
Statistical evaluation of features
in classification problems with
applications to detection of

hypoglycemic conditions based on
EEG data

Laura Friis Frølich

Kongens Lyngby 2011
IMM-Master’s Thesis-2011-60

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-Master’s Thesis: ISSN

i

Independent components (ICs) are patterns in EEG data that are assumed to
correspond to neural generators of electricity in the brain. However, some ICs
represent artifacts such as eye movements. By denoising EEG data through
removal of automatically classified artifactual ICs, we investigated the effect of
artifactual signals on detection of seizures due to to falling blood sugar levels in
type I diabetics. The classification methods binary LDA, multiclass LDA, binary
QDA, multiclass QDA, SVM, logistic regression, logistic regression with forward
selection, L1-regularized logistic regression, multinomial regression, multinomial
regression with forward selection, decision trees, ADJUST [41] and an algorithm
proposed by the Berlin BCI group [56] were compared to find the best automatic
classifier of ICs. Variance of feature estimates over cross-validation folds and
effects of features on classification performance were investigated.

Seizure detection performance was decreased when the model was trained on
data without artifacts. This decrease in performance may either be because (1)
the detection model relies on artifacts such as muscle twitches and eye move-
ments during seizures, or (2) because neural activity was wrongly removed in
the cleaning process. In the first case, seizure detection models that do not rely
on artifacts must be found. In the second case, models trained on data cleaned
by better noise removal methods will most likely increase seizure detection per-
formance based on EEG recorded by a device implanted in the brain, since such
a device cannot detect artifacts.

L1-regularized logistic regression and logistic regression with forward selection
turned out to be the best methods. Almost all features were chosen in L1-
regularized logistic regression as well as by a criterion based on mutual infor-
mation between features and class assignments. This indicates that all features
represent class relevant information. Small variances of feature coefficient es-
timates were seen, implying that the estimated models represent structures in
data, and not chance relations.

ii

Preface

This thesis was prepared at DTU Informatics, the Technical University of Den-
mark in partial fulfillment of the requirements for acquiring the degree Master
of Science in Engineering.

The thesis deals with the effects of non-neural signals in EEG on the detection
of hypoglycemic seizures. Automatic identification of artifactual parts of the
EEG signal is described in great detail, and used to denoise raw EEG data to
derive the effect of artifacts on seizure detection. Classification methods are
described, and effects of features on classification performance investigated.

Lyngby, August 2011

Laura Friis Frølich

I

would like to thank a number of people, without whom this project would not
have been possible. My supervisors Tobias Andersen and Morten Mørup have
provided immense help in the forms of constant support, guidance, help with
technical details and overall involvement and enthusiasm for the project.

Additionally, I would like to thank Scott Makeig for hosting me at the Swartz
Center for Computational Neuroscience (SCCN). It was during this stay, through
conversations with Scott Makeig and Christian Kothe, that the problem of inde-
pendent component classification, which was a large part of this project, came

iv

to my attention. Scott Makeig and Christian Kothe were very inspirational and
helpful in preliminary investigations of the problem, which I carried out during
the stay at SCCN. My thanks are also due Klaus Gramman and Julie Onton
for letting me use their data for investigation of the problem of independent
component classification.

I am also grateful to the people at the company HypoSafe, who put their data
at my disposal and answered all my questions rapidly and comprehensively.

My partner and beloved friend Morten Mølgaard has been a constant source of
support, and remained patient even when I have been at my most impossible.
In addition to emotional support, Morten is always ready to discuss technical
details and do proof reading.

I would like to thank my brother Emil for proof reading the report.

My parents and in-laws have continually been very supportive and understand-
ing, giving me space and time to work.

Furthermore, I thank my friends who have been there when I needed a day off,
and understood when I could not take a day off.

I also gratefully acknowledge the funds that provided financial support during
my stay at SCCN. These funds are, in no particular order, Otto Mønsteds Fond,
Observator mag.scient. Julie Marie Vinter Hansens Rejselegat, Knud Højgaards
Fond, Reinholdt W. Jorck og Hustrus Fond, and William Demant og Hustru Ida
Emilies fond (Oticon fonden).

Laura Friis Frølich
Gudmindrup, August 2011

v

vi Contents

Contents

Preface iii

I Introduction 5

1 State of the art 11
1.1 Artifact removal . 11
1.2 Seizure detection . 13

2 Pipeline to learn seizure prediction model 15
2.1 Aims . 16
2.2 Structure . 17

II Data 19

3 Seizure detection 21
3.1 Experimental setup . 22

4 Artifact removal 23

III Methods 25

5 Artifact removal 29
5.1 Construction of classification methods for independent components 30
5.2 Independent component analysis 31
5.3 Features of independent components 36
5.4 Classification of independent components 51

viii CONTENTS

6 Seizure detection 81
6.1 Detection of corrupted data . 82
6.2 Estimation of corrupted data . 82
6.3 Model . 84

IV Results and discussion 87

7 Artifact removal 89
7.1 Exploratory data analysis . 89
7.2 Performance of classification methods 104
7.3 Summary . 111
7.4 Feature analyses . 112

8 Seizure detection 125
8.1 Estimation of corrupted data . 125
8.2 Performance of seizure detection model 126

9 Conclusion 131
9.1 Future work . 133

A Exploratory analyses 135

B Linear Discriminant Analysis 141

C Quadratic Discriminant Analysis 151

D Logistic regression 153
D.1 Logistic regression with all the gory details 153
D.2 Variance of coefficient estimates for logistic regression 164

E Error propagation 167

F Factorization of data to estimate missing values 171

G Implementation 175

H Current density norm, the left out BBCI feature 177

I Feature quantifying similarity to ECG time series 179
I.1 Discrete wavelet analysis . 181

J Confusion matrices 185
J.1 Confusion matrices from classification based on all features . . . 185
J.2 Confusion matrices from classification based only on best features

according to MI criterion . 195

CONTENTS ix

K Empirical variance estimates of feature coefficient estimates 205

L Implementation of mutual information 211

M Implementation of L1-regularized logistic regression 215

x CONTENTS

Abbreviations and notation

This chapter provides an overview of notation and abbreviations for easy refer-
ence.

Notation

The notation in this report will adhere to the following conventions.

Lowercase letters from the beginning of the alphabet denote constants, and
lowercase letters from the end of the alphabet denote variables. A constant
scalar can then be denoted by a and a scalar variable by x.

Bold symbols denote column vectors. Thus x is a column vector variable, and
a is a constant column vector. Row vectors are written as the transpose of a
column vector, such that aT is a constant row vector.

Matrices are written as capital letters. Thus X is a variable matrix and A a
matrix of constants.

Capital letters from the end of the alphabet are also used to denote random
variables. When used to denote random variables, we use the font Z instead of
the standard Z.

Elements of vectors and matrices are identified by indices. The ith coordinate of
a variable vector x is denoted by xi. The element in the ith row and jth column

2 CONTENTS

of a matrix X is identified by Xi,j . The ith row of the matrix X is denoted by
Xi,: and the jth column by X:,j .

Sometimes, we will need to refer to different vectors of the same type, but
from different populations. Means of populations are a good example of such
a case. We then use the same symbol to emphasize that the vectors represent
the same quantity. In the case of the mean, we would choose µ. We use
subscripts µ1,µ2, . . . ,µK to distinguish between the mean vectors from different
populations. The ith coordinate of the mean vector from class k will then be
referred to as µk,i.

The indicator function will be denoted by I. The indicator function of a boolean
statement b is written I(b) and is equal to 1 if b is true, and 0 otherwise.

The r× r identity matrix is denoted by Ir×r, Ir, or just I if the dimensions are
clear. A vector of zeros with r elements is denoted by 0r.

Special symbols

Some letters and symbols retain the same meaning throughout the report.

We use K to denote the number of classes in a classification problem.

Vectors of coefficient estimates are denoted by β, with β0 referring to the inter-
cept.

The number of observations is denoted by n. We use m to denote the number of
channels in EEG recordings. We also use m to denote the number of variables
in data containing a number of variables and a response.

We discuss two types of data throughout the report. EEG recordings constitute
the first type of data, while the second type consists of observations with ex-
planatory variables and a response. We denote data matrices containing EEG
recordings by Y . Data matrices containing explanatory variables and a response
are denoted by X.

Data from EEG recordings consist of observations of each channel over time.
Each row contains the values from one channel. Thus the number of rows of Y is
denoted by m and the number of columns by n. Conversely, X contains obser-
vations in the rows, while each column corresponds to an explanatory variable.
The number of rows of X is then denoted by n and the number of columns by
m.

CONTENTS 3

Abbreviations

Abbreviations and uncommon words used in this report are shown in table 1.

BCI Brain-computer interface
BBCI Berlin BCI group
CSP Common spatial pattern
EEG Electroencephalogram
Hypoglycemia Blood sugar levels under normal
IC Independent component
ICA Independent component analysis
logreg Logistic regression
MNR Multinomial regression
PC Principal component
PCA Principal component analysis
QDA Quadratic discriminant analysis
SCCN Swartz Center for Computational Neuroscience
SVM Support vector machine

Table 1: Abbreviations

4 CONTENTS

Part I

Introduction

7

Automatic prediction of lower-than-normal blood sugar levels (hypoglycemia)
in type I diabetics based solely on their electroencephalographam (EEG) is in-
vestigated in this project. We infer the effect of artifacts in the EEG on the
performance of predictions. To derive the effect of artifacts, we compare predic-
tions of hypoglycemia based on raw data to predictions based on cleaned data
without artifacts. A large part of the project concerns the identification of arti-
facts since only few automatic tools for this purpose have so far been proposed,
and these are not good enough to substitute for human expert classifications.

The EEG is the distribution of electrical activity on the scalp which Hans Berger
was the first to study in the 1920’s [32]. Since the brain elicits electrical activity
when active [42, p. 27], and some of this electrical activity can be detected on the
scalp, recordings of the EEG can be used to study how the brain works. Changes
in the EEG are then interpreted as changes in activity within the brain.

Studying the EEG is a non-invasive way to probe the inner workings of the
mind. The instruments for recording EEG are easily portable, which makes EEG
recordings an ideal choice for diagnostic and research purposes. In addition,
EEG recordings are cheap compared to other techniques of observing brain
activity such as fMRI and PET. Another advantage of EEG is the high temporal
resolution. Unfortunately, the spatial resolution of EEG is low.

Figure 1:
A person
with an EEG
cap. Down-
loaded from
http://en.
wikipedia.
org/wiki/
File:
EEG_cap.jpg.
The image has
been released
into the public
domain by the
creator of the
image.

The EEG is recorded by fitting a cap designed for recording
EEG on a person’s head. Such a cap has holes in which elec-
trodes are placed for recording. An image of a person with
an EEG cap is shown in figure 1.

Since EEG is solely measured on the scalp, the underlying
brain signals cannot be directly observed. Instead, locations
of the electricity generating sources which are assumed to cor-
respond to the active areas in the brain must be estimated. A
common method exploits the approximately linear conduc-
tion of electricity within brain tissue. The approximately
linear conduction implies that the signal measured at each
electrode is approximately a linear combination of electricity
generated by sources within the brain. Under the assumption
that areas within the brain generate activity independently
of each other at each instant of time, independent compo-
nent analysis (ICA) [27, 27, 26, 13] identifies the activity of
each generating source over time, as well as the scalp map of
electricity due to each source. We can then estimate the loca-
tion of each source within the brain by finding the positions
of minuscule electrical generators that would give rise to the
observed pattern of electricity on the scalp [33].

http://en.wikipedia.org/wiki/File:EEG_cap.jpg
http://en.wikipedia.org/wiki/File:EEG_cap.jpg
http://en.wikipedia.org/wiki/File:EEG_cap.jpg
http://en.wikipedia.org/wiki/File:EEG_cap.jpg
http://en.wikipedia.org/wiki/File:EEG_cap.jpg

8

The patterns found by ICA are usually referred to as inde-
pendent components (ICs). Typically, some of the ICs found
by ICA do not represent neural activity. We will refer to such
ICs as artifacts. Causes of artifacts include the pulse, the
electrical grid, eye movements, and muscle twitches where
the electrodes are attached. By removing artifacts from the
recorded EEG, it becomes easier to find patterns in the neural
activity. We illustrate this type of denoising of EEG record-
ings in figure 2. The effect of removing artifactual ICs is shown in figure 3.
The left column of figure 3 shows raw data, while the right column shows the
same data with artifactual components removed. The top left plot shows simul-
taneous activity increases at 5464 and 5465 in both the electrodes above the
eyes (Fp1 and Fp2). The simultaneous activity at both eye channels is highly
indicative of an eye-related artifact, which has been successfully removed in the
top right plot.

