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1 Preface

This report summarizes and presents my work during my master project at the
Computer graphics and Image analysis at the Technical University of Denmark.
This six-month work was focused on geometric modelling and rendering with im-
plicit surfaces. My objective was to study recent methods for ray-tracing implicit
surfaces on the GPU and to adapt them to render models modelled by their skele-
ton. The motivation was to use the simplicity that provide skeletal implicit surfaces
to model surfaces without having to tessellate them as it is usually done. In order to
be interesting, the method had to allow animation and texturing, thus being usable
to render characters for example, and to be able to be used for real time applica-
tions.

The first part of this report presents the most relevant results of my work, it is
presented on the form of a conference article. I propose here a practical framework
to model and render skeletal implicit surfaces. I first review the bibliography that is
relevant to this problem. I present the surface representation that I chose to create
the models and the algorithm that I used to render the surfaces. I also present
a method to animate the models using a hierarchical bone data structure and a
method to allow texturing of the models with user control.

In Appendix A, I present some work that I did on using a bounding volume
hierarchy to accelerate the ray-tracing algorithm. This work did not provide a
significant advantage on the efficiency of the algorithm for the size of the models
that I used. Hierarchical data structures are indeed not convenient to use on the
GPU because traversing the BVH induces an overhead in branching and additional
computation to test the ray against the bounding boxes of the node. However, as it
is presented in the article, the algorithm suffers from a poor scalability and using a
BVH could become an advantage for complex models or for a scene with several
models. Therefore I provide in appendix a description of the algorithm and some
implementation details.

1



2 Acknowledgements

I would like to thank my supervisor on this project Jakob Andreas Bærentzen for
the original idea proposal and for the advises along the project. I would like to
thank my family and friends for their support. I would like to thank the IMM
staff and the staff from the Computer Graphics and Image Analysis department for
making IMM an attractive environment to study and for the quality of the teaching
proposed.

2



A practical framework for real time ray-tracing of animated skeletal implicit
surfaces on the GPU.

Olivier Rouiller∗

Department of Informatics and Mathematical Modelling, Danmarks Tekniske Universitet

Figure 1: A spider modelled and rendered with our framework.

Abstract

We present a framework consisting of a surface representation
based on skeletal implicit surfaces and a ray tracing algorithm that
allows to model animated surfaces in real time. This framework
allows common effects used in computer graphics such as textur-
ing and displacement mapping and can be integrated in a real time
renderer. To demonstrate the power of the framework, we build an
interactive modelling tool.
The surface representation that we use is a subset of skeletal im-
plicit surfaces and we limit ourselves to simple primitives such as
points and line segments. We choose degree four polynomials for
the convolution kernel. We combine this skeletal representation of
the geometry with a hierarchical bone data structure to allow ani-
mation.
The rendering is done on the GPU in a single pass via ray-tracing.
The ray-tracing algorithm uses bisection to find the ray-surface in-
tersection and relies on finding points on the ray that are inside the
surface. We propose a method to apply 3D and 2D textures to the
model in the fragment shader that is compatible with animation.
This method consists in transforming the position of the fragment
to it’s position in the model’s rest pose to compute the texture coor-
dinates with local projectors.

Keywords: Geometric Modelling, Implicit Surfaces, Real Time
Ray-Tracing
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Figure 2: A animated alien modelled with skeletal implicit surfaces
and ray-traced on the GPU.

1 Introduction

The usual real time rendering pipeline is based on polygon raster-
ization. Models are sent to the GPU as lists of indexed polygon
as well as other geometric quantities such as normals, texture co-
ordinates, tangent frames and bone transformations in the case of
animated models. This way of representing and rendering the ge-
ometry is efficient and have proven its usability over years. How-
ever, modelling smooth surfaces requires a large number of poly-
gons. Also, polygonal models use a significant memory storage
space and sending the polygons to the GPU is a bottleneck on mod-
ern architectures.

Other surface representations such as surface patches and implicit
surfaces can be used to represent surfaces in a more compact way.
These surfaces also allow high level manipulations and can simplify
the modelling process. Skeletal implicit surfaces are for instance
only defined by their skeleton. Solutions to render these surfaces
exist. The modern graphics pipeline allows to tessellate surface
patches on the GPU, thus freeing the bandwidth between the CPU
and the GPU. Implicit surfaces can be polygonised and rendered as
triangle meshes.

