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Summary

Reservoir Computing (RC) methods are an active area of research in the �eld
of machine learning and intelligent processing. In particular, reservoir networks
(echo-state networks, ESN) have been successfully applied to many engineering
problems such as chaotic time series forecasting, primarily due to their e�ciency,
speed of training, and avoidance of many common shortcomings of typical re-
current neural networks. The initial concept of echo state networks became soon
extended with such techniques as supervised/unsupervised reservoir adaptation,
weights pruning and feature selection, improved training algorithms. Simulta-
neously, other research e�orts concentrated on combining individual networks
into hierarchical structures or voting collectives. In this work we follow this
concept and evaluate various types of ESN committees. Furthermore, we inves-
tigate di�erent member ranking algorithms and show circumstances in which
they constitute promising alternative to simple output averaging. The results
of our comparative studies suggest several design principles concerning commit-
tee models.

Secondly, we shall apply the reservoir committee models to non-trivial engi-
neering task of �nancial forecasting. The global markets constitute one of the
most complex, non-linear systems created by modern society. For decades it
was a goal of many research endeavors to understand and foresee the essential
mechanisms of markets dynamics. While for many contributors the ability to
forecast the chaotic �nancial time series is the purpose in itself, for others, like
banks, investment funds, or governmental entities, application of steadily bet-
ter models is the integral part of the investment strategy and decision taking
processes. Multitude of various approaches are intensively investigated in light
of their applicability to �nancial forecasting, however it still remains uncertain
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if any of the proposed models can clearly outperform the others in this task. In
the scope of this thesis we employ the ESN committee models to forecast the
probable market movements. We shall consider a range of optimization schemes
and training con�gurations. Important part of the thesis will relate to domain
analysis in order to facilitate selection and preprocessing of the input data, so
that optimal amount of information is provided to the system.
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Chapter 1

Introduction

1.1 Purpose

In the recent decades there has been a growing demand for intelligent systems
for forecasting dynamics of �nancial markets and future directions of global
economy. Various proposed algorithms concentrate on both technical and fun-
damental analysis of macroeconomical factors, in attempt to predict future mar-
ket dynamics, price tendencies, and thus enhance investment decisions. Due to
emergence of on-line investment platforms supporting meta-trading scripting
languages, it became possible to create automated algorithmic trading systems
that operate without human interaction. This makes it possible to eliminate
human weaknesses such as emotional, irrational decisions, stress factor, decision
delay � and hence fully rely on the strength of the investment algorithm. The
key issue remains how to design an algorithm capable to produce reliable predic-
tions in such immensely complex and apparently chaotic environment as global
�nancial markets. The classic algorithms often rely on the assumption, that
market dynamics are governed by rationality and statistical regularity. They
often base on classic fundamental theories and simple linear models combining
several variables in a determined way. However, the observations and analysis
of market behavior lead to conclusion that one of the main factors to consider
is group psychology of millions of private and institutional investors, striving
to maximize their pro�ts and reduce losses. Constant interaction of rational
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decisions with human factors such as fear, greed, and stress, makes the global
�nancial markets one of the most complex nonlinear systems created in the
modern society. The classic algorithms recognize only limited number of major
factors in�uencing markets, and rarely can quantify that in�uence. It seems
therefore, that much wider context is necessary in order to capture market dy-
namics and increase the e�ciency of predictions.

The �nancial domain constitute a promising environment for application of sys-
tems based on recurrent neural networks (RNN). In particular, the state-of-art
echo state networks (ESN) will be investigated in this project, which were shown
to o�er many advantages over classic RNNs in terms of performance and training
e�ciency. Generally speaking, the potential of neural network based systems
lies in the fact that the algorithm is self-created in long process of learning,
instead of being explicitly prede�ned by designer. Through analysis of large
multivariate data sets of correlated �nancial data and macro-economical indica-
tors, the system can theoretically capture those patterns and relations in market
dynamics, that are not recognized by classic theories and expert systems. Abil-
ity to detect such patterns will have immediate impact on quality of prediction
of future market movements. Moreover, with currently available computational
power, it is possible to train in relatively short time large populations of net-
works, varied by structure and trained on di�erent subsets of input time series,
optimize their architecture, and combine their expertise by connecting them into
larger structures - voting committees or mixtures-of-experts. The motivation of
this work comes from assumption, that carefully trained collectives of echo state
networks will have potential to outperform classic algorithms and human rea-
soning in the task of market prediction. Furthermore, due to their robustness
and �exibility, such collectives can be easily adapted to other forecasting and
classi�cation tasks.

In the scope of this project we will concentrate on aspects of design, training and
evaluation of the reservoir committees. Although our ultimate goal is �nancial
forecasting, the major part of the project is centered around general princi-
ples and design issues of the system, from the machine learning perspective.
Common design issues will be addressed, such as stability, regularization, bias-
variance tradeo�, over�tting, optimization. Finally, the model will be adapted
to economic applications, in particular to predictions of nonlinear dynamics of
global �nancial markets, on example of American S&P500 index, German DAX,
and EUR/USD currency exchange rate. We shall present how the committee
model can be used as automated trading agent or investment decision support,
by means of predicting next-day market directions.
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1.2 Predictive model

Recurrent neural networks (RNN) are still one of the most commonly used
models in the task of time series forecasting. However, their structure, train-
ing methods and optimization algorithms have evolved signi�cantly since their
origins. Variety of di�erent research approaches resulted in signi�cant improve-
ment of the forecasting accuracy of RNN predictors. Furthermore, computa-
tional power available now allows more extensive optimization, evaluation and
thorough empirical studies of large-scale network models.

Particularly prominent, state-of-art architecture is Echo State Network (ESN)
[1, 2], class of Reservoir Computing methods. ESN di�ers signi�cantly from
commonly used RNNs, in terms of structure, training and optimization meth-
ods. From the design and training perspective, it can be considered as a bridge
between connectionist and stochastic methods. Structurally, it displays sim-
ilarity to biological networks. The essence lies in the complex dynamics of
randomly generated "neural reservoir" � a cloud of sparsely connected neurons,
having distinct temporal characteristics due to recurrent connections and non-
linear activation functions of neurons. In the contrary to classic RNNs, only
the readout layer needs to be trained, while internal reservoir connectivity re-
mains constant. The readout training aims at selection of desired nonlinear
transformations from the large reservoir container, what can be accomplished
with well-known linear regression methods. ESNs avoid many shortcomings of
common RNNs, such as local minima convergence and slow, computationally
demanding training. Moreover, ESNs were shown to perform surprisingly well
in variety of forecasting tasks. Therefore we shall adopt echo-state approach as
the basic approach in this thesis. Furthermore, we will combine populations of
such base models into generalized committees to enhance predictive accuracy
and robustness of the resulting system.

Detailed speci�cation of ESN architecture as well as design principles are sub-
ject of Chapter 3, while Chapter 4 advances the concepts to committee level.
Chapter 5 elaborates on engineering applications of the model in �nancial do-
main.

1.3 Financial domain

The predictor model that will be the subject of this project, can be adapted
to virtually any type of forecasting, classi�cation or control task. However,
selection of global �nancial markets as an the experimental �eld is not accidental.
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The domain o�ers several characteristics, that will be bene�cial for our purposes:

• The global �nancial markets constitute a complex non-linear system, that
presents non-random chaotic dynamics. The behavior is conditioned by
wide range of macroeconomical, social and technical factors. Those factors
compose a dynamic network of relations and dependencies, where change
within one variable will in�uence (directly or indirectly) the others. How-
ever, the strength and range of that in�uence is not always possible to
detect and quantify. High dimensional, spatio-temporal patterns need to
be found between those variables in order to improve prediction accu-
racy. This is not feasible for classic algorithms, but constitutes a rich and
challenging training playground and research environment for ESN-based
system.

• Data availability. Complete sets of historical data sets of market dynamics,
macroeconomic variables, sentiment indicators can be downloaded from
online sources, for periods as long as recent 60 years. Such extensive
data supplies will be bene�cial for teaching and testing networks. Since
di�erent economic indicators are strongly related, the system will base
its forecasts on high dimensional multivariate input, comprising range of
correlated �nancial time series.

• The demand for novel solutions for intelligent investment decision sup-
port is ever increasing. The number of automatized trading platforms
constantly grows, and in the time of writing this paper more than half
of the transactions are initiated by algorithms rather than humans. The
markets became a testing ground, where competing intelligent algorithms
try to outsmart the others. Therefore an intelligent system that would
show potential to outperform the other solutions, may be of interest for
external institutions willing to contribute to further research (e.g. banks,
investment funds, government entities).

More insight into domain aspects will be presented in Chapter 2. We will dis-
cuss the main factors that drive markets dynamic and make them non-trivial
to forecast. We will preselect data sets of economic time series to work with,
list the data sources, and �nally, in Chapter 5 , we shall focus on important as-
pects of data transformations and preprocessing, which are essential for e�cient
forecasting.



Chapter 2

Domain analysis

In this chapter we discuss the basic concepts related to the global �nancial
markets, relevant with respect to the project purposes. The thorough investi-
gation of the underlying markets mechanisms is beyond the scope of this the-
sis, hence we recommend a selection of literature committed to the subject
[32, 33, 34, 35, 36, 37]. We shall attempt, however, to point out several concepts
and factors that determine nonlinear chaotic market dynamics, and hence make
forecasting a non-trivial task. Furthermore, we will select, out of large variety of
available data, those time series that constitute �good candidates� for input and
output of the system. Several databases and online sources will be investigated
that o�er economic and �nancial data sets.

2.1 Financial markets as complex nonlinear sys-

tem

The global �nancial markets constitute a complex network of correlated factors,
where change of one will propagate, directly or indirectly, to the others. It is
di�cult to forecast given economic variable or �nancial index without insight
into overall market situation. There are several concepts and factors that need
to be considered in economic forecasting.
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2.1.1 Stock markets and indices

By issuing stocks (called also shares) on a stock market, companies can raise
funds from external investors. Current stock prices are shaped by relation be-
tween supply and demand, re�ecting not the real value of the companies, but
rather the expectation of investors about its future value. Promising prospects
will increase demand on the company's stocks, what will elevate their price.
Some investors buy the stocks with long-term investment horizon, counting for
positive development of the company net value and for other shareholder's ben-
e�ts (voting right, dividends, etc.). Others purchase the stocks in purely spec-
ulative manner, hoping to bene�t from the volatility of share price by selling
higher.

Stock exchanges are the physical locations bringing companies and investors to-
gether. However nowadays the majority of trading activities are carried through
electronic networks rather than physically at the facilities of stock exchange.
Most of free-market countries have one or more national stock exchanges, each
quoting a number of companies, usually between tens and thousands. The
national stocks are accessible for foreign investors, in some cases with certain
limitations. Furthermore, stock exchanges can o�er derivates, which are more
complex �nancial instruments based on the stocks, indices, and currencies, and
can be traded in similar manner as stocks.

Based on the stock prices, the market indices are de�ned, being an average value
of certain groups of stocks. National stock indices group the largest companies
quoted on given stock exchange, thus re�ecting well the condition of national
economy. An example is American Standard & Poor's 500 Composite Index
(S&P500), which averages through 500 largest corporations quoted on NYSE
stock exchange. Other indices may represent companies belonging to particular
sectors, for instance �nancial, telecommunications or transportation sectors. Yet
another indices measure performances of selected global shares (e.g. S&P 100
Global), or entire global markets (e.g. MSCI Emerging Markets Index).

The important is that apart from being used as indicators of condition of given
market section, the indices can be themselves the subject of trade. Trading
the indices can be for instance done by means of future contracts (contracts
on future prices), where investors can open 'short position' or 'long position',
counting for market growth or fall respectively. In a way, buy/sell transactions
on futures markets are symmetric - short position means that the sell operation
precedes the buy operation.

More information on stock markets can be found in [33, 34]. In the scope of this
work, we shall mostly concentrate on predictions of the leading national indices,
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rather than individual stocks.

2.1.2 Currency market

Currency market (foreign exchange market) is in fact the largest and the most
intensively traded global market. Every large event, whether political, social
or environmental, will be immediately re�ected by exchange rates. Currency
market is unregulated and in contrary to stock exchanges it has no physical
location. Instead, the transactions are made world-wide by banks, investment
funds and even governments.

Currency exchange rates on FOREX market are the essential factor shaping
the international trade and import/export prosperity. They constitute impor-
tant uncertainty parameter considered by banks and institutions in determining
investment strategies, and by private investors purchasing foreign stocks or com-
modities. Moreover, the currency exchange rates not only serve to value foreign
assets in national currency, but also are subject of the speculative trading [36],
by means of direct transactions, future contracts and options on currency pairs.

The relations between three important currencies will be of our interest - Euro
(EUR), US dollar(USD) and Japanese Yen (JPY). Currency markets are treated
in detail in [36, 34]

2.1.3 Commodity market

Considering global economy it is important to emphasize signi�cance of com-
modities and natural resource markets. For instance, the price levels of crude
oil will directly in�uence production and transportation costs, and indirectly
nearly every aspect of modern economies, so much dependent on combustive fu-
els. Oil prices, consequently, are very sensitive to international politics, stability
and relations between developed and emerging economies. Other commodities,
like e.g. agricultural products or metals, will in�uence prosperity of the corre-
sponding industrial sectors, and hence the related stock prices. Trends of gold
prices in turn often re�ect the uncertainty level on the markets. Since gold is
considered as a safe investment, its price will be elevated in times of uncertainty,
since it is the commodity where investors allocate the capital withdrawn from
other, more risky securities. More information about speci�cs of commodity
markets can be found in [37]
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2.1.4 Macroeconomic factors

There are several important macroeconomic indicators and variables worth to
be considered in forecasting tasks. The main of them is gross domestic prod-
uct (GDP), which re�ects value of all the �nal goods and services that given
economy produced in certain period, and thus it is considered to be the main
indicator of the economy health. GDP is often expressed in terms of its annual
growth, that is GDP growth (or simply: output growth). Another important
macroeconomic variable is the unemployment rate, which re�ects a ratio of the
unemployed citizens to the number of citizens in the labor force. The unemploy-
ment rate has large social and economic impact, and in�uences other variables
such as consumer spending, consumer con�dence, output growth, and others.
The third essential variable is in�ation (or: consumer price index, CPI), which
corresponds to the growth of general price levels. Too large in�ation a�ects
unequally income distribution, increases uncertainty about future, and usually
discourages investment decisions.

In fact all those variables are closely correlated. High GDP growth is usu-
ally coupled with decrease in the unemployment, and vice-versa (Okun's law).
Relation between CPI in�ation and unemployment is not always obvious, but
usually very low unemployment will be accompanied by increase of in�ation
(Philips curve). The key task of governments, or more generally macroeconomic
policy-makers, is to maintain economic growth (measured by GDP) simultane-
ously with reduction of unemployment rate and maintaining stable in�ation
rate. The positive trends within those values will result in optimistic long-term
economy prospects and willingness of citizens to invest capital in stocks and
other securities, what results in elevating the valuation of the assets. Apart
from governmental activities, the monetary policy of central banks (or: money
supply) needs to be considered. Higher money supply will reduce the interest
rate, which is the cost of borrowing the money. This in turn will stimulate
the output growth, however increases the risk of high in�ation. The optimal
equilibrium is not trivial to determine, nor to maintain.

Of course there are other macroeconomic factors that in�uence GDP in short-
, medium- and long-term. They will not be further elaborated in this thesis,
instead the reader is referred to the literature covering the aspects of macroe-
conomy [34, 35]. We conclude saying that macroeconomic variables have both
short-term and long-term implications on �nancial markets. Periodic release
of the updated values generates certain reactions among investors, re�ected in
immediate price changes. Sometimes the impact on the markets can be signif-
icant. For this reason, macroeconomic variables can be a bene�cial part of the
predictor's multivariate input.
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2.1.5 Group behaviors

To appreciate complexity of the system, we need to have a closer look at the
diversity of the actors responsible for market dynamics. The most in�uential
are large �nancial institutions like central banks, investment and pension funds
and large-cap international corporations. Their decisions may have substantial
impact of the market movements. In the contrary, individual investors have no
su�cient resources to in�uence the markets, instead they attempt to exploit the
trends and regularities. Another powerful group involved in international cash
�ow are governments. It is important to note that purely free-market economies,
where entire system is regulated exclusively by consumers and producers (de-
mand and supply), in fact do not exist. In reality, the free-market economies
are always a mixture between central control and market determination [35]. It
means that government can impose �nancial law regulations as well as intervene
according to the needs on the domestic markets and currency markets in order
to secure the interests of the citizens.

Classic theories often assume, that all the parties (whether individuals, corpora-
tions, or institutions) act in a rational manner to maximize their pro�ts and cut
down the losses. However the reality shows that the system is far more complex,
and similarly like other large-scale social systems, the �nancial markets are often
driven by group-psychology e�ects. This often results in irrational behaviors,
such as panic-driven sell-o� of stock and other securities in the time of crisis,
or so called �speculation bulbs� elevating the prices of certain equities far above
their objective values.

2.1.6 Automated trading

Another aspect, that made market forecasting yet more challenging in the re-
cent years, is rapidly growing proportion of automatized trading in the overall
number of transactions, especially in highly-developed economies. For instance,
according to research&consulting company Aite Group, the companies involved
in automatized, high-frequency trading are responsible for approximately 73%
of the entire US equity trading volume, as for 2009 [38]. The high-frequency-
trading (HFT) algorithms are designed to generate rapid investment decisions
in attempt to capture trading opportunities that appear for as short as fractions
of seconds. They often bene�t from marginal gains from thousands or tens of
thousands of transactions initiated per day.

The automatized trading is no longer limited to the largest market participants.
Many brokers already started to provide the online investment platforms for
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individual investors, accepting meta-trading scripting languages to de�ne algo-
rithmic trading agents. An example is MetaQuotes Language 4 (MQL4) [39],
supporting design and implementation of own trading strategies and expert ad-
visors. The growing popularity of algorithmic trading changes the dynamics
of the markets making them more non-stationary than ever before. A lot of
innovation-oriented companies emerged, that specialize in development of con-
stantly smarter trading algorithms, having primary task to detect and exploit
the imperfections of other methods.

2.1.7 Theories and approaches

Thinking about economic variables and �nancial data, one can be tempted to
assume, that after deep analysis of all relations and dependencies between them,
it should be possible to construct a deterministic, mathematical model to sim-
ulate precisely a development of future market trends in the global economy.
However, there are at least three arguments why such model is not feasible to
be ever designed. First of all, the complexity of such model would be immense.
Most of the classic economic models concentrate just on small subgroup of inter-
acting values, and they are bounded by severe constraints and simpli�cations.
Secondly, there are many random events that may occur, which cannot be pre-
dicted regardless of the model complexity - these include: climatic anomalies,
natural catastrophes, terrorist attacks, �nancial law violations including inside
trading, and others. None of the models can predict such events, although in
theory smart solutions should be able to quickly adjust their dynamics short
after such events had occurred. Thirdly, the last link in the chain of macroe-
conomic relations, market dependencies and international trading is the human
taking investment decisions. Human factors like emotions, fear, greed and irra-
tional group behavior make the markets dynamics particularly complex.

Popular approach in �nances is known as E�cient-Market Hypothesis [40].
The week form of EMH assumes that all information is already included in
asset price, and no excess returns (higher than average market returns) can be
achieved in long run by sole analysis of historical data. EMH assumes that no
patterns exist in price movements, or in other words - asset prices follow a ran-
dom walk. Stronger form of EMH implies furthermore that no excess returns
can be earned by trading on newly released public information, since it becomes
immediately re�ected in the asset prices.

Another approach, called the technical analysis (TA) [41], is based on three
principal assumptions: market action discounts all available information, prices
move in trends and historical patterns tend to repeat themselves. Technical
analysts believe that observations of historical charts (prices and transaction
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volumes) can help to determine the repeatable patterns, that account for both
fundamental facts and irrational market emotions. Technical analysis can not
fully predict the future market directions, but solely the fact that many market
participants are aware of TA and interpret certain patterns in a common way
can actually imply certain behaviors.

Fundamental analysis, in contrary, focuses on overall state of economy, macroe-
conomic variables, and speci�c information related to given market or security.
The fundamental analysis assumes that every stock (or index) has its �correct�,
fundamentally explicable value, that will be eventually reached, even if it is
under-estimated or over-estimated by current market value.

The attitude standing behind this work is somewhat similar to technical analysis,
in a way that it is based on the same principal assumptions. On the other hand,
in the contrary to AT we do not impose any interpretations on the price patterns,
but instead allow the reservoir network to learn to interpret the historical data
and generalize it onto future data. Furthermore we presume that far more
information about price dynamics can be extracted if the patterns are searched
in high dimensional multivariate input space. Such patterns could be di�cult
to identify with classic TA charting methods.