ICA Denoise

Lateral eye movement

Muscle

Neural

Figure 2: Removing artifactual activity from recordings of EEG.

Changes in the EEG preceding states of hypoglycemia were reported in 1988 [47].
Some such changes are referred to as seizures. Detecting seizures will then allow
us to predict states of hypoglycemia. EEG recorded during normal blood sugar
levels and during a seizure are shown in figure 3. The top row shows normal
EEG, while the bottom row shows EEG from a seizure. The left column holds
raw data, and the right column holds data that was cleaned by identifying and
removing artifactual ICs. In the raw data, the EEG recorded during the seizure
is clearly more erratic than that from the period of normal blood sugar levels.
The difference persists, albeit less pronounced, in the cleaned data. The atypical
EEG during seizures has been proven possible to detect previously [31]. The
company HypoSafe aims to put the phenomenon of unusual EEG characteristics
as blood sugar levels decrease into practical use through an implantable device
that will record EEG continuously. This device will then warn of impending
hypoglycemia in time for corrective measures to be taken. In the remainder of

9

this report, we will refer to detection of seizures interchangeably with prediction
of hypoglycemia since the two are equivalent.

Figure 3: Top row: EEG during normal blood sugar levels. Bottom row: EEG
recorded during a seizure. Left column: EEG that has not been denoised.
Right column: denoised EEG. In the denoised normal EEG, the eye artifacts at
5464 and 5465 have been removed successfully. Differences between normal and
seizure EEG are still present in the denoised data, although less pronounced
than in raw data.

Warning diabetics of decreasing blood sugar levels at an early stage is important
because the ill effects of hypoglycemia are severe. If blood sugar levels become
too low, a coma may even be induced. Some diabetics have difficulty noticing
when blood sugar levels start to fall, causing them to maintain constantly ele-
vated blood sugar levels to avoid hypoglycemia. Unfortunately, levels of blood
sugar that are too high over a longer period of time have long-term side effects
such as failing eye sight and kidneys [59, 29, 11, 2, 19, 49]. For these reasons,
it is important to maintain a stable level of blood sugar. The HypoSafe device
will help accomplish this.

We will investigate whether artifacts in EEG recordings may explain part of the
good performance in hypoglycemia prediction described in [31]. If this is the
case, more work must be done to automatically detect solely neural changes. If
it is not the case that seizure detection relies on patterns of artifacts, it should

10

be possible to improve seizure detection by learning from EEG data without
artifacts. In order to remove artifacts, we need an automated method that
distinguishes neural from artifactual ICs. Such a tool with reliable performance
does not exist. Since we need a tool that automatically classifies ICs, we also
investigate classification of ICs.

Chapter 1

State of the art

We now give an overview of existing methods for automatic classification of
scalp patterns found by ICA and describe methods for automatic prediction of
hypoglycemia in type I diabetics.

1.1 Artifact removal

Recently, a review of methods for artifact removal from EEG has been given [18].
Independent component (IC) classification is employed by some of these ap-
proaches, either as a step in a more elaborate scheme [15, 44], or as the sole
artifact identification method. We treat the latter denoising approach which
solely relies on automatic classification of ICs.

To gain an understanding of the current standing of research for automatic clas-
sification of ICs, google and google scholar searches with the search terms “eeg
automatic artifact component”, “eeg automatic component classification”, “eeg
classification of independent component overview”, “eeg independent component
classification”, “ica eeg”, and “ica eeg review” were undertaken. We did not find
any studies comparing the different approaches on the same data set. Nor were
any reviews of the current state of automatic component classification found.

12 State of the art

Thus we give a brief overview based on individual papers, primarily of recent
publication.

Most independent component classification approaches focus on the binary clas-
sification problem of differentiating between artifactual and neural components [56,
17, 15, 12, 52, 21, 64]. Some of the suggested features for this binary classification
are characteristics of the power vs. frequency curve, complexity of the dipole
fit, range, kurtosis and skewness of the time series of components, and peak
amplitude relative to variance. Correct classification of about 90% has been
reported [56], corresponding to the agreement between human experts [34].

Some approaches only attempt detection of one type of artifact, usually eye
movements [12, 21, 30]. The identification of eye-related artifacts seems to be a
relatively easy problem judging from these papers. Some features suggested for
detection of eye-movement ICs are the power spectral density (linearly related
to the square of the band-power derived from the spectrogram), variance and
kurtosis in the temporal domain, and correlation with designated eye reference
channels or channels close to eye areas.

Others, however take several types of artifacts into account [61, 4, 30, 41]. Fea-
tures suggested for this classification problem include the distance between the
distributions of time series of components and a reference heart-beat signal,
measures of spatial characteristics of the IC activity on the scalp, and averages
of temporal activation of components if the signal is split into small epochs.

Only two papers with the same goal as this project, namely that of automatically
classifying ICs, were found.

The Berlin BCI group [56] proposed an algorithm for binary classification of
ICs into artifactual or neural components. We will refer to this method as
the BBCI (Berlin BCI) method in the remainder of this report. The method
proposed in [56] uses support vector machines with a number of features specifi-
cally chosen to reflect differences between neural and artifactual ICs. A problem
with this method is that the components that are mixes of artifactual and neural
components are identified as artifactual. If all ICs that are classified as artifacts
are removed, some neural activity is also lost. The algorithm has been further
developed and described recently [64]. In this new approach, dimension reduc-
tion of data is performed before denoising. The dimension reduction will most
likely decrease the risk of removing mixed ICs since mixed ICs will probably not
be present in the dimension-reduced data. Due to the very recent publication
of [64], which is still in its preliminary version as of 9/8/2011, we have not been
able to incorporate the proposed method in our comparisons.

The algorithm ADJUST, described in [41], aims to detect different kinds of arti-

1.2 Seizure detection 13

facts, but does not identify neural components. ADJUST has been implemented
as a plug-in to EEGLab [14]. ADJUST works by finding thresholds of different
features that distinguish the different types of artifacts. These thresholds are
found for each new data set by applying Gaussian Mixed Models to the distri-
butions of these values among all ICs for the data set. A problem with this
method is that no class for neural components exists. Thus it is not possible to
only retain ICs that solely represent neural activity. Also, it is not possible for
the end-user to train the classifier on additional classes. Hence components can
only be classified into the classes that ADJUST was built to handle.

1.2 Seizure detection

It has long been known that hypoglycemia induces changes in the activity in
the EEG [42, p. 395] and [47]. With the introduction of the HypoSafe device [5],
this knowledge has been put to use. The authors of [31] use a two-layer neural
network with the hyperbolic tangency function to determine one-second inter-
vals consistent with impending hypoglycemia. A threshold for the number of
such intervals in a period of time must then be exceeded before impending hy-
poglycemia is set to be detected. Features used are the power in the α-, β-, γ-,
and θ-bands.

Serious attempts at automatic detection of hypoglycemia warning signs in the
EEG seem to lack in literature previous to [31]. Common spatial patterns
and variants thereof have won wide-spread usage in many EEG classification
schemes [8]. Since this method performs well in many tasks, we chose to use this
to detect seizures.

14 State of the art

Chapter 2

Pipeline to learn seizure
prediction model

An outline of the process to construct a seizure detection model is shown in
figure 2.1.

As shown in figure 2.1, we allow for input data with corrupted values. Corrupted
values often occur in EEG recordings from clinical settings since subjects that
come to clinics for diagnosis are not used to having their EEG recorded. Also,

Complete
data

ICs Clean
EEG

III.6.2 Estimate
corrupted data

III.6.1 Detect
corrupted data

III.5.2 ICA III.5.3, III.5.4 Remove
artifactual ICs
Find method to remove
artifactual ICs:
IV.9.1 Exploratory analyses
III.7.2 Choose features
III.7.3 Find best classification
method

Backproject
neural ICs
to data space

III.6.3 Learn model
to detect seizures

II.3 Raw
data

Seizure detection
model

Figure 2.1: Flowchart showing the route from raw data, possibly containing
missing values, to the final seizure prediction model. Red rectangles represent
actions and blue parallelograms represent output and input.

16 Pipeline to learn seizure prediction model

short sessions are desirable in order to save time for both the subject and the
EEG technician. This increases the risk that electrodes fall off at times, leading
to corrupted values in the EEG recording. The first step in the process must
then be to detect and reconstruct corrupted values. This is explained in more
detail in section 6.2.

The clinical setting also increases the risk that artifacts such as muscle twitches
and eye movements occur since the subject is inexperienced. To obtain a model
that does not depend on such random noise, we must clean the data of artifacts.
To accomplish this, we decompose the data into ICs. Once this is done, we
can identify artifactual ICs and remove these. By back-projecting the resulting
matrix of independent components to the original data space of channels×time,
we obtain a data matrix without signals from artifacts. We then pass this
cleaned data along with the manually labeled intervals of seizure activity to a
common spatial patterns (CSP) classifier to learn a model.

To test whether denoising is beneficial, we also perform the process shown in
figure 2.1, but skipping the steps of ICA and removal of non-neural ICs. We then
test the two models on raw data, resembling the online setting. Thus we will
learn whether denoising through ICA improves upon the ability to automatically
predict hypoglycemia.

By also testing the model from denoised training data on test data that was also
denoised by IC classification, we will learn whether seizure detection is really
a result of neural activity. If the case with denoised training and test data
performs worst, it is a sign that successful seizure detection relies on a different
pattern of artifacts before hypoglycemia from that during normal levels of blood
sugar.

2.1 Aims

The aims of this project are three-fold. Firstly, we wish to investigate the effect
of artifacts in EEG in relation to prediction of hypoglycemia. We have two
issues related to this aim. One, do artifacts impede seizure detection learning?
Two, does seizure detection partially rely on patterns of artifacts?

In order to investigate effects of artifacts, we need an automatic classifier of ICs
with reliable performance, which does not yet exist. The second aim is then to
construct such a classifier.

The third aim consists of assessing feature importance in IC classification. By

2.2 Structure 17

investigating which features relate best to the classes of ICs, we obtain a better
understanding of the structure of the classification problem. Additionally, we
may be able to improve classification by only choosing the features that best
relate to classes.

We will also investigate aspects of component classification such as whether
classes can be linearly separated, and whether it is an advantage to include
a class of ICs that experts do not classify. These ICs without manual labels
represent mixes of artifactual and neural activity.

2.2 Structure

The structure of the report is as follows.

In part II, we describe the two data sets analyzed in this project.

We then move on to describe the theory used throughout the report in part III.
We also describe the features used for classification of ICs in this part.

Next, results are given in part IV. All results regarding classification of ICs are
described in chapter 7. In this chapter, we describe the exploratory analyses in
section 7.1. The results from comparing classification methods are described in
section 7.2, while analyses of features are described in section 7.4.Results relating
to seizure detection are given in chapter 8. We evaluate the data reconstruction
method in section 8.1. The performance of CSP trained on the raw data and the
performance of CSP when trained on cleaned data are compared in section 8.2.

Finally, we draw conclusions in chapter 9.

To maintain a natural flow in the presentation, we have chosen to give the math-
ematical details in appendices. These details, however, do constitute necessary
work for the project as a whole to succeed, and are thus an integrated part of the
project. The relevant appendices will be referred to from the related sections.

18 Pipeline to learn seizure prediction model

Part II

Data

Chapter 3

Seizure detection

Data for investigating seizure detection was supplied the by company HypoSafe.