Recently, the increasing power of graphics hardware allowed to ren-



der in real time implicit surfaces by ray-tracing on the GPU. This
approach allows to benefit from the smoothness of these surfaces.
The modelling power of skeletal implicit surfaces, their compact-
ness and the possibility to ray-trace them in real time on the GPU
make them good candidates for an alternative of polygon rendering.

We investigate the possibility to use skeletal implicit surfaces to
design and implement a framework for modelling and real-time
rendering of smooth surfaces. In order to be viable, the solution
should allow animation and texturing and ideally provide perfor-
mances comparable to polygonal rendering.

2 Related work

Implicit surfaces have been used in geometric modelling and pro-
cedural geometry modelling because they require few information
to represent smooth surfaces of arbitrary topology.

An implicit surface S is defined as the zero level set of a scalar field
F defined on the 3D space. S = {p ∈ R3, F (p) = T} where T
has positive value.

We review some interesting works about modelling with implicit
surfaces and about rendering implicit surfaces by ray-tracing. In
the second section of this report we will present our method and
how this previous work is interesting for our problem.

2.1 Geometric modelling with skeletal implicit sur-
faces

A skeletal implicit surface is an implicit surface whose potential
field is defined by explicit geometric primitives such as points, line
segments, polygons or other surfaces. Each of the geometric prim-
itives are independent sources of potential field and the different
fields are combined by mathematical operations. In the most sim-
ple case, the potential fields are summed. This produces smooth
surfaces that blend together. In this case the potential field F is the
sum of independent functions Fi, F (x) =

∑

i

Fi(x). Other opera-

tions such as difference, minimum or maximum produce more rich
surfaces. These operators results in operation on the surface such
as intersection, difference and union which are used in Constructive
Solid Geometry (CSG).

2.1.1 Metaballs

The most simple kind of implicit surfaces used in computer graph-
ics for modelling is metaballs. Metaballs were invented by Jim Blin
[Blinn 1982], are now very popular in the computer graphics com-
munity and are often referred to as Blinn’s blobs. Metaballs are
implicit surfaces defined by point primitives. The surface of a sin-
gle metaball is a sphere and when two metaballs are close enough,
they blend into a single smooth surface.

The potential field Fi of a metaball i with center pi and radius ri
is defined by a decreasing function fi of the distance to the cen-
ter of the ball, Fi(x) = fi(‖x − pi‖). The original definition
of Blinn’s Blobs used an exponential function as the function fi,
fi(r) = e−ari where a is a positive scalar.

In practise and for efficiency reasons, we use functions with a simi-
lar shape and with compact support. Usually polynomials of degree
4 or 6 are used. These functions are interesting because they are fast
to compute. Also the function vanishes at a certain distance R of
the centre of the ball.

Typically the function used are in the form f(r) =
(
1− r2

R2

)2
if

r ≤ R, 0 otherwise. The radius R is referred to as effective radius
of the metaball. The sphere centred at the center of the metaball
and of radius R is called surface of influence of the metaball.

Metaballs have been mainly used in computer graphics to simulate
and render fluids.

2.1.2 Skeletal implicit surfaces

Skeletal implicit surfaces are a more general concept than metaballs
and are mathematically defined as convolution surfaces. Modelling
with skeletal implicit surfaces have been introduced by Bloomen-
thal in his doctoral dissertation [Bloomenthal 1995].

A convolution surface is defined as an implicit surface with a
potential field f defined with explicit primitives and convolution
functions. The field F is of the form f(x) = g(x) × h(x) =∫

R3

g(r)h(x− r) dr.

g is defined by the explicit geometry. Typically, g = 1 on the
geometry, 0 elsewhere. h is the convolution kernel, it is usually
a distance function. With h and g defined in this way, and using
point primitives, the integral boils down to the potential field of a
metaball.

Convolution surfaces and their applications to computer graphics
and geometric modelling have been thoroughly studied by Andrei
Sherstyuk in his doctoral dissertation [Sherstyuk 1999].

2.1.3 The BlobTree

Although simple and powerful, skeletal implicit surfaces lack of
local control and it is especially hard to create sharp edges using
them.