2.1.8 Summary

The �nancial markets are highly nonlinear system, due to large number of in-
teracting parties and complex relations between price levels, currency rates and
macroeconomic policies. Hence, optimal selection of the variables for the pre-
dictor's input is not a trivial task. The selection will certainly depend on the
target signal chosen to be forecasted - whether it is a large-cap index, partic-
ular stocks, currency exchange rate or maybe economic variable. In fact, the
selection of input data can be considered an important parameter to optimize,
in order to obtain satisfactory prediction accuracy. We present exemplary set
of candidate variables in the following section.

2.2 Preliminary data selection - market indices

and economic indicators

After minor adaptation and tuning, our predictor model can be trained to work
with arbitrary time series. However, for practical reasons, major global indices
will be primarily in our focus. In particular - leading US index (S&P500 ), which
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re�ects capitalization of world's largest markets � NYSE and Nasdaq, and thus
have immense impact on global economy. The S&P500 index is highly traded,
relatively stable, and closely related to other global economies, in particular to
that of the Eurozone. Secondly, the largest European market - German DAX
- will be considered, for similar reasons as above. The index is interesting to
work with, because in the contrary to S&P500 and DAX it displays the signs
of recession in period April 2010 til august 2011. Finally, we shall consider
EUR/USD exchange rate as another forecasting target.

Having target time series chosen, a selection of relevant input data becomes
one of the essential problems. Proper input data is perhaps more important for
accurate forecasting than the model design itself. The main idea is to include
not only historical values of forecasted indices (univariate input), but also other
types of data that have impact on the market movements (multivariate input)
- primarily foreign market indices, currency exchange rates, transaction volume
information. Other variables, such as commodity prices, macroeconomic factors
and investors sentiment indicators can be considered to �ne-tune the prediction.
How those factors are correlated, and how they in�uence �nancial markets, was
shortly discussed in the previous section and is treated in detail in [32, 33, 34,
35, 36, 37]. Such multivariate input will increase probability of �nding regular
spatio-temporal patterns, which in turn can boost prediction accuracy. The
exact selection of inputs will depend on particular prediction task, and can be
a subject of further optimization. This can be accomplished either by common
techniques of feature selection or by resorting to prior domain knowledge. In
fact, those two approaches are often combined. Below we shall suggest several
good candidates to be considered as a part of the system input. Some of them
will be used in the empirical studies in Chapter 5, while the others are presented
for completeness but will not be used in the project scope.

Major global indices (These indices re�ect the national economic condition,
by averaging stock prices of large-cap corporations)

• S&P500 (US Standard&Poor's leading index of 500 large-cap Amer-
ican corporations)

• DJIA (US Dow Jones Industrial Average index of 30 American blue-
chip stocks)

• DAX (Germany, Eurozone's engine)

• FTSE 100 (Great Britain)

• Shanghai Composite (China, second world's largest economy)

• Nikkei 225 (Japan)

• Global Dow (150 leading global stocks, re�ects well condition of
global economy)
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Currency rates (Direct in�uence on international trade, export/import pros-
perity, and foreign policy. Currency rates have strong impact on all free
market economies with no exception)

• EUR/USD (EURO / US dollar)

• USD/JPY (US dollar / Japanese Yen)

• USD/CNY (US dollar / Chinese Yuan)

Commodities (Fundamentals that drive global economy, constitute important
link in the �nancial markets)

• CRUDE OIL (essential resource in�uencing every aspect of contem-
porary civilization)

• COPPER (in�uence on heavy industry)

• GOLD (often referred to as �investors safe-heaven�, commodity to
allocate �nancial resources in high-risk market periods)

Macroeconomic factors (Fundamental indicators of economy health, often
used as variables in classic economic models)

• GNP (Gross National Product)

• Unemployment Rate

• Consumer Price Index (in�ation rate)

• Interest Rates

Social factors and sentiment indicators (Represent indirect forces driving
the markets)

• Consumer Con�dence Index (Conference Board)

• Consumer Sentiment Index (Univ. of Michigan)

• ISEE Sentiment Index (bullish-bearish market direction indicator)

Depending on the experimental results and desired complexity of the system,
the suggested range of the input data might need to be constrained in the scope
of the project. We will mostly concentrate on market indices and currency
exchange rates. On the other hand, if the system is to be employed to other
economic prediction tasks in further research, the range of input time series
might need to be extended accordingly.
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2.3 Data sources

Before choosing the global �nancial markets as the project domain, it was es-
sential to verify whether the relevant data is freely available, what resolution of
time series can be obtained, and whether reliable data providers can be found.
As a result we found numerous sources of data, which can be useful in further
research. Below we list several of them, that will provide us su�cient data to
evaluate accuracy of our prediction models. Depending on the needs, the list
can be extended by other sources, if more speci�c data is required (for instance
local stocks prices or indicators related to particular national markets).

The listed providers o�er in most cases raw time series but sometimes also
preprocessed statistics. In theory, data sets can be independently obtained
from di�erent sources and then compared in order to increase their reliability.

Database of Federal Reserve, central bank of America (FED) - o�ers wide
choice of essential macroeconomic indicators released periodically by FED.
Data can be downloaded in several formats, and for arbitrary period. The
most important indicators here include: Industrial Production (IP), Inter-
est Rates, Consumer Credit, Foreign Exchange Rates (in relation to USD).
Website: https://www.federalreserve.gov/datadownload

US Department of Labor, Bureau of Labor Statistics - convenient access
to crucial data having large impact on markets, including: Consumer
Price Index (CPI), Unemployment Rate, Average Earnings. Website:
http://www.bls.gov/data

World Federation of Exchanges (WFE) The service committed to collect,
combine and distribute comparative data of global markets characteristics
and dynamics. Although time resolution of data is lower (month intervals)
the statistics found here will be of great help for domain analysis and
preselection of data. Website: http://www.world-exchanges.org/statistics

Online Financial Services - main source of historical time series � daily clos-
ing values of world's major market indexes, natural resources, commodi-
ties, stocks, indicators can be freely browsed and exported from the ser-
vices listed below:

• Yahoo Finance (http://�nance.yahoo.com)

• Google Finance (http://www.google.com/�nance)

• Stooq (http://stooq.com) � in contrary to many other sources, this
service does not limit range of downloadable data to recent time
period, and o�ers e.g. DJIA index daily data series since 1896, gold
prices since 1969, etc.
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National Stock Exchange databases - o�cial stock exchange databases can
provide any historical data, even quite speci�c type of information, and
high-resolution real-time data. A country speci�c leading economic indi-
cators and local stocks prices can be found here as well. In some cases,
depending on the requested details and data size, this service may be
charged with fee. A lot of data is freely available though. Examples:

• New York Stock Exchange (NYSE) - US stock exchange, world's
largest market in terms of capitalization
http://www.nyse.com and http://www.nyxdata.com

• Tokyo Stock Exchange (Nikkei) - Japanese stock exchange,
http://e.nikkei.com/e/fr/marketdatatable.aspx

• Shanghai Stock Exchange - Chinese stock exchange
http://static.sse.com.cn

• Frankfurt Stock Exchange - German stock exchange
http://deutsche-boerse.com

• London Stock Exchange - UK stock exchange
http://www.londonstockexchange.com

• Copenhagen Stock Exchange (CSE) - Danish stock exchange,
part of NASDAQ OMX Nordic Group
http://www.nasdaqomxnordic.com

• Warsaw Stock Exchange (WSE) - Polish stock exchange
http://gpw.pl

Independent data sources - there are many freely accessible, independent
databases, clustering diverse data from numerous sources. Few examples
include:

• US Polling Report (http://pollingreport.com/consumer.htm) � large
source of independent data illustrating well consumer sentiment and
public opinion

• Economagic (www.economagic.com/popular.htm) � list of essential
data series

• Econdat (www.econdata.net) � rich collection of links to variety of
online data sources. This website is a good entry point for further
data mining, if needed.

2.4 Preprocessing overview

In most of the cases, the economic and �nancial data in raw form can not be
directly applied to the system input. Several preprocessing steps need to be
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undertaken �rst. We shall discuss those issues in detail in Chapter 5, while
in this section we only highlight the main preprocessing steps. It is important
to note that data selection and preprocessing is the integral part of solving any
�nancial forecasting problems. Failure in this step will lead to poor performance,
regardless how e�cient the model itself is.

In the beginning, appropriate data sets need to be downloaded and converted to
desired format. Financial time series usually consist of �ve values for each date
- day-open, day-max, day-min, day-close prices, and transaction volume. The
�rst preprocessing step aims at identi�cation and elimination of trends in the
time series, so as to obtain stationary data sets characterized by stable mean
and variance. Secondly, the detrended data needs to be properly scaled to match
predictor's preferred input ranges. In case of multivariate input, what is usually
the case in �nancial tasks, the special considerations needs to be given to syn-
chronization of the time series, that accounts for di�erent calendars, time zones,
trading hours. Finally, linear transformations of the data can be optionally ap-
plied, to enhance feature extraction and provide statistical information about
the time series. Technical analysis indicators can be used for this purpose.

2.5 Summary

After this brief introduction to the domain related basic concepts, data acquisi-
tion and preprocessing, we shall now leave the the �nancial domain and focus on
the model design and analysis (Chapters 3 and 4). In the Chapter 5 of the the-
sis we shall revisit the �nancial concepts and combine them with the predictive
models.



Chapter 3

Reservoir Computing and

Echo State Networks

In this chapter we analyze static and dynamic properties of echo state networks,
that will constitute base model for our collective predictor. We start with in-
troducting basic idea of reservoir computing and review of the current research,
with emphasis on echo state networks. Following this, formal speci�cation of
ESN will be given, including design principles and training methods. Finally,
a selection of experiments is presented to show certain properties of model,
its forecasting ability, and optimization methods. Benchmarking environment
is introduced that will be used in this and subsequent chapter, in particular
performance metrics and arti�cial chaotic time series.

3.1 Survey of literature and publications

Reservoir Computing (RC) is a relatively new concept in the �eld of neural
networks and machine learning. In the contrary to the classic recurrent neural
networks (RNN), where all connections are adapted in training process, RC
systems are conceptually splitted into two distinct parts: a large reservoir of
sparsely connected neurons, that remains unchanged, and a readout layer that
is the only subject of adaptation. A function of the reservoir is to expand input
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signal into high-dimensional, nonlinear, state-space representation. Assuming
that the reservoir contains su�cient variety of nonlinearities, the readout is then
computed with well-known regression techniques to reconstruct the target signal
while minimizing the error function.

The two most common approaches in Reservoir Computing are known as Echo
State Network (ESN) proposed �rst by Herbert Jaeger [1, 2] and asynchronous
Liquid State Machine (LSM) introduced by Wolfgang Maas [3]. The former
of them, being relatively easy to tune and fast to train, has been applied to
various engineering problems, often outperforming other solutions in prediction
accuracy [4, 5, 6, 7, 8]. ESNs are therefore essential component of the ranked
committees elaborated in this paper. The latter approach, based on biologi-
cally realistic, synaptic models of spiking neural networks, has become more
popular in computational neuroscience �eld and less widespread in engineer-
ing applications. In fact, RC model can essentially have any reservoir of either
mathematical, physical or biological nature, that provides measurable responses
to given inputs [9].

It is important to emphasize that ESN design, structure and training meth-
ods evolved signi�cantly since they were �rst introduced. A lot of remark-
able research was done to optimize performance and broaden their applica-
bility. E�ciency of reservoir networks was boosted with such techniques as
supervised/unsupervised reservoir optimization [11, 12, 13], imposing topolog-
ical structure [14, 15], decoupling [16], pruning and feature selection[17, 18],
leaky-neurons[19], varying training algorithms and adapting evolutionary op-
timization methods [20, 21]. Simultaneously, lot of the research e�orts con-
centrates on combining multiple networks into larger scale structures. Some
of the examples include corrective cascades [22], multi-reservoir structure [16],
mixture-of-experts with gating ESN [23]. Very common approach is a simple
averaging committee, which trains k independent ESN members on the same
task, and combines their outputs to produce �nal committee response [6, 19].
For comprehensive review of currently ongoing RC research and challenges we
refer the reader to excellent work of Lukosevicius and Jaeger [9] and Verstraten
at al. [10].

3.2 ESN speci�cation

Echo state network (ESN) is composed of three main layers - an input, a reser-
voir, and an output. The input layer is responsible for receiving input signals,
possibly scaling and/or shifting them, and distributing them to internal reservoir
neurons. The reservoir consists of relatively large number of sparsely connected
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neurons. Its main task is to transform input signal into high-dimensional, non-
linear, state-space representation. The output layer, or readout, is the only
trainable part of the ESN. It linearly combines reservoir neurons activations so
as to provide possibly accurate reconstruction of desired target signal. Fig.3.1
illustrates basic structure of ESN. Dotted lines denote trainable connections.

OUTIN

W in Wout
Wres

RESERVOIR Wback

U Y

Figure 3.1: Echo State Network architecture.

We will now discuss the essential steps necessary to create ESN. The �rst step is
to determine number of inputs, outputs and reservoir size. Given desired input
dimension K, reservoir size N, output dimension L, we de�ne ESN by specifying:

1. Input weights matrix Win of the size N ×K

2. Reservoir connectivity matrix Wres of the size N ×N

3. Output weights matrix Wout of the size L× (N +K)

4. Feedback weights matrix Wbackof the size N × L (optional)

5. Activation function of reservoir neurons fres

6. Activation function of output neurons fout

7. Initial state vector So of the size N × 1

Although there no strict constraints on how to initiate those parameters, the
common practice is to set them as follows: draw Win and Wback randomly from
normal distribution [−1, 1] with zero mean, leave arbitraryWout

1, select sigmoid
tanh() function as reservoir neuron activation and identity function ·() as output
neuron activation, and set initial state S0 to zero.

1Woutwill be anyway replaced in the training process.
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The essential part of constructing ESN is a design of its reservoir (Wres matrix),
since it will a�ect learning ability, memory capacity and stability of the model.
Three parameters are used in this process: reservoir size N , connectivity den-
sity c, and spectral radius p. Reservoir is characterized by sparse connectivity,
usually in the range 1-20%. Size will range between hundred and few thousands
neurons. After being randomly initiated, the weights of Wres are scaled down
to reach desired spectral radius p. The stability requirement will hold if p < 1
[1].

Wres = p · Wres

eigmax (Wres)
(3.1)

where eigmax(Wres) is the maximum eigenvalue of the reservoir matrix, or in
other words - spectral radius of Wres before scaling.

Having all the above parameters initiated, the network is ready to receive inputs
and produce outputs, although the output layer it is not trained yet. To compute
subsequent state st+1 and output yt+1, following equations are used:

slint+1 =Win · ut+1 +Wres · st +Wback · yt + υres (3.2)

st+1 = fres
(
slint+1

)
(3.3)

yt+1 = fout

(
Wout ·

[
st+1

ut+1

])
(3.4)

where ut, yt, st are input, output, state vectors correspondingly in time step t,
υres indicates normally distributed noise of relatively low amplitudemax (υres)�
max (st).

In the training process, onlyWout matrix is adapted, whileWin,Wres andWback

remain unchanged2. The training process starts from feeding the network with
subsequent training samples Utrain = [u1, u2, ..., ur] and storing corresponding
states in state collecting matrix S = [s1, s2, ...sr] and desired target outputs in
matrix D = [d1, d2, ..., dr]. Once matrices S and D are complete, we compute
the output weights with pseudo-inverse matrix calculation:

2However, as we mentioned in the introduction section, a lot of research has been done to
facilitate adaptation and optimization of reservoirs before actual training. Range of supervised
and unsupervised methods were proposed, such as intrinsic plasticity, imposing topological
structure, enhancement of separation property.
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Wout =
(
STS

)−1
STD (3.5)

This is the original method proposed by Jaeger [1], but essentially any other
regression method can be applied. The pseudo-inverse method brings up a risk
of over�tting the model, if the number of parameters is too large in relation to
available training samples. This would require adjustment of model complexity
to length of available data. If however it is desirable to maintain large reservoir
(e.g. high model capacity is needed due to complexity of the task in hand),
we may need to employ regularization methods. In such case pseudo-inverse
regression is often replaced by other techniques, like ridge regression [24]. The
method incorporates regularization component λI, that penalizes large weights
that do not contribute to error reduction. Regularization tends to reduce output
variance at the cost of increasing the bias, what is commonly known as bias-
variance trade-o�. Finding optimal proportion will minimize mean squared error
on testing data, or in other words - enhance generalization ability of the network.
Output weights are computed with ridge regression as follows:

Wout =
(
STS + λI

)−1
STD (3.6)

where I is a unity matrix and scalar λ is a free regularization parameter that
should be carefully optimized to given task.

It is important to emphasize that formula (5) or (6) may be repeatedly used to
connect any number of additional readouts to the reservoir, without a�ecting
already existing ones. In this way the same reservoir can be reused for multiple
prediction tasks. In particular, several independent readouts can be trained to
forecast directly entire trajectory of target signal Ytraj = {yt+1, yt+2, ..., yt+k},
where each prediction horizon yt+i corresponds to the output of i

′th readout.

More details on ESN preparation, optimization and training can be found in
comprehensive publications dedicated to the the subject, some of which are
suggested in section3.1.

3.3 Extensions of basic model

3.3.1 Topological SHESN

As we have mentioned earlier, there is a lot of reseach committed to unsupervised
optimization of reservoir. An interesting approach is based on imposing topolog-
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ical structure on reservoirs, rather than using random sparse connectivity. The
topology (usually 2-dimensional) is determined by means of preferential connec-
tivity rules, which results in power law outdegree distribution and creation of
multiple domains of clustered neurons. Such reservoirs are referred to as com-
plex ESN (CESN) or scale-free highly-clustered ESN (SHESN). The networks
display interesting properties, making them similar to real biological or social
networks (e.g. topology of the Internet). Topological reservoirs were repeatedly
reported in literature [15, 14] to o�er interesting static and dynamic properties,
and often to outperform classic ESNs in certain tasks. Due to di�erent dis-
tribution of eigenvalues, spectral radius can be lifted to higher values without
distorting the stability. Furthermore, clustering neurons into distinct synergies
reduces coupling of neural activations, which can boost feature extraction and
enhance predictor performance on complex tasks.

Note that since only readout layer is trainable, all the algorithms and routines
characteristic for ESNs remain unchanged. The only additional e�ort is con-
struction and optimization of reservoir. In the contrary to ESN reservoirs, which
require only three parameters - size, connectivity, and spectral radius, SHESNs
are governed by signi�cantly more generic parameters. The construction of
reservoir consists of the following steps:

• Generation of backbone neuron (BN) framework. Number of BNs usually
do not exceed 0.5�5% of all the neurons. BNs are randomly allocated
on topology grid, while minimum distance between two neurons must be
maintained.

• Stochastic selection of sparse connectivity between BNs. Includes feedback
connections.

• Individual allocation of local neurons (LN) on the grid. Firstly, one of the
BNs is selected, with equal probability. Secondly, the new LN is placed in
BN's proximity in the distance governed by bounded Pareto distribution.
Minimum distance must be maintained. The LN is added to the nearest
BN's domain, though physical link does not need to exist.

• Determination of connectivity for each LN. The important aspect is that
LN can only be connected to neurons from the same domain (including
feedback connection to itself and/or connection with backbone neuron).
The preferential connectivity mechanism is used, so that probability of
connection with given neuron (from the same domain) depends linearly
on current outdegree of target neuron (clustering, highly connected nodes
will attract yet more connections) and exponentially on euclidean distance
between new neuron and target neuron, euclidean distance between tar-
get neuron and domain BN (tendency to extend towards domain center).
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Moreover, the expected degree of new LN is dependant on it's proximity
to BN, which favors centrally located LNs above peripheral ones.

The described algorithm results in generation of topological reservoirs (see Fig.3.2)
with the following characteristics:

• Multiple domains connected only by means of backbone neurons. Each
of them contains complex diverse networks of local neurons. Such a hi-
erarchical, sophisticated structure is probable to o�er wider and richer
set of nonlinear dynamics, on which the output readout can be trained,
comparing to classic stochastic reservoirs.

• Reservoir is a scale-free network � the neural outdegree distribution (con-
nectivity distribution) follows power law, as in case of biological and social
networks. Di�erent neurons vary signi�cantly in terms of their degree and
localization, and thus can perform di�erent subtasks in the overall predic-
tion task. It enriches the set of the reservoirs nonlinear dynamics.

• Total connectivity is typically one magnitude sparser that normal ESN.
This makes even large reservoirs relatively economic in terms of computa-
tional resources.

• Network is stable even with signi�cantly larger spectral radius, than it is
possible in case of typical ESN. This is due to di�erent spectral distribution
of eigenvalues of connectivity matrix. The tolerance to higher spectral
radius enhances echo property, and hence can bene�t memory capability.

