference can be derived
from the continuous likelihood via the predictive distribution
over π. With the suggested likelihood and mean function in
Sec. 2.2 the probability of the binary choice is obtained as
P (r � s|Y,θL) =

∫ π=1/2

π=0
p (πt|Y,θL) dπt, thus

P (r � s|Y,θMAP) =∫
p(ft|Y,θMAP)Betacdf

(
1

2

∣∣∣α(ft), β(ft)

)
dft (15)

In the ideal case of a noise-free user, i.e., ν → ∞, the Beta
distribution reduces to a point mass at the mean defined by the
Probit function. Hence, in the limit of a completely consis-
tent user, the predictions from Eq. (15) reduces to a classical
choice model with predictions that follows Eq. (14).

4. EXPERIMENTAL RESULTS AND DISCUSSION

To study the performance of the models in a controlled set-
ting, we use a synthetic dataset generated from the deter-
ministic Griewangk function depicted in Fig. 2. We use the
predictive performance of the binary decision to compare the
learning rates of the binary response (BR) model as the base-
line and the continuous bounded response (CBR) model. In
each comparison, the two inputs are drawn randomly among
101 input points sampled uniformly from x = [−8; 8].

The training points πk are drawn from a Beta distribution
with the parameterization from Sec. 2.2 with the Probit link
function in Eq. (4), σ = 1, and the Griewangk function val-
ues as the two inputs. The noise level on the training data is
defined by the parameter νD corresponding to ν in the CBR
model. The binary decision dk is determined by whether πk
is smaller or larger than 0.5. For evaluation, we generate an
independent binary test set located equidistantly in between
the training points. Initial experiments showed that in or-
der to get a robust predictive model for all noise level, it is
important to learn the ν parameter in the CBR model. The

Simulation Data Noise θL θc

νD σ ν σf l
BR NoiseFree No Noise δ1 δideal δideal

BR {3, 10, 30} δ1 U1 U1

CBR NoiseFree No Noise δ1 δ→∞ δideal δideal

CBR Ideal {3, 10, 30} δ1 δ{3,10,30} δideal δideal

CBR {3, 10, 30} δ1 G(1, η){3,10,30} U1 U1

Table 1. Simulation conditions. δx is a point-mass, thus the
parameter is constantly equal to x. The δideal value is learned
as m → ∞. Ux is an uniform prior over ]0;∞[ with the
parameter initialized to x. G(1, η)x is a Gamma prior with
inverse scale parameter η = 0.05 and initialization x.

initial experiments also indicated that it is vital not to under-
estimate the noise, while an overestimation is not as crucial
and provides overall good predictive performance. This sug-
gests a prior with a monotonic increasing likelihood towards
the highest noise level. A natural choice is a Gamma(1,η)
prior with inverse scale parameter η.

The considered models, priors and parameters are listed in
Table 1 where the covariance parameters, θc, are applied in a
GP prior with a covariance function defined by the squared
exponential kernel kSE(x, x′) = σ2

f exp(−l−2‖x− x′‖2).
When a specific prior is not a point-mass/constant indicated
by δx in Table 1, the hyper-parameters are estimated (MAP)
either for each training set size (realistic scenario) or for m =
500 (ideal scenario). The latter is indicated by δideal.

The learning curves from Fig. 3 show that under ideal
conditions with nearly noise-free observations and a correct
noise setting (Fig. 3, right plot) the CBR model outperforms
the BR models as expected, since a continuous response will
essentially provide more information from each experiment
under ideal conditions than a binary response will. Also, in
both high and moderate noise conditions (Fig. 3, left and mid-
dle plot) the CBR model with a correct noise setting (CBR
Ideal) outperforms the corresponding BR model significantly
in terms of learning rates and actually shows similar learn-
ing rates as the BR model under noise-free conditions. Fi-
nally and most importantly, the learning rates are only slightly
lower when ν has been inferred from data via the MAP pro-
cedure (with different initializations) than when it is specified
correctly, which suggests that the parameter inference frame-
work with independent priors is robust in real-life-scenarios
without ideal model and noise conditions.

We have focused on a controlled example to highlight
properties of the model and inference, leaving a real-world
validation for future work. Future work also includes the
extension of the mean function, Eq. (4), using a mixture of
Probit functions to account for different user behavior such
as centering and contraction bias. For a real-world setting, a
natural extension is a suitable active learning criteria, such as
the expected value of information framework applied recently
in e.g. [5] for the BR model.



Fig. 3. Mean error test rates (MER) as a function of the number of experiments over 100 different realizations of the training
set generated with different νD. In the red and top green area MER are worse and better, respectively, than those obtained with
the BR model on the noisy data. In the lower green area MER are also better than those obtained by the BR NoiseFree, and
finally, the grey area corresponds to unrealistic MER better than those obtained with a CBR NoiseFree model with ν → ∞
evaluated with ν = 103 on a noise-free data set. The six rows of markers indicate if the MER of the corresponding CBR
model are significantly different from those resulting from the BR (squares) and from the BR NoiseFree (circles). If solid, the
zero-hypothesis of the two means being equal is rejected at the 5% level using a paired t-test.

5. CONCLUSION AND PERSPECTIVES

We have proposed a new model for preference learning with
Gaussian Process priors with the main purpose to increase
the learning rate compared to the standard binary model ap-
plied in [3]. We have outlined a robust and flexible inference
framework for the new model based on suitable priors and
the Laplace approximation. Simulations were used to present
properties and performance, which showed a significant infor-
mation increase from each experiment under ideal conditions
as expected but more importantly also under adverse condi-
tions. The performance is especially increased in a certain
window of opportunity.
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