Charles Wyvill addressed this issue by developing a data structure
based on skeletal implicit surfaces [Wyvill et al. 1998] and expand-
ing the operation done on the function field to allowing CSG oper-
ations. This data structure called the BlobTree as is constructed as
a directed acyclic graph where the leaf nodes are geometric primi-
tives and the non-leaf nodes are operation.

2.1.4 Applications to sketch based modelling

Finally, recent works on sketched based modelling and high level
modelling showed the possibility to build powerful modelling tools
based on the BlobTree and allow intuitive editing of the surface
without concern about it’s mathematical representation.

Sugihara et. all presented in [Schmidt et al. 2005] a system to edit
BlobTree surfaces by sketches and more recently in [Sugihara et al.
2010] a system that allows to edit an implicit surface by drawing
lines on it and by pushing and pulling them.

Although these works are beyond the scope of our project, they are
worth mentioning to show the modelling power of implicit surfaces
and to justify their study.

2.2 Ray tracing implicit surfaces on the GPU

Rendering implicit surfaces can be done by extracting a polygonal
approximation of the surface and rendering the triangle mesh using
the usual real time rendering pipeline. The most popular algorithm
to polygonize an implicit surface is marching cubes [Lorensen and
Cline 1987]. Marching cubes samples the implicit function on the
grid, the cubes defined by the grid are then visited and polygons are
created if there are sign alternations on the edges. This algorithm



can be optimised to run in real time thus allowing interactive edit-
ing and can also be implemented in the GPU [Geiss 2007] for real
time rendering of procedural surfaces. However, the output surface
requires a large number of polygons in order to produce smooth ren-
dering and it is hard to produce a mesh with polygons that follows
the features of the shape.

The other approach to render implicit surfaces is to ray-trace them.
Implicit surfaces are suitable to be ray-traced because of their math-
ematical representation. Finding a intersection of a ray with an im-
plicit surface boils down to finding the zeros of the field function
along the ray.

With algebraic surfaces, it is possible to compute exactly the inter-
section by finding the root of an univariate polynomial.

Another approach is to use iterative methods to approximate the
root of the function.

2.2.1 Root finding techniques

Fukuyama presented in [Fukuyama et al. 1994] a method to display
metaballs by using Bézier tetrahedra. This method consists in com-
puting the roots of the field function along the ray by solving an
univariate polynomial equation.

In [Loop and Blinn 2006], Loop et al. presented a method to ray-
trace arbitrary algebraic surfaces on the GPU. With this method it is
possible to ray-trace accurately implicit surfaces on the GPU. The
method is also based on finding an analytic solution of the polyno-
mial.

More recently [Kanamori et al. 2008], this technique was adapted
for metaballs to ray-cast a large number of metaballs at interac-
tive frame rate. The algorithm also use Bézier clipping as well but
evaluates only the metaballs contributing for a pixel by using depth
peeling.

2.2.2 Ray marching and interval arithmetic techniques

Another way to ray-trace implicit surfaces is to use ray marching
techniques. These techniques consist in finding the ray-surface in-
tersection by evaluating the field function along the ray.

In [Mitchell 1990], Mitchell proposed algorithms of interval arith-
metic such as bisection to compute efficiently the ray surface inter-
section with implicit surfaces.

2.2.3 Sphere tracing

Sphere tracing is an adaptive step length search and is known to
be efficient to ray-trace surfaces to which we have an evaluation of
the distance of a point in space to the surface. This technique was
introduced by JC Harts in [Hart 1996].

This technique requires to have a signed distance field of the objects
that are ray-traced. The value of the signed distance field at a point
in space is the distance from this point to the closest point on the
ray-traced surfaces.

It is possible to generate a distance field for many geometric object
and to compose scenes with the SDFs. Recently in [Reiner et al.
2011], this method was for interactive modelling.

Sphere tracing usually yields better performances for ray march-
ing implicit surfaces but with metaballs and convolution surfaces in
general, it is hard to compute the distance field and it requires to
evaluate the derivative of the field function which is an expensive
computations when the number of primitives is high.

2.3 Spatial data structures for real time rendering on
the GPU

For the last few years, ray tracing on the GPU have been a subject
of interest in the computer graphics community. The parallel ar-
chitecture of the GPU has been used to accelerate off-line renderers
and real time ray tracing became possible with the increasing power
of the hardware.