This data set consists of measurements from 16 EEG channels, the electrocar-
diogram (ECG), and, for some time points comments from a neurologist defining
whether or not the brain activity at that time is normal or shows characteristics
of a seizure. Recordings from six type I diabetes patients are available. For two
of the patients, measurements were taken twice, with about 14 months between
measurements. The eight sessions lasted between 77 and 300 minutes (127±72,
mean±sd).

Classifications of brain activity from the neurologist were recorded at intervals of
approximately five minutes throughout the session during non-seizure activity.
During seizures, approximately two or three classifications were reported each
minute.

EEG measurements and the data containing indications of seizures were given
separately. This made manual merging of the two separate data files necessary.
Registrations of time were recorded along with the manually collected blood
glucose levels and pre-hypoglycemic state markers. However, time was not reg-
istered simultaneously with the automatic EEG and ECG recordings. In the
merging process we assumed that the first recording in the manually collected
data corresponded to the first observation of the EEG and ECG signals. How-

22 Seizure detection

ever, the lengths of the time intervals covered by the two data sets were not
identical, showing differences of up to 30 seconds. This should not be a problem
for the analysis, though, since we wish to detect seizures that last between 10
and 20 minutes. At time intervals of such lengths, uncertainties of 30 seconds
are negligible.

About 75% of the data contains non-seizure activity, while about 25% contains
periods of seizure activity.

3.1 Experimental setup

The data for each subject was obtained in a session in which insulin was given
intravenously, thereby inducing a hypoglycemic state. The subjects were asked
to count and calculate aloud for monitoring purposes. When they were no
longer able to do this, glucose was administered in order to return the subject
to a normal level of blood glucose [24].

Electrodes were placed on the scalps of experimental subjects according to the
international 10-20 system [28], as shown in figure 3.1. Also, an additional elec-
trode was used to record the electrocardiogram (ECG), i.e. the heart beat. An
average reference was used, such that the measured potentials are the differ-
ences between the potentials measures at the electrodes and the average of all
electrodes.

Figure 3.1: Electrode placements on scalp along with 10-20 system labels. The
image is from EEGLab [14]. The electrode that is not shown is the ECG recorder.

Chapter 4

Artifact removal

During a visit to the Swartz Center for Computational Neuroscience (SCCN)
in the fall of 2010, two studies containing manually labeled ICs were made
available. This data made it possible to investigate how ICs can be automatically
classified.

Each study contains data recorded from several subjects. Hence several data
sets are included in each study. An ICA decomposition is associated with each
data set. Approximately 20 ICs from each data set were manually labeled.
We assume that the unlabeled components are mixes of neural and artifactual
activity.

Acquisition of data is described in the papers [46, 23].

One data set was acquired for the purpose of studying the EEG during different
emotional states [46]. This study contained recordings from 35 subjects. These
recordings were taken with an active reference(Biosemi) [46]. Recordings were
taken using 250 scalp channels. Channels that showed highly abnormal activity
were removed, leaving 134-235 channels for each subject. The ICA decomposi-
tion for these data sets were obtained by “full-rank decomposition by extended
infomax ICA using the binica function” [46]. We will refer to this data set as
the “emotion data set” or simply “emotion data” in this report.

24 Artifact removal

The other data set was recorded to investigate how attention is guided early
in visual processing. These recordings were “referenced to Cz and re-referenced
off-line to linked mastoids“ [23]. EEG was recorded from 64 scalp channels.
This study contained data sets from 12 subjects. ICA was performed with the
implementation in the Brain Vision Analyzer software (Brain Products), which
uses the infomax algorithm [22]. We will refer to data from this study as the
“cue data set” or “cue data”.

Since both more subjects and more channels were used in the emotion study
than in the cue study, substantially more independent components are present
in the emotion study.

The data sets in both studies contained ICs with the labels eye blink, neural,
heart, lateral eye movement, and muscle. The ICs that were not labeled seemed
to, based on visual inspection, represent mixed ICs containing both artifactual
and neural signals. We will refer to the unlabeled ICs as mixed or unlabeled ICs
interchangeably. Neural ICs are the ICs that correspond to activity generated
by neural sources within the brain. The other labeled ICs represent artifacts,
that we wish to remove from data.

Part III

Methods

27

This part is devoted to the theory used in the project. We both describe the
theory that was used, and how we employed that theory to reach the aims of
the project. Chapter 5 contains all material related classification of ICs. The
theory related to detection of seizures is described in chapter 6.

28

Chapter 5

Artifact removal

This chapter is dedicated to explaining how we built automatic classifiers of
ICs, and how we determined the best classifier. The relation of this work to the
detection of seizures lies in improving the seizure detection rate by learning a
model from data without artifacts instead of using a model based on data with
artifacts. The step of classifying ICs and removing artifacts is the part that is
not grayed out in figure 5.1.

Complete
data

ICs Clean
EEG

III.6.2 Estimate
corrupted data

III.6.1 Detect
corrupted data

III.5.2 ICA III.5.3, III.5.4 Remove
artifactual ICs
Find method to remove
artifactual ICs:
IV.9.1 Exploratory analyses
III.7.2 Choose features
III.7.3 Find best classification
method

Backproject
neural ICs
to data space

III.6.3 Learn model
to detect seizures

II.3 Raw
data

Seizure detection
model

Figure 5.1: This flowchart shows the relation of the removal of artifacts to the
rest of the project. The parts that are gray relate to seizure detection, and are
not covered in this chapter. Conversely, the part that is not gray shows the
steps that are described in this chapter.

The HypoSafe device will be implanted under the scalp to minimize the inter-

30 Artifact removal

ference in daily life of patients. Also, the HypoSafe device will consist of just
one sensor, which will only be able to record neural activity within the brain.
Since seizure detection must then rely solely on neural activity, it is important
to know whether data without artifacts can be classified as well as data with
artifacts. Automatic classification of ICs will facilitate comparisons of detection
rates in data with artifacts to detection rates in data without artifacts.

More generally, automatic classification of ICs will enable non-experts to use
methods that rely on ICA, and will save experts considerable time currently
spent on classification of ICs.

5.1 Construction of classification methods for in-
dependent components

Our strategy to find an automatic classifier of ICs is simply to compare different
classifiers that tend to perform well in most contexts. The model that achieves
the best performance will be chosen.

Before ICs can be classified, it is obviously necessary to find the ICs in a data
set. ICs are found using the method ICA, which is described in section 5.2.

The features that were chosen as the basis for classification are described in
section 5.3. We then discuss model complexity in subsection 5.3.3. Next, we
describe a criterion for choosing the features to include in subsection 5.3.4.

In section 5.4, we discuss issues related to classification. First, we must deter-
mine the classes of ICs that we want to be able to detect. We discuss different
choices in subsection 5.4.1. The influence of misclassification costs on the final
classifier is discussed in subsection 5.4.3. Cross-validation, which was used to
enable statistical comparisons of models, is described in subsection 5.4.4. The
classification methods that we used are described in subsection 5.4.5. These
classification methods are compared qualitatively in subsection 5.4.6. Finally,
we describe how we compare models to determine the best one empirically in
subsection 5.4.7.

5.2 Independent component analysis 31

5.2 Independent component analysis

Independent components (ICs) of data are found by independent component
analysis (ICA) algorithms. After describing ICA, relate the mathematical quan-
tities to biophysical concepts. Independent component analysis (ICA) algo-
rithms often assume that data has been centered and “pre-whitened” [25]. This
just means that rows of the data should be uncorrelated, have zero means, and
variances of one for each row. An easy way to achieve this is to first subtract
the row means from the columns, ensuring that data is centered. A principal
component analysis (PCA) of the centered data then gives the desired centered
and pre-whitened data. By dividing each row by its own variance, we also obtain
unit variances.

We start out by explaining how to center data before moving on to PCA. Then
we describe ICA and the interpretation of results from ICA on EEG data. Since
we use ICA to find ICs in EEG data, we use the notation for EEG recordings.

5.2.1 Centering data

Let the m×n matrix Y denote the raw data of n observations of m explanatory
variables. The vector of row means Ȳ of Y is

Ȳ =
1

n

n∑
j=1

Y:,j . (5.1)

The centered data Ỹ is then found by subtracting Ȳ from each column of Y .

Ỹ:,j = Y:,j − Ȳ .

5.2.2 Standard Principal Component Analysis

Principal component analysis (PCA) is a method that finds an alternative rep-
resentation of data by rotating the coordinate system. All axes in the rotated
coordinate system are orthogonal and thus pairwise uncorrelated. Each axis is
referred to as a principal component (PC). These PCs have a natural ranking
determined by the variance of the projections of the observations onto each PC.

32 Artifact removal

The first PC is the axis along which observations vary most. The second PC is
the axis along which observations vary second most, with the condition that the
second PC must be uncorrelated with the first PC. By choosing only the first
two or three components, the directions in high-dimensional data that explain
most variance can be visualized.

To find r ≤ m PCs, we need to find a linear transformation of data that complies
with the demand of no pairwise correlation. Also, the first PC must explain
most variance, the second PC second most, and so on. To begin, we need the
covariance of Y . The maximum likelihood estimate of Cov(Y) is [57, p. 66]

Cov(Y) =
1

n
Ỹ Ỹ T . (5.2)

Let u1 denote the first principal component. To maximize the variance of the
observations projected onto u1, we set

u1 = arg max
u

(Cov(uTY)) = arg max
u

(uTCov(Y)u).

Increasing the magnitude of u1 would clearly increase the value u1Cov(Y)uT1 .
Since only the direction of u1 is interesting, we introduce the constraint ‖u1‖2 =
1 to ensure that a non-trivial solution is found [6, p. 563]. This results in the
constraint

uT1 u1 = 1⇔ 1− uT1 u1 = 0,

on the maximization problem. We reformulate to the unconstrained optimiza-
tion problem

u1 = arg max
u

(uTCov(Y)u+ λ(1− uTu)),

where λ is a Lagrange multiplier [6, pp. 562, 707]. The solution u1 to the max-
imization problem is found by setting the derivative of uT1 Cov(Y)u1 + λ1(1 −
uT1 u1) with respect to u1 equal to zero, and solving for u1.

5.2 Independent component analysis 33

∂uT1 Cov(Y)u1 + λ1(1− uT1 u1)

∂u1
= 0⇔

Cov(Y)u1 − λ1u1 = 0⇔
Cov(Y)u1 = λ1u1.

The equation Cov(Y)u1 = λ1u1 is an eigenvalue problem, where u1 is the
eigenvector and λ1 is the eigenvalue. Since λ1 is a scalar and ‖u1‖2 = 1, the
following manipulations are possible

Cov(Y)u1 = λ1u1 ⇔
uT1 Cov(Y)u1 = uT1 λ1u1 ⇔
uT1 Cov(Y)u1 = λ1u

T
1 u1 ⇔

uT1 Cov(Y)u1 = λ1.

Thus the variance of data projected onto u1 is equal to the eigenvalue λ1. By
choosing the first principal component to be the eigenvector with the largest
eigenvalue, we maximize the variance of the projected data.

Since eigenvectors are orthogonal to each other, the eigenvectors of Cov(Y) give
the PCs. The corresponding eigenvalues are the variances of the projections of
data onto each PC, making it easy to order the PCs by variance.

Let U be the matrix of eigenvectors in its columns, such that the jth column
of U is the J th PC. The data in the rotated coordinate system Y̌ is found by
projecting the data onto the eigenvectors

Y̌ = Y × U.

The final whitened data matrix Ŷ must also have unit variances of each column.
This can be achieved by dividing column j of Y̌ by the jth eigenvalue. Then
E(Ŷ) = 01×r and V ar(Ŷ) = Ir×r.

A more efficient approach to find the PCs exploits the Singular Value Decom-
position of Y [57, p. 66].

34 Artifact removal

5.2.3 Independent component analysis

Independent component analysis (ICA) is similar to PCA in that an alternative
data representation in a rotated coordinate system is found. The assumption
behind ICA is that the observed data is a linear mix of a number of processes,
out of which at most one is Gaussian.Since the sum of random variables is closer
to the normal distribution than any one of them (the Central Limit Theorem),
the sources that generate data should be estimable by maximizing the non-
Gaussianity of each row of S. Each row of S contains the time series of an
estimated source. We denote the row-centered matrix of sources by Ŝ. Then we
have

Ŝ = WŶ ,

where W is the unmixing matrix that gives the linear combinations of observed
signals to yield the independent sources. Since uncorrelated Gaussian variables
are independent, a unique solution cannot be found if more than one row of Ŝ
is Gaussian.