SHESN reservoirs are an interesting alternative for modelling of complex non-
linear systems. Similarly like decoupled reservoirs [16] they can be used to
construct mixture-of-experts type of models. Here, however, the experts (do-
main neurons) can communicate by means of the sparse backbone connectivity
to generate �nal response. In further sections of the thesis, we constrain our
considerations only to classic ESN models. Our goal is to concentrate on com-
mittee approach, and SHESNs would introduce additional parameters, making
our reasoning less transparent. We decided however to commit to them this
short section of the thesis, because their interesting characteristics were inves-
tigated during the project work and constitute promising alternative for the
future research.
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Figure 3.2: Topological visualization of exemplary SHESN - by Matlab (right)
and Guess (left). Level of shading indicates connection strengths, blue circles
denote backbone neurons.

3.3.2 Committee approach

Interesting alternative to using single network is a committee approach that
takes advantage of entire population of similar models. The concept of com-
mittee model is general and does not constrain to echo state networks. It can
comprise various models, either in homogeneous or heterogeneous setting. The
most general committee is described by the following equation:

y(u;D) =
∑
i

ωi(u,D)yi(u;D) (3.7)

where yi is the output and ωi input-dependent weight of i
′thmodel. The weights

ωi are often designed to be input-invariant, and are estimated in cross-validation
process. The most common approach is to set ωi =

1
M , whereM denotes number

of models in the ensemble. In this way we obtain simple averaging committee.

Committees of reservoir networks, both averaging and generalized, constitute
essential part of this thesis, and will be treated in detail in Chapter 4.
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3.4 Experimental time series

The ultimate goal for the system is to forecast the �nancial time series. However,
�nancial time series display highly nonlinear, chaotic behavior, and display large
noise. Therefore in this chapter we resort to simpler, arti�cially generated time
series, that will facilitate analysis of ESN dynamics and optimization. In the
following experiments we mostly utilize Mackey-Glass time series as well as non-
trivial harmonic time series. Experiments with �nancial time series will be the
main subject of Chapter 5.

Mackey-Glass timeseries Mackey-Glass (MG) time series are very com-
monly used in the publications committed to time series analysis and forecast-
ing. They are often considered as a benchmark of predictors accuracy. To
generate the series of any arbitrary length we will use Mackey-Glass nonlinear
time-delay di�erential equation of the form:

dx

dt
= β

xt−τ
1 + xnt−τ

− γx (3.8)

where xt−τ is a value of x at time t − τ , and other parameters are set as
follows: β = 0.2, γ = 0.1, n = 10. The variable x displays increasingly chaotic
behavior as the time lag parameter τ is incremented above 17. Fig. 3.3 displays
Mackey-Glass time series with several di�erent time lags. Note the increasing
complexity.

Complex periodic-derived timeseries Another time series that we will uti-
lize for testing and comparison are derived from periodic functions. In particular
the following three functions will be of our interest:

f(x) = 0.4sin(x+ 2) + 0.2sin(5x) + 0.1sin(11 ∗ (x+ 1)), (3.9)

f(x) = sin(x+ sin(x2)), (3.10)

f(x) = sin(
x

2
+ sin((

x

2
)2)), (3.11)

de�ned on discrete domain x ∈ {1, 2, 3, ..., n}. The time series are presented on
�g. 3.4.
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Figure 3.3: Mackey-Glass time series with varying time lag τ.

3.5 Performance metrics

In further experiments we will need objective measures of performance for
trained ESN predictors. In most cases Mean Square Error (MSE) will be pre-
ferred. However, depending on the experiment purpose or task requirements, we
might want to compute Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Signed Error (MSE), Mean Absolute Percentage Error (MAPE),
Mean Percentage Error (MPE). Other measures, that are more speci�c to �-
nancial domain and investment support simulation, will be introduced in section
5.2.

MSE and RMSE Mean Square Error (MSE) is one of the most commonly

used measures to estimate error of predictor θ̂ on dataset θ. The MSE is the
expected value of squares of di�erences between real values and predicted val-
ues, for each accounted sample. Value of zero signi�es perfect prediction. MSE
strongly penalizes the predictor for any forecast that is highly diverging from
the desired value (outliers). Depending on the experimental context this can be
advantageous or not. Alternatively Root Mean Square Error (RMSE) can be
used alternatively, which equals to root square of MSE. RMSE can be under-
stood as a Cartesian distance between vectors of desired and predicted outputs.



3.5 Performance metrics 27

0.
4s

in
(x

+
2)

+
0.

2s
in

(5
x)

+
0.

1s
in

(1
1*

(x
+

1)
) 

   
 

si
n(

x+
si

n(
x2 ))

0 50 100 150 200 250 300

si
n(

x/
2+

si
n(

(x
/2

)2 )

Figure 3.4: Periodic-derived time series of varying complexity.

MSE and RMSE are computed according to:

MSE(θ̂) = E[(θ̂ − θ)2] = E[(D − Y )2] =
1

n

n∑
i=1

(di − yi)2

RMSE(θ̂) =

√
MSE(θ̂) =

√√√√ 1

n

n∑
i=1

(di − yi)2

where n is the number of samples, D = {d1, ..., dn}corresponds to desired values
and Y = {y1, ..., yn} to the predictor outputs.

MAE and MSE Other commonly used error measures are Mean Absolute
Error (MAE) and Mean Signed Error (MSE). These error measures re�ect ex-
pected value of di�erence between desired and predicted values, while the former
accounts for absolute di�erences and the latter for signed di�erences. MSE can
be helpful to determine whether predictor θ̂ has biased or unbiased output.

MAE(θ̂) = E[‖θ̂ − θ‖] = E[‖D − Y ‖] = 1

n

n∑
i=1

‖(di − yi)‖
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MSE(θ̂) = E[θ̂ − θ] = E[D − Y ] =
1

n

n∑
i=1

(di − yi)

where n is the number of samples, D = {d1, ..., dn}corresponds to desired values
and Y = {y1, ..., yn} to the predictor outputs.

MAPE and MPE In many contexts it will be useful to measure predictor
error as a relative value to the desired value, rather than as an absolute value.
That provides a performance measure independent of input/output signal mag-
nitude. Furthermore, percentage error estimation might be practical in certain
�nancial domain applications. Hence we will frequently refer to Mean Absolute
Percentage Error (MAPE) andMean Percentage Error (MPE), that are relative
error measures corresponding to MAE and MSE, respectively.

MAPE(θ̂) = E[‖ θ̂ − θ
θ
‖] = E[‖D − Y

Y
‖] = 1

n

n∑
i=1

‖ (di − yi)
yi

‖

MPE(θ̂) = E[
θ̂ − θ
θ

] = E[
D − Y
Y

] =
1

n

n∑
i=1

(di − yi)
yi

where n is the number of samples, D = {d1, ..., dn}corresponds to desired values
and Y = {y1, ..., yn} to the predictor outputs.

3.6 Model analysis and experiments

In the following subsections we shall perform di�erent experiments to show
dynamic characteristics of ESNs. Several important aspects of the networks
training and exploitation will be considered, such as stability issues, over�t-
ting, trajectory projection. Parametric optimization will be discussed. However
we should note here, that the main goal of the project is combining models
into higher hierarchical committee structures. Hence the optimizations in this
chapter do not exhaust the subject, but rather are supposed to give better un-
derstanding of dynamics of our base model. This seems reasonable, since many
aspects of stability and optimization discussed here generalize to committee
level. The committee approach is a subject of Chapter 4.
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3.6.1 Reservoir dynamics and stability

In this section we shall look closer at several essential aspects of reservoir dy-
namics. At this stage we do not attempt to train the readout yet, but instead
concentrate on the most important parameters in�uencing the reservoir network
and the individual neurons. Such experiments and analysis constitute an im-
portant part of the initial stage of working with echo state networks, since they
give a good overall understanding of the complex dynamics of reservoirs. In
the further sections of the thesis, this understanding will often in�uence design
decisions.

Reservoir size Usually the �rst design step is a selection of reservoir size
N . The value is essential for at least two reasons. Firstly, N corresponds
to the e�ective number of parameters of the model, because there is exactly
one trainable output weight associated with each reservoir neuron. Therefore
higher N increases the capability of network to model more complex systems.
Di�cult tasks tend to require larger reservoirs. Secondly, N constrains the
maximummemory capacity of the network (whereas the dynamic memory e�ects
are governed by spectral radius as we shall see later).

It could indicate that larger reservoirs are always bene�cial. Adding additional,
randomly connected neurons enriches the bucket of nonlinear transformations
of input signals, that can be used to construct the output signal. As we shall see
in further sections, this is true provided that regularization is employed in the
training process. Otherwise, excessive number of parameters may bring up the
problem of over�tting. The optimal value for N is a function of task complexity
and the size of the available training data. Usually a good initial guess is to set
N to approximately 20-50% of the training data size.

Besides, another factor that in certain cases may in�uence the choice of reser-
voir size is computational constraints. In this aspect we notice a signi�cant
advantage of ESN networks. The training complexity is only linearly dependent
on the number of neurons, while such dependence is quadratic in case of classic
recurrent neural networks, trained with gradient decent methods.

Connectivity ratio and spectral radius The most desired characteristics
of a �good� reservoir is stable behavior and richness of nonlinear transforma-
tions of the input signals. Considering speci�cation of reservoir construction
(section 3.2), stability of the system is primarily a matter of proper adjustment
of spectral radius ρ, which corresponds to the highest eigenvalue of connectivity
matrix Wres. The su�cient condition is that ρ < 1. However the condition is



30 Reservoir Computing and Echo State Networks

not necessary, and reservoirs with higher spectral radii may, but do not have to,
be stable as well. Another parameter, connectivity ratio c of the reservoir, has
the secondary importance considering stability, because it is always followed by
scaling of Wres matrix, so that ρ remains on the desired level. As a result, for
a given value of ρ the network will be either densely connected with low con-
nection weights, or more sparse with higher connection weights. The stability
will be maintained in either case, however other characteristics of the network
will change, e.g. excessive connectivity ratio will lead to stronger coupling of
neural internal states and reduce reservoir diversity. It is common to hold the
connectivity ratio on a constant, low level (usually 0.01−0.2), while the spectral
radius is optimized to given task (usually 0.5− 1.0). In that way the richness of
the internal nonlinear states is ensured by sparse connectivity, while the optimal
memory e�ect is determined by �nding the proper spectral radius.

Fig.3.5 shows typical stable behavior of arbitrary neuron, after feeding network
with low frequency square signal. The reservoir behaves like excitable medium
and presents dampening behavior - initial oscillations after the input impulse
are gradually suppressed and stable state is �nally reached. The oscillations
can be also interpreted as �echo states�, or re�ection of the input and state
history. Spectral radius in this case was �xed at ρ = 0.9. Fig.3.6 illustrates the
signi�cance of the spectral radius for system stability. The same square signal
is placed on the input, and we observe internal states of four arbitrary reservoir
neurons. For moderate value (ρ = 0.8, left column) the reservoir is input driven,
and transition to stable state is almost immediate. When ρ = 1.0 oscillations
need long time to converge to constant level and system is working close to the
edge of stability. Further increasing of ρ leads to more autistic behavior of the
reservoir, since it ampli�es and maintains bounded oscillations even though the
input is hold constant. The reservoir is driven primarily by its previous states.
The �nal column shows unstable dynamics for ρ = 1.5. The neurons oscillate
widely between the extreme values of sigmoid activation function. Amount of
information that can be encoded in this setting is limited. Further increasing of
ρ would prevent the reservoir from stabilizing even if input was removed, due
to amplifying echo states.

Input scaling Another aspect that has strong in�uence on reservoir dynamics
is the scaling factor of input and feedback signals. The idea behind is that due
to sigmoid activation function of the neurons, the scale of input signal will deter-
mine whether the system works in linear mode (input will use only linear region
of sigmoid function), binary mode (large input will drive the neural outputs
to extreme values of sigmoid function {−1, 1}), or nonlinear mode (optimally
scaled input uses entire curvature of sigmoid activation function). The last mode
is generally desired when modelling chaotic systems. Fig.3.7 illustrates the ex-
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Figure 3.5: Neural state oscillations and convergence to stable state, after square
wave excitation of the reservoir (spectral radius p = 0.9).
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Figure 3.6: Stability of neural states as the spectral radius increases.

emplary input and output of the network, and activations of several arbitrary
neurons working in linear, binary and nonlinear mode. Note that output is not
trained yet at this stage.

To be precise, not only the global input scaling is important, but also the local
scaling, which is regulated by input weights vector and feedback weights vec-
tor, i.e. Win and Wback. Since those vectors are initiated randomly from the
range [−1, 1], the proper global scaling should ensure that reservoir contains rich
combinations of neurons ranging from linear, through nonlinear to the binary
ones. It is the common practice to set global input scaled to the ranges between
〈−5, 5〉 or 〈−1, 1〉, depending on how much nonlinearity is needed. However,
to achieve the best performance, scaling can be a subject of further optimiza-
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Figure 3.7: Input scaling and resulting reservoir mode (from top: linear, non-
linear, binary). Example for simple sine signal on the input.

tion. Especially high dimensional multivariate input may require corrections to
the scaling. Furthermore, adjustment of input scaling and spectral radius can
determine whether the reservoir is input driven or rather intrinsic-state driven.
Low-volume external input combined with large spectral radius will make the
neurons regulated mostly by the inputs coming from the neighboring neurons,
and hence the entire network will be less reactive and more autistic. On the
other hand, high-volume external input and large spectral radius will increase
the risk of instability.

Conclusions The purpose of this short section was to illustrate selected as-
pects of reservoir dynamics, but also to justify design choices that will be appear-
ing in futher parts of the project. As we have seen, there are several parameters
that can be adjusted to improve the model. Those adjustments are very task
speci�c, and �no-free-lunch� rule applies. However, based on experience from
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reservoir analysis, several good design principles can be derived. In particu-
lar, we speci�ed decent estimates for starting values of the parameters, which
will often lead to reasonably good performance. In some experiments we might
indeed want to optimize those values, to �nd the optimal model. However in
many others cases, our task will be to illustrate certain problem or regularity,
and not necessarily to �nd the state-of-art model. In such cases, we will simply
resort to those good-guess parameters, and concentrate on other aspects of the
experiment.

3.6.2 ESN training for time series forecasting

Having introduced the essential paradigms and observed some basic dynamic
features of the reservoir, let us now de�ne a typical training task. We will
generate training/validation/testing datasets, construct an ESN network and
train the readout layer to make a single-step ahead prediction. We will observe
the results both visually and in terms of MSE error, as de�ned before. This
example will give us insight into the routine, that will be many times repeated
in similar form through the rest of the thesis, when we address such issues as
parameter optimizations, committee approach and �nancial forecasting.

Data preparation MG70 time series (as de�ned in section 3.4) will be used
for the purposes of this experiment. The �rst step is to split available data
to training samples, validation samples (optionally), and testing samples. We
assume the limited dataset of 800 training samples and another 400 for testing.
From the training dataset the �rst 50 samples will be used to wash out the initial
random state of network, next 600 for the actual training and 150 for validation
(see Fig.3.8). In fact, validation data can be omitted, but in such case we loose
the ability to estimate generalization ability of the predictor. The validation
becomes essential in case if we need to optimize regularization parameter of
the ridge regression, or other parameters of the system. After validation is
�nished, the validation samples can be concatenated with the training dataset,
and network system can be retrained, so that no data is wasted. This will be
our common routine. The training data is assumed to be unknown a priori, and
therefore cannot be used for any design or optimization decisions. A teacher
dataset also needs to be created, which in this case corresponds to the input
data shifted by one position backwards. The data is scaled and normalized to
the range [−1, 1].

Network preparation In the next step, ESN model is constructed following
the procedure outlined in section 3.2. In this experiment we do not concentrate



34 Reservoir Computing and Echo State Networks

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

 

 
MG70
training
validation
retraining
testing

Figure 3.8: Mackey-Glass (τ=70) time series used in the experiment - split of
samples into training/validation/testing datasets.

on optimization parameters but take typical values N = 400, p = 0.9 and
c = 0.05, as justi�ed in section 3.6.1. The network will receive one input time
series (MG70) and constant bias signal. Only one readout will be trained to
make a single-step ahead prediction of the target (teacher) signal.

Training and regularization The training starts from feeding the available
data to the network inputs, collecting the state matrix (see section 3.1), and
�nally computing the output weights vectorWout with regression. We could use
simple least-squares regression with pseudo-inverse matrix calculation ([1]) for
this purpose. This can however lead in certain circumstances to over-�tting, as
we shall see in the next sections. Basically, over-�tting is a problem of exces-
sively large weights, resulting from precise matching the model to the training
dataset, including its random noise and oscillations. It has a negative impact
on generalization ability.

Alternatively, we can employ ridge regression method [24], which involves reg-
ularization. The regularization parameter λ will penalize large weights, leading
to more conservative outputs. Although training error will increase, the valida-
tion error will be reduced due to changing the ratio between the variance and
bias components of the output error. This is known as a bias-variance trade-o�.
Finding the optimal bias-variance ratio for a given task requires however a care-
ful optimization of the regularization parameter λ. Too large λ will excessively
shrink the response, while too small λ will give results comparable to those of
simple least-square regression.

The optimization of regularization parameter is accomplished by multiple train-
ing of the readout matrix Wout, in every iteration incrementing λ with logarith-
mic step 0.5 in the range

[
10−8, 102

]
. The resulting performance is evaluated on

the validation dataset. For better accuracy, cross-validation scheme can be used.
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The regularization parameter resulting with lowest validation error is considered
as the optimal one (λopt), and is later used to retrain the network - this time on
a concatenation of training and validation datasets. The regularization will be
our common routine when working with single-model predictors. However, as
we shall see in Chapter 4, advantage of regularizing individual networks is not
that obvious in case of combined models, such as averaging committees.

Results and discussion Having trained and optimized the network, let us
now discuss the obtained results. At �rst, we shall look at the e�ect of reg-
ularization on generated the output weights vector Wout. We will compare
our trained network with another, structurally identical network, which was
trained with classic least-squares regression. Fig.3.9(top chart, solid line) shows
the process of optimizing regularization parameter, i.e. searching for optimal
value of λ. It is clearly visible, that the validation MSE error is minimal for
λopt = 10−0.5 ≈ 0.32. Taking either too high or too low values will degrade
the performance. Using λopt to ridge-regress the output, we obtain superior
performance of the system over that of the non-regularized ESN - the testing
errors are indicated by dashed lines.

The two other charts of Fig.3.9 present weight vectors Wout obtained with ridge
regression (middle chart) and least-squares regression (bottom chart). Ridge
weights have signi�cantly narrower Gaussian distribution, and lower mean of
absolute values. This is the e�ect of regularization, that penalizes the large
weights.

Fig.3.10 shows the input and output of the network, including 50 last samples
of training data and 150 samples of validation data. At the time step t =
650 the �rst regression was performed, therefore we see clear change in the
generated output, which starts to re�ect the desired target signal. The output
is now an optimal, linear combination of the activations of reservoir neurons.
Several exemplary neurons are displayed below input/output plots, showing rich
diversity of nonlinear transformations of the input signal.

To evaluate the model quality, we need to observe its prediction accuracy, i.e.
how well it can model the testing range of the time series, that has not been
exploited during the training. In other words, we observe how much the trained
network output Y diverges from teacher signal D. In section 3.5 we introduced
di�erent error measures, that can describe prediction accuracy in a quantitative
way. The mean-squared error (MSE) is the most important measure for our
purposes, that will be frequently used all through this thesis, for design decisions,
optimizations and comparative studies. Other error measures can be useful in
certain situations, especially RMSE or MAE, that have the advantage of being



36 Reservoir Computing and Echo State Networks

10−8 10−6 10−4 10−2 100 102
0.01

0.02

0.03

0.04

regularization parameter λ

M
S

E

 

 

−4

0

4

W
out

 ridge regression with λ
opt

50 100 150 200 250 300 350 400

−4

0

4

W
out

   least−squares regression
0 50

ridge (test MSE)

pinv (test MSE)

ridge optimization (validation MSE)

λ
opt

Figure 3.9: Optimization of regularization parameter λ (top), ridge regression
weights distribution (middle), least-squares regression weights distribution (bot-
tom).

measured in the same unit as the signal itself. Table 3.1 presents prediction
errors that were obtained in the experiment. The errors for non-regularized
model (trained with least-squares regression) and regularized model (trained
with ridge with optimized λ) are compared.

Table 3.1:
misc

Page 1

Time series MSE RMSE SMAPE MAE

ridge optimized 0,020 0,143 18,95 0,113

least-squares 0,028 0,167 21,82 0,125

Fig.3.11 illustrates the output of regularized network, set together with the
teacher signal. The �rst 200 samples of the training dataset are in focus. It seems
that the network achieved reasonable accuracy and managed to capture chaotic
dynamics of MG70. However, we shall soon see that we can obtain signi�cantly
better results, in terms of MSE error. First of all, careful optimization of network
parameters would boost the performance, this will be a subject of section 3.6.4.
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Figure 3.10: ESN training results - input, output, and exemplary neural activi-
ties. E�ects of readout regression visible from time point t = 650.

