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system generator of Xilinx. Many FPGA 
chips also contain embedded processors 
rendering them complete platforms for 
DSP system design. 

SP AND ERROR CORRECTION FOR 
NONVOLATILE MEMORY DEVICES
Nonvolatile storage devices in the form 
of NAND flash memories and solid-
state drives have become the storage 
techniques of choice in many mobile 
and portable devices. The continued 
density growth of these devices has 
been mainly driven by aggressive tech-
nology scaling and the use of multilev-
el per-cell techniques. However, bit 
errors are becoming more severe as 
memory process technology scales 
down below 40 nm. Error-control cod-

ing techniques have 
been  employed  to 
improve the endur-
ance and performance 
of NAND flash memo-
ries. However, tradi-

tional error correction codes [BCH/
Reed-Solomon (BCH/RS)] suffer from 
increased overhead in coding redun-
dancy and read latency as the number 
of errors increases. In addition, the 
number of electrons stored in a memo-
ry cell is decreasing with every genera-
tion of flash memory resulting in weak 
signals that require enhanced sensing 
techniques.  Research challenges 
include reduced complexity coding, 
enhanced threshold sensing, and adap-
tive interference canceling techniques.

DSP-ASSISTED ANALOG 
AND RF CIRCUITS
As complementary metal–oxide–semi-
conductor (CMOS) process technology 
keeps shrinking, the analog portion of 
SoCs is increasingly dominating the 
silicon area and power consumption 
because analog components do not 
scale well with Moore’s law, as does 
digital logic. Traditional matching 
techniques that compensate for pro-

cess variations do not work well as 
CMOS feature size scales down. Thus, 
to enhance performance and reduce 
power consumption of analog/RF cir-
cuits, it is necessary to utilize DSP 
techniques that can be realized with 
essentially free digital logic. Examples 
include very high performance analog-
to-digital convertors with self-calibra-
tion, RF power amplifier linearization, 
and inte rmediate-frequency sampling 
receivers. 
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B
y putting the accent on learn-
ing from the data and the 
environment, the Machine 
Learning for SP (MLSP) 
Technical Committee (TC) 

provides the essential bridge between the 
machine learning and SP communities. 
While the emphasis in MLSP is on learn-
ing and data-driven approaches, SP 
defines the main applications of interest, 
and thus the constraints and require-
ments on solutions, which include com-
putational efficiency, online adaptation, 
and learning with limited supervision/
reference data. While MLSP has always 

been an active area, it is now converging 
toward the very center of activity in SP 
research due primarily to two underlying 
reasons: 

 ■ As data now come in a multitude of 
forms and natures, it has become evi-
dent that solutions must emphasize 
both learning from the data and mini-
mizing unjustified assumptions about 
the data generation mechanism. 
Simplifying assumptions such as 
Gaussianity, stationarity, and circular-
ity can no longer be easily justified, 
and nonlinearity plays a more impor-
tant role in today’s problems.

 ■ Almost all of the new application 
areas in SP emphasize the importance 
of interdisciplinary research, i.e., the 

need both to work closely with the 
target application domain and disci-
pline and the need to leverage suitable 
ideas and tools from diverse disci-
plines, to develop the best solutions. 
Many new applications are also 
 sufficiently complex that they require 
use of multiple, interacting tools and 
they may need to meet multiple, 
simultaneous objectives—e.g., both 
signal classification and signal 
enhancement, or simultaneous classi-
fication and biomarker discovery in 
medical applications. 
Indeed, these two aspects are at the 

heart of MLSP research. Since learning 
is emphasized, MLSP methods have 
always been more data driven than 
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model driven; however, the “integrative” 
nature of MLSP research has also always 
been emphasized—whenever available, 
reliable domain information has been 
integrated, in a principled (e.g., a 
Bayesian) fashion, into the solutions. 
Thus, now besides being attractive for 
many of the traditional SP applications 
such as pattern recognition, speech, 
audio, and video processing, MLSP tech-
niques are the primary candidates for a 
new wave of emerging applications such 
as brain-computer interface, multimodal 
data fusion and processing, behavior and 
emotion recognition, and learning in 
environments such as social networks 
and dynamic networks in general. 

In what follows, we first discuss cur-
rent areas of significant activity as well as 
emerging trends, first in terms of theory, 
and then applications. Specifically, we 
discuss the trends in learning theory, and 
in particular, discuss a major paradigm 
shift in learning as demonstrated by cog-
nitive information processing. Then, we 
discuss the role MLSP plays in a number 
of key emerging application areas.