In the mean time, acceleration data structures such as bounding vol-
ume hierarchies and kd-trees have been adapted and improved to fit
the need of a GPU ray-tracer.

In [Stich et al. 2009], an algorithm is presented to build bounding
volume hierarchies for animated scenes ray-traced on the GPU. The
BVH is built from top to bottom at every frame using spatial splits.

Spatial splits allow to use axis aligned bounding boxes that tightly
fit the geometric primitives and the resulting boxes do not overlap.

This technique was adapted for metablalls in [Gourmel et al. 2010]
to ray-trace thousands of metaballs at interactive frame rate.

3 Surface Representation

With our model, the field function F of the implicit surface is de-
fined as a sum of polynomials fi of the distance to point and seg-
ment primitives Pi.

F (x) =
∑

Pi

fi(dist(x, Pi)),

where dist(x, Pi) is the distance of x to the primitive Pi.

For the functions fi, we chose degree 4 polynomials limited to a
radius Ri. These functions have the advantage to be fast to com-
pute and to have a compact support, which allows us to discard the
primitives that don’t have an influence when ray tracing the surface.

fi(r) =
(
1− r2

R2
i

)2

Figure 3 illustrates our surface representation. The dashed lines
represent the surfaces of influence of the primitives, the red solid
curve represents the surface. For more variety of surfaces, we al-
low the segment to have different effective radius at the extremities,
the effective radius is interpolated on the segment between the two
values.

Figure 3: Illustration of the skeletal surface representation.

Figure 4a shows the basic primitives of our model, a metaball and
a metatube with two different radius. The circles show the effective
radius of the primitives. Figure 4b shows the two primitives blended
together when their surfaces of influence intersect.



(a) (b)

Figure 4: Basic shapes of our surface representation.

3.1 Advantages of the representation

This surface representation allows to model easily complex models.
The models shown on this paper were created in less than an hour
with our modelling tool. It is particularly suitable to create smooth
surfaces without the need to use complex frameworks and algo-
rithms such as surface subdivisions or surface patches. Also this
representation is very compact, the gecko presented on figure 5 is
composed of only 66 metaballs whereas the polygonised model re-
quires over 5000 vertices and more than 10000 triangles to present
a comparable smoothness. This compactness is an advantage for
both storage in memory and to save the bandwidth with the GPU
for rendering.

Finally, the data structures used to build and maintain the models
are very simple and map naturally to the GPU memory, a plain array
of metaballs is sufficient to store the model.

Figure 5: A Gecko modelled of 66 metaballs.

4 Ray-tracing Algorithm

With such a surface representation, it is easy to implement a ray
tracer on the GPU. Positions of the point primitives and of the ex-
tremities of the line segment are sent to the fragment shader as well
as effective radius. On the fragment shader, we compute a ray in
world space.

When the ray is computed, several ray marching techniques and
optimizations are possible to find the ray surface intersections.

When the intersection is found, the normal of the surface is com-
puted by differentiating the field function, shading is applied and
effects such as texturing, normal mapping or advanced lightings ef-
fects using other rays can be applied.

4.1 Ray marching

The easiest way to find the ray surface intersection is to perform
ray marching. A naive approach is to use a constant step length
and to stop the search as soon as we find a sign alternation of the
function. The code for this method are presented in listing 1. This
approach is not fast enough to achieve interactive frame rates with
complex models since it requires an important number of function
evaluations.

Algorithm 1 Ray-surface intersection with naive ray marching

// Construct ray from eye to fragment
vec3 rayDir = normalize(worldPosition-cameraPos);
vec3 ray = worldPosition;

int steps = 0;
float value = fieldFunction(ray);

while( value > 0 && steps < maxSteps ){
ray += stepLength*rayDir;
steps++;

value = fieldFunction(ray);
}

To reduce the number of evaluations, we implemented an interval
arithmetic search algorithm, we find a point outside the surface,
one inside and we find the intersection by bisection. This method is
similar to the method used in [Gourmel et al. 2010]. They use the
BVH to reduce the number of metaballs evaluated. We instead dis-
card primitives by testing their surface of influence for intersection
against the ray.

4.2 Bisection

A bisection can be used to reduce the number of steps needed to
find a zero of the field function along the ray. This technique relies
on finding a point inside the surface after the first intersection of the
ray with the surface and a point outside the surface.