Secondly, individual ESNs can be combined into voting collectives. We will
treat the topic in detail in Chapter 4. Finally, in further experiments we will
show that optimal prediction horizon k for cyclic or seasonal time series is often
higher than 1. For instance, the optimal prediction horizon for MG70 is k = 12,
which means that the best approach is to train the network to forecast 12-steps
ahead.

3.6.3 Trajectory projection

So far we have been concentrating on prediction of the next value of given target
time series, so that yt ≈ dt, based on recent input history U = {u1, ..., ut−1, ut}
available at time t. In particular, target signal may correspond to the next value
of input signal, that is dt = ut+1. While in many prediction tasks such one-step-
ahead prediction will be su�cient, some others will require a projection of entire
trajectory of k subsequent values of target signal Ytraj = {yt, yt+1, ..., yt+k−1} ≈
{dt, dt+1..., dt+k−1}. If this is the case, there are two alternative techniques
that can be employed: feedback-loop recursive prediction and multiple-readout
trajectory prediction.

Feedback-loop recursive prediction Using this technique, the trajectory
is projected by recursive feeding recent the outputs to the network inputs, and
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Figure 3.11: ESN training results - trained output vs. teacher signal. Compar-
ison for the �rst 200 testing samples.

updating the states respectively, so that the network works in a closed-loop
generator mode. In particular, the input term ut+1 in the equations 3.3 and 3.4
is replaced with the output term yt. In this mode, it is essential that all the
input terms are predicted by the output, so that yt ⊇ ût+1 ≈ ut+1, where ût+1

is a prediction of next input value. If the input is multivariate, it implies that
multiple readouts need to be trained.

The advantage of the method is its conceptual simplicity and speed of training
in case of univariate or low-dimensional inputs. In certain cases it may have
better prediction accuracy than the alternative method, especially in long-term
trajectory projections if one-step-ahead forecast can be done precisely. The
drawbacks of the method is that all the input signals need to predicted, even if
they are not a part of the target signal. Moreover, prediction error is propagated
in every step. The error will quickly accumulate if the data is noisy, especially in
case of multivariate input, where every predicted variable introduces additional
error term.

Multiple-readout trajectory projection In the contrary to feedback-loop,
this technique immediately predicts the entire output trajectory. This is achieved
by training k independent outputs, each regressed to predict i′th step-ahead
value of the target signal, where i ∈ {1, ..., k}. In other words, k-dimensional
output corresponds to predicted future trajectory of the target signal, up to k
steps ahead.
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The signi�cant advantage of the method is that it helps to identify the predic-
tion horizon that will give statistically most accurate prediction (critical point),
which is task-speci�c and often di�erent that 1 due to cyclic or seasonal de-
pendencies. We will demonstrate in section 3.6.4 that prediction error in such
critical points can be signi�cantly lower than in the surrounding points. Another
bene�ts of the method are clear if we consider high-dimensional multivariate in-
put. Only the target signal must be predicted with this method, in the contrary
to feedback-loop trajectory predictions. On the other hand, the method will not
be very practical if very long trajectories need to be predicted, since that would
require training of many readouts.

Exemplary trajectory The multiple-readout method will be preferred in our
further work, for several reasons. First of all, both MG time series and �nancial
data series contain cyclic and seasonal dependencies that will desirable to detect.
Secondly, �nancial time series involve substantial noise, what together with
multivariate input makes feedback-loop trajectory forecasting rather ine�cient.

Fig. 3.12 shows 30-steps trajectory projections for various time series. For each
time series 50 trajectories are plotted, computed by independent echo state
networks. The precision of projections deteriorates along with complexity of
the tasks (MG20-MG70), what is re�ected by increasing variance of individual
responses. Furthermore, the regularized networks (left-hand side plots) are more
precise and display lower variance, than the non-regularized networks (right-
hand side plots). While this is desired in case of individual networks, the issue
is rather non-trivial in committee settings, where member variance can give
certain bene�ts. We shall discuss those issues in Chapter 4.

Optimal prediction horizons (critical points) Observation of trajectory
projections indicates that variance of individual network outputs is dependent
on prediction horizon, however the uncertainty of prediction is not necessarily
growing monotonically as the prediction horizon increases. To justify this state-
ment, we will repeatedly generate 30-steps-long trajectories (such as showed
by Fig.3.12) through entire testing dataset, what will result in 370 projections
on the sample ranges 801, ..., 830, 802, ..., 831, ..., 1171, ...1200. Moreover, all the
projections will be repeated by employing 50 independent networks. Finally,
for each prediction horizon h ∈ {1, ..., 30} statistical prediction error will be
computed by averaging through all 371 projections and 50 networks, so as to
eliminate random in�uence of data subsets or networks. As a result, we ob-
tain statistically credible evaluation of prediction MSE as a function of predic-
tion horizon and hence we can estimate the optimal prediction horizons (see
Fig.3.13).
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Figure 3.12: Trajectory projection with multiple-readout method. Left column
presents regularized ESNs, right non-regularized. Each chart plots trajectories
generated by 50 independent ESNs. Red dotted line denotes target signal.

Observing the results, we clearly see that the best prediction accuracy is not
always achieved with one-step-ahead prediction (h = 1). Instead, it depends
the dynamics of the underlying system and on the predictor characteristics.
The former could be estimated with help of autocorrelation function, however
to account for the latter we need to perform experiments as described above.
Besides, by training multiple readouts we automatize the process and do not
need to apply additional autocorrelation analysis.

Often the time series with seasonal or cyclic dependencies have the optimal
prediction horizon for h > 1. This is also the case of the MG timeseries, due
to xt−τ component (see Table 3.2). We will call those prediction horizons as
�optimal prediction horizons� or �critical points� and denote them with hopt.
Those points will be observed with special attention in further experiments,
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because they give the minimum mean squared error of the prediction. Therefore
they would be primarily used for the target signal reconstruction. We can easily
identify those points, since as a common routine we will train multiple readouts
for subsequent prediction horizons, just as we do while projecting trajectory
with multiple-readout method.
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Figure 3.13: MSE error as a function of prediction horizon hopt. Each chart
is generated by averaging through 371 trajectories trajectories generated by 50
independent ESNs. Red dotted lines denote min/max errors achieved for given
h by one of the ESNs.

Combining methods Considering possibility of hopt being greater than 1,
in certain cases it could be bene�cial to combine the feedback-loop recursive
method with multiple-readout trajectory projection method. The optimal pre-
diction horizon hopt should be �rst estimated with multiple-readout method.
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Table 3.2: Optimal prediction horizons (hopt) for selected time series.

Time series: SINQ MG20 MG30 MG50 MG70

Critical point: 1 3 5 8 12

Following that, the readout corresponding to hopt can be used with feedback-
loop method to project the future trajectory. In such case, in time step t the
network receives on input its output from hopt steps earlier, and produces new
output yt that will be �rst used hopt steps ahead. Strictly speaking, we would
have yt ⊇ ût+hopt ≈ ut+hopt , where ût+hopt is a prediction of the input value hopt
steps ahead. We keep this method in mind as a potential tool for projecting
long trajectories, however we do not further elaborate it at the current stage.

3.6.4 Optimization and regularization

For the purpose of optimization considerations, we will use several distinct
Mackey-Glass time series - MG20, MG30, MG50, MG70 with time lags τ =
{20, 30, 50, 70}, respectively, as de�ned by equation 3.8. Instead of producing
arbitrarily long time series, we assume limited availability of data, which is of-
ten the case in the real engineering applications. We assume to have 800 data
samples available for the training and another 400 samples to test the system.
We split the data in proportions 50/750/400, meaning that initial 50 samples
were used to �ash out random initial states of ESNs, 750 samples were used
for members training, and 400 samples served to evaluate the performance. In
case of the regularized ESNs, the last 150 samples of the training data set are
used for cross-validation estimation of optimal λ, as was discussed in section
3.6.2. Another time series that will be used as a benchmark is a sine-based sig-
nal, de�ned earlier by equation 3.10. This time series is an example of linearly
generated data without noise, but displaying interesting oscillating behavior. It
is not trivial to forecast accurately, unless the training data is su�ciently long.
Here we split the data in exactly the same proportions as in case of MG datasets
- 50/750/400.

Reservoir size and regularization In section 3.6.2 we have already dis-
cussed training and regularization, taking arbitrary network as an example.
Now we shall present more general and statistically correct analysis. In the
�rst step, we shall look at two essential factors in�uencing ESN performance
- model size (reservoir size, N) and regularization, while holding spectral ra-
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dius and connectivity ratio on �xed levels, that is ρ = 0.9 and c = 0.05. Since
there is no regularization, we should be able to see the e�ect of over-�tting if
the reservoir size becomes too large, in particular if the number of neurons gets
close to the number of training samples available. Remembering that our train-
ing data is limited to 750 samples, we will consider reservoir sizes in the range
N ∈ 100÷ 800, which should suggest us the optimal size but also illustrate the
e�ect of over-�tting. Fig.3.14 (left-hand side plots) presents performance of in-
dividual nonregularized ESNs on the Mackey-Glass time series (results limited
to the optimal prediction horizons, see Table 3.2). Indeed, we see that testing
error starts to increase when the reservoir grows above its optimal size, which
varies between 250 and 500 neurons, depending on the time series. The over-
�tting is particularly visible when N ∼ 750, since the state-collecting matrix
becomes nearly square and regression tends to excessively amplify the noise of
training data set. It corresponds to 30-60% of the available training samples.
In other words, if the number of model parameters is equal to the number of
training samples, regression almost directly maps the training data samples onto
the outputs, at the cost of oversized weights and degraded generalization abil-
ity. Interestingly, if the number of neurons is increased further, the excessive
neurons begin to regularize the outputs, what is re�ected by decreasing testing
error when N > 750. We will come back to this aspect in more detail when we
discuss committee optimization in Chapter 4.

For the contrast, the right-hand side plot presents performance of the identical
ESNs, but this time optimally regularized. We observe asymptotically decreas-
ing testing error and larger optimal values for the reservoir sizes. Furthermore,
the regularized ESNs achieve lower MSE than the non-regularized. However, as
we shall see in Chapter 4, it does not always apply to ensembles of ESN models.
For know we conclude that both reservoir size and regularization have essential
in�uence on ESN performance. Since reservoir size may display regularizing ef-
fect, we will usually consider reservoir size N in conjunction with regularization
parameter λ when optimizing.

Spectral radius and connectivity ratio The other two parameters that
we shall consider together, are connectivity ratio c and spectral radius ρ. The
dependence between them was already discussed in section3.6.1. We mentioned
that spectral radius should be set low enough to ensure stability of the system,
and high enough to provide su�cient memory e�ect (echo property). Adjust-
ment of c with invariant ρ balances the relation between density and average
strength of connections. We shall look now at how those factors in�uence the
performance of ESN network in particular prediction tasks.

The same time series will be used as previously - MG20, MG30, MG50, MG70.
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Figure 3.14: ESN performance. Examples for following time series (from top):
MG50, MG70, MG30, MG20.

The data split into training/testing samples, as well as the training routine will
be identical like before. For each of the time series the optimal reservoir size will
be selected and kept invariant, based on results of the previous experiment (Fig.
3.14, left-hand side). We shall constrain now to non-regularized networks. The
spectral radius will be varied in the wide range ρ ∈ [0.2, 1.3] and connectivity ra-
tio in the range c ∈ [0.01, 0.20]. We will perform a grid search of the parameters
yielding optimal performance, in terms of MSE on the testing dataset. For each
combination {ρi, ci} �ve networks will be trained and evaluated, and the �nal
MSE error will be averaged through all the trials. The results are summarized
by Fig.3.15.

The results lead to several conclusions. First of all, it is clearly visible that
there is an optimal range of spectral radii, approximately ρ ≈ 0.5 ÷ 1.0, and
either lower or higher values will degrade performance due to reasons pointed
out earlier. Secondly, varying connectivity ratio between 1%−20% has minimal
impact on the �nal performance. This justi�es our decision to keep c invariant in
the further experiments, and instead concentrate on optimizing other parameters
like reservoir size, regularization parameters, and in certain cases spectral radius.
The connectivity ratio will be �xed on c = 0.05. Finally, we observe signi�cant
robustness of the reservoir network, in respect to connectivity ratio and spectral
radius. The similar e�ciency is achieved for relatively wide ranges of c and
ρ. As a result, it is relatively easy to obtain the reasonably good reservoir for
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given task, and optimizations are only needed if the task requires state-of-art
performance.
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Figure 3.15: ESN optimization of spectral radius and connectivity. Results
for MG20, MG30, MG50, MG70 tasks, with optimal reservoir sizes N =
{500, 300, 250, 350} respectively.

Other parameters, such as scaling and shifting the inputs, could be optimized
in the similar way. However, exhaustive grid search is computationally demand-
ing, and therefore other techniques are often applied - for instance analytical
methods, heuristics, or evolutionary algorithms [9, 20].

3.7 Summary

In the Chapter we discussed the most important aspects of echo state networks,
such as stability issues and reservoir dynamics, training methods, regularization
and optimizations. We certainly did not exhaust the topic and neither was it our
objective. Instead we refer the reader to numerous publications treating the ESN
design issues in detail (section 3.1). Our goal was to introduce and give insight
into the model that constitutes the base element of the voting committees, that
we introduce in Chapter 4. Furthermore, we introduced and discussed several
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routines and concepts, that will be appearing repeatedly through the rest of the
thesis, such as cross-validation, ridge regularization and over-�tting, prediction
error metrics, trajectory projection, critical prediction horizons.



Chapter 4

Reservoir Committee

Methods

The purpose of this Chapter is to organize populations of echo state networks
into larger structures, that we will refer to as �reservoir committees�1. Commit-
tees, as well as mixtures of experts, were already reported to be used in con-
junction with echo state networks, but little research was done to thoroughly
compare di�erent types of such structures and focus on important design con-
siderations related to this approach.

In the engineering applications it is common to train multiple models to solve
given task (possibly varying parameters), and then use the best found model as a
predictor. Other approach is to utilize all (or selected subgroup) of trained mod-
els by combining them into a voting committee. In majority of cases, the system
output is computed simply by averaging individual outputs. Since reservoir is
randomly initiated every time, each model will display slightly di�erent dynam-
ics and temporal characteristics, and therefore averaging will help to eliminate
variance component from the error. However, some of the models will be more
adequate to given task than the others. This di�erence will be even more visible
in case of heterogeneous committees, where members di�er in terms of parame-
ters used to generate reservoirs, or in terms of inputs they receive. Theoretically,

1Note that the terms: ensemble, committee and (voting) collective are used interchangeably
and refer to the same concept
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it should be possible to exploit such variance to predict target signal more ac-
curately. An e�cient ranking algorithm should properly identify best �tting
members and reward them with higher weights. Simultaneously it should �lter
out or suppress the outlier members that perform particularly poor. As a result,
di�erent members will contribute to �nal forecast with di�erent intensities. In
certain circumstances such solution can be more e�cient than distributing equal
votes to all the members without considering their performance.

Those approaches will be evaluated in the subsequent sections of this chapter.
We start from short review of methods for combining models in section 4.1.
Following that, in section 4.2 we introduce ranking algorithms that constitute
interesting alternative to averaging committees. Section 4.3 presents results of
comparative empirical studies. We discuss here di�erent types of committees
and highlight several important design considerations. Section 4.4 concludes the
Chapter.

4.1 Committees and combining models

Various techniques were developed to improve prediction performance by com-
bining several models into larger scale hybrids. Below we brie�y review this
methodology. We do not constrain to ESN models. In fact, any simple or com-
plex model can be used as a member of such hybrid, including linear regression
models, classi�ers, probabilistic models, neural networks, expert systems or even
constants.

The most common approach is a simple averaging committee [27]. An averaging
committee combinesM members, either homogeneous or heterogeneous models,
and produces output by averaging the individual outputs:

ycom(x) =
1

M

∑
i

yi(x) (4.1)

Averaging committee is easy to create and in many cases will perform surpris-
ingly well. By incorporating a range of similar members and averaging their
outputs, the prediction error can be minimized due to reduced variance of in-
dividual outputs. Averaging acts as a regularizer and by smoothing the output
it prevents over�tting. It can be shown that in the ideal case, assuming uncor-
related member errors with zero average, the committee can reduce prediction
error by factor of M [25]. This however never happens in practical situations
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and the error correlation can be quite signi�cant. Nevertheless, the committee
usually outperforms average members, and even the best �tting members.

To construct a committee, we need a selection of members trained on the same
task, but varied in terms of dynamics. The variance can be obtained either
by diversi�cation of the members intrinsic structure, or with help of bootstrap
aggregation, where the members are structurally identical by trained on di�er-
ent subsets of the training data. In case of ESN models, such variance arises
naturally because every time when a new network is created, its reservoir is
generated randomly with respect to given parameters.

The concept of committee can be easily generalized by replacing simple output
averaging with weighted averaging . The output of such a generalized committee
[27] is de�ned as:

ycom(x) =
∑
i

ωiyi(x) (4.2)

where ωi is a weight associated with i
′th member and can be selected arbitrarily

with constraint
∑
ωi = 1. In practice, �nding e�cient committee weights can

be a non-trivial task. Similar problems need to be faced as in case of model
training, in particular over-�tting. In fact, estimation of committee weights will
be the subject of section 4.2 of this paper.

Another interesting combination of models is known as adaptive mixture of
experts [28]. Similarly like a committee it combinesM members, but the overall
output is determined by input-dependent gating function. The members are
trained as experts in particular regions of input space, while the gating function
is trained to select appropriate expert depending on which region current input
belongs to. The output of mixture of experts is de�ned analogously to that of
generalized committee, except that constant weights are replaced with input-
dependent mixing coe�cient αi(x):

ymix(x) =
∑
i

αi(x)yi(x) (4.3)

The gating function may have 'hard' or 'soft' form, i.e. only one best-matching
expert is selected, or several are selected, each with di�erent weight. The concept
of mixtures is taken even further with hierarchical mixtures-of-experts [29]. In
fact, ESN based mixture of experts was already investigated in [23], where the
expert functionality as well as the gating function were delegated to distinct
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echo state networks. In another work [16], mixture of experts was modelled
with help of lateral inhibition between competing ESN experts.

Another way of connecting models is represented by boosting [30, 31] or cor-
rective chains. With boosting method, models are trained in sequence in the
way that every next iteration takes consideration to the training dataset, but
also to the error information coming from the previous iteration. For instance,
the original data samples can be associated with weighting coe�cients, which
depend on the performance of the previous iteration predictor on those samples.
In this way, subsequent predictors become more sensitive to those regions of the
data that were poorly learnt by the previous ones. Final response is computed
either as a weighted average of all members in the chain, or as the response of
the last member in the chain, which in theory should account for the expertise
of the previous ones. Boosting method was shown to perform well even if base
models are non-optimal, weak learners. Corrective chains have similar purpose
as boosting, yet work in slightly di�erent way. Again models are trained in
sequence, but every subsequent member intends to predict the error term of the
previous one. Hence, when the training is �nished, adding the outputs of the
subsequent models to the output of the �rst one should compensate for its error.
Promising results were reported after implementing this method with ESN as
the base model [22].

For completeness we should also mention decision trees, or tree-based models,
that are primarily used in classi�cation tasks of limited complexity. Those mod-
els split input space into �nite number of regions, and assign a model (usually
simple, e.g. constant) to each of them. Once the tree is constructed, the appro-
priate model for given input is found after traversing the tree, what corresponds
to taking sequential discriminative decisions in the input space.

Some other solutions, that do not �t to one of the aforementioned categories,
can be generally referred to as modular or hierarchical systems. Those systems
implement divide-and-conquer strategy to split a problem into a set of related
subproblems, and handle each of them with a separate model. The models
can be independent or arbitrarily connected, including complex structures with
recursive dependencies. The approach has a large potential, and in theory can
simulate any complex, chaotic system with arbitrary accuracy. On the other
hand, it introduces multitude of additional parameters and therefore training
and optimization can be complicated. Prior domain expertise is usually required
for successful implementation.

As we can see, wide range of possibilities have been investigated to boost accu-
racy by combining multiple models. Some of the hybrid solutions overpass the
boundaries and hence can not be clearly classi�ed to just one of those categories.
The family of combined models becomes even richer if we consider variety of
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models that can be utilized as base components, sometimes in heterogeneous
ensembles.

The models that we investigate in this thesis belong to the group of simple com-
mittees and generalized committees (Eq.4.2). Apart from averaging committees
we will investigate several algorithms to determine committee weights ωi with
the purpose of improving performance. Since the sole task of those algorithms is
to rank the members, we will refer to the resulting committees as �ranked com-
mittees�. If we consider the ranked committees in a broader perspective and
allow them to have heterogeneous members and multivariate inputs di�erently
distributed between the members, they can be also classi�ed as a mixture of
expert with input-invariant mixing coe�cient.