TRENDS IN LEARNING THEORY
In terms of theory, graphical and kernel 
methods, Bayesian learning, informa-
tion-theoretic learning, and sequential 
learning have always been important 
areas of activity within MLSP. The need 
for nonlinear adaptive algorithms for 
advanced SP and streaming databases 
has fueled interest in a number of areas, 
including sequential active learning, 
which includes as an important subclass: 
kernel adaptive filters. Sequential learn-
ing algorithms are a fundamental tool in 
adaptive SP and intelligent learning sys-
tems as they embody an efficient com-
promise among constraints such as 
accuracy, algorithmic simplicity, robust-
ness, low latency, and fast implementa-
tion. In addition, by defining an 
instantaneous information measure on 
observations, kernel adaptive filters are 
able to “actively” select training data in 
online learning scenarios. This active 
learning mechanism provides a princi-
pled framework for knowledge discovery, 
redundancy removal, and anomaly 
detection.   

DISTRIBUTED LEARNING
With ever-growing data set sizes in real-
world applications involving petabytes of 
information, it is becoming increasingly 
important to distribute learning tasks by 
assigning subsets of data to different pro-
cessors. The processors thus need to com-
municate and exchange information in 
such a way that the overall system collec-
tively solves the problem in an optimal 
manner. There is a wide range of such 
applications, including multiple agent 
coordination, estimation and classifica-
tion/detection problems in sensor net-
works, and packet routing problems, 
among many others. The development of 
learning algorithms for distributed and/or 
cooperative scenarios, where several 
nodes have to solve the same or similar 
classification/estimation/clustering tasks, 
is therefore becoming an important area 
of increasing interest within the machine 
learning community. Typically, algo-
rithms that work in these environments 
need to conform to limitations in data 
sharing among the nodes due to either 
energy/bandwidth constraints or privacy 
issues. Related applications that are inher-
ently distributed include sensor networks 
problems and learning in social networks.

SPARSITY-AWARE LEARNING
Sparsity is a natural property of many 
systems of interest in SP, and sparsity-
aware systems have been shown to offer 
improved performance over sparsity-
agnostic ones. Accordingly, this is a topic 
of growing interest. In mobile communi-
cations, for example, MLSP methods can 
exploit the sparsity present in the net-
work to improve the estimation of chan-
nel parameters and timing delays. 
Sparsity can be due to user inactivity, to 
the structure of the channel, or to the 
network topology.

SEMISUPERVISED LEARNING
Numerous SP applications, both tradi-
tional and de novo, involve classification 
and detection, e.g., various speech recog-
nition tasks, music genre classification, 
entity recognition in video, emotion 
detection, and network traffic classifica-
tion based on packet time series, to name 
just a few. Traditionally, these statistical 

classification applications have been treat-
ed as supervised learning problems, with 
the classifier designed using a training set 
of supervised (labeled) examples. 
However, in many domains, given perva-
sive sensing and massive data  storage 
capabilities as well as large publicly acces-
sible data repositories, it is both easy and 
inexpensive to collect a huge “training 
set” of examples; on the other hand, 
ground-truth labeling them is both enor-
mously time-consuming as well as expen-
sive, depending on the domain. This 
labeled/unlabeled data asymmetry moti-
vates semisupervised learning techniques, 
which generally aim to enhance the 
(poor) classification performance achiev-
able using a small (deficient) labeled 
training set by leveraging, for training 
purposes, many unlabeled samples. 

Semisupervised techniques are either 
generative—modeling the joint density 
of the feature vector and class label—or 
discriminative—focusing solely on opti-
mizing the class decision boundary. They 
may perform either inductive infer-
ence—imposing an explicit decision 
boundary on the feature space—or 
transductive inference, where the test set 
itself is effectively treated as part of the 
unlabeled set, used for joint semisuper-
vised learning and inference. They may 
assume identical training and test set 
class distributions. On the other hand, 
an important recent trend is domain 
adaptation, where the test set distribu-
tions may be different and, thus, where 
recalibration of the classifier for the test 
set, albeit an ill-posed problem, may be 
required. Here a new (test) “domain’’ 
may imply a new sensing environment, 
i.e., changes in where or when data sens-
ing occurs, relative to training. This may 
also correspond, e.g., to applying a 
speech recognition system trained on 
one population to a different population 
or a network traffic classifier trained on 
one local network to a different one. 
Semisupervised domain adaptation is a 
ubiquitous problem, with many potential 
(application-specific) factors that may 
contribute to statistical differences 
between the training and test domains. 

An underlying theme in many 
recent MLSP approaches is the need to 
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deal with multiple objectives, i.e., to de-
emphasize the traditional optimality 
with respect to a single chosen metric. 
In addition to the focus on the tradi-
tional bias-variance dilemma—always 
emphasized in MLSP research so that 
methods will generalize well to unseen 
data—the set of objectives now also 
includes robustness, efficiency, and full 
interaction with the environment for a 
complete (global) performance assess-
ment. All these considerations, among 
others, define the cognitive information 
processing paradigm, which is dis-
cussed next.