These two points define an interval along the ray that can be itera-
tively subdivided until a certain precision is reached. The code for
this algorithm is presented in listing 2.

Algorithm 2 Ray-surface intersection with bisection

vec3 hi; // A point inside the surface
vec3 low; // A point outside the surface

vec3 mid = 0.5(hi+low);
int steps = 0;
float vmid = fieldFunction(mid);

while(steps < maxSteps && abs(vmid) > eps)
{
steps++;
mid = 0.5*(low+hi);
float vmid = fieldFunction(mid);

if(vmid < 0)
low = mid;

else
hi = mid;

}
vec3 intersection = mid;



To find the first interval for the bisection, one can do a constant step
ray marching, stop it when a point with a positive value is found
and use the two last iterates to initialize the bisection interval.

However we have seen that such a method is expensive in number
of evaluations. Also this method does not give any guaranty that
geometric details are not missed.

We use the information that we have on the geometry of the sources
of the field to find points inside the surface efficiently.

We first discard the primitives whose effective surface does not in-
tersect the ray. For all the primitives that pass this test, we compute
a point that we know is likely to be the candidate for a point inside
the surface. Finally, we choose among these points the one that is
the closest to the eye position.

4.2.1 Finding points inside the surface

To find points that are likely to be inside the surface, we compute
for each metaball whose effective surface is intersected along the
ray the projection of the center on the ray.

For tube primitives, we have to compute more than one candidate.
We compute the intersection of the ray with the plane containing
the segment and aligned to the viewer as well as the projections of
the segment’s extremities with the ray. We keep from these three
points the one that is the closest to the line segment.

Figure 6 shows an illustration of how the interval for bisection is
computed with metaballs only. The method is the same with line
segment primitives. On Figure 6a, we show in red the metaballs
that are discarded because their sphere of influence do not intersect
the ray. The blue metaball is discarded because the value of the field
function at the projection of the center on the ray is negative. Only
the remaining metaballs are used for future evaluations of the field
function and the projections of the centers are stored. On Figure 6b,
the closest of these points is selected as well as the first intersection
of the ray with the bounding box of the surface to initialize the
bisection.

(a) (b)

Figure 6: Illustration of the ray-surface intersection algorithm.

4.2.2 Limitations

With this technique we can track the surface efficiently but some
ray-intersection are missed. This is the case when two primitives
are just close enough to start blending. Figure 7 illustrates an ex-
ample of a ray that miss the surface.

Our method to find a point inside the surface with a line segment
primitive also causes artefacts when the direction oh the view is
close to being parallel to the segment’s axis.

Figure 7: Example of a ray that miss the surface with our intersec-
tion method.

4.3 Evaluation of the method

Our algorithm allows to render our skeletal implicit surfaces at in-
teractive frame rate. The root finding by bisection is fast and easy to
implement. The surface is found in less than 10 bisection steps for a
precision that doesn’t present visible artefacts. However, selecting
the primitives that have an influence on the ray requires to evaluate
the entire function for each primitive which leads to a n2 complex-
ity. This does not scale well for large models. A solution would be
to use a bounding volume hierarchy as presented in [Gourmel et al.
2010]. However, constructing such a BVH at every frame is expen-
sive and traversing the hierarchy on the GPU has a non negligible
cost.

Ray-tracing the surface remains very slow in comparison to render-
ing the tessellated mesh, our models are rendered at 20 to 100 fps
depending on the complexity of the models against around 2000 fps
for the tessellated meshes on an NVidia Quatro FX 5800.

It is also worth mentioning that the algorithm is very sensitive to the
area on the screen covered by the surface since most of the render-
ing computations are done on the fragment shader. This is interest-
ing because the cost of rendering the model is resolution dependant
rather than geometry dependant. To provide a more scalable level
of detail technique, it could be interesting to discard primitives that
are too small to produce visible details.

5 Rigging and Animation

To animate the surface, we simply update the positions of the prim-
itives in the CPU. This can be done easily by attaching them to a
hierarchical skeleton data structure.

We investigated two different work-flows to produce rigged and an-
imated surfaces. The first approach is very similar to the rigging
process used with polygonal models. It consists in modelling the
surface with metaballs and metatubes in a first time. Then the mod-
eller creates a rig for the surface and finally the primitives are at-
tached to the rig.