4.2 Ranking algorithms

Strictly speaking, the task of a ranking algorithm is to determine a committee
weights vector Wcom = [ω1, ω2, ..., ωM ] where ωi is a weight (or voting share)
assigned to i′th member of the committee2. The vectorWcom should be normal-
ized so that

∑
ωi = 1. In that way, the �nal committee output can be computed

as a weighted average of the member outputs:

Ycom(t) =Wcom × Ymem(t) (4.4)

where Ymem(t) = [y1(t), y2(t), ..., y3(t)]
T
is a vector of member outputs at time

t.

Each of the proposed algorithms consists of three phases: (1) training and op-
timization of the members, (2) evaluation of committee ranking vector, and (3)
retraining the members on entire dataset including validation samples. The
main challenge is to �nd e�cient ranking vector Wcom. In case of simple av-
eraging committee, the vector simply assigns equal weights to all M members:
W com =

[
1
M , 1

M , ..., 1
M

]
. Below we propose alternative methods to determine

Wcom.

2Committee weights vector can be also referred to as �ranking vector� or �voting share
vector�
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4.2.1 Exponential ranking algorithm

The exponential method ranks the members based on their validation perfor-
mance. Therefore, the �rst step involves training all the members and computing
the corresponding validation errors, as explained in section 3.2. Either regular-
ized or non-regularized networks can be used, and the advantages of both will
be discussed later. If regularization is performed, it will use the same validation
data as the committee ranking algorithm.

Once all the committee members are trained, the ranking can be computed.

The validation errors mse
(val)
i of the members are combined into error vector

MSE(val). The committee weight vectorWcom can now be computed according
to the following formula:

Wcom = exp

(
−α · MSE(val)

stddev
(
MSE(val)

)) (4.5)

where stddev
(
MSE(val)

)
is the standard deviation of members validation er-

rors, and α is a free parameter, that we will refer to as �democracy factor�. The
voting vectorWcom is then normalized, so as to serve as a weighted average over
the member outputs:

Wcom =
Wcom∑
ωj

(4.6)

The purpose of stddev
(
MSE(val)

)
divider is to maintain voting shares relatively

low even in case of large variance of validation errors, which may be the case
especially if the committee contains heterogeneous members. The democracy
factor α on the other hand determines whether the committee behaves in more
democratic manner (low α) or favors the best trained members (high α). In par-
ticular, if α = 0 the committee will behave like a simple averaging committee.
If α→∞ the committee output will be driven by the single member, which ob-
tained the lowest validation error. However, in most cases α will be a subject of
further optimization, rather than being selected manually. For this purpose, the
validation dataset is reused second time to �nd the optimal democracy factor
α. This is achieved by multiple recomputation of the ranking Wcom, committee

outputs Ycom(t), and committee validation error MSE
(val)
c , while in every iter-

ation the value of α is modi�ed with logarithmic step in the range
[
10−4, 104

]
.

The process is computationally fast, because the member outputs are already
computed and hence no additional operations need to to be performed on the
members. As a result, we obtain αopt parameter that minimizes validation error,
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and which we will consider as the optimal democracy factor to be used on the
testing dataset.

In the �nal step, having estimated the ranking vector Wout and the democracy
factor α, we reuse the validation dataset third time, to retrain the members. We
concatenate the training and the validation datasets and repeat ridge regression
for each member. Optimal λmem, which was previously estimated, is used in
this process. In this way none of the available data is wasted.

The entire process of generating the exponentially ranked committee is schemat-
ically presented on Fig. 4.1.

dataset
training validation testing

train members validate and collect outputs
ridge regression

train committee validate, estimate

optimal λ

retrain committee using optimal λ

retrain members on entire dataset

evaluate committee & members

step 1:
members

step 2:
committee

step 3:
committee

step 4:
members

step 5:
m.& c.

dataset
training validation testing

train members validate and collect outputs
ridge regression

validate committee, estimate optimal

democracy factor α

retrain members on entire dataset

evaluate committee & members

step 1:
members

step 2:
committee

step 3:
members

step 4:
m.& c.

Figure 4.1: Exponential ranking algorithm - scheme. Note that regression in (1)
and validation in (2) will be repeated multiple times to �nd optimal λmem and
α, respectively.

The proposed ranking method is based on the assumption that there is a close
correlation between member performance on the validation and the testing
datasets. This is usually true for relatively stationary time series, especially
if the validation dataset is representative and su�ciently long. For a typical
heterogeneous committee (50 members with sizes 600 ÷ 1000, spectral radius
0.8) trained on simple Mackey-Glass time series (τ = 30) we observe signi�cant

correlation between members validation/testing errorsMSE
(val)
i andMSE

(test)
i

(see Fig.4.2). We should emphasize though, that the correlations will not nec-
essarily be as obvious in case of highly noisy data, or non-stationary data where
signal characteristics rapidly change over time, or if the validation dataset is not
long enough.

Similarly, the democracy factor estimation will only be e�cient, if for given com-
mittee and given task there is a close correlation between the optimal democracy

level on the validation and the testing datasets, i.e. α
(val)
opt ≈ α

(test)
opt . To verify
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Figure 4.2: Validation/testing error correlation for committee members. Results
for several exemplary prediction horizons (1-, 5-, 10- and 15-steps ahead)

this assumption we observe correlations between validation/testing committee

errors MSE
(val)
c and MSE

(test)
c for a range of α values. For the same com-

mittee and time series as before, the clear correlation is obvious (see Fig.4.3).
Modifying α initially reduces validation/testing errors up to a certain optimal
point, and then starts to gradually increase it.

4.2.2 Regression ranking methods with cross-validation

Other ranking methods are based on regression of the member outputs to evalu-
ate the optimal committee weights vector Wcom. In the �rst step, the members
are trained and optimized in the same manner as in case of exponential ranking
methods. Afterwards, regression of the member outputs on a validation dataset
is performed. The validation data should be selected as a distinct fraction of
the training data, not used for members training. In this manner, committee
regression will account for generalization ability of the members.The method
conceptually promotes the ESN training method to the higher hierarchical level
- it applies on the committee level the same regression algorithm that was pre-
viously used to train individual ESN members. The neural activation history
is replaced with the member output history, and the resulting vector is the
committee weights vector Wcom instead of ESN output weights vector Wout.
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Figure 4.3: Validation/testing error correlation for range of alpha parameters.
Results for several exemplary prediction horizons (1-, 5-, 10- and 15-steps ahead)

We found that simple least-square regression has a tendency to over�t the com-
mittee to validation data. Therefore we added regularization component λI to
penalize large weights (ridge regression). This method however requires careful
optimization of λ to work e�ciently. This forced us to further split the valida-
tion dataset V into two subsets V1 and V2 - committee training and validation
datasets correspondingly. We can now repeat regression on V1 for the range of
λ values, and use V2 to �nd the λ value which ensures highest generalization
ability of the committee, i.e. minimizes the committee mean-squared error on V2
dataset. To make better use of usually limited dataset V , we apply k-fold cross-
validation scheme. It means that V is splitted into k ranges of equal length,
out of which one is used as V2 and the rest as V1. Evaluation is repeated k
times, shifting V2 in every iteration. Finally, the committee performance on V2
is averaged over those k evaluations.

As a result of those operations, λopt is obtained, which will be considered as
the optimal committee regularization parameter. Finally, committee ridge re-
gression is repeated, this time on the entire validation dataset V and with the
optimal regularization parameter λopt. In the very last step, all members are
retrained on the entire dataset, including training and validation samples, to
ensure that no data was wasted. The subsequent steps of the algorithm are
illustrated by Figure 4.4.
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Figure 4.4: Regression based ranking algorithm - scheme. Note that regression
in steps (1) and (2) will be usually repeated multiple times to �nd optimal λmem
and λ, respectively.

The presented method gives promising results. However, in case of very noisy
data or large prediction horizon, it has a tendency to excessively increase λopt.
This will lead to underestimating the target signal values and �shrinking� the
committee output. To deal with the problem, we introduce generalized ridge
regression, de�ned as:

Wcom =
(
Y TY + λI

)−1 (
Y TD + λω0

)
(4.7)

where D is the desired output vector (teacher signal), Y is a matrix collecting
outputs of committee members over the validation dataset, and ω0 is a conver-
gence vector, to which the regressed weights will be gradually converging with
increasing λ. Note that setting ω0 to vector of zeros will result in standard ridge
regression. However, ω0 can have any arbitrary values. The method gives us
an opportunity to compute voting vector W com as a trade-o� between (1) aver-
aging committee and regression ranked committee, or (2) exponentially ranked
committee and regression ranked committee. In the �rst case, the convergence

vector is set to ω0 =
[
1
m ,

1
m , ...,

1
m

]T
being adequate to simple averaging com-

mittee. In the second case, the convergence vector is set to ω0 = ω
(exp)
c , where

ω
(exp)
c is exponentially ranked voting vector, as described in section 4.2.1.
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4.2.3 Committee types and terminology

REXP(λ) RMEAN (λ)

RIDGE (λ)

EXP(α)
MEAN

REGRESSION

BEST

Figure 4.5: Committee ranking methods scheme

In the experimental studies we will compare several types of committees on
di�erent prediction tasks. Let us introduce the following terminology to refer
to those methods:

• MEAN - simple averaging committee

• BEST - committee with output identical to the best performing member

• EXP - committee with exponential ranking

• RIDGE - committee with ridge regression

• RMEAN - committee with regression converging to mean weights

• REXP - committee with regression converging to exponentially estimated
weights

Fig.4.5 illustrates direct relations between the methods. Adjustment of α with
EXP algorithm determines how much the weights diverge from MEAN towards
BEST. Adjustment of λ in case or regression based rankings determines how
much the weights diverge from least-square regressed towards MEAN, EXP or
RIDGE, respectively.
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4.3 Experimental results

In order to evaluate the bene�ts of simple committees and generalized ranked
committees, we performed numerous experiments on several di�erent time series.
In particular, Mackey-Glass time series and non-trivial sine-based signals, that
we introduced earlier in section 3.4. Moreover, in every experimental setting we
trained k independent outputs for every ESN member, each of them trained to
predict i′th step-ahead value of the input signal, where i ∈ {1, ..., k}. Since each
committee member has k outputs, the committee ranking algorithms described
in the previous section are repeated k times to produce k committee outputs (one
for each time horizon). In other words, k-dimensional output can be understood
as a projection of future trajectory of the target signal, up to k steps ahead.
Such training scheme allows us to identify the prediction horizon that gives
the best prediction accuracy, and helps to evaluate robustness of the compared
algorithms. Exemplary committee outputs are illustrated by Fig.4.6 and will be
discussed later.

In the experiments we will evaluate performance of di�erent committee models.
In particular, we will compare the ranking algorithms (averaging, exponential
and regression based), simulate committees varied by size of the base model
reservoirs N ∈ 100−2000, and evaluate committees with/without regularization
of the base models. In any case, other parameters will be kept invariant. The
committee size is set to M = 50 members, which is large enough to ensure
high repeatability of training results. In case of the ranked committees, the
number of cross-validation folds is set to f = 8. The connectivity ratio of
member reservoirs is �xed at c = 0.05 and the spectral radius at p = 0.9. Direct
input-output connections, as well as feedback connections are disabled. At the
current stage we do not vary input data between the members, meaning that all
of them receive identically scaled and preprocessed input signal (and constant
bias signal). Splitting time series into training/validation/testing samples will
be described later, when we specify the benchmarking time series.

In this Chapter, our primary goal is analysis and comparative study of com-
mittee approach in reservoir computing, rather than �ne-tuning the system to
achieve the record performance on particular tasks. Therefore the optimization
of ESNs is constrained to only two essential parameters - reservoir size and regu-
larization parameter, while holding other parameters on �xed, roughly adjusted
levels, and we primarily concentrate on the bene�ts coming from the committee
approach. We believe that di�erent ESN con�gurations would unlikely change
the general conclusions coming from our study.

In the following subsections, we �rst de�ne the time series that will be used
as benchmarks. Next, we present selected results of our comparative study,
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which give some insight into the committee algorithms, and hence will lead us
to several important conclusions and design principles.

4.3.1 Benchmark time series

Similarly like in Chapter 3, we will use several distinct Mackey-Glass time series
- MG20, MG30, MG50, MG70 with time lags τ = {20, 30, 50, 70} respectively,
as de�ned by equation 3.8 and a sine-based signal, de�ned earlier by equation
3.10.

Again we assume limited availability of data, and generate 800 data samples
available for the training and another 400 samples to test the system. We split
the data in proportions 50/750/400, meaning that initial 50 samples were used
to �ash out random initial states of ESNs, 750 samples were used for members
training, and 400 samples served to evaluate the performance. In case of the
ranked committees, the last 150 samples of the training data set are used for
8-fold cross-validation scheme (see Fig.4.1 and Fig.4.4).

In all cases we normalize the time series to the range [−3, 3], which we found
to be a reasonably good estimate, since it �ts well to the nonlinear region of
sigmoid activation function of the neurons. The normalization could be fur-
ther optimized, but from our perspective the most important is that all the
committees that we compare receive identically preprocessed inputs.

In the following experiments we focus primarily on the critical prediction hori-
zons, for reasons explained in section 3.6.4. We can easily identify them, since
we train multiple readouts, each for one subsequent prediction horizon.

4.3.2 Exemplary committee setting

Before we get to committee optimization and larger scale experiments, we shall
�rst consider simple committee and observe its output as compared to indi-
vidual members. Let us consider again the trajectory prediction task, that
we discussed in section 3.6.3. We employed 50 independent ESN networks to
project trajectories of the �rst 30 samples of the training data set. Having
those 50 networks trained, we can construct a simple committee by combining
them together. The committee output will be computed as arithmetic average
of individual ESN outputs, for each of the prediction horizons h = {1, ..., 30}
independently (Eq.4.1).
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Fig.4.6 shows the trajectory forecasted by committee in comparison to uncer-
tainty of individual forecasts (shadowed area). We shall discuss the bene�ts
of committee versus individual networks in the following subsections. For now
we constrain to observation, that committee displays more conservative behav-
ior and relatively good trajectory estimation, despite large variance of the base
models. We shall see later that committee in fact e�ciently reduces the variance
component of the error.

−1

0

1

S
IN

Q

Regularized

−2

0

2

M
G

20

−2

0

2

M
G

30

−2

0

2

M
G

50

800 810 820 830 840 850
−2

0

2

M
G

70

−1

0

1

Non−regularized

−4
−2
0
2
4

−2

0

2

4

−5

0

5

800 810 820 830 840 850

−5

0

5

Figure 4.6: Trajectory forecasting by simple averaging committee of 50 mem-
bers. The shadowed area corresponds to uncertainty of individual predictions.

4.3.3 Averaging committee with no members regulariza-
tion

In the �rst experiments, we evaluate performance of simple averaging commit-
tees. Note that members are trained with least-squares regression, that does not
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involve any form of regularization. Such choice will be justi�ed in the further
sections.

We have already observed the in�uence of reservoir size, and regularization, on
the performance of single ESN network in section 3.6.4. Let us now consider
ensembles of the non-regularized members. For each value of N let us construct
corresponding committee comprising 50 members (i.e. 50× 100, 50× 150, ... ,
50×800)3, and observe their performances in terms of mean squared error on the
testing datasets (Fig.4.7). Solid lines relate to the committees, while dashed lines
to the corresponding best-found members. Again we restrict observations to the
optimal prediction horizons, which have the highest signi�cance for accurate
prediction.
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Figure 4.7: Performance of averaging committee (solid line) as a function of
reservoir size, assuming no members regularization. Dashed line corresponds to
the best individual network.

The �rst observation is a large performance gain of the simple committees over

3In fact, for each setting three committees will be simulated and their results averaged.
More repetitions could be considered, but due to high computational requirements of the
experiments, and due to highly repeatable committee results, we constrain to three iterations.
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Table 4.1: misc

Page 1

Time series

SINQ 5,92E-03 1,00E-03 83,0%

MG20 5,61E-06 1,12E-06 80,1%

MG30 6,69E-04 1,53E-04 77,1%

MG50 2,77E-03 1,16E-03 58,2%

MG70 1,41E-03 5,13E-04 63,6%

MSEmin
(best network)

MSEmin
(committee)

Committee
gain:

the individual networks, for any value of reservoir size (see Table 4.1). The
signi�cance of this observation is even higher if we consider that individual net-
works that we use as benchmarks are the truly best ones, i.e. those networks out
of 50 committee members that achieved the lowest MSE on the testing datasets.
However, since the testing data set is not known a priori, the identi�cation of
those optimal members can be di�cult, even with multi-fold cross-validation
scheme. Gains of the committees over validation-estimated best networks is
usually higher.

Another observed regularity is that the optimal reservoirs found for committee
setting are slightly larger than the optimal reservoirs for individual networks.
When the individual networks already begin to experience over-�tting, the com-
mittee error continues to decrease towards its minimum. This indicates that
by averaging the individual outputs committee e�ciently smoothens the �nal
prediction and removes negative e�ects of individual variances. Since this ob-
servation is consistent across all analyzed time series, it can be considered a
good starting point if searching for the optimal committee reservoir needs to be
performed, once the optimal reservoir for individual network is known.

The results allow us to argue for robustness of the ensemble approach. First of
all, even the committees without the optimal reservoir size yield better perfor-
mance than the globally best individual networks. Bene�ts are clear for wide
range of reservoir sizes, even the non-optimal ones from individual perspective
(N ∼ 600÷700). Secondly, advantages of the committee are not limited to crit-
ical points, but generalize well to all other prediction horizons (k = 1, ..., 20), as
shown by Fig.4.8. For brevity, the �gure presents only the results for exemplary
MG50. Previously found optimal reservoir size (N = 500) is used. The �gure,
apart from proving robustness, justi�es selection of the critical points in our
experiments (here: k = 8 for MG50).
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Figure 4.8: Committee vs. best network for range of prediction horizons k =
1, ..., 20. The arrow marks critical point k = 8.

4.3.4 Large-reservoir committee and self-regularization

In the previous experiments, we observed the peak error due to over-�tting
in the point where the number of base model parameters (i.e. reservoir neu-
rons) approached to the number of available training samples. However, adding
more neurons tends to self-regularize reservoir. The excessive neurons prevent
least-squares regression from direct mapping the training data onto the output
weights. We shall observe now how far this self-regularization extends, by look-
ing at performance achieved with large-reservoir committees4. Similarly like in
the previous experiments, we shall compare the committee MSE with the best-
found member MSE, this time including large reservoirs, i.e. N ∈ 100 − 2400.
The results are shown by Fig.4.9.

When the reservoir size increases, MSE tends to fall asymptotically. However,
in case of more chaotic time series (MG50 and MG70), it never reaches a new
minimum. It seems that the non-regularized members su�er from excessive
�tting to random noise and oscillations of the training dataset, and even with
very large reservoirs are not able to extract more information about signal from
limited training samples. On the other hand, small-reservoir committees (N =
500 and N = 350 respectively) display considerably higher prediction accuracy,
at the same time being faster to train, optimize and exploit.

In case of the remaining time series, increasing reservoir size allowed to im-
prove minimum MSE. However, error decrease was moderate and achieved
rather marginal gains (see Table 4.2). Therefore, depending on application re-
quirements, a trade-o� between limited potential gains and signi�cantly higher
computational requirements should be considered. Additional cost of training,

4�Large reservoir� is a relative expression. Here we refer to a relative size of the reservoir
against the training data set, and we consider given reservoir large if the number of neurons
exceeds the number of training samples.
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optimization, and exploitation of the large-reservoir committees can be substan-
tial. Moreover, the committee approach requires training entire populations of
networks in every iteration of the optimization process. The optimal size of
reservoir can be very large, provided that we have many training samples in
disposal. Therefore we conclude with a remark that it should be carefully as-
sessed whether it is worth to search for global optimum, or instead consider
locally optimal reservoir (N < training data set), which in many cases can o�er
comparable, or sometimes better, prediction accuracy.

In any case, the general conclusions from 4.3.3 remain unchanged - the
large-reservoir committees continue to outperform the best individual
networks, even though magnitudes of those gains are slightly reduced for high
values of N .

Table 4.2: misc

Page 1

Time series Gain

SINQ 1,00E-03 7,78E-04 22,5%

MG20 1,12E-06 7,14E-07 36,0%

MG30 1,53E-04 9,59E-05 37,2%

MG50 1,16E-03 1,26E-03 -8,9%

MG70 5,13E-04 7,49E-04 -46,0%

MSEmin
(small reservoir)

MSEmin
(large reservoir)

4.3.5 Averaging committee with members regularization

Let us now consider committees composed of the regularized members (like those
analyzed before, Fig.3.14, right-hand side plots), where λmem is optimized in the
validation phase of the training, as described in section 3.6.4. Intuitively, one
may assume that an ensemble of e�cient members will yield better prediction
accuracy than that of non-regularized, weakly adapted networks. However, as
we shall see, this assumption is valid only in certain circumstances.