COGNITIVE INFORMATION 
PROCESSING 
Artificial cognitive systems and cogni-
tive information processing are emerg-
ing trends and will play an increasingly 
important role in MLSP in the coming 
years. The ability to perform cognitive 
information processing can be seen as a 
natural progression of MLSP, aiming to 
revitalize some of the original ideas of 
Alan Turing’s “Theory of Computation” 
and Nobert Wiener’s “Cybernetics” and 
those subsequently pioneered in the SP 
community by Bernard Widrow. The 
grand vision is to design and imple-
ment profound cognitive information 
processing systems for augmented 
human cognition in real-life environ-
ments. The practical imperative of this 
vision is driven by global megatrends 
related to pervasive and distributed 
computation, connectedness of people 
and systems, and pervasive digital sens-
ing, which just a decade ago would 
have been impossible.

Cognitive information processing 
(CIP) involves the ability to perceive, 
learn, reason, and interact robustly in 
open-ended changing environments by 
integrating all available information—
from multiple raw information sources 
and sensor inputs to user-driven feed-
back, annotations, and descriptions. We 
suggest using a tiered description of 
cognitive functionality: from low-level, 
simple sensing-action processing to 
high-level processing such as decision 
making and goal planning. There have 
been other suggestions setting out a 

minimal set of conditions for signifying 
processing as being “cognitive.” In 
Simon Haykin’s formulation, a cogni-
tive information processing system 
would require the presence of four 
properties: 1) Perception-action cycle 
processing; 2) memory, to predict con-
sequences in the environment; 3) an 
attention mechanism for allocation of 
resources; and 4) intelligence/reason-
ing for decision making in uncertain 
and complex environments. The impor-
tant discussion aiming to fully formal-
ize a definition of cognitive information 
processing and cognitive systems is 
ongoing; however, many concrete mod-
els, systems, and engineering solutions 
are already emerging.

Machine learning models that con-
tinuously learn from both data and 
 previous knowledge will play an in -
creasingly important and instrumental 
role in all levels of cognition in the real 
digital world that consists of large data 
sets, complex, distributed, interacting 
systems, and unknown, nonstationary 
environments—this is all usually too 
complex to be modeled within a limited 
set of predefined specifications. In real-
life environments , there will be inevita-
bly a need for CIP-based automated 
robust decisions and behaviors in novel 
situations, including the handling of 
conflicts and ambiguities. Hence there 
is a quest for dynamical learning sys-
tems, that continuously adapt to chang-
ing environments—one of the central 
components of machine learning for 
SP. Further, there is a need, beyond 
capabilities of current systems with 
built-in semantic representations, for 
automatic extraction and organization 
of meaning, purpose, and intention in 
interplay with the environment and 
with entities that include computers, 
embodied agents (i.e., humanlike artifi-
cial systems), and human users. In par-
ticular, interactive user systems 
(users-in-the-loop) models will be of 
vital importance. 

Current examples of the use of 
machine learning in cognitive informa-
tion processing include e.g., cognitive 
radio, personalized information sys-
tems, sensor network systems, social 

dynamics systems, semantic analysis 
systems, Web 2.0 and beyond, and cog-
nitive components analysis. It is also 
obvious that the success of such 
approaches requires a multidisciplinary 
team effort with mixed competencies 
in engineering, computer science, sta-
tistics, machine learning, psychology, 
neuroscience, and specific domain 
knowledge. 

TRENDS IN MLSP APPLICATIONS
The integrative nature of MLSP tech-
niques has made them primary candi-
dates for many of the emerging 
applications—a long list that includes 
brain-computer interface, behavior and 
emotion recognition, and learning in 
environments such as social networks 
and dynamic networks. Next, we discuss 
three such applications that have 
received particular attention within the 
community.

MULTISET DATA ANALYSIS AND 
MULTIMODALITY DATA FUSION
Analysis of multiple sets of data, either of 
the same type—multisubject data, data 
measured at different (time, space) 
points or under different environ-
ments—or of different types, as in multi-
modality data (e.g., audio and video, or 
different medical imaging data) is inher-
ent to many problems in SP. 