This work-flow with our modelling tool is illustrated in figure 8.
From the left to the right : the model is sculpted with metaballs, a
rig is positioned on the model, primitives are selected and attached
to a specific bone, the surface is ready to be animated and we can
create poses by orienting the bones.

Since we use line segment primitives in our surface representation,
the segments are natural candidates to provide the bone structure.



Figure 8: Work flow with metaball sculpting.

With this in mind, we developed another work-flow. We start by
creating the armature of the model but the bones are used as prim-
itives for the implicit surface. Then, the radius of these primitives
are adjusted to give the right silhouette to the model. Finally we
can add details with metaballs and attach them to the bones.

Figure 9 illustrates how we model a dinosaur with this work-flow.
From the left to the right : the skeleton is created with tube prim-
itives attached to the bones, the surface is edited by modifying the
radius of the metatubes and by adding a few metaballs for the head
and the feet and the surface is ready to be animated.

Figure 9: Work flow with skeletal implicit surfaces.

6 Texturing

Texturing implicit surfaces is not straightforward because we don’t
have access directly to points on the surface so we cannot attach
texture coordinates as we would do with a triangle mesh.

A common approach to tackle this problem is to use hyper textures
or 3D textures to cover the space in which the surface is embedded
and simply looking up the texture with the fragment’s position.

Another approach is to use texture projectors to generate the texture
coordinated for a 2D texture mapping. For example, an implicit
surface generated by a line segment can be intuitively textured using
a cylindrical projection. When we draw a fragment on this surface,
we compute its cylindrical coordinates in the referential of the line
segment and use these as texture coordinates.

Figure 10 shows a simple tube surface textured with a cylindrical
projection.

Figure 10: A simple tube surface texture mapped with a cylindrical
projection.

It is possible to use other kind of projections such as spherical or
planar.

Wyvill et al. proposed a more advanced scheme in [Tigges and
Wyvill 1998]to texture skeletal implicit surfaces by shooting parti-
cles from the surface to a well parametrized support surface using

the gradient of the field. This method allow less distortion in the
mapping than simple projections but problems still occurs at the
intersection of primitives and computing the trajectories of the par-
ticles for each fragment is prohibitive for a real time ray-tracer.

6.1 Surface skinning

Using local texture projections and computing the texture coordi-
nates on the fragment shader allows to apply texture to our surfaces
with user control.

However, with animation, having a coherent texture mapping re-
quires to animate the projectors as well as the model. Also, having
a projector for each primitive is not adapted for regions where sev-
eral primitives have an influence. One could blend the different
textures but this gives poor results.

To address this issue, we propose a method that is inspired by vertex
skinning.

The method consists in texturing the model in a rest position using
local texture projectors. The designer can use an arbitrary number
of projectors with different projections.

Then, when rendering the animated model, we assign bone weights
to the fragment depending on it’s distance to the bones and we use
them to transform the fragment’s position to the rest pose space.
Then we compute the texture coordinates of the fragment by using
the local projectors and look up the texture accordingly.

Figure 11 shows an example of how the textures are applied. The
model is composed of two segment primitives associated to bones
and textured by a single cylindrical projector. On the left, the
colours show the weights of the fragments associated with the two
bones. On the right, we see that the texture mapping follows the
deformation of the surface.

Figure 11: Illustration of the skinning scheme used for texturing.

Listing 3 shows the pseudo code for this technique.

This method showed good results and is adaptable for 3D textures
as shown in figure 12. To implement this technique, we send to
the GPU the transformation matrices of the bone in rest position
as well as the inverse of the bone’s current transformation matrices.
The computation to find the position of the fragment in rest position
are negligible in comparison to the ray tracing of the surface. We
implemented this method as a proof of concept but giving the con-
trol on the radius of influence of the bones can lead to more robust
implementations. Also, using this technique as well as using local
texture projectors implies that we have to search for the bones and
projectors that have an influence on a point of the surface.

6.2 Displacement mapping

To enhance details on the surface, techniques such as normal map-
ping and displacement mapping are commonly used in computer
graphics. To apply these effects with a polygonal representation,
we need to provide a texture mapping and the tangent vector to the
surface.