We performed similar experiments in section 4.3.4, this time with the purpose of
comparison of the committees composed of the regularized and non-regularized
members, including both small and large reservoirs. Fig.4.10 summarizes the
results.
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Interestingly, for small reservoir the regularized committee usually does not
outperform the non-regularized one. The non-regularized committees is more
accurate, even though performance of the individual members is quite poor. The
non-regularized committee performance converges quickly to its local minimum
(for N < 750), which in many cases constitutes as well the global minimum. In
the contrary, the regularized committee initially performs weaker, even though
the individual networks are optimized and relatively e�cient. This observation
can be justi�ed by the fact, that members regularization by increasing λmem
shrinks theirs outputs - while searching for the optimal bias-variance balance (see
discussion in section 3.6.4), individual variances are reduced. It minimizes indi-
vidual errors, but at the same time reduces the amount of information provided
to the committee, and hence degrades the committee output. If regularization is
forced low or completely omitted, all the responsibility for balancing variances
of the weak members is delegated to the committee, what can be bene�cial.
Those observations are consistent with [26, 27].

However, we observed that the regularized committees can be advantageous for
larger values of N , since the error decreases asymptotically and is resistant to
over�tting when N ∼ 750. In certain cases, if the reservoir is su�ciently large,
the regularized committee can outperform the non-regularized one. This will
be usually the case for more complex and chaotic time series (here: MG50 and
MG70, see Table 4.3), which on one hand require larger reservoir to capture
the underlying dynamics, and on the other hand carry more random noise and
chaotic dynamics, what in turn brings up the risk of over-�tting especially if
training data is limited. In such cases, non-regularized committee will not be
the optimal one.

We should be aware though of signi�cantly higher computational cost associated
with regularization of the members. The optimization of λmem requires that
each committee member is trained r times, where r is the number of iterations
in searching for the optimal regularization parameter, plus the �nal regression
using the entire training dataset. In our experiments, we searched for λmem in
the range

[
10−8, 102

]
with logarithmic step of 0.5, resulting with r = 21. In case

of the large-reservoir committees comprising multiple members, the additional
workload associated with such optimization can be substantial. Global gain over
the non-regularized, small-reservoir committees is usually not large, therefore
the same trade-o� considerations apply here as discussed before (4.3.4).

We conclude with statement that prior regularization of base models is usually
not necessary if the models are to be combined into a voting ensemble. In
some cases such regularization can harm committee prediction accuracy, and in
any case it will be signi�cantly more demanding in respect to computational
resources. It is often more bene�cial and economical to delegate regularization
responsibility to committee level. However, in case of certain complex tasks,
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Table 4.3: misc

Page 1

Time series

SINQ 7,80E-04 1,45E-03 -86,1

MG20 7,44E-07 9,12E-07 -22,6

MG30 1,02E-04 1,05E-04 -2,9

MG50 1,16E-03 9,81E-04 15,2

MG70 5,13E-04 4,56E-04 11,1

MSEmin
(non-regularized)

MSEmin
(regularized)

Regularized
gain:

we can bene�t more from employing large-reservoirs if we optimally regularize
the members. Such approach will be recommend if: (1) peak performance,
not computational cost, is the priority, and (2) prediction task is noisy and
chaotic, and training data is limited (thus giving hope for reasonable size of
optimal �large-reservoir�). This can make regularized committees appropriate
for �nancial forecasting, elaborated in Chapter 5. In other cases, using simpler,
small-reservoir committees with non-regularized members will yield comparable
e�ciency and require less computational e�ort.

4.3.6 Ranked committee

In the �nal experiment we shall benchmark the ranked committees introduced
in Section 4.2 against the simple averaging committees that we were discussing
so far. In the preliminary evaluation we found that the ranking algorithms work
better with the regularized members. In case of the non-regularized models the
individual variances are considerably larger, making it non-trivial for the ranking
methods to make correct assessment and appropriately assign Wcom weights.
Fig.4.11 shows the MSE results of the ranked committees versus corresponding
averaging committees. For clarity we plot only the lines related to the best
and the worst ranking results, and thick lines corresponding to the regularized,
averaging committees.

As we see, advantages of the ranking methods are not always obvious. In gen-
eral, the algorithms are tightly competing with simple averaging (MEAN). They
often perform moderately better in the regularized ensemble setting, but rarely
in the non-regularized ensemble. They will be therefore primarily applicable
in the circumstances appropriate for the regularized ensembles, which were dis-
cussed earlier (4.3.5). Since there is a lot of numeric data associated with the
experiment (due to �ve time series, twenty prediction horizons, wide range of
reservoir sizes and four di�erent ranking algorithms) we will present prepro-
cessed numeric results in a selective way. Firstly, for each time series we will
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compare the globally best ranked committees with the globally best averaging
committee, in terms of MSE (see Table 4.4). Secondly, we compute percentual
gain/loss of the ranked methods over MEANmethod, averaged through all reser-
voir sizes. This will give better estimation of robustness of the solution. The
presented results limit to the regularized committee setting and only the critical
points are considered, for the reasons stated earlier.

Table 4.4: misc

Page 1

Time series

SINQ 7,80E-04 8,20E-04 -5,1%

MG20 7,44E-07 6,91E-07 7,2%

MG30 1,02E-04 1,06E-04 -4,1%

MG50 9,81E-04 9,33E-04 4,9%

MG70 4,56E-04 4,46E-04 2,1%

MSEmin
(averaging com.)

MSEmin
(ranked com.)

Ranked com.
gain:

Table 4.5: misc

Page 1

Time series EXP REXP RMEAN RIDGE

SINQ 18,5% 29,8% 31,7% 31,7%
MG20 5,1% 4,7% 6,1% 4,4%
MG30 -1,8% -2,9% -0,6% -0,8%
MG50 7,0% 7,2% 6,9% 6,7%
MG70 2,9% 3,9% 4,4% 4,8%

In three out of �ve time series, the ranked committees showed the globally best
performance. The methods showed robustness against MEAN in the regular-
ized ensemble. This indicates that they will be applicable in tasks where the
individual forecasts are relatively smooth (larger bias but limited variance). It
can be for instance due to long training datasets in relation to reservoir sizes,
or due to prior deliberate regularization of members.

The computational cost of those gains is similar to that of the regularized large-
reservoir committee discussed before, plus additional e�ort related to committee
level cross-validation to estimate the optimal weight vector Wcom. The latter
component however is relatively low as compared to the members optimization
and regularization. Committee regression is usually uses less computationally
demanding than member regression because it uses less dimensional input (here:
50 members, instead of 100-2000 reservoir neurons) and less data samples (here:
150 validation samples instead of 600-750 training samples).

In order to get more insight into the e�ects of the ranking algorithm on members
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selection, we choose an exemplary committee (50 members with reservoir of
1600 neurons, MG50 task), where ranking algorithms showed superiority over
common methods, and observe it in more detail (Fig.4.12). The top chart
displays sorted mean squared errors of the members, compared to the best
ranking method found (RIDGE in this case, left-hand side bar). The middle
chart sets together performance achieved by various ranking methods (�rst four
bars), averaging committee result (�fth bar) and best individual networks, found
during training and validation phase (the last two bars). Superior performance
in this case is owed to selective distribution of the committee weights (Wcom),
computed by EXP, REXP and RIDGE methods respectively (three bottom
charts). Di�erent shapes of the weight distributions are observed. Two e�ects
are noticeable: the outlier networks that perform weakest are suppressed by very
low weights, (2) well-performing members are generally preferred and rewarded
with higher weights. In case of REXP, the weights distribution is a trade-
o� between the other two distributions. It is comparable to the ridge, however
due to convergence towards the exponential, it becomes less smooth and reaches
higher positive values. REXP is a promising approach, since it usually e�ciently
balances between RIDGE and EXP (in this particular example, EXP performs
weaker while REXP is close to optimal). E�ciency of EXP method can be
higher in case of time series with high noise ratio, since the method is less prone
to over�tting problem - it does not use the member outputs directly as the
regression methods do, but instead it ranks the members only based on their
validation mean squared errors. While EXP is clearly biased towards better
members, RIDGE method is more distinct in combining experts and often grants
high weights also to the moderately performing individuals.

It should be mentioned here that potential gains from employing the ranking
algorithms may be more visible in heterogeneous settings5. Since this issue is
beyond the scope of this work, we constrain ourselves only to few brief remarks.
Generally speaking, increasing parametric variance of base models within com-
mittee (e.g. reservoir size, spectral radius or connectivity ratio) can have a
positive in�uence on the �nal performance. Such variance can enhance fea-
ture extraction from the input variables and increase robustness of a collective
predictor. By incorporating members with varied dynamic characteristics, a
committee can e�ciently adapt to handle wider range of di�erent tasks (e.g.
range of prediction horizons). In particular, connecting di�erent subset of in-
puts to di�erent members is a promising method. In case of univariate input
each member would receive di�erently preprocessed (e.g. smoothed) signal or -
in case of multivariate input - each of the members would be trained on di�erent
subsets of input variables, thus creating mixture-of-expert type of committee.

5To be precise, committees of ESN networks are naturally heterogeneous due to randomly
constructed sparse reservoir. However, referring to heterogeneous committee we mean an
ensemble of members characterized by variance of generic parameters, e.g. reservoir size,
spectral radius, input scaling, selection of activation functions, etc.
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Although we leave the bene�ts of heterogeneous reservoir committees as an open
problem, it is reasonable to state that e�cient ranking methods might be essen-
tial in such settings. Those techniques, among others, are subject of our further
research.

The �nal conclusion coming from the observations can be expressed as follows:
although a ranked committee approach does not always guarantee best perfor-
mance, it should be considered as a potential model for the tasks where the top
prediction accuracy has the highest priority, rather than design simplicity or
minimization of computational e�orts. Obtaining state-of-art performance may
require some additional optimization e�orts, in particular adjustment of the
validation datasets provided to the ranking algorithms. The ranked committees
will be particularly recommendable in two cases: (1) the member outputs are
relatively smooth (either due to forced member regularization, or external con-
straints on maximum reservoir size, or due to large training data available in
relation to reservoir maximum size) and (2) committee is composed of hetero-
geneous members of varying performance, and a method is required to reward
the e�cient members and suppress the weaker ones.

4.4 Summary

The purpose of this chapter was to evaluate alternative types of committees and
discuss several issues related to their design. Independently trained echo state
networks, that we introduced in 3, were used as a base model. The commit-
tees that we investigated used either simple averaging, or regression/exponential
ranking methods and cross-validation scheme to optimally combine individual
outputs into joint committee output. We presented comparative studies of sev-
eral types of committees, analyzed their performance on di�erent prediction
tasks, and highlighted several challenges and trade-o�s that need to be consid-
ered in the design process. Although reservoir-based committees were in the
center of our interest, many of the results and conclusions can be generalized
to the committee approach in broader perspective, regardless the structure of
underlying base model.

Our research showed that in majority of cases simple averaging committees
of non-regularized member will be the best choice, considering their close-to-
optimal performance, simplicity of design, and low computational cost. Those
methods will usually signi�cantly outperform the individual models. The peak
performance is often achieved with relatively small reservoirs, but already large
enough to display signs of over-�tting, if considered individually. However, ex-
panding the reservoirs to sizes larger than the available dataset may be even
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more bene�cial. It is essential though to avoid sizes close to the size of the
training dataset, since it will result in square-like state collecting matrix and vi-
olent ampli�cation of noise in regression (if regularization was not performed).
In certain cases, especially with more chaotic timeseries, committees of regu-
larized members may perform better. However their advantages are usually
visible only for large sizes of reservoir, and hence the computational cost related
with optimization of the members regularization can be substantial. Finally,
the ranking algorithms can be applied to further boost performance - however
their applicability is rather limited to cases where individual model outputs are
relatively smooth (regularization, long training data sets available in relation to
reservoir sizes used, etc.). The ranked committees increase model complexity
and require more expertise and considerations in the training phase. Our results
indicate that ranked committees result in good reduction of bias component of
the error and hence are more suitable to regularized settings. They are less
e�cient in reduction of variance component of the error, and therefore are less
applicable to the non-regularized ensembles, where simple averaging committee
will be recommendable.

It should be noted that �no-free-lunch� rule applies here as in case of any other
predictor system. Several parameters need to be carefully tuned to obtain state-
of-art performance, like selection of committee type, number of members, split
of available dataset into training/validation sets. As we showed in the range
of experimental settings, di�erent types of committees will be preferable de-
pending on the characteristics of the task. If proposed ranked committees are
to be employed, one should pay special attention to careful adjustment of the
committee-level cross-validation scheme. The ranked committees are particu-
larly sensitive to the proper choice of validation dataset - both in terms of length,
and - in case of nonstationary data - representativeness. Failure at this stage
will lead to performance inferior to that of the simple averaging committees.
Finally, in order to obtain peak committee performance, optimizations must be
primarily done on the member level. Selected aspects of ESN optimization were
presented in 3, and for more insight into the problem we refer the reader to wide
selection of related publications. Many of them we include in the References
section.

Having discussed echo state networks and introduced a concept of reservoir-
based voting ensembles, we will now advance from experimental environment
to non-trivial engineering applications. In the following Chapter we intend to
employ the ESN committee model for the purpose of �nancial time series fore-
casting.
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Figure 4.9: Performance of averaging committee (solid line), assuming no mem-
bers regularization, including large-reservoir ensembles. Dashed line corre-
sponds to the best individual network.
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Figure 4.10: Impact of members regularization on committee performance.
Committee of not regularized members (faded, gray), committee of regularized
members (solid) and best-found, regularized member (dashed).
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Figure 4.12: Exemplary committee performance details (MG50 time series, 50
ESNs of 1600 neurons). From top: performance comparison of ranking algo-
rithm and individual members, performance comparison of ranking algorithms
and MEAN, committee weights estimated by EXP, REXP, RIDGE algorithms
respectively.



Chapter 5

Applications in Financial

Domain

In this Chapter, the reservoir committees of echo state networks will be em-
ployed to the task of �nancial time series forecasting. The complex dynamics
of �nancial markets and basic concepts related to the domain were already dis-
cussed in Chapter 2, where we also argued for selection of the data for further
experiments. We will now address those issues more thoroughly. To begin with,
section 5.1 will discuss the data related aspects. We found that careful preselec-
tion and preprocessing of data is particularly important in �nancial forecasting.
The next two sections (5.2 and 5.3) introduce speci�c performance measures
that will be of use and introduce simple alternative models, which will serve as
benchmarks for the committee model. The benchmarking scheme will be also
speci�ed for the further experiments. Section 5.4 presents empirical results of
our studies. The reservoir committees will be evaluated by means of their ac-
curacy in prediction of the day-ahead market direction, and in terms of their
pro�tability as an investment support tool. Furthermore, we shall de�ne simple
investment strategy and simulate theoretical capital �ow, assuming that trained
reservoir committee is used as automated trading system.

While optimizing the committee models to particular �nancial �nancial tasks,
the experiences and concepts from Chapters 3 and 4 will be extensively used.
We shall optimize model parameters and regularization parameters, apply cross-
validation on both member and committee levels, and in general - intend to
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minimize validation mean squared error. However from the global optimization
perspective we will consider other measures of performance. For instance, max-
imization of correct classi�cation of the next-day market direction will be the
main objective.

5.1 Data selection and preprocessing

Financial forecasting is an example of domain, where data preprocessing and
feature selection plays essential role. Even the optimally crafted predictor will
not yield satisfactory results if the underlying data does not carry relevant and
su�cient information. Therefore signi�cant part of this Chapter is committed
to data preparation.

In Chapter 2 we proposed, based on the preliminary domain analysis, a selection
of important indicators that will be included as inputs or outputs in our �nancial
simulations. The choice is certainly subjective and many other �nancial and
economic variables could be considered, however due to project scope we needed
to make certain constraints about the data selection. It should be emphasized
though, that the very �rst step of any �nancial forecasting task focuses on
carefull domain analysis and preselection of appropriate multivariate inputs,
that may have direct or indirect impact on the target time series.

Furthermore, we have listed alternative sources and databases, which provide
relevant �nancial time series in a downloadable form. After acquisition of the
required time series, a lot of preprocessing is needed before the actual training
can commence. Direct feeding of the raw values to the network input would
either lead to unstable behavior of the system, or at least to unsatisfactory
performance. Below we discuss the steps involved in data preparation, that will
be applied to all �nancial time series used in further sections.

5.1.1 Format and conversion

For the practical reasons we will concentrate on daily resolution data. Higher
resolution could be desirable in certain applications, such as high-frequency real-
time trading algorithms, or intraday investment support systems. However the
availability of intraday data is more limited and usually associated with provider
costs. We constrain therefore to daily resolution of the data.

The historical �nancial time series are commonly o�ered in text or spreadsheet
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�les, where rows contains information related to subsequent days. Each row
consists of several values - date, day-open price, day-close price, day-min price,
day-max price and optionally - daily volume of transactions. Note that close-
price and open-price of the subsequent days often vary. While we shall always
consider close-price as the target forecast, the other variables will be bene�cial
as additional inputs, since they provide meaningful information about the shape
of daily price level oscillations. The �nal value - volume - is reasonable to be
included because it measures the signi�cance of given price formation. Large
transaction volume means that large capital was involved in generating the price
movement, what indicates its high relevance.

The raw data �les containing selected time series for period ranging from Jan-
uary 2009 (�nal phase of �nancial crisis) until August 2011 (time of �nalizing this
thesis) were imported to MATLAB environment and converted to appropriate
matrix representation. The preliminary �ltering was performed to identify and
eliminate outliers (distant more than 3 standard deviations) and not-a-numbers
(unrecognized characters, spelling errors in source �les).

Fig.5.1 illustrates exemplary time series (American large-cap SP500 index). The
top chart shows independent plots for open, close, min, max prices and the
volume information below. The bottom graphs display two alternative types of
charts, which are typical for representation of time series in �nancial domain -
candlestick chart and highlow chart. They combine the open-, close-, min- and
max-price information.

5.1.2 Synchronization of multivariate input

Special considerations need to be made if multivariate data is delivered to the
system input. The variables in many cases describe prices of di�erent assets or
economic indicators, quoted on di�erent international markets. It will commonly
occur, that di�erent countries have di�erent calendar speci�cs and di�erent
distribution of the free-of-trade days. If this is the case, the input variables
need to be synchronized to the target variable, so that the missing dates and
prices are interpolated with appropriate values. In particular the open, close,
min, max values of the interpolated sample will be set to the close-price of the
preceding day. The volume will be set to zero. Such solution will indicate no
activity on the given market during that day.

Similar corrections need to be made if one of the input variables have lower
resolution - some of the macro-economic factors are updated weekly, monthly,
or even quarterly. In such case the variables need to be interpolated to the
target resolution, as explained above.
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Figure 5.1: Exemplary �nancial time series - typical representations. The
open,close, min, max, volume chart (top), candlestick chart (bottom left), high-
low chart (bottom right).

5.1.3 Time-zone di�erences

The input will often comprise the assets and indicators quoted on di�erent
markets around the globe, therefore the time-zone issue emerges naturally. Table
5.1 lists the trading hours of the markets that are of our interest.

Di�erences in trading hours have certain e�ect on the preparation of the input
variables. When de�ning the training setting, on one hand we need to provide
the most recent input data, but on the other hand we must make sure, that all
the input values are known before the opening hours of the target market. The
most common situation is that to predict the market value for day t + 1, we
will provide the vector of previous-day values of input variables - Ut. However
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Table 5.1: timezones

Page 1

Market City Time-Zone Trading hours [CET]
NIKKEI Tokio GMT +09:00 02:00am-09:00am
DAX Frankfurt GMT +01:00 09:00am-05:30pm
FTSE London GMT +00:00 09:00am-05:30pm
SP500 New York GMT -05:00 03:30pm-10:00pm
EURUSD - - 24h/day (mon-fri)
USDJPY - - 24h/day (mon-fri)
GOLD - - 24h/day (mon-fri)
BRENT OIL - - 24h/day (mon-fri)

in certain cases, the input can contain the variables belonging to the same date
as the target signal. For instance, if American market is the target variable, we
can feed to the input the same day results of the Asian markets (NIKKEI closes
at 9:00 CET, SP500 starts at 15:30 CET), but only the previous day results of
the European markets (SP500 starts at 15:30 CET, DAX and FTSE close at
17:30 with 2 hours overlap).

In practice, the adjustments of time-zones reduce to appropriate shifting the
input variable vectors in relation to the target vector (by default -1, in certain
cases 0).