To minimize the resemblance to Gaussian variables, it is necessary to quantify
this resemblance. A common measure of non-Gaussianity is “negentropy”. This
term is defined as [25]

J(Ŝi,:) = H(Z)−H(Ŝi,:),

where Z ∼ N (01×n, In.n), H(X) is the entropy of a random vector X , and J(X)
the negentropy of X . The standard normal random vector Z can be simulated,
but H must be estimated by a non-quadratic function [25]. Common choices are
hyperbolic tangent, the fourth moment, or the log of hyperbolic cosine [25, 14].

ICA is only unique up to scale and sign since W and Ŝ can be multiplied by the
same factor without disrupting the equality

Ŝ = WŶ .

To obtain uniqueness up to sign, a constraint on the norm of one of Ŝ or W can
be used. In the algorithm fastICA, for example, the constraint that the 2-norm
of each row of Ŝ must be one is used [25].

5.2 Independent component analysis 35

Once the unmixing matrix W that maximizes the non-Gaussianity of the rows
of the matrix Ŝ has been found, the mixing matrix

A = W−1,

which mixes the generating sources (rows of Ŝ) to produce the observed data
Y , can be found. The matrix A is found as follows

Ŝ = WŶ ⇔W−1Ŝ = Ŷ ⇔ AŜ = Ŷ .

To obtain the source activity S, we apply the unmixing matrix to the raw data
Y

S = WY.

5.2.4 Independent component analysis of EEG data

When ICA is applied to EEG data, the matrices A and S have biophysical
interpretations. The source activity in the rows of S can be understood to be
the activity of areas in the brain that control biological functions. Since the rows
of the matrix Y represent the activity recorded at each electrode, the matrix A
gives the linear combination of signals from inside the brain. The element Ai,j
in the matrix A gives the contribution of the jth generating source to the mix
recorded at electrode i.

Each IC is expressed in two ways. Firstly, the activity of the jth source over time
is found in the jth row of the matrix S. Secondly, the electrical activity on the
scalp caused by the jth source is contained in the jth column of the matrix A.
The electrical activity on the scalp can be visualized by color coding each degree
of electrical activity in a color. By interpolating the electrical activity between
electrodes, based on that observed at electrodes, a complete colormap of the
electrical activity over the scalp is obtained. An example of such a colormap is
shown in figure 5.2.

36 Artifact removal

Figure 5.2: Example of the map of electrical activity over the scalp of a gener-
ating source, also referred to as an IC.

5.2.5 Standardization of scalp maps

For the purpose of classification of ICs, it must be possible to compare ICs.
Thus some normalization of each IC is required. We require that the 2-norm of
each scalp map must be one. The normalization factor a for the jth component
is then

a =

√√√√ m∑
i=1

A2
i,j .

To obtain the normalized IC, the jth column of A is divided by the factor a.
For consistency, the jth row of S multiplied by a.

5.3 Features of independent components

We now describe the features that were extracted from data and used for clas-
sification. The features were chosen to reflect hypotheses about structures in
data useful for distinguishing between classes. Some of the features described
here have already been described in a previous report in which the problems of
classifying ICs and distinguishing between individuals based on their EEG were
treated.

After describing the features, we state how the feature matrix was standard-
ized.Then we discuss the trade-off between more complex models that fit data

5.3 Features of independent components 37

better, and the risk of over fitting. Next, we describe a way of selecting features
that we evaluated.

5.3.1 Features

Temporal and spectral features of the ith IC are calculated using the time series
of activation of that component, which is the ith row in the matrix S. The ith
column of the matrix A is used to calculate spatial features.

Some features were taken from the literature on IC classification [41, 56] while
the use of wavelet analysis for the ECG feature was suggested by Scott Makeig.

First we describe temporal features, followed by spectral and then spatial fea-
tures. Next, we give an overview of how features were implemented. We then
end this subsection by listing the correspondence between the features that we
use, and identifying numbers that we use to refer to the features in the remainder
of the report.

5.3.1.1 Temporal features

• Temporal kurtosis

Kurtosis is related to the fourth moment of a distribution, and quantifies
the peakedness of a distribution. Thus high kurtosis in the time series of a
component indicates that the time series has few large values, while most
values lie close to the mean. Such a pattern is characteristic of artifacts
such as eye blinks and the pulse due to the QRS complex in the heart
rhythm.

• Maximal variance

The maximal variance is calculated by taking the epoch with highest vari-
ance and dividing this variance by the mean of variances over epochs. If
there are no epochs, but one continuous signal, then this feature will be 1
for all components, which is clearly non-informative. We remedied this by
splitting data into intervals if epochs were not present. The split of data
was only used for the calculation of this feature.

The time series of a vertical eye movement IC attains high values con-
sistently and infrequently throughout a trial. This behavior is similar to
that of the time series for a blink component. However, the duration of
vertical eye movements is longer than that of blinks. Thus kurtosis values
are higher for blinks than for vertical eye movements. This means that the

38 Artifact removal

highest kurtosis values distinguish blinks, but not vertical eye movements.
Instead, the variance of the time series may be used. High maximal vari-
ances together with medium kurtosis values can then be used to detect
vertical eye movements.

• Temporal skewness

The skewness of a distribution is related to the third moment and quan-
tifies the degree to which the distribution is asymmetrical. As suggested
in [56], this feature was calculated by splitting the time series into inter-
vals of 15 seconds and then finding the average of the skewness in these
intervals. Since eye blinks cause high potentials for a short interval, eye
blinks increase the asymmetry of the distribution. This causes skewness
for ICs representing eye blinks to be either highly negative or positive [53].

• Logarithm of range of time series

The range of a time series is higher for some artifacts, such as loose elec-
trodes, than for all other types of components. By taking the logarithm
of the range, differences of orders of magnitude are emphasized.

• Wavelet based features for ECG detection

In previous attempts at component classification, components representing
the ECG turned out to be the most frequently misclassified components.
Thus we introduce a feature specifically aimed at detecting ECG compo-
nents by exploiting the shape of the QRS complex. The QRS complex
is a pattern that occurs once in every heart beat, and is the part of the
heart’s cycle with the largest amplitude. Thus components representing
the pulse are likely to exhibit patterns similar to the QRS complex at
regular intervals.

Discrete wavelet analysis (see section I.1 for background on wavelet analy-
sis) was used to search for the QRS complex, which is a part of the ECG.
The ECG detection features quantify the degree to which the time series of
an IC resembles the QRS pattern in ECG. Details are given in appendix I.

5.3.1.2 Spectral features

EEG is often spoken of in terms of the frequency of the signal. The frequency
bands that EEG is usually split into are shown in table 5.1.

• Logarithm of mean of spectrogram

The spectrogram quantifies the amount of activity in each frequency band.
In ICs, the bands that show most activity is highly dependent on the type

5.3 Features of independent components 39

Band name Frequency range (Hz)
Delta (δ) <4
Theta (θ) 4 - 7
Alpha (α) 8 - 12
Beta (β) 12 - 30

Gamma (γ) >30

Table 5.1: The generally accepted EEG frequency range splits and the names
usually given to these bands.

of component. Muscle components, for example have highest means in the
β- and γ-bands, whereas neural components tend to have more activity in
the lower frequency bands.

A spectrogram was calculated at every 0.5 frequency starting from 0.5 and
ending at 40Hz. The mean was then calculated in frequency bands known
to have biological relations (δ-band (<4Hz), the θ-band (4-7 Hz), the α-
band (8-12Hz), the β-band (12-30Hz), and the γ-band (>30Hz)). Next,
the logarithm was taken to emphasize differences in orders of magnitude.
The frequencies in each band are summarized in table 5.1.

The spectrogram was calculated using the MatLab function spectrogram
with defaults. The defaults specify the number of windows that the time
series is split into (eight), and the type of windowing that is used (Ham-
ming).

• Closeness of power curve to typical EEG power curves

Since components representing neural activity should exhibit characteris-
tics typical of normal, clean EEG, this measure is expected to discriminate
between neural and artifactual components.

A power curve is a relation between the frequency and the amount of
activity at that frequency, i.e. the power. To quantify the resemblance
between a time series and typical EEG using the power curve, we first
calculate the spectrogram as above. A curve is then fitted to the relation

power = f(frequency) =
constant

frequencyλ
.

This fit is based on three (frequency, power) coordinates, at the frequen-
cies: 2Hz, the frequency at which the power is minimal between five and
13 Hz, and the frequency at which the power is minimal between 33 and
39 Hz. log(λ) is then a measure of the closeness to typical EEG power
curves [56], and this is used as a feature.

40 Artifact removal

• Fit error of power curve to typical EEG power curves

The difference between the power curve fitted as described above and the
actual power curve, quantified as the sum of squared residuals, is also used
as a feature. High values of fit errors are expected to indicate artifacts
since such values indicate that it was not possible to fit even the shape of
the typical curve.

• Hurst exponent

The Hurst exponent (sometimes referred to as the H-exponent in the lit-
erature) gives a measure of the autocorrelation of a time series [50]. We
hypothesize that different kinds of components exhibit autocorrelation to
different degrees, motivating the inclusion of the Hurst exponent as a fea-
ture. Three different estimates of the Hurst exponent, provided by the
Matlab function wfbmesti, are used. All three estimates are used because
one estimate might be better suited to EEG data than the others. By
including all three, and performing feature selection, we hope to identify
the best estimate. This redundancy also provides a check on the validity
of the feature selection.

5.3.1.3 Spatial features

The nature of independent components allows the inclusion of spatial features,
which cannot be included meaningfully in analysis of single channel signals. In-
formally, an independent component is a spatial pattern of activity in the brain
that is active independently of other patterns of activity, and that reappears
consistently in data. For formal details, see subsection 5.2. Such spatial distri-
bution information is helpful in the classification of some types of components.

• Generic discontinuity

An independent component that represents a generic discontinuity, such
as a loose electrode, is spatially concentrated in a small area on the scalp.
The difference between the IC activation at an electrode and the average
IC activation in the ten nearest electrodes quantifies the degree of spatial
concentration. By calculating this measure for all electrodes, and using
the maximum as the feature, the overall degree of peakedness of the spatial
distribution of activity in the component is quantified.

• Spatial eye difference (SED)

This feature is the absolute value of the mean of the weights of the left
eye electrodes minus the mean of weights of the right eye electrodes. For
the jth component, the mathematical expression is

5.3 Features of independent components 41

∣∣∣∣∣∣ 1

|Eleft_eye|

|E|∑
i=1

aij · I(ei ∈ Eleft_eye)−
1

|Eright_eye|

|E|∑
i=1

aij · I(ei ∈ Eright_eye)

∣∣∣∣∣∣ ,
where E is the set of all electrodes, Eleft_eye is the set of electrodes around
the left eye, Eright_eye is the set of electrodes around the right eye, and ei
is the ith electrode. I(·) is the indicator function which is 0 if the argument
is false, and 1 if the argument is true.
This feature is meant for detection of lateral eye movements which generate
high-amplitude activation around both eyes, with opposite signs, making
the SED high.

• Average electrode weights over eye areas separately
In addition to the absolute value of the difference of the means of electrode
weights over the eye areas, each separate mean was also used as a feature.
That is, the two features

1

|Eleft_eye|

|E|∑
i=1

aij · I(ei ∈ Eleft_eye)

and

1

|Eright_eye|

|E|∑
i=1

aij · I(ei ∈ Eright_eye)

(5.3)

were also included.

• Spatial average difference (SAD)
Independent components representing eye artifacts have much higher acti-
vation in frontal areas than in posterior areas of the scalp. Using the same
principle as for lateral eye movement detection, the difference in activation
between frontal and posterior electrodes can be quantified by the absolute
value of the difference of the means of activation in frontal and posterior
electrodes. This feature is calculated as

∣∣∣∣∣∣ 1

|Efrontal|

|E|∑
i=1

aij · I(ei ∈ Efrontal)−
1

|Eposterior|

|E|∑
i=1

aij · I(ei ∈ Eposterior)

∣∣∣∣∣∣ ,
where Efrontal is the set of frontal electrodes and Eposterior is the set of
posterior electrodes.