Algorithm 3 Transformation of the vertex positions for texturing

vec3 pointOnSurface;
vec3 restPosition = vec3(0,0,0);

for(int bone = 0; bone < nbBones; bone++)
{
// compute fragment weight wtrt. the bone
float w = weight(bone, pointOnSurface);
// transform
vec3 transformed = pointOnSurface;
// Back to object space
transformed += boneInvTrans[bone][3].xyz;
transformed = boneInvTrans[bone]*transformed;
// to rest world space
transformed = boneRestTrans[bone]*transformed;
transformed.xyz += boneRestTrans[bone][3].xyz;
// sum
restPosition += w*transformed.xyz;;

}

// Compute the texture coordinates of the fragment in rest position
vec2 uv = texCoord(restPosition);

Figure 12: Illustration of the skinning scheme used for texturing.

With implicit surfaces, we can add a value to the field function to
add relief details. Also, because the normal is computed from the
gradient of the field function, the perturbation is applied automati-
cally to the surface normal.

In this way, if the perturbation is small enough to keep the function
null outside the support of the original function, we can apply the
displacement while the ray-surface intersection is searched.

This method applies very easily with hyper-textures as shown on
figure 13. It can also be applied with projected 2D as shown on
figure 14 but the uv coordinates have to be computed at each step
of the intersection search.

This method is not robust enough when using our optimization
with bisection because the point inside the surface computed as
described in section 4.2 is no longer guaranteed to be inside the
surface. Also with sharp derails there might be more than one in-
tersection on the ray between our initial point and the outside.

For animated surfaces the method cannot be applied either.

Figure 13: Displacement mapping with a 3D noise function.

Figure 14: Displacement mapping with a projected 2D texture.

7 Results and discussions

We revisited geometric modelling with implicit surfaces. We used
a simple surface representation with skeletal implicit surfaces that
allowed to model quickly interesting models. We implemented a
real time renderer based on ray-tracing adapted for our surface rep-
resentation. This method allows to render at interactive frame rate
animated models. Although this method is far from being as ef-
ficient as polygon rendering, it has some advantages such as it’s
simplicity, the compactness of the models representation and a very
small amount of memory to send to the GPU to render smooth sur-
faces.

We investigated the possibilities to allow texturing with user control
and developed a method to keep a coherent texture mapping during
animation.

We showed the possibilities to integrate displacement mapping in
the rendering but this method is limited to static models and can’t
benefits of the speed up provided by the bisection algorithm.

In conclusion, using implicit surfaces for the surface representation
and ray-tracing for the rendering seems to be an alternative to poly-
gon rendering that provides simplicity as well as flexibility. The
main issue that remains is efficiency. Using the current graphics ar-
chitecture and our method, using implicit surfaces to render models
is prohibited in commercial applications where the scene includes
a great number of models.

However, it is likely that better ray-tracing algorithm and future ad-
vances of the graphics hardware can provide better performances
with the same advantages. We have mentioned for example sphere
tracing, Bézier clipping and the use of bounding volume hierar-
chies.

In future works, it would be interesting to investigate the possibility
to implement a real time ray-tracer for a wider range of skeletal
surfaces. For example, it would be interesting to use convolution
surfaces with primitives such as parametric curves. It would also
be interesting to implement a real time ray-tracer for the Blob-Tree,



thus providing a renderer for sketch-based modelling tools.
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A Towards a better scalability of the ray-tracing algorithm.

The algorithm to find the ray surface intersections that we presented is relatively
fast but suffers from a poor scalability. The first reason is that when discarding
the non-contributing primitives, we evaluate the entire function for each test. Also,
when we search for intersection by bisection, we evaluate the potential of all the
primitives whose surface of influence intersect the ray, some of which might not
have an influence at the ray-surface intersection. To address this issue, Gourmel et
al. use a fitted BVH [1]. Using a bounding volume hierarchy allows to reduce the
number of primitives tested when we compute the first interval for the bisection.

I tried to adapt this algorithm for my surface representation but I was not able
to achieve better performances with it. However, this technique, carefully imple-
mented and optimised could allow to increase the scalability of the algorithm.

A.1 Building the BVH

As presented in [1], [2] and [3], we build the BVH at every frame to allow anima-
tion. The BVH is built like a kd-tree so that the resulting nodes do not overlap.
The leaf nodes contain references to all the primitives whose surface of influence
intersect the AABB of the node. Primitives may be referenced by several nodes.