5.1.4 Trend elimination

One of the essential elements of �nancial data preprocessing is transforming the
non-stationary time series into the corresponding stationary representation. A
stochastic process X(t) is said to be stationary if distribution of generated data
is invariant in time. In particular, the variance and the mean of the time series
remain constant:

σ(t) = E
[
(X(t)− µ(t)) 2

]
= const (5.1)

µ(t) = E [X(t)] = const (5.2)

Another implication of stationarity is that the autocovariance and autocorrela-
tion functions are only dependent on the time interval τ between the samples,
but not on the time itself:
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rXX =
γXX(τ)

σ2
t

(5.3)

where rXX is a autocorrellation function, and γXX is a covariance function of
stationary process.

The autocorrellation coe�cients remain constant and depend only on the time
lag. In other words, the explanatory relations in the time series and the dy-
namics of the underlying process do not vary in time. This makes it possible
for linear regression based systems to e�ciently model such time series.

The simplest method to make the time series stationary is based on di�erencing,
so that the original time series Yt = [y1, ..., yk] are replaced with

Y ′t = [(y2 − y1), ..., (yk − yk−1)] (5.4)

Note that one sample is lost in this operation. Such di�erencing transformation
will be often su�cient to make the mean value constant. However, in certain
cases it may fail to stabilize the variance. Another method that can be used
to address the issue is logarithmic di�erencing (Eq.5.5) or relative di�erencing
(Eq.5.6). The latter will be adapted in this work.

Y logt =

[
log

(
y2
y1

)
, ..., log

(
yk
yk−1

)]
(5.5)

Y relt =

[
(y2 − y1)

y1
, ...,

(yk − yk−1)
yk−1

]
(5.6)

The relative di�erencing enhances stationarity property of the time series and
is convenient in performance evaluation, when the gain factor and capital �ow
need to be computed. Fig. 5.2 shows the exemplary time series before and
after trend elimination. The right-hand side plots show the e�ects of relative
di�erencing - zero mean distribution and relatively stable variance. The slightly
increased variance in the initial period is due to high market volatility in the
initial phase of recovery after the �nancial crisis in 2008.



5.1 Data selection and preprocessing 81

800

1000

1200

 

 

−0.05

0

0.05

 

 

4000

5000

6000

7000

 

 

−0.05

0

0.05

 

 

8000

10000

12000

 

 

−0.05

0

0.05

 

 

2009 2011

1.2

1.3

1.4

1.5

raw data
 

 

2009 2011

−0.02

−0.01

0

0.01

0.02

relative differences
 

 

DAX

SP500

NIKKEI

EURUSD
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mean and variance of di�erenced values (right hand-side plots).

5.1.5 Scaling

After elimination of the trend with relative di�erencing, the resulting time series
y” have low amplitude. Market indices rarely change by more than 3% per day,
what corresponds to modest change of input value 4ui = 0.03. It would result
in linear behavior of reservoir neurons and entire network (we discussed this
issue in section 3.6.1). In the �nancial forecasting however, a signi�cant level of
nonlinearity will be required. Therefore input variables will be scaled by factor
β = 50 − 400 in all the experiments, so as to exploit the nonlinear region of
the sigmoid activation function. Furthermore, optimal scaling depends also on
dimensionality of the input. Although scaling factor can be approximated in
advance, in many cases we will resort to global optimization.
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5.1.6 Multivariate input considerations

In case of high dimensional, multivariate inputs there are several additional
problems that might need to be addressed. First, it may be necessary to increase
the input scaling to ensure stability of the system. If dimensionality of the input
is d, a good heuristic is to scale down the inputs by factor β ∼

√
d.

Secondly, it can be bene�cial to analyze correlations between time series and
employ methods to reduce the e�ective dimensionality - for instance, ICA meth-
ods could be used for this purpose. Finally, it could be reasonable to distribute
di�erent subsets of inputs to di�erent members of a voting ensemble, thus cre-
ating a mixture-of-expert type of committee. We do not utilize those methods
at current stage due to limited number of inputs considered, however we bear
in mind that they might be of interest if input dimensionality is extended in
further research.

5.1.7 Technical analysis

Apart from applying the original time series (di�erenced and scaled) it is bene-
�cial to consider linear transformations of the input data, what provides qual-
itative and quantitative description of signal characteristics. Such methods do
not deliver any new information or features to the input, that could not be ex-
tracted from the raw data by the network itself. However, the transformations
were suggested to enhance forecasting accuracy [7]. In �nances there exist a
large group of methods known under common name of technical analysis. Those
methods usually provide additional statistical information about the time series
and some of them are considered as leading indicators, often preceding trend
changes. They are commonly used as independent tools, or as a part of larger
decision support systems.

Whether such indicators are bene�cial or not, and if yes - which of them
should be selected, can be quite task speci�c. Fig. 5.3 presents several ex-
emplary technical indicators that will be of our interest. They include signal
smoothing by means of moving average (MA), moving average convergence di-
vergence (MACD) indicator, relative strength index (RSI) and price rate of
change (PROC). Some of those indicators will need further preprocessing, such
as di�erencing and - almost always - appropriate scaling. The methods are com-
monly known in �nancial analysis, therefore instead of elaborating them further
we refer the reader to comprehensive literature on the subject [41].
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Figure 5.3: Technical analysis indicators. From top: original time series,
moving average (MA) with and without di�erencing, moving average conver-
gence/divergence (MACD) with and without di�erencing, relative strength in-
dex (RSI), price rate of change (PROC).

5.1.8 Selection of training/testing ranges

The �nal issue is the correct selection of training/validation/testing ranges from
datasets. The issue will be discussed in detail in section 5.3, where we specify
the benchmarking environment. For now we shall only mention, that selection
of training data turns out to be a non-trivial problem in case of non-stationary
processes in �nancial domain. Maximization of training period will not necessar-
ily lead to performance increase, since the dynamic characteristics of the signal
change over time. This is due to political and economical changes, long-term
cycles, technology advancement.

Currently, the common approach in �nancial forecasting is to utilize primarily
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the data sets since the end of the recent �nancial crisis (beginning of 2009),
which gives approximately 600 trading days. This gives a reasonable amount
of samples to work with, especially in multivariate settings where other time
series contribute to the input (global market indices, macro-economic variables,
currency exchange rates).

5.2 Domain-speci�c measures of performance

Several additional performance measures will be used in conjunction with �nan-
cial forecasting tasks. The basic measures will be still used (especially MSE) for
the purpose of model training, optimization, committee ranking generation, etc.
However to assess system pro�tability and performance in the �nancial domain
additional speci�c metrics will be needed. From the investment point of view,
it is more important whether the system correctly predicts the direction of fu-
ture market movements, rather than exact absolute next-day values. It is also
needed to evaluate how often the system makes the correct guess, and whether
it forecasts properly the signi�cant market movements. To account for those re-
quirements, we introduce additional performance metrics: hit ratio (HR), total
return (TR).

5.2.1 Hit ratio

The hit ratio (HR) measures the relative number of correct guesses of the pre-
dictor about the next-day market direction. Consider testing data set Dt of
length n and a predictor P producing n indications about subsequent values of
Dt. If we denote by ρc the number of correct indications and by ρf the number
of failures, so that ρc + ρf = d, then the hit ratio is de�ned by:

HR =
ρc
n

(5.7)

In particular, the system is 50% accurate if HR = 0.5 and perfectly accurate if
HR = 1.
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5.2.2 Total return

The total return (TR) is related to HR measure, however it includes the actual
gains due to the correct decisions, and losses due to the wrong ones. It assumes
that the investor initiates transaction (opens a position1) according to systems
indications. TR computes subsequent gains/losses and estimates the relative
pro�t that the investor would achieve, provided that he followed regularly the
system indications.

Consider testing data set Dt = [d1, ..., dn] of length n representing target time
series, and predictor P producing n indications about subsequent values of Dt.
We denote by ρ = [ρ1, ..., ρn] the vector of predictor indications, where ρi ∈
{−1, 1}, and ρi = 1 indicates prediction of market growth on i′th day, and
ρi = −1 indicates prediction of fall on i′th day. The total return is computed
by:

TR =

n∏
i=1

(
1 + ρi

di − di−1
di−1

)
− 1 (5.8)

The total return is signi�cant from the investment support perspective, because
it illustrates the theoretical predictor's pro�tability. In case of hit ratio mea-
sure, value HR > 0.5 does not necessarily indicate that the system is pro�table
on given testing period Dt, because even few wrong decisions may cause large
losses. However GF > 1 shows that the system indeed generated pro�t. For in-
stance, TR = 0.2 indicates 20% pro�t measured achieved in the testing period.
For simplicity we neglect the broker costs related with buy/sell transactions.
However, the TR measure is still simpli�ed, in a way that it assumes the invest-
ment positions being opened with previous-day close-price, while in reality the
predictor's decision will just be generated before next-day open-price. There-
fore the method illustrates theoretical gain which can be di�erent from the real
one, in either direction. To make the evaluation more realistic, we derive two
other measures - TR with 'buy-and-hold' strategy and TR with 'day-trading'
strategy.

The day-trading variation of the method, denoted as TRdt, assumes that in-
vestor opens position according to predictor indications in the beginning of the
trading day and always closes the position at the end of the day (close-price). In

1On future markets (contracts on future prices) one can open 'short position' or 'long
position'. The former allows to take pro�ts in case of market growth, the latter in case of
market fall. In a way, buy/sell transactions are symmetric. In case of short position the sell
operation precedes the buy operation.
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this setting, the gains and losses are computed as a di�erence between the close-
price and open-price for given day, rather than close-prices of two subsequent
days:

TRdt =

n∏
i=1

(
1 + ρi

d closei − d openi

d openi

)
− 1 (5.9)

The buy-and-hold variation of the method, denoted as TRbah, assumes that
investor changes a position to the opposite one only when the system indicates
such change. When the indication is not changed during certain period, the
investor simply holds current positions (in contrary to day-trading approach
where position is always closed at the end of the day). TRbah is computed with
expression:

TRbah =

n∏
i=1

(
1− ψiρi

d openi − d closei−1
d closei−1

)(
1 + ρi

d closei − d openi

d openi

)
− 1 (5.10)

where pi ∈ {−1, 1} is predictor indication at time i, ψi = pi · pi−1 ∈ {−1, 1} is a
position-switch indicator at time i, and d openi denotes day open-price and d closei

day close-price.

In fact, the total return measure is often expressed as the annual return, which
makes the measure independent from actual length of the testing period. We
therefore normalize the total return measures as follows:

TR = (1 + TR)
252
n TRdt = (1 + TRdt)

252
n TRbah = (1 + TRbah)

252
n (5.11)

where n is the length of testing data set Dt and corresponds to number of
trading days within the testing period. The numerator value of 252 corresponds
to commonly accepted average number of trading days per year.

5.2.3 Capital �ow simulation

Capital �ow simulation (CF ) is an analysis of capital change over time, based on
TR measure. It essentially computes TR factor for each subsequent day of the
testing dataset Dt, and thus illustrates how the pro�t/loss would accumulate
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during the testing period of the simulation. The results are visualized graphi-
cally, including additional information such as predictor indications, actual price
levels of the target asset, daily gain/loss, etc.

Furthermore, CF calculations can be used to determine additional performance
metrics, such as period-maximum gain/loss, period minimum/maximum cap-
ital level, maximum number of subsequent gains/losses, etc. Those measures
are often considered in �nancial domain, since they support a practical risk
assessment.

5.3 Benchmarking environment

To evaluate the reservoir committee model in �nancial forecasting tasks, we will
measure its performance in wide range of forecasting settings, and compare it
to statistical ARIMA predictor and to simple naive strategies. Hit ratio (HR)
and total return (TR) measures will be used, which re�ect well the systems
applicability as an investment support system. All the compared models will
work as classi�ers, generating decision about next day market direction based
on the recent history, i.e. decision taken on day t about day t+1 will be denoted
by x̂t+1|t ∈ {−1, 1}, where −1 corresponds to prediction of market fall and +1
to prediction of market growth on (t+ 1)'th day.

Several time series will be considered as a target forecast - SP500 index, DAX
index and EURUSD rate (see sections 2.2 and 5.1), while selection of inputs
will vary across the experiments and will be detailed later. Moreover, for each
of the time series the training and evaluation cycles will be repeated multiple
times with moving window approach, and the overall averaged results will be
considered. This should give a statistically correct evaluation and eliminate the
randomness due to data sets.

5.3.1 Reservoir committee as classi�er

The reservoir committees will be trained and optimized in a usual way, as de-
scribed in Chapters 3 and 4. Some of the training parameters will be kept
invariant (number of members, size of training and cross-validation data sets),
while the others will be a subject of optimization to �nd the most e�cient solu-
tion (size of reservoir of base models, spectral radius, regularization parameter,
input scaling, input data selection). Similarly like before, MSE error will be
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utilized in the training and cross-validation phase, so that the models will be
trained to approximate the value of the target signal.

However the task now is to determine the direction of the market change, rather
than the exact amplitude of that change. Therefore we need to modify the
network to solve classi�cation task. Committee training, which corresponds to
inference phase of a classi�cation model, remains unchanged and is based on
MSE minimization. We add however the second phase - taking optimal decision
based on the prediction. Having transformed the predictor into classi�er, we will
use HR and TG performance measures for global optimization of the system
and �nding most pro�table committee.

As we justi�ed in section 5.1, in �nancial domain both the inputs and the
outputs will be converted to relative di�erences. Consequently, the output yt
of the committee will be a prediction of the market change in the following
day. The positive values of yt indicate prediction of growth, while negative
values predict fall. Therefore the classi�cation decision is obtained naturally by
considering the sign of the output yt, so that yt = x̂t+1|t ∈ {−1, 1}. Combining
it with equations 3.4 and 4.2, the committee decision about next day market
direction is given by:

x̂t+1|t = sign
(
Ycom(t)

)
= sign

(
WcomYmem(t)

)
(5.12)

where Ycom(t) is the committee output at time t,Wcom is the committee weights

vector (see section 4.2) and Ymem =
[
y1,t, ..., yi,t, ..., yM,t

]′
is a vector of indi-

vidual network outputs yi,t at time t, computed according to:

yi,t = fi,out

(
Wi,out ·

[
si,t
ui,t

])
(5.13)

whereWi,out is the trained output weights vector of the i
′th member (see section

3.2).

As a result we convert a reservoir committee predictor into a classi�er, that
maps the input history u1, ...ut (represented by reservoir internal echo states
st) into one of two classes: next-day market growth (x̂t+1|t = 1) or next-day
fall (x̂t+1|t = −1). From the perspective of investment decision support, those
classes correspond to BUY and SELL signals of the system. Of course the
number of classes could be further extended to allow for more sophisticated in-
vestment strategies and risk adjustment. In �nancial domain it is common to
use �ve classes STRONG BUY, BUY, HOLD, SELL, STRONG SELL. Since
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our model is a combination of multiple base models, we have many possibili-
ties of how to determine the classi�cation decision. In the simplest case class
assignment could be based on the amplitude and sign of the committee output
Ycom. However we could also take advantage of the voting ensemble, and, for
instance, classify signal to STRONG BUY only if both the committee generates
BUY signal and the signal is backed by e.g. 80% of individual expert members.

In the following experiments and investment simulations presented in the further
sections we shall constrain ourselves to use two-class classi�cation, as speci�ed
by Eq.5.12. The benchmarking models, that will be used for comparison, will
apply the same classi�cation scheme to generate decisions.

5.3.2 Benchmarking models

For the purpose of benchmarking the reservoir committee system we will com-
pare it to several commonly known methods. In particular, we will consider
auto-regressive model (ARIMA) and two simple naive strategies.

Naive and naive-contrarian method The methods makes a simple assump-
tion about the next day market direction based on the current day. The naive
method assumes that the trend will be maintained, and the naive-contrarian
method is the opposite. If x̂t+1|t denotes decision about day t+ 1 made in day
t, and x(t) is market direction on day t, and the function takes positive value
in case of market growth, and negative in case of market fall, then:

naive : x̂t+1|t =

{
1 if xt > 0

−1 if xt < 0
, xt,∈ {−1, 1} (5.14)

naive contrarian : x̂t+1|t =

{
−1 if xt > 0

1 if xt < 0
, xt,∈ {−1, 1}

(5.15)

Autoregressive models (AR, ARMA, ARIMA, VARIMA) The au-
toregressive integrated moving average model, described as ARIMA(p, d, q), is
a commonly used statistical tool to time series analysis, and constitute a fun-
damental part of Box-Jenkins modelling approach[42]. Values p,d and q denote
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orders of autoregressive component, detrending and moving average component,
respectively. ARIMA is a generalized form of autoregressive moving average
model ARMA(p, q), which accounts for non-stationarity of time series. ARMA
model in turn is a combination of simple autoregressive AR(p) and moving
average MA(q), and is de�ned by equation:

xt+1 =

p∑
i=1

ϕixt−i+1 +

q∑
i=1

θiεt−i+1 + c+ εt+1 (5.16)

where c is constant, εt is white noise, xt−i is a value of signal at time (t− i), ϕi
is a parameter of AR component, and θi a parameter of MA component.

The special case of ARIMA(p, 1, 0) and ARIMA(p, 2, 0) will be used as a bench-
mark in further sections, where p being the order of autoregressive model will
be optimized to given task by means of cross-validation, similar to committee
cross-validation scheme. Values of d = 1 relate to di�erencing raw data sam-
ples, and d = 2 to second order di�erencing, for instance relative or logarithmic
di�erencing (as explained in section 5.1). In short, ARIMA(p, 2, 0) will intend
to predict next day relative market growth xt+1 based on p recent day values
xt, xt−1, ..., xt−p+1. Since we are interested in decision about direction, rather
than exact amplitude of signal change, we compute ARIMA(p, 2, 0) decision
according to the following formula:

x̂t+1|t = sign

(
p∑
i=1

ϕixt−i+1 + c+ εt+1

)
(5.17)

Finally, when dealing with multivariate inputs, the multivariate generalization
of ARIMA will be employed, called vector ARIMA or simply VARIMA, which
is obtained from equation 5.17 by replacing the variables xi and parameters
ϕi with vectors Xi and Gi of lengths equal to dimensionality of input. Since
VARIMA can bene�t from the same amount of information as the committee
predictor the benchmark results will be more complete.

5.3.3 Performance and robustness evaluation

To obtain statistically correct evaluation of the model performance on �nan-
cial time series, it is necessary to benchmark it on several prediction tasks.
In particular, S&P500 and DAX indices and EUR/USD exchange rate will be
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considered as target signals. Furthermore, for each task the evaluation should
be performed on multiple independent (possibly overlapping) training/testing
data sets, using moving window approach. The average performance over all
the periods will be considered as the �nal measure of performance. In this way,
random factors due to data sets will be eliminated, that could otherwise blur
the results of evaluation.

All the �nancial time series used for benchmarking will be splitted into 27 over-
lapping periods, each of 2-years duration, overlapping by one week. Each of
the periods will be further divided into training/validation/testing ranges of the
length 300, 100, 120 days respectively. Those numbers are approximate, since
exact number of trading days depends on of weekends and holidays distribution
within the periods. Such scheme will be kept invariant through all the experi-
ments, regardless target time series. The models will be trained and evaluated
independently on each of the periods, and the statistical performance will be
assessed as the average performance through all the trials.
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Figure 5.4: Benchmarking scheme. Moving window approach with one week
lag.
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5.4 Experiments

In this �nalizing section the comparative results of the empirical studies will be
presented, which give evaluation of reservoir committees in �nancial time series
forecasting. We shall benchmark the model against well-known autoregressive
models and naive strategies in the speci�ed environment (section 5.3). The data
will be preprocessed (section 5.1) before being supplied to the models. Experi-
ences from sections 3.6 and 4.3 will be used to optimize the base ESN models
and group them into committees. Finally, performance measures appropriate to
�nancial forecasting tasks will be used to evaluate the system (section 5.2).

First, the general comparison will be presented for all the target time series.
Secondly, we shall observe closer a particular committee predictor in exemplary
case study, where details of prediction results will be discussed, and automated
trading simulation will be presented. Finally, optimization aspects will be dis-
cussed, followed by general conclusions.

5.4.1 Comparative studies and evaluation

The comparative experiments will be carried out for S&P500, DAX, EURUSD
time series, each splitted into 27 overlapping periods as discussed in section 5.3.3.
The length of data sets and proportions between training/validation/testing
data are kept invariant. The selection of input time series depends on the
target time series and will be detailed later.

The compact committees of 25 ESN members will be considered. Connectivity
ratio is constant c = 0.05. Other parameters (reservoir size, spectral radius,
input scaling, regularization parameter) will be optimized with grid search, in
the following ranges:

• Reservoir size N = {50, 100, 150, 200}

• Spectral radius p = {0.5, 0.7}

• Input scaling d = {100, 200, 300, 400}

For each combination of parameters �ve independent committees will be gener-
ated, and evaluated on the 27 data sets. The results (HRavg and TRavg) will
be computed as an average over the �ve committee instances and over the 27
periods. In this way we eliminate the e�ect of random luck due to data set or
reservoir structure. As a result we obtain a representative measure of 'goodness
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of �t' of given parametric combination (N, p, d). The process is repeated for all
the combinations (32 in total) and the �nal results allow us to pick the optimal
con�guration. The results will be visually and quantitatively evaluated.