42 Artifact removal

• Mean of weights of frontal electrodes

In addition to the magnitude of the difference in the means of weights of
frontal and posterior electrodes, the means of each set were used. These
two features are calculated as shown in (5.4), similar to the calculation of
component activation for eye areas (5.3).

1

|Efrontal|

|E|∑
i=1

aij · I(ei ∈ Efrontal)

and

1

|Eposterior|

|E|∑
i=1

aij · I(ei ∈ Eposterior)

(5.4)

• Variance of weights of frontal and posterior electrodes

We have already described the feature SAD, which has a high value for
eye artifacts. The SAD attains a high value for eye artifacts since the
magnitude of the average activation of frontal electrodes is much higher
than that for posterior electrodes when a component represents eye activ-
ity. However, a high value for SAD may also occur if frontal electrodes
have high activity, and one half of the posterior electrodes have negative
weights while the other half has positive weights. The variance of poste-
rior electrodes is useful in identifying such cases. The variance of frontal
electrodes is also used as a feature since this gives a basis for comparison
for the variance of posterior electrodes.

• Number of Talairach areas assigned to the dipole fit coordinates of an IC

This feature counts the number anatomical areas identifiable as the source
of the component activation. The assignment of anatomical areas is based
on the coordinates of the fitted dipole source, i.e. the 3D coordinate in the
brain from which the activity in the component is most likely generated.
The relation between the dipole fit and anatomical areas is found using
the Talairach Atlas, as implemented in freely available software [38, 37].
If an IC represents an artifact, it is unlikely that this will have anatomical
areas associated with it. Thus this feature should be helpful in identifying
neural components.

• Coordinates of dipole fit

The coordinates of a fitted dipole lie far from the scalp for neural compo-
nents, but closer to the scalp for many artifactual components, e.g. muscle
and loose electrodes. Also, heart components tend to have deep dipole fits,
i.e. dipoles that are close to the neck, and central on the x and y axes. We

5.3 Features of independent components 43

hope that a classifier can learn these differences if the dipole coordinates
are used as features.

• 2D DFT of weights of electrodes

A spatial pattern with few peaks is indicative of an artifactual component,
especially of loose electrodes or muscle artifacts. Conversely, physiological
components tend to have smoother distributions. A smooth distribution
of spatial distribution of activity is connected with slowly varying (low-
frequent) spatial patterns. Thus the spatial frequency of a pattern should
aid in classification.

The spatial frequency is quantified by interpolating At to get a 64×64
matrix. A 2D discrete Fourier transform (DFT) is then applied, and the
average of the logarithmic band power in higher frequencies on the right
half of the DFT calculated [56].

• Central activation of electrodes

This is the logarithm of the average of the activation of a group of 13 elec-
trodes placed symmetrically around the center of the top of the scalp [56].

• Activation of electrodes on borders

This is another feature aimed at detection of artifacts with a large amount
of activation near the scalp such as muscle components. It is defined as
1 if the most active electrode in the pattern is near the periphery of the
scalp, or if the activity of such a peripheral electrode differs more than two
standard deviations from the average of the closest electrodes. Otherwise,
it is set to -1 [56]

• Range within pattern

The range of activities of electrodes in a pattern is small for neural compo-
nents since most electrodes will have little or no activity, while a few will
show moderate activity. For some artifacts, such as heart components,
however, large negative fluctuations will be seen in one half of the head,
while electrodes with positive activities will be placed on the other half.
Thus the range of activity of electrodes in patterns might also be helpful
for classification [56].

• Residual variance of dipole fit

The dipole fit for a component in EEGLab is restricted to consist of one
dipole, or two dipoles that are symmetrical with respect to the midline.
Using conductance properties of the brain, these dipoles are found as the
sources from electrical activity might arise, that best explain the activa-
tion pattern observed on the scalp. The residual variance is a measure of
the misfit between the actual activity in a pattern and that explained by

44 Artifact removal

the dipole fit. This number has been observed to be small for neural com-
ponents (< 15%) and larger for artifactual components. The threshold of
15% residual variance is typically used by human experts when classifying
components.

5.3.1.4 Implementation

Features 1 to 11 were taken from the plug-in ADJUST [41] to EEGLab [14].
The code from ADJUST was modified slightly. We modified the code to allow
a different number of ICs from the number of channels. Also, we changed the
code for the few features that require data in intervals such that continuous data
without epochs is split into smaller intervals. Finally, one of the data sets in the
emotion study did not have any electrodes over left eye, as defined in ADJUST.
To not throw the entire data set away, we expanded the area over the left eye by
four degrees to each side when no electrodes over left eye as defined in ADJUST
were available.

The dipole fitting utilities available by default in EEGLab were used to obtain
dipole fits.

Christian Kothe implemented the code to calculate the central and border acti-
vation features, which were suggested in [56].

The Talairach Atlas, as implemented in the freely available software [38, 37],
was also used.

The remaining features were implemented using MatLab, using built-in func-
tions and functions from the Stats and Wavelets toolboxes.

5.3.1.5 Identifiers of features

In the following, we will refer to features by numbers instead of by names. In
particular, we avoid cluttered plot axes by referring to features by numerical
identifiers instead of by names. The relation between identifiers and feature
names are shown here:

1. Generic discontinuity

2. Spatial eye difference

5.3 Features of independent components 45

3. Average electrode weights over left eye

4. Average electrode weights over right eye

5. Spatial average difference

6. Variance of weights on frontal electrodes

7. Variance of weights on posterior electrodes

8. Mean of weights on frontal electrodes

9. Mean of weights on posterior electrodes

10. Temporal kurtosis

11. Maximal variance

12. Temporal skewness

13. Logarithm of range of time series

14. Logarithm of mean power in the α band

15. Closeness of power curve to typical EEG power curves

16. Number of Talairach areas assigned to the dipole fit coordinates of an IC

17. z-coordinate of dipole fit

18. Fit error of power curve to typical EEG power curves

19. 2D DFT of weights of electrodes

20. Central activation of electrodes

21. Activation of electrodes on borders

22. Logarithm of mean power in the δ band

23. Logarithm of mean power in the θ band

24. Logarithm of mean power in the β band

25. Logarithm of mean power in the γ band

26. x-coordinate of dipole fit

27. y-coordinate of dipole fit

28. Hurst exponent, wfbmesti estimate 1

29. Hurst exponent, wfbmesti estimate 2

46 Artifact removal

30. Hurst exponent, wfbmesti estimate 3

31. Number of fitted dipoles, either one or two

32. Mean interval between peaks of approximation coefficients found through
discrete wavelet analysis at lowest level

33. Variance of intervals between peaks of approximation coefficients found
through discrete wavelet analysis at lowest level

34. Fifth percentile of intervals between peaks of approximation coefficients
found through discrete wavelet analysis at lowest level

35. 95th percentile of intervals between peaks of approximation coefficients
found through discrete wavelet analysis at lowest level

36. Features 36 to 43 are the same features as the above four in the same
order, but the wavelet analysis is performed at the middle and highest
level.

5.3.2 Standardization of features

Before using the features for either exploratory analyses or classification, we
standardize the features. For each feature, we subtract the mean of the feature
values. We then divide the centered feature vectors by their variance. The
feature vectors that we use thus have zero means and unit variance. We denote
the standardized matrix of features byX. Each column corresponds to a feature,
and each row to an observation of a vector of features. The number of columns
of X is then the number of features, and is referred to as m. The number of
rows of X is equal to the number of observations, n.

5.3.3 Bias-variance trade-off

By incorporating more features in a model, the model complexity increases, and
becomes better at describing data. A trade-off between describing data well and
the risk of over-fitting is always present when modelling data. The more complex
a model is, the less the training error will become. The extreme of this scenario
is that each observation is modelled separately, achieving a training error of zero.
Clearly, though, this approach is insensible, especially for purposes of predicting
a new response based on explanatory variables. In this scenario, the variance
of fitted values is maximal. On the other hand, the opposite extreme affords
minimal variance by e.g. solely including an intercept in a model. A high bias,

5.3 Features of independent components 47

i.e. high average difference between the true and the fitted or predicted value, is
the side-effect of this strategy. In general, the squared error of a model can be
split into a contribution from the bias and a contribution from the variance of
the model around any point. The expectation of the squared error is called the
“risk” [62, pp. 304-305]. To be more precise, the relations are [62, pp. 304-305]

Risk =E

(∫
(f(x)− f̂(x))2dx

)
=(

E(f̂(x))− f(x)
)2

+ E

(
f̂(x)−

[
E(f̂(x))

]2)
= bias2 + variance,

where f denotes the true relation between explanatory variables and response
and f̂ the estimate of f . Since both a high variance and a high bias are un-
desirable, a balance between the two must be found. This is usually achieved
by choosing to use the complexity of model that gives the least average squared
error over several cross-validation folds.

5.3.4 Choosing the best features

To decrease the computational demands involved in model construction, it is
desirable to pick out the best features and use only those when constructing
the model. Mutual information (MI) is a measure of the degree to which two
quantities vary together, which also takes non-linear changes into account. The
MI between class assignments and feature values may then be informative as to
which features have good predictive powers of class membership. This relation
was also used in the exploratory analyses, and has been suggested by others as
a way to identify best features [10, 20, 60].

We will refer to the feature selection method described here as the MI-criterion.
First we describe what MI is, and how to calculate it. Then we go on to explain
how we use MI to select features.

5.3.4.1 Mutual Information

Mutual information (MI) is a measure of independence between two probability
distributions. It measures the difference between the actual joint distribution
of the two distributions and the product of each their marginal distributions. If
the two random variables were independent, their joint distribution would equal

48 Artifact removal

the product of the marginals. A higher mutual information between two random
variables means that more information is gained about one of the two when the
other is observed. For independent random variables, the information gained
about one is non-informative with respect to the other. Independent random
variables have the lowest MI, of zero.

Let V be a random variable with density fV and W a random variable with
density fW . Denote by fV,W the joint density of V and W. The MI between V
and W is then defined as 5.5 [6, p. 57]

MI(V,W) = −
∫ ∫

fV,W(v, w) log

(
fW(w)fV(v)

fV,W(v, w)

)
dvdw, (5.5)

where the logarithm is the natural logarithm. Naturally, the integrals are taken
over the entire domains of V andW. We briefly note that the mutual information
can also be defined as the Kullback-Leibler divergence between the distributions
fV(v)fW(w) and fV,W(v, w). However, the Kullback-Leibler divergence will not
be needed for other purposes here, and we refer the interested reader to other
references [6, p. 55],[57, p. 561] for an explanation of this concept.

5.3.4.2 Estimating mutual information between variables in data

To estimate the mutual information between observed quantities, it is necessary
to estimate both marginal and joint distributions. Once this has been accom-
plished, we may plug these estimates into (5.5), substituting integrals with sums.
The problem is then reduced to finding estimates of the distributions of the con-
cerned quantities.

Denote by f̂V the estimate of the distribution fV , by f̂W the estimate of fW
and by f̂V,W the estimate of the joint distribution fV,W . We will find f̂V,W
first and then use this estimate to estimate the marginal distributions. We will
think of the joint distribution as a number of rectangles in each of which a joint
observation of V and W has a probability of falling.

Clearly, we must both decide how to define these rectangles and how to estimate
the probability that an observation (V,W) falls into any of these. We decided to
split the range of V and the range of W into equally many intervals. We denote
the number of intervals by r. To obtain a uniform coverage with observations
of the joint outcome space, we split the ranges using estimated percentiles. The
(i, j)th rectangle then contains observations (v, w) such that f−1

V ((i−1)/r) < v ≤
f−1
V (i/r) and f−1

W ((j − 1)/r) < w ≤ f−1
W (j/r). In this presentation we assumed

5.3 Features of independent components 49

that both fV and fW are bijective density functions, such that f−1
V (q) gives the

qth quantile, and P(V ≤ f−1
V (q)) = q. By counting how many observations each

rectangle contains, and dividing by the total number of observations, we get a
stepwise estimate of the joint density.