A.1.1 Overview of the algorithm.

The BVH that we build is a BVH where the leaf nodes contain references to the
primitives that have an influence inside their axis aligned bounding box. The BVH
is built from top to bottom and at each stage, we split the AABB of the node and
distribute to the two children its primitives. Finding the splitting plane should be
done using a Surface Area Heuristic (SAH). The algorithm evaluates the cost of
traversing the BVH during ray-tracing of several possible splits and choose the one
that has the smallest heuristic cost.

When splitting the node, primitives are distributed to the left child or to the
right child according to their position with respect to the splitting plane. Then, the
primitives of the right child are tested for intersection with the primitives of the left
child. The primitives that do intersect are added to the left child as split primitives.
The same operation is done for the primitives of the left child.

Finally, the AABBs of the children are computed as the AABBs of all the
primitives that they contain intersected with the half AABB of the parent node.
This way, the nodes do not overlap, are tightly enclosing the primitives that have
an influence inside their AABB and contain references to these primitives.

A.1.2 Memory layout

The BVH has to be transferred to the GPU for ray traversal. As suggested in [?],
we transfer it as texture memory. To fit the memory layout of the texture memory,
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the BVH is encoded in a plain array where the children of a node i are located at
indices 2i+ 1 and 2i+ 2.

We choose to encode the BVH in a 4 component floating point texture. We
store a node in two pixels, one for each corner of the AABB. The w component of
the pixels are used to store a flag, it’s value is -1 if the node is not a leaf, otherwise,
it is an index to the list of the primitives contained in the node.

We also write after the tree in the texture the lists of primitives referenced by
the nodes. We allocated two pixels to store the indices to the metaballs and two
pixels to store the indices to the metatubes. This way a node can contain at most
8 metaballs and 8 metatubes. It would be preferable to allow nodes to have an
arbitrary number of references to primitives and to store them in a separate texture
of one component texels so that the list of primitive can be read as a single array
and does need to load separate 4 component vectors.

We stored the primitives as uniform variables. This is convenient since uniform
memory is faster to access than texture memory. However, the uniform memory is
bounded and in our implementation it was a limitation. It would be preferable to
store them in texture memory instead.

A.2 Traversing the BVH

The BVH is traversed from top to bottom and from front to back, when we reach
a leaf node, we try to find a point on the ray and inside the surface as described
in the article. If no such point is found, we backtrack and visit other node farther
on the ray. This algorithm requires to maintain a stack where we push the indices
of the nodes that should be visited. Listing 1 shows the code used to traverse the
BVH on the GPU. It returns the node where the ray intersects the surface if any. It
also loads in global variables the primitives that have an influence inside the node
and caches the point inside the surface used to initialize the bisection.
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Algorithm 1 Traversing the BVH

int RayIntestectsBVH(vec3 origine, vec3 dir){
vec4 bottomC, topC;
top = 0;
int node = 0, c1 =0, c2 = 0;

// push the BVH top node on the stack
push(node);
while(top > 0){

// First non expanded node
node = pop();
// Load the AABB of the node
bottomC = nodeBottom(node);
topC = nodeTop(node);

// If this is a leaf check for intersection with the surface
if(bottomC.w != -1.0 || topC.w != -1.0){

// This test loads the primitives if the node and tries to find a point inside the surface.

// The test is positive if such a point is found.
if(rayIntersectsSurfaceInNode(origine, dir, node)) return node;

}else{
// Otherwise expand
c1 = child1(node);
c2 = child2(node);
// Distances from the eye to the AABBS intersection
float d1,d2;

// Test c1 for intersection
bottomC = nodeBottom(c1); topC = nodeTop(c1);
bool c1Intersects = RayIntestectsAABB(origine, dir, bottomC.xyz, topC.xyz, d1);

// Test c2
bottomC = nodeBottom(c2); topC = nodeTop(c2);
bool c2Intersects = RayIntestectsAABB(origine, dir, bottomC.xyz, topC.xyz, d2);

// Push the children if they intersect by order of distance to the eye
if( c1Intersects ){

if( c2Intersects ){
if( d1 <= d2 ){

push(c2); push(c1);
}else{

push(c1); push(c2);
}

}else
push(c1);

}else if( c2Intersects )
push(c2);

}
}
return -1;

}
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