It is important to emphasize, that apart from global optimization, every individ-
ual network is regularized with the purpose of minimization of cross-validation
mean squared error (section 3.6.2). In similar way, each ranked committee is
regularized as discussed in sections 4.2 and 4.3.6. The regularization parameters
are varied in ranges λmem = 100 − 104, λcom = 10−5 − 104. Once the optimal
committee is trained, it is transformed into classi�er and evaluated globally as
was explained earlier.

Apart from preparation of ESN committees, we need to evaluate performance
of the benchmarking models. The case of naive and naive contrarian strategies
is trivial, since those models carry no parameters and depend only on the recent
input. Concerning ARIMA(p,2,0) and VARIMA(p,2,0) models, we optimize
the regression order p in the range p = {1, ..., 30}, evaluating the performance
(HRavg and TRavg) as an average over the same 27 periods as in case of the
committees. The best found model is taken as a benchmark. In case of ARIMA
model, the input is one-dimensional and consists of previous day closing price
of the same time series that is being predicted. In case of VARIMA model, the
input is multivariate and identical to the input of the corresponding committee
models.

In the following subsections we summarize the results obtained for S&P500 and
DAX indices and the EURUSD exchange rate.

5.4.1.1 Standard & Poor's 500 Index (S&P500) - next-day direction
forecasting

• Data: S&P500 index (01-Jan-2009 till 5-Aug-2011, splitted into 27 over-
lapping periods)

• Models: naive, naive contrarian, ARIMA, VARIMA, Reservoir Commit-
tees: MEAN, EXP, REXP, RMEAN, RIDGE

• Inputs: S&P500 open-price, max-price, min-price, close-price, S&P500
transaction volume, NIKKEI close-price EURUSD close-price

• Output: S&P500 next-day close-price (converted to direction indication)

Fig.5.5 presents the global results of the comparative study of the committee
models and benchmarking models, for S&P500 time series. The hit ratio, which
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we consider the most representative performance measure, is shown on the top
chart, while the lower charts correspond to the annual returns. The bars in each
column represent average results for given type of the model, the four left-most
bars re�er to benchmarking models, while the �ve right-most to the various
types of the committees (see section). Each bar is a result of computing 160
committees of 32 parametric combinations, and averaging the result over 26
testing data sets. The shaded tops of the committee bars illustrate di�erence
between best- and weakest found con�guration (N, p, d). The corresponding
numerical results are presented in Table 5.2.
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Figure 5.5: S&P500 next-day direction prediction - comparative results for dif-
ferent algorithms. From top: global hit ratio, corresponding capital return with
buy-and-hold strategy, corresponding capital return with day-trading strategy.

5.4.1.2 Deutscher Aktien Index (DAX) - next-day direction fore-
casting

• Data: DAX index (01-Jan-2009 till 6-Aug-2011, splitted into 27 overlap-
ping periods)

• Models: naive, naive contrarian, ARIMA, VARIMA, Reservoir Commit-
tees: MEAN, EXP, REXP, RMEAN, RIDGE

• Output: DAX next-day close-price (converted to direction indication)
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fts_forecasting

Page 1

Method Hit Ratio

naive 0,534 2,57 8,90
naive cont. 0,466 -3,42 -8,99
ARIMA 0,496 7,46 8,63
VARIMA 0,593 22,09 25,39
MEAN 0,616 48,52 48,15
EXP 0,616 49,50 47,01
REXP 0,597 42,03 40,61
RMEAN 0,592 37,18 36,77
RIDGE 0,603 40,15 39,96

Annual Return[%]
buy-and-hold

Annual Return[%]
day-trading

Table 5.2: S&P500 prediction - comparative results.

• Inputs: DAX open-price, max-price, min-price, close-price, DAX trans-
action volume, S&P500 close-price, NIKKEI close-price, EURUSD close-
price

• Models: naive, naive contrarian, ARIMA, VARIMA, reservoir committees:
MEAN, EXP, REXP, RMEAN, RIDGE

Fig.5.6 presents the global results of the comparative study of the committee
models and benchmarking models, for DAX time series. The corresponding
numerical results are presented in Table 5.3.

fts_forecasting

Page 1

Method Hit Ratio

naive 0,490 -4,29 2,84
naive cont. 0,510 2,43 -3,57
ARIMA 0,529 6,58 3,59
VARIMA 0,540 5,35 8,75
MEAN 0,642 36,06 8,74
EXP 0,636 37,17 10,40
REXP 0,623 31,17 9,98
RMEAN 0,621 27,11 6,75
RIDGE 0,599 24,21 5,89

Annual Return[%]
buy-and-hold

Annual Return[%]
day-trading

Table 5.3: DAX prediction - comparative results.

5.4.1.3 Euro/US Dollar exchange rate (EURUSD) - next-day direc-
tion forecasting

• Data: EURUSD exchange rate (01-Jan-2009 till 5-Aug-2011, splitted into
27 overlapping periods)
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Figure 5.6: DAX next-day direction prediction - comparative results for di�erent
algorithms. From top: global hit ratio, corresponding capital return with buy-
and-hold strategy, corresponding capital return with day-trading strategy.

• Models: naive, naive contrarian, ARIMA, VARIMA, Reservoir Commit-
tees: MEAN, EXP, REXP, RMEAN, RIDGE

• Output: EURUSD next-day close-price (converted to direction indication)

• Inputs: EURUSD open-price, max-price, min-price, close-price, S&P500
close-price, DAX close-price, NIKKEI close-price

• Models: naive, naive contrarian, ARIMA, VARIMA, reservoir committees:
MEAN, EXP, REXP, RMEAN, RIDGE

Fig.5.7 presents the global results of the comparative study of the committee
models and benchmarking models, for EURUSD time series. The corresponding
numerical results are presented in Table 5.4.

5.4.1.4 Results summary

In the �rst two experiments we observed the superior performance of the committee-
based models over the naive and autoregressive methods. The performance in
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Figure 5.7: EURUSD next-day direction prediction - comparative results for dif-
ferent algorithms. From top: global hit ratio, corresponding capital return with
buy-and-hold strategy, corresponding capital return with day-trading strategy.

terms of hit ratio HRavg was particularly satisfactory for S&P500 and DAX in-
dices, achieving 61% and 64% of properly indicated next-day market directions,
what makes the results comparable with state-of-art solutions. The correspond-
ing annual returns on investment (TR) indicate promising pro�tability of the
proposed models, especially considering buy-and-hold strategy. Since the results
are obtained by analysis of multiple training/testing data sets and averaging
through multiple committees, it suggests that the similar performance is ex-
pected if the models are applied to forecasting the future data. Although there
may occur periodic deviations, in the long run the performance will presum-
ably tend to converge to the presented numbers, unless the market conditions
dramatically change.

The results are less obvious in case of EURUSD exchange rate prediction. The
committee predictors in fact maintained the above-average performance (51%-
55%), however in this case the simplest methods (naive and univariate autore-
gressive) yielded slightly higher returns and hit ratio. The reason can lie in not
optimal choice of multivariate input (what is also suggested by inferior perfor-
mance of the multivariate VARIMA model). Indeed, the currency market is
usually the �rst one to react on macroeconomical and political events, and thus
causal impact of indices on the currencies is weaker than the other way round.
The weaker results can be also due to data characteristics - not all the �nancial
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fts_forecasting

Page 1

Method Hit Ratio

naive 0,529 11,78 13,56
naive cont. 0,467 -9,94 -11,53
ARIMA 0,558 5,81 6,63
VARIMA 0,542 13,79 12,31
MEAN 0,517 -2,54 -3,66
EXP 0,521 1,26 0,57
REXP 0,536 7,21 7,29
RMEAN 0,546 11,24 11,61
RIDGE 0,531 8,14 8,96

Annual Return[%]
buy-and-hold

Annual Return[%]
day-trading

Table 5.4: EURUSD prediction - comparative results.

timeseries are equally predictable and some are closer to follow a random-walk.
The problem could be possibly addressed by (1) optimizing the selection of in-
put data, and (2) changing the committee response from binary classi�cation
(section) to multiclass classi�cation, and de�ning more sophisticated strategy
than simple buy-and-hold and day-trading discussed here.

Considering di�erent committee algorithms, the MEAN and EXP methods
where slightly ahead of the regression methods, with MEAN leading in terms
of hit ratio and EXP in terms of annual returns. Regression algorithms per-
formance could be possibly enhanced by one of the two improvements: (1)
extending the size of the committee (and hence dimensionality of regression
coe�cients) or (2) adjustments of committee level cross-validation scheme.

Furthermore, the experiments con�rmed the stability and �exibility of ESN com-
mittee approach - we observed rather moderate spread between performances
of the best-�tting and the weakest con�gurations, being no higher than 3-6% in
terms of HR, even though the committees varied signi�cantly in terms of reser-
voir sizes and input scaling. No outliers were identi�ed among 160 committees
representing each algorithm (32 con�gurations, 5 committees in each) in every
prediction task.

5.4.2 Case study

Following the analysis of the global results, we shall now look into performance of
selected committee model in particular prediction task. The MEAN committee
will be considered, that in average yielded the highest accuracy in S&P500
forecasting.

Instead of averaging the results over all tested periods, let us now observe how
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the committee performance varied in the subsequent periods (see Fig.5.8). Ob-
servation of HR variance from its mean value gives estimation of how much the
�nal results are dependent on particular training setting, or in other words -
how robust the model is. The �gure also illustrates the importance of cross-
evaluating the performance over range of data sets, especially in �nancial do-
main. Unfortunately, numerous examples can be encountered in literature where
remarkable forecasting results are claimed, however based entirely on one par-
ticular time series and single, �xed training/testing period (in our case it would
correspond to selecting the 4th period which yielded the highest accuracy of
66% and considering it our �nal result). Such measure though does not re-
�ect the actual generalization ability of the model. (�g.5.8). Instead, all the
global result discussed in section 5.4.1 are averaged through multiple models
and multiple training settings.

0.5
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100%
Annual Return[%], buy−and−hold strategy

0 5 10 15 20 25
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100%
Annual Return[%], day−trading strategy

testing period

µ=0.616 σ=0.022

Figure 5.8: Prediction accuracy (HR) in subsequent, overlapping periods. Hor-
izontal lines indicate the mean and one standard deviation distance from the
mean. Bottom charts re�er to corresponding TRbah and TRdt returns.

Fig. 5.9 shows yet more detailed visualization of the prediction results, this
time in terms of capital �ow CF . For each of the analyzed periods (consisting
of 120 trading days) we compute corresponding capital �ow, which re�ect how
the cumulative gains/losses would develop on daily basis if investor followed the
committee's indications in line with buy-and-hold strategy (section 5.2). In case
of S&P500 prediction we observe incrementing lines of capital �ow for all the
periods, which is another indication for robustness of the committee approach.
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Figure 5.9: Projection of capital �ow (CF ) through 120 trading days, assuming
buy-and-hold strategy. Each colored plot corresponds to one of the testing
periods. The values at the last day correspond to the TRbah returns. Thick line
denotes the latest available period 24-Feb-2011 til 05-Aug-2011.

The thick line denotes the latest evaluated period (24-Feb-2011 til 05-Aug-2011),
which was the most recent data at the time of writing this thesis. The �nal
part of the highlighted plot increases very rapidly - it corresponds to the �rst
week of August 2011, when S&P500 rapidly declined by nearly 15% within less
than 2 weeks (in fact it continued the fall in the following days). Apparently
the network managed to generate proper decisions and bene�t from unusual
volatility of the markets in that period. The similar corrective pattern of market
movements occurred in May-June 2010, the period which was covered by the
training data set. We shall observe the highlighted capital �ow closer in the
following section.

5.4.3 Trading simulation results

Suppose we have a trained committee model on �nancial data set Dtr and we
would like to assess details of its performance on independent data set Dtest.
From the �nancial perspective it would be interesting to observe the resulting
capital �ow versus the actual price of the forecasted asset, to assess the e�ciency
of the committee as an investment support tool. Furthermore, daily gains/losses
resulting from system indications are also important, since they can be used to
derive other measures of performance, such as distribution of returns, average
return, maximum drawdown in the period, and many others. Such measures
can give valueable assessment of the investment strategy and the associated risk.
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From the analytical point of view, it would be interesting to observe system
decisions along with the price chart of the predicted asset, and analyze how it
reacts on certain price patterns, or how the predictor behaves in unusual market
conditions.

For those reasons we developed a simple tool to perform a trading simulation
for given predictor P and testing dataset Dtest. Strictly speaking, only a vector
of predictor indications ρ = [ρ1, ..., ρn], ρi ∈ {−1, 1} is necessary, where each pi
indicates predicted market direction on i′th day. In this way, we can connect
any external model to the simulation and compare it with the committees.

Fig.5.10 illustrates the simulation results for the S&P500 index. In this setting,
the committee was trained on the period 09-Jul-2009 til 23-Feb-2011 and tested
on 24-Feb-2011 til 05-Aug-2011. The period includes rapid market decline that
we mentioned in the previous section. The top charts illustrate committee de-
cisions and resulting �ow, both plotted together with the target asset price.
Bottom charts present daily returns and their distribution. The performance of
the committee seemingly outperforms market average. Moreover the gains are
maintained both during market rises and declines.

Fig. 5.11 presents similar simulation results for DAX index. The committee
achieves good performance with exception of the last days of strong market
decline. However it manages to maintain the total return above zero level.

It should be emphasized that the results of the individual simulations are not
su�cient for evaluation of given model. Instead they present details of one
particular model on one particular data set. For instance, similar simulations
were repeated 4320 times for each committee algorithm in order to generate the
global results presented earlier in section 5.4.1 (27 training/testing data sets,
32 parametric combinations, 5 committees for each combination). However, the
simulations can be helpful in the following tasks:

• Analysis (or debugging) of the model with the purpose of further opti-
mization. For example, varying the inputs and observing how the system
response changes can help to determine the optimal input combination for
certain tasks, e.g. early crisis detection.

• Having the model optimized, the simulations can be used for �nal evalua-
tion before application to real-time forecasting tasks (automated trading,
section 2.1.6)

• Visualization of the �nal e�ects from the investment perspective, while
hiding the complexity of the underlying committee.
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Figure 5.10: S&P500 trading simulation with reservoir-committee. From top:
asset price compared with capital �ow, decision vector, capital �ow, daily re-
turns, returns distribution. Triangular tags on the top chart indicate the pre-
dicted market direction on that day (i.e. committee output generated on the
previous day).

5.4.4 Optimizations

In this �nal section we focus on in�uence of reservoir size and input dimension-
ality on the committee performance, in terms of HR. The results in �nancial
domain are not always as explicit as it is with arti�cial time series, however we
observed some noteworthy regularities.

5.4.4.1 Input dimensionality

Multiple committees were trained with four di�erent combinations of inputs.
The �rst input type is only one-dimensional and consists of the closing prices of
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Figure 5.11: DAX trading simulation with reservoir-committee.

the target asset (here: S&P500). Subsequent con�gurations gradually increase
dimensionality. The second type of input contains full information about pre-
vious prices of the target asset, that is open-, min-, max- and close-prices and
transaction volume. The third input is already multivariate and apart from the
target asset information contains also prices of NIKKEI index and EURUSD
exchange rate. The fourth input type, apart from all the previous data, com-
prises also linearly preprocessed target asset, in particular: Relative Strength
Index, Price Rate Of Change, and Moving Average Convergence-Divergence.
The technical analysis (TA) indicators were presented in section 5.1.7. All three
indicators are properly scaled to match with other inputs.

For every input type we train population of committees with varied input scale
parameter β = [50, 100, ..., 400], in that way accounting for the need of input
scaling along with increasing dimensionality. For each combination of input type
and scaling factor we compute HR results and present the results on Fig. 5.12.
Note that HR is obtained similarly like before, by averaging through 26 testing
data sets and through 5 committees.

The bene�ts from increasing input dimensionality are clearly observable, espe-
cially in case of RIDGE committees (bottom plots). The performance gain is
particularly large after adding external signals - NIKKEI and EURUSD. Inter-
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Figure 5.12: In�uence of multivariate input on Hit Ratio performance.

estingly, additional TA indicators do not lead to signi�cantly higher accuracy
and in case of RIDGE committee they even degrade the performance. It is pos-
sible that higher reservoirs are needed to take advantage of high dimensionality
of the input.

5.4.4.2 Large reservoirs

For the same prediction task (S&P500) multiple committees were trained, this
time with varying reservoir sizes N = {100, 200, ..., 600}. HR is computed by
averaging through 26 testing data sets and through 5 committees. Results are
plotted on Fig.5.13.

Signi�cant gain was observed for MEAN and EXP methods after increasing
reservoir sizes from 100 to 400-600 neurons. The results are consistent with
conclusions from Chapter 4 concerning large reservoirs. In current experiments
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Figure 5.13: In�uence of reservoir size of committee members on Hit Ratio
performance.

we can consider reservoir large if the number of neurons is 400 or more, since
this is the size of the training data set. It still remains to be veri�ed whether
large reservoirs increase the capacity su�ciently so that the system can bene�t
from higher dimensionality of multivariate inputs.

5.5 Summary

In this concluding section we applied the model developed earlier to non-trivial
engineering task of �nancial time series forecasting. The �nancial domain is
particularly challenging due to noisy and chaotic behavior of the data. We have
touched upon many relevant issues, in particular data acquisition and prepro-
cessing, adapting model to classi�cation of next-day market direction, optimiza-
tions and de�ning simple investment strategies so that committee can be used
as investment support system. Finally, we de�ned benchmarking and simula-
tion environment, and tested the proposed models against classic autoregressive
models and naive strategies. We obtained the promising results in two out of
three large-scale comparative studies, comparable to state-of-art in the �eld. In
the third experiment the committees performed reasonably good but did not
outperform the autoregressive models.
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Chapter 6

Conclusions

In the scope of the �rst part of the thesis we evaluated echo state network ap-
proach in the task of chaotic time series forecasting. Starting from analysis of
single ESN models and arti�cial time series, we gradually advanced the concept
to the committee level, which can be considered the central part of the thesis.
Extensive comparative studies of di�erent ensemble methods were performed
and the �nal results allowed us to formulate several conclusions and design
principles, in particular formulate the conditions in which certain types of the
committees are more suitable than the others. In general, we conclude that re-
lation between reservoir size, regularization scheme, and length of the training
dataset constitute essential parameters needed to be considered in case of ESN
committee forecasting. Our results showed that increasing reservoir size accom-
panied by regularization will almost always lead to asymptotic error decrease.
The similar regularity was observed for both arti�cial and �nancial time series.
The approach is therefore recommendable, unless the computational constraints
are the issue. On the other hand, we presented examples where nonregularized
committees of small reservoir networks act as e�cient regularizers, and thus can
yield comparable performance as the corresponding regularized committees, but
with signi�cantly lower computational cost involved.

The �rst part of the project resulted also in development of the Matlab frame-
work to support ESN committees design and analysis. The implementation
includes class representations of ESNs, topological ESNs and ESN-committees,
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training algorithms, and diverse visualization tools, in particular for �nancial
simulations. The framework will constitute a useful tool in further research.

The second phase of the project focused on application of the reservoir commit-
tee model to non-trivial task of forecasting the �nancial time series, character-
ized by non-stationary, chaotic behavior and large noise. Signi�cant e�orts were
committed to domain analysis, data acquisition and preprocessing. The main
conclusions coming from this part of the project relate to particular importance
of data selection and preprocessing. Careful domain analysis is highly recom-
mended to identify explanatory relations between �nancial markets, macroe-
conomic factors, currency exchange rates and other related variables, so as to
construct informative, multivariate combination of signals for the system input.
The data aspect is equally important, or perhaps more, than the model design
itself. Furthermore, the grid search of optimal parameters and input con�gura-
tions will be often inevitable in �nancial forcasting, since the predictor does not
always respond intuitively to certain changes in experimental setups and hence
derivation of good design principles is a hard problem.

Finally, we performed large-scale comparative studies of reservoir committees
and classic autoregressive models in light of their applicability to �nancial fore-
casting. The proposed reservoir committees managed to achieve noteworthy
results in next-day prediction of major global indices - S&P500 and DAX, and
acceptable results in case of EURUSD rates. The subject was certainly not
exhausted, and numerous ideas had to be put aside due to project constraints.
However, our preliminary empirical studies give evidence that committees of
echo state networks have potential to compete with state-of-art solutions in the
�eld of �nancial forecasting.

It can be concluded that the main objective of the thesis, which is evaluation of
reservoir committee methods and their applicability in �nancial forecasting, was
ful�lled. Moreover, along with the project proceedings many ideas emerged of
how to further elucidate the complex dynamics of the model as well as enhance
its performance in �nancial domain. Those inspirations constitute promising
basis for further research.
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