By summing over all values of w for each interval of v values, we get a stepwise
function that estimates the marginal distribution of v. Conversely, interchange
the roles of v and w to get a stepwise function estimating the marginal distri-
bution of w. This provides the estimates fV , fW , and fV,W needed to estimate
the mutual information.

Since we make the bins contain the same fraction of observations for each vari-
able, the mutual information between a variable and itself will be identical for
all variables.

5.3.4.3 Implementation

Some practical issues arise when the estimation of mutual information is imple-
mented.

Firstly, the number of bins needs to be determined. We were not able to find
texts discussing the choice of the number of bins when widths are chosen by
percentiles. We ended up taking the number of bins used in the code minfo.m
by Jason Palmer. The number of bins r used in minfo.m is the minimum of 50
and 3 log2(1 + n/10), where n is the number of observations of each variable.

Another issue arises when variables only take on a few distinct values. The strat-
egy of estimating the probability distribution through the cumulative probabil-
ities fails in this case since several percentiles will take the same value. Thus an
observation will be placed in several boxes. To avoid this problem, we counted
the number of observations in each box instead of estimating the cumulative
distribution. When a variable only has few distinct values, equal proportions of
observations will not be put into each box. Thus variables with few values will
not have the same MI with themselves, as all other variables do.

The code, which has not been optimized, is given in appendix L.

50 Artifact removal

5.3.4.4 Constructing the null distribution

Mutual information was used to identify best features by finding the null dis-
tribution of mutual information between class assignment and feature value for
each feature. The null-distribution corresponds to the null hypothesis that the
feature has no relation to the class assignment. We can draw from the null
distribution by randomly permuting the vector of class labels and calculating
the mutual information between this vector and the values of feature currently
being evaluated. An empirical estimate of the null distribution can be obtained
by making a large number of such draws. This null distribution can then be used
to test the null hypothesis that the mutual information between the feature and
the non-permuted vector of class labels was drawn from the null distribution. If
rejected, we have evidence that the feature does vary with the class label.

5.3.4.5 Testing in the null distribution

We do not wish to make assumptions on the distribution of the values of mutual
information, and thus use a non-parametric test. If the mutual information
between the feature concerned and the vector of class labels is significantly
higher than the median in the null distribution, then we have evidence that the
feature is not from the null distribution, and performs better than would be
expected under the null distribution. We have the following hypotheses

H0 :MIobserved ≤ µ̃0

H1 :MIobserved > µ̃0,

where µ̃0 is the median of the null distribution and MIobserved is the mutual
information between the concerned feature and the observed vector of class
labels. If the null hypothesis is true we would expect half the drawn samples
from the null distribution to be greater than or equal to MIobserved. Denote
the number of draws from the null distribution that are greater than or equal to
MIobserved by n≥MIobserved

. Assuming the null hypothesis is true, the random
variable N≥MIobserved

, denoting the number of draws greater than or equal to
MIobserved, follows the binomial distribution with the number of trials equal to
100 since this is the number of draws from the null distribution. The parameter
denoting the probability of success is equal to 0.5 since the probability of drawing
an element less than or equal to the median is per definition 0.5, implying that
the probability of drawing an element greater than the median is 1-0.5=0.5. The

5.4 Classification of independent components 51

probability of getting n≥MIobserved
or fewer observations greater than or equal

to MIobserved under the null hypothesis is then P(N≥MIobserved
≤ n≥MIobserved

).

We use the significance level 0.05 with the Bonferroni correction for multiple
hypothesis tests. The Bonferroni correction for multiple hypothesis test simply
divides the significance level α by the number of tests, and uses this quotient
as the significance level in each test. Then the significance level for all the tests
is at most the desired level α. The Bonferroni correction is very conservative,
meaning that the significance level used in each test may be too low. More
advanced corrections for multiple hypothesis tests exists, but delving into these
were out of the scope of this project. Also, the choice of a conservative correction
method ensures that informative features are retained.

There are 43 features, and hence 43 hypothesis tests. Thus a feature is deemed
to have significant predictive power if P(N≥MIobserved

≤ n≥MIobserved
) is less than

0.05
43 . If a feature has significant predictive power, we choose it for inclusion. We
will refer to this feature selection method as the MI-criterion.

5.4 Classification of independent components

In this section, we describe different issues related to classification of ICs.

Each observation is of the form (x, y), where x is a vector of features and y
the class of the object from which the features were calculated. Based on a
number observations of both x and y, a classification rule is sought that will
allow prediction of y based on observations of features.

First, we discuss how to set up the classification problem in terms of which
classes of ICs we wish to automatically identify in subsection 5.4.1.

Next, we discuss how binary classifiers can be used to solve classification prob-
lems with more than two classes in subsection 5.4.2.

Due to large differences in the sizes of the different classes, we need to tackle
the problem of disproportionate classes. We explain how this problem may
negatively affect classification methods and how we tackled the issue in subsec-
tion 5.4.3.

In subsection 5.4.4, we explain the concept of cross-validation, which we use to
determine parameters in model estimation, and to enable statistical comparisons
of models.

52 Artifact removal

We give descriptions of the classification methods that were used in subsec-
tion 5.4.5. In addition to describing how the classification methods work, we
explain how the variance of feature coefficient estimates can be found analyt-
ically, where possible. The variance estimates can then be used to find the
coefficient estimates that are not significantly different from zero. Features with
coefficient estimates not significantly different from zero can either be removed
from the model, or at least be assigned less importance when interpreting the
model.

5.4.1 Types of independent components considered

A natural limit on the classes that can be incorporated in a classification method
is the type of class labels available in training data. Obviously, a classification
method cannot learn a class that is not present in the training phase. In the data
from the Swartz Center for Computational Neuroscience (SCCN), five types of
labels for ICs were present. These were eye blink, neural, heart, lateral eye
movement, and muscle. Additionally, about a little more than half the ICs were
unlabeled.

We need to choose which classes to include in training, since this will determine
which types of ICs can henceforth be automatically classified. In making these
choices, different concerns must be taken into account.

5.4.1.1 Possible splits of classes

First, we need to consider which classes might be advantageous to identify. For
most purposes, it is desirable to identify ICs that are very likely to be artifacts.

A classification method that distinguishes between each type of artifact and
neural components would be able to detect artifactual ICs, but ignore ICs that
contain both neural and artifactual activity.

Binary classification into the classes neural or artifactual would suffer from the
same limitation of not being able to properly handle mixed ICs.

In both scenarios, we could include a sixth or third case, respectively, containing
unlabeled ICs.

Yet another option would be to include the unlabeled ICs in the non-neural or
neural class in the binary setting.

5.4 Classification of independent components 53

5.4.1.2 Difficulty of problem

The choice of which classes to include is likely to influence the difficulty of the
problem. Since the class of unlabeled ICs is not well defined, it is likely that
inclusion of this class will make classification more difficult. This extra difficulty
will probably ensue both if unlabeled ICs are included as a separate class, or as
part of another class.

The combination of all artifacts into one class may either make the problem
easier or harder. It is difficult to reason whether the combination of artifacts in
one class will make the problem easier due to fewer classes in the problem, or
more difficult since the examples of the class differ more.

5.4.1.3 Retaining neural activity

For most purposes in EEG analyses, it is important not to lose information on
neural activity. Hence retaining all activity that is not artifactual should be a
priority. This calls for including a class of mixed ICs to catch those ICs that
contain some neural activity, but are not neural components. The inclusion
of such a class would allow denoising by removing only artifactual ICs, while
ensuring that neural activity is not lost.

In real data, mixed ICs will almost always be present. Investigation of the
problem without mixed ICs is interesting since this will give an idea of how easy
it is to separate neural from artifactual components. Also, as explained below,
probabilities of class membership from a model trained only on labeled ICs will
probably also be useful for real data that includes mixed ICs.

5.4.1.4 Probabilities in identification of class ambiguity

Assuming that the chosen classifier gives probabilities for membership of each
class, such probabilities could aid the retention of mixed ICs. Instead of just
assigning the class with highest probability, a threshold probability might be
used to determine when to assign a class. If the probability of membership
of any class does not exceed the threshold, no assignment would be made. No
class assignment would then indicate that an IC is of the mixed type. The model
could then be trained on data with no mixed ICs, since the absence of mixed
ICs will most likely make it easier for a model to learn the different classes.

54 Artifact removal

Such a procedure would guard against the loss of neural activity by assignment
of mixed components to artifactual classes.

Additionally, such a solution would be applicable in any of the scenarios de-
scribed. Thus the problem of mixed ICs could be circumvented through the use
of probabilities.

5.4.1.5 Classes considered in this project

To limit the project, we focused on four of the scenarios described here. The
classification problems that we investigated are shown in table 5.2.

Inclusion of labeled ICs
only Inclusion of all ICs

Binary classification Two classes, neural vs.
non-neural

Two classes, neural vs.
non-neural and mixed ICs

Multiclass classification Five classes, the types of
labels present in data

Six classes, the types of la-
bels present in data and
mixed ICs

Table 5.2: The four classification problems investigated in this project.

We investigated classification of neural vs. artifactual ICs, both without includ-
ing unlabeled ICs, and with inclusion of unlabeled ICs in the class of artifacts.

In addition to the two scenarios of binary classification, we investigated classi-
fication into multiple classes. Two sets of classes were considered for this. The
first set included only the ICs that were labeled, amounting to the classes blink,
neural, heart, lateral eye movement, and muscle. The second set included the
class of unlabeled ICs in addition to the five classes of labels present in data.

5.4.2 Handling multiple classes

Several of these classification methods were originally designed to solve binary
classification problems, where each observation belongs to one of just two classes.
An issue then arises when observations may be classified into one of three or
more classes. Two strategies easily generalize binary classifiers to multiple class
problems. Denote the number of classes by K.

5.4 Classification of independent components 55

One-vs-one (1v1) Firstly, one may use what is called the one-versus-one
(1v1) strategy. In this strategy, an observation is classified using the binary
model arising from each combination of two classes. A number between zero
and one can then be found for each class. If each binary model predicts a
class number, a number between zero and one can be found by counting the
number of times an observation was classified into each class, and dividing by
the total number of binary models.If the binary models give probabilities for
the observation belonging to each class, these can be summed over the binary
models for each class and normalized. The number found in this way for class
k may be interpreted as the posterior probability that the observation belongs
to class k.

One-vs-rest (1vR) Secondly, the one-versus-rest (1vR) strategy can be em-
ployed. In this setting, K models are calculated, one for each class. The model
for class k classifies an observation as belonging to class k or not belonging to
class k. An observation is then classified by classifying the observation using
each of the K models. If the binary classifier returns the class which an obser-
vation is assigned to, the final result can be understood as equal probabilities of
the observation belonging to each class for which the binary classifier assigned
the observation to that class instead of the “the rest” class. On the other hand,
the binary classifier might return probabilities of class membership. In this
case, the probability that the observation belongs to class k may be taken as
the probability returned by the kth binary model. To retain the interpretation
of probabilities, these probabilities must be normalized by dividing by the sum
of the probabilities of class membership over all classes.

Alternatives to 1v1 and 1vR However, both these strategies have inherent
problems [6]. An obvious problem for the 1vR strategy is if an observation is
assigned to the “the rest” category by each of the K binary models. Another
problem is that of overlapping regions such that an observation is assigned to
several classes. This is handled, but not properly solved, by the probability
interpretation described above.

Some classification methods are easily adapted to handle multiple classes at
once, entirely avoiding the problem of adapting binary models to multi-class
models. Linear and quadratic discriminant analysis (LDA and QDA), logistic
regression, and decision trees are examples of such models. Support vector
machines (SVM), however, are not as easily adaptable.

There is a drawback, though, of taking all classes into account simultaneously.
If only few observations from some class are available, then the estimation may

56 Artifact removal

be under determined.

This occurred for quadratic classification, and it was necessary to remove fea-
tures at random until few enough were left that the model could be estimated.