A good example is biomedical image 
analysis, which is especially challenging 
because of the rich nature of the data 
made available by various imaging 
modalities. Many biomedical studies 
collect multiple data sets, such as func-
tional magnetic resonance imaging 
(fMRI), electroencephalography (EEG), 
structural MRI (sMRI), and genetic data, 
in addition to clinical and behavioral 
data and other subject-based assessment 
parameters. Efficient use of all this 
information for inference, while mini-
mizing assumptions made about the 
underlying nature of the data and rela-
tionships, is a difficult task, but one that 
promises significant gains, both scien-
tific and, in the long run, societal, for 
challenging and important problems, 
such as the understanding of the 
human brain function. The need to 
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minimize strong modeling assumptions 
is especially evident when studying 
brain function in natural states such as 
rest, or when performing tasks such as 
driving. Data-driven methods such as 
blind source separation and indepen-
dent component analysis (ICA), which 
make minimal modeling assumptions 
on the data and the underlying process-
es, are particularly attractive in this 
context as they can achieve useful 
decompositions of the multimodal or 
multiset data without strong assump-
tions, and can also incorporate reliable 
prior information whenever available. 
Along with ICA-based techniques, other 
latent variable analysis techniques such 
as tensor decomposition are providing 
valuable tools for the analysis of multi-
set data and for fusion of multimodality 
information.

AUDIO AND MUSIC PROCESSING
Audio SP has always been a central part of 
SP, with many applications, ranging from 
sound recording and reproduction sys-
tems to advanced speech recognition. 
Machine learning has also been a central 
component when it comes to understand-
ing and extracting audio information, 
even in spite of the fact that machine 
learning models and algorithms have 
often been developed without any special 
attention given to physical modeling of 
the production mechanisms for audio sig-
nals. Online streaming and distributions 
of audio, and in particular music, has 
opened a new avenue of possibilities for 
systems that enable interpretation 
(semantic audio), music organization, 
interaction, and sharing. This has indeed 
already revolutionized the way we con-
sume music and in fact has created new 
global market opportunities. The special 
issue on music SP in IEEE Journal of 
Selected Topics in Signal Processing (fall 
2011) set the stage for current activities 
in this field. A key component will be the 
interplay of SP, which enables the extrac-

tion of relevant features, 
and machine learning, 
which assists with inter-
pretation and represen-
tation of results to 
users. 

SYSTEMS BIOLOGY
At the beginning of the 21st century, 
the establishment of high-throughput 
screening methods and the completion 
of the human genome mapping marked 
the beginning of a new era for biologi-
cal research. The contribution of SP to 
the acquisition and analysis of these 
data was crucial since biomolecular 
signals—e.g., microarray-based gene 
expression profiles, protein spots in 
gels, mass spectra, biomolecular imag-
es—had to be filtered, accurately 
detected, normalized, and analyzed. In 
addition to the SP, machine learning 
methods also began to be used to 
unravel the biological meaning of the 
signals and to categorize the evidence 
in meaningful ways. It was at that stage 
that well-established supervised and 
unsupervised machine learning meth-
ods started to provide useful answers to 
even clinically relevant questions, such 
as finding gene expression profiles that 
could be used as biomarkers for certain 
types of leukemia. 

Today, about a decade later, despite 
the continual development of high 
throughput methods, producing tera-
bytes of data on a daily basis, many 
important biological questions still 
cannot be well addressed, and it is 
widely accepted that bioinformatics 
data analysis alone is not sufficient to 
capture the dynamics and emerging 
properties of living cells, tissues, and 
organisms. A new field is thus rapidly 
emerging, that of systems biology, with 
the main objective to integrate all qual-
itative and quantitative biological 
knowledge, extracted either by biologi-
cal research or analysis, within holistic 
and useful models that can capture bio-
logical system dynamics at different 
scales (cell, tissue, whole organism) but 
also across multiple scales. 

Hence, although grounded in biol-
ogy, biochemistry, and mathematics, 
the contribution of informatics and 
especially machine learning in sys-
tems biology is more requisite than 
ever. To build integrative dynamical 
models while extracting the network 
of  pa irwise  interact ions  among 
molecular species and their possibly 

causal relations, we need powerful 
MLSP methods to  discover as many 
true interactions as available data 
sets (of given size) may allow. A chal-
lenging problem systems biology is 
facing today in many different con-
texts is the joint estimation of param-
eters and model structures from 
sparse and noisy time-course data. 
Although some of the most sophisti-
cated inference methods have already 
been tried, we are not yet able to 
train models of sufficient size, com-
mensurate with the (large) number of 
molecular units. Many derived mod-
els thus have to be tuned either 
exclusively manually or only partially 
through parameter estimation meth-
ods. It is evident that more efficient 
MLSP methods are needed to learn, 
from the available data, dynamical 
system models of high complexity 
and accuracy, able to be used in real-
istic simulations for in-silico experi-
mentation, leading to formation of 
new hypotheses that could drive new 
biological research. 
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