Out of curiosity to see the performance of the less-than-optimal 1v1 and 1vR
schemes, we use the 1vR scheme for LDA and QDA and the 1v1 scheme for
logistic regression, as well as the multi-class versions of LDA, QDA, and logistic
regression. Since the computational complexity of these models is low, these are
cheap comparisons. We use the 1v1 strategy for SVM. We solely use decision
trees with the natural ability to handle multiple classes.

Forcing probabilities from classifiers Most of the classifiers investigated
here predict class memberships, and not probabilities of class membership for
each class. That is, these models return a single number, which is the predicted
class for the concerned observation. The only exception is logistic regression,
which returns probabilities. However, it can be desirable to get class membership
probabilities instead of class assignments in some circumstances, even though
the method to get those probabilities may not be theoretically rigorous. In
bcilab, LDA, QDA, and SVM are altered to return such probabilities. These
are all implemented as binary methods, and the schemes described above then
used for multiple classes. Each of these methods returns a real number x.
Usually, the observation would be assigned to class one if that number is negative
(x < 0), and to class two otherwise. To get probabilities, some extra processing
is performed. Firstly, the number is changed to -1 if smaller than -1 and to
1 if larger than 1. If it is between -1 and 1, it is unchanged. Thus we may
be sure that the number lies between -1 and 1 at this point, −1 ≤ x ≤ 1.
The probability that the observation belongs to class one is then calculated as
(1−x)/2. The probability that the observation is from class two is then defined
as 1− ((1− x)/2).

5.4.3 Misclassification costs

Standard assumptions in classification problems are that classes are of the same
size, and that all misclassifications induce equal losses. Equal misclassification
costs give rise to the objective of minimizing the total number of misclassifica-
tions [57, p.20],[6, p.41]. For some classification problems, however, this is not
desirable.

When class sizes differ by a large factor, trivial classifiers that classify all ob-
servations into the large class can achieve low misclassification rates. Imagine,

5.4 Classification of independent components 57

for example, a binary classification problem in which 99 training samples are
available from the large class and the small class has only one training sample
available. Then a training misclassification rate of 1% is achieved by classifying
all observations into the large class. Conversely, misclassification of just two
observations from the large class into the small class will cause a misclassifica-
tion rate of 2%. This imbalance in the effects of misclassifying samples from
the two classes makes it highly probable that a classifier will learn to classify all
observations into the large class if misclassification rate is used as the objective
function to be minimized.

In the IC classification problem, the number of samples from different classes
differs by up to three magnitudes of ten. Thus it is obvious that we need to
take the problem of unequal classes into account.

5.4.3.1 Observation weights

To avoid trivial classifiers, we tweak the learning phase of classifiers by making
it more expensive to misclassify samples from the smaller classes. We do this
by multiplying the cost induced by each sample by the inverse proportion of
the class that the sample is from. Let n denote the total number of training
samples, and nk the number of samples from class k. Let f be the objective
function that we seek to minimize. If a sample x is from class k, we then use
the cost (n/nk)f(x) instead of f(x).

5.4.3.2 Standardization

To keep the costs at manageable magnitudes and decrease the risk of unstable
solutions caused by large weights, we divide the vector of observation weights
by the sum of the observation weights. Thus the sum of all observation weights
in any of the classification problems we solve is one.

5.4.3.3 Weights in 1v1 and 1vR cases

In 1v1 and 1vR voting schemes, explained in detail in subsection 5.4.5, sev-
eral binary classification problems are solved instead of one multiclass problem.
However, the weighting scheme is consistent since the relative weight between
any two classes remains constant. In the multiclass problem, the relative weight
between class 1 and class 2 is

58 Artifact removal

(
n

n1

)
/

(
n

n2

)
=
n2

n1
.

In the 1v1 voting scheme, the denominator of the weight of an observation is
still the number of observations from the class that the observation is from. The
training samples available in the solution of the binary classification between
classes 1 and 2 is n1 + n2, which is thus the numerator of the weight. We find
the same relation between the weights of classes 1 and 2

(
n1 + n2

n1

)
/

(
n1 + n2

n2

)
=
n2

n1
.

Likewise, the proportion remains the same in the 1vR case. The 1vR scheme
solves the binary classification problems of one class versus all others. Hence all
training samples are used, and the numerator in the weight of an observation is
n while the denominator is still the number of training samples from the class
that the observation is from

(
n

n1

)
/

(
n

n2

)
=
n2

n1
.

This shows that the weighting scheme is consistent no matter how the multiclass
problem is solved.

5.4.4 Cross-validation

Cross-validation is a technique that can be used to find the best values of pa-
rameters in model estimation, and to determine estimates of uncertainty. The
method consists of splitting data into disjoint partitions. By training on some
of these partitions, and testing on the data that was left out of the training par-
titions, we obtain several evaluations of the concerned model on an independent
test data set. Different cross-validation schemes have different ways of splitting
data. We used N -fold cross-validation.

Having several estimates of a quantity allows us to perform statistical analyses
of various quantities. Relevant quantities include the performance of the model
on new data, distributions of the coefficients of variables, and so on.

5.4 Classification of independent components 59

To find the best values of parameters in model estimation, we choose the values
that give the highest average performance of the model when cross-validating.

5.4.4.1 N-fold cross-validation

In cross-validation with N folds, data is split into N disjoint partitions. By
collecting N − 1 of these partitions into one data set, and using this as training
data, the last partition is available as an independent test data set. By switching
the roles of the partitions, we obtain N evaluations of the concerned model on
an independent test data set.

5.4.4.2 Choosing N

When setting the value of N , we must balance advantages and disadvantages.
A higher value of N results in more estimates, which implies less variance on
the means of the quantities of interest. On the other hand, higher values of N
result in more computationally expensive cross-validation schemes. Common
choices for N are five or ten.

5.4.4.3 Use of cross-validation in this project

We used cross-validation both to determine the best parameters in model esti-
mation, and to obtain uncertainty estimates of estimated quantities. The use
of cross-validation to determine the best parameters was left to the built-in
routines of BCILab [16].

We usedN equal to ten to obtain estimates of uncertainty of coefficient estimates
and model performances. We used the matlab function cvpartition to get the
ten partitions. By passing the vector of class assignments to cvpartition we
obtained partitions with roughly the same proportions of classes.

5.4.5 Classification methods

In this section, we describe the classification algorithms that were compared.
We chose these classification methods since they often perform well on diverse
problems. Additionally, it is simple to use different misclassification costs for
different observations with these method. For more complex models such as

60 Artifact removal

Hierarchical kernel learning, Gaussian mixed models, and neural networks, it is
difficult to use different misclassification costs for different observations. Also,
most of the methods used here are easily interpreted, which is an advantage
both to check the plausibility of models, and to gain a better understanding of
the classification problem.

For each method, we briefly describe how observations are classified. Then we
discuss the uncertainty of model estimates. Finally, we describe the implemen-
tation(s) used to test the method, and the computational difficulty of model
estimation. We do not go into formal analyses of running times, but stick to
giving an idea of the computational difficulties of model estimation.

5.4.5.1 Linear discriminant analysis

Linear discriminant analysis (LDA) is a linear classifier that assumes normally
distributed data and common covariance matrix between classes. We limit our-
selves to presenting LDA for binary classification, such that the number of classes
K is equal to two. However, it is trivial to generalize the method to handle sev-
eral classes directly without resorting to voting schemes [57].

LDA classifies an observation to the class that results in the highest likelihood
of the observation. Through a number of algebraic manipulations, it can be
shown that an observation x should be classified into class one if

xTΣ−1(µ1 − µ2)− 1

2
µT1 Σ−1µ1 +

1

2
µT2 Σ−1µ2 ≥ 0.

Otherwise, class two is assigned. Details are given in appendix B.

Uncertainty on coefficient estimates Theory on analytical ways to esti-
mate the uncertainty of coefficient estimates is sparse. We were able to find
one paper [9] that analyzes LDA. However, this paper is very theoretical, and
computationally easy estimates are not described. For the univariate case, we
used the rule of error propagation, described in appendix E, to obtain simple
estimates of uncertainty on coefficient estimates, as described in appendix B.

We found the uncertainty on the intercept and coefficient estimates to be

5.4 Classification of independent components 61

X̄2
1

n1s2
+

X̄2
2

n2s2
+

1

2(n− 1)s4

(
X̄2

1 − X̄2
2

)2

and

1

n1s2
+

1

n2s2
+

2(X̄2 − X̄1)2

(n− 1)s4
,

respectively. We use s2 to denote the sample variance, X̄k the sample mean
of class k, nk the number of observations from class k, and n the total num-
ber of observations. The analytical uncertainty estimates are lower when the
sample variance is higher, and also lower when the two population means are
close. These observations seem counterintuitive since classification problems are
usually easier when classes are more distinct. One way to explain the smaller
uncertainty when data is lumped closer together is that the interesting part of
data space, where classes should be separated, is well described by training data
in such cases.

Implementation The LDA model is calculated from the means and covari-
ance matrices of training data, so no iterative methods are necessary to estimate
this model. Hence it is very fast to estimate the LDA model.

Three different implementations were used. Firstly, the implementation of LDA
in the Stats toolbox was used. The Stats toolbox implementation handles several
classes directly, without resorting to a voting scheme.

The two other implementations were used in the 1vR voting scheme. One im-
plementation uses the standard formulation of LDA, as described above. This
was implemented in the BCILab framework by the author. The other imple-
mentation was the default in BCILab, which is cast in a different formulation
from the standard one. More details on the alternative formulation are given in
appendix B.

All three implementations were used out of curiosity to compare the results,
and see the amount of improvement gained by directly taking all classes into
account. Also, we wished to verify that the two formulations of binary LDA
would yield similar results.

62 Artifact removal

5.4.5.2 Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) is very similar to LDA and can also
be generalized to handle several classes directly [57]. However, we restrict the
presentation to the binary case.

The difference between LDA and QDA is that equal covariance matrices are not
assumed in QDA. This keeps the quadratic terms of the logs of the likelihoods
from cancelling each other out. The classification rule is then to classify an
observation x into class one if

1

2

[
xT
(

log
(
|Σ2|−1/2

)
Σ−1

2 − log
(
|Σ1|−1/2

)
Σ−1

1

)
x
]
− xT

(
Σ−1

1 µ1 − Σ−1
2 µ2

)
+

1

2

[
µT2 log

(
|Σ2|−1/2

)
Σ−1

2 µ2 − µT1 log
(
|Σ1|−1/2

)
Σ−1

1 µ1

]
≥ 0.

Otherwise, class two is assigned. Details can be found in appendix C.

Uncertainty on coefficient estimates We were unable to find literature
describing analytical estimates of coefficient estimates. Using the same principle
as in appendix B, analytical estimates could be derived.

Implementation As in LDA, the QDA model is based on means and covari-
ance matrices of training data, and no iterative method is needed. Thus it is
quick to estimate the QDA model. More data is required to estimate the QDA
model than the LDA model since a covariance matrix for each class is needed
for QDA.

Two different implementations were used. Firstly, the implementation of QDA
in the Stats toolbox was used. The implementation from the Stats toolbox
handles several classes directly, without resorting to a voting scheme.

Secondly, the default implementation of QDA in BCILab, which is binary, was
used. Treatment of several classes was obtained through 1vR voting.

Both implementations were used out of curiosity to compare performances be-
tween the 1vR setting and the setting when all classes are handled simultane-
ously.

5.4 Classification of independent components 63

5.4.5.3 Logistic regression

As was the case for LDA and QDA, logistic regression is easily generalizable to
handle multiple classes at once. In this case, the classification method is referred
to as multinomial regression (MNR). However, we only present the binary case.

Logistic regression is part of a larger class of models called generalized linear
models, for which the theory is well known. The best suited model within
this larger framework depends on the assumed distribution of data. In logistic
regression the response variable Y is assumed to be Bernoulli distributed

Yi|Xi,: ∼ Bernouilli(pi), Y ∈ {0, 1}.

We wish to model the probability pi as a function of the explanatory variables
Xi,: such that we can make predictions about an unseen response based on
Xi,:. Since probabilities are restricted to lie in [0, 1], the model of pi must use a
function with range [0, 1]. The logistic function g(x) = ex

1+ex satisfies this. The
model of pi, where pi = P(Yi = 1|Xi,:) is then

pi(β) =
exp(β0 +

∑m
j=1 βjXi,j)

1 + exp(β0 +
∑m
j=1 βjXi,j)

.

The estimation problem lies in finding the estimates of βj , j = 0, 1, . . . ,m. We
do this by optimizing the likelihood-function. That is, we find the values of
βj , j = 0, 1, . . . ,m for which the observed data is most likely. The likelihood
function is defined as the product of the probability densities of all observa-
tions (5.6).

L(β) =

n∏
i=1

f(yi|β), (5.6)

where y is the vector of observations. The likelihood function is

f(yi|β) =

n∏
i=1

pi(β)yi(1− pi(β))1−yi ,

and the estimate of β

64 Artifact removal

β̂ = arg max
β

n∑
i=1

(yi log(pi(β)) + (1− yi) log(1− pi(β))) . (5.7)

We weight each observation by the inverse of the proportion of the class it is
from, as described in subsection 5.4.3. More details on logistic regression are
given in appendix D.

Forward selection of parameters It is likely that only some features are
relevant in a classification problem. Only including some features also increases
interpretability of a model and reduce risk of over fitting. In logistic regression,
this can be done by starting with a model with no explanatory variables, and
then adding those variables that seem to explain variability in data best. This
is called forward selection [62, p. 221]. Two common alternatives are backward
and stepwise selection. In backward selection, the starting point is a model
that includes all variables. The variables that explain least variability are then
removed iteratively. In stepwise selection, variables can both be added and
removed in each iteration. Since these two alternatives are more computationally
demanding, we chose to use forward selection.

Deviance is a measure of the degree to which a model agrees with data [58, p.
23]. When building a model using feature selection, we can use this measure
to determine which features to include. The deviance of a large model minus
the deviance of a smaller model, nested within the larger model, is used to test
whether the simple model is significantly different from the larger model. Under
the null hypothesis, the deviance approximately follows the χ2-distribution with
degrees of freedom equal to the difference in parameters between the larger and
the simpler model [62, p. 299]. In forward selection, we attempt to add one
variable at a time. This causes the deviance to follow the χ2-distribution with
one degree of freedom. Using the 5% significance level, we add the concerned
variable if the test statistic is greater than χ2

0.05(1) = 3.841. This corresponds
to a p-value less than 0.05, which means that the model with the concerned
variable gives a significantly better fit to data than the model without that
variable at the 5% significance level. The deviance is defined as (5.8) [58, p.23],
although an alternative definition, given in appendix D, is sometimes used in
the literature.

Dabs(y,β) =− 2 log(f(yi|β)) (5.8)

5.4 Classification of independent components 65

To test whether a modelM1 with coefficient estimates β1 nested within a larger
model M1 with coefficient estimates β0 significantly differs from M0, we calcu-
late Dabs(y,β0) −Dabs(y,β1). If this is larger than the critical value 3.84, we
have evidence that the larger model M0 is a significantly better explanation of
the observed data than M1.

L1-regularized logistic regression Another way to limit the number of
explanatory variables in a model is to penalize the cost likelihood function by
the L1 norm of the coefficient vector. This also decreases the risk that coefficients
of correlated explanatory features are estimated at high values in such a way
that the effects of the variables cancel each other out in the model. We give
a small example to make this scenario clearer. Assume x1 and x2 are highly
correlated explanatory variables and that neither has any substantial influence
on the response variable. Then a model in which x1 has a very large coefficient
β1 and the coefficient of x2 is nearly the same with opposite sign β2 ≈ −β1

will be nearly equivalent to a model with small β1 and β2. The first model
will give a wrong idea of the relation between explanatory variables and the
response, might cause numerical instabilities if the coefficient estimates are of
very high magnitudes, and high uncertainty will be associated with predictions.
For these reasons a model with small or zero coefficients for x1 and x2 would be
preferable.

Using the L1 norm of the coefficient vector as penalty, we maximize (5.7) plus
the penalty. The L1 norm of a vector is the sum of absolute values of the values
in the vector. Both terms are weighted to reflect the degree to which we want
a good fit relative to our desire for a simple model. We also take weights of
observations into account as shown in (5.9).

β̂ = arg max
β

n∑
i=1

wi

λ [yi log(pi(β)) + (1− yi) log(1− pi(β))] + (1− λ)

m∑
j=1

|βj |

 ,

(5.9)

where w is the vector of weights for observations. The parameter λ must lie
between zero and one and determines the degree to which the coefficient vector
should be simple relative to the ability of the model to fit data well. Higher
values of λ cause the model to fit training data better at the cost of more
non-zero estimates of the coefficients. The best value for λ can be found by
cross-validation.

We use the optimization method steepest gradient descent [63] to estimate the

66 Artifact removal

model parameters. For more details, see appendix D. Pseudo-code for this
estimation is shown in algorithm 1.

Convexity The minimization problem in logistic regression is convex, both
with and without L1-regularization. Convexity is desirable property because it
ensures the uniqueness of a solution. Also, research into optimization of convex
functions has a long history and easily implementable algorithms with linear
and quadratic convergence are well known. We show the convexity of logistic
regression in appendix D.

Uncertainty on coefficient estimates Since logistic regression is part of the
large theory on generalized linear models, uncertainty on estimates in the model
are also well known [58]. We use the Pearson estimate of estimate uncertainty,
shown in (5.10)

σ2
Pearson =

∑n
i=1wi(yi − pi(β))2/[pi(β)(1− pi(β))]

n−m− 1
, (5.10)

where m is the number of features, and thus the number of coefficients esti-
mated. An extra degree of freedom is subtracted due to the intercept estimate.
The Pearson estimate of variance approximately follows the χ2 distribution,
σ2
Pearson ∼ χ2(n−m−1) [58]. The calculations in MatLab used to evaluate this

estimate are given in appendix D.2.

Implementation An iterative algorithm called iterative re-weighted least squares [58,
62] efficiently estimates the logistic regression model. Hence logistic regression
is more computationally intensive than LDA and QDA, but less so than decision
trees and support vector machines.

Five different versions of logistic regression were used, and thus five different
implementations.

First, we used the function glmfit in MatLab, which fits generalized linear mod-
els. Logistic regression is obtained by specifying the binomial distribution for
observations. The 1v1 voting scheme was employed to handle multiple classes.

Second, we used glmfit as above, but limiting the feature set to those chosen
with forward selection, implemented in the function sequentialfs from the Stats
toolbox. Again, the 1v1 scheme was employed to handle multiple classes.

5.4 Classification of independent components 67

Algorithm 1 Numerical minimization for L1-regularized logistic regression to
find coefficient estimates
β ← Nm+1(0m+1, Im+1) {initialize coefficient estimates to values from the
standard normal distribution}
max_eval ← 100 {stopping criterion; maximum number of iterations}
iter ← 0
while iter ≤ max_eval ∧ not converged do
J ← gradient of non-penalized cost function, evaluated at β
J_penali,j ← gradient of penalty, evaluated at β
{execute non-penalized updates:}
for j = 0→ m do
β
new_temporary
j ← βj − µ ·

∑n−1
i=0 Ji,j

end for
{execute penalized updates, which the intercept estimate is not affected
by:}
for j = 1→ m do
β
new_penalized_temporary
j ← β

new_temporary
j − µ ·

∑n−1
i=0 J_penali,j

end for
{set estimate to zero if zero was crossed in the penalty update}
for j = 1→ m do
if sgn(β

new_temporary
j) 6= sgn(β

new_penalized_temporary
j) then

βnewj ← 0
else
βnewj ← β

new_penalized_temporary
j

end if
end for
βnew0 ← β

new_temporary
0

if new estimates decrease cost then
update estimates
µ← 1.5µ

else
µ← 0.5µ

end if
iter ← iter+1

end while

68 Artifact removal

Third, we used the implementation of MNR in the Stats toolbox, mnrfit.

Fourth, we used mnrfit with forward selection. Forward selection was again
carried out with sequentialfs.

Finally, we implemented a binary version of L1-regularized logistic regression.
L1-regularized logistic regression for several classes was achieved through 1v1
voting with the implementation of the binary L1-regularized logistic regression.
The parameter λ was found by cross-validation over the values 2−10, 2−9, . . . , 2−1, 1.

5.4.5.4 Decision trees

Decision trees probably constitute the classification method whose results are
most easily interpretable. Decision trees can both be used in the prediction
of categorical and continuous response variables. When used for categorical
response variables, the tree is usually referred to as a classification tree. We used
the implementation of classification trees in MatLab. Since this implementation
only considers binary decisions, our presentation of decision trees is limited to
binary classification trees.

Informal description A new observation is classified by going down the tree,
starting at the root node, until a leaf is encountered. Each leaf represents a class.
An observation is then assigned to the class of the leaf that it ends up at.

All nodes that are not leaves will be referred to as internal nodes. Since we only
consider binary trees, each internal node has two child nodes.

Each node is associated with a function involving one explanatory variable,
whose output is boolean. If the function evaluates to true, the left branch is
traversed to the left child node, and the left child node takes the place of the
current node. Otherwise, the right branch is chosen. The final classification is
obtained by iterating this traversal until a leaf node is reached. The observation
is assigned to the class represented by that leaf node.

Construction of a classification tree Classification trees are constructed
by determining the optimal binary function fi at each node vi, usually using
a greedy algorithm that optimizes an objective function locally. If a greedy
algorithm or other heuristic is not used, the problem becomes intractable since
the number of possible trees grows exponentially with the number of variables.

5.4 Classification of independent components 69

Denote the set of training data by A. The construction algorithm then starts
at the root node and finds the function f0 that maximizes the gain ∆ [55]. The
function f0 splits the set A into two sets A1 and A2 such that A1 ∪A2 = A and
A1 ∩ A2 = ∅. Two child nodes of the root are then added to the tree, and the
set A1 passed down to child node v1, while A2 is passed to the other child node,
v2. At each of these nodes, the best split is found using only the training data
that was passed down. At v1, A1 is split into two new sets, and these sets are
passed down to the two child nodes of v1, which are added to the tree. This is
also done at v2. The constant splits of data cause the individual problems at
each node to diminish in size, while more problems must be solved at each level
of the tree. This process continues until a pre-determined stopping criterion is
reached.

The gain ∆ is defined as

∆ = I(current node)−
(
N(child node 1)

N(current node)
I(child node 1) +

N(child node 2)

N(current node)
I(child node 2)

)
,

where I is a measure of the impurity of a node. We use the Gini index gini(f),
described below, for the impurity measure. A lower impurity is achieved when
a greater proportion of observations with the same label are sent to the same
child node. The integer function N(vi) gives the total number of observations
at node vi.

The restriction on f to involve only one explanatory variable x and be binary
amounts to restricting f to be of one of the forms

If x is categorical with values a1, a2, . . . , am:
x == a1, x == a2, . . . , , or x == am

with complement functions x 6= a1, x 6= a2, . . . , , x 6= am

If x is numerical with range [a, b]:
for a ≤ c ≤ b: x < c, x > c, x ≤ c, or x ≥ c

with complement functions x ≥ x, x ≤ c, x > c, x < c.

Stopping criteria in tree construction Different criteria for when to stop
the tree construction exist. We used default settings in classregtree in MatLab
to obtain large trees. The default settings cause impure nodes to be split as long
as ten or more observations in the training data are considered at the node. This

70 Artifact removal

is the effective stopping rule since the default minimum number of observations
per leaf node is one. These settings yield very large trees, which are most likely
over fitted to training data. This makes it necessary to prune the large tree.

The pruning process collapses those nodes in the tree that cause the least in-
crease in the sum of Gini indices over the remaining nodes. Larger trees provide
better fits to training data, while smaller trees generalize to new data better.
If trees are too small, though, they may not capture actual patterns in the
analyzed problem [57, p. 308]. Thus it is necessary to find the best trade-off
between training error and tree size. The built-in cross-validation procedure in
classregtree was used to find the optimal pruning level, i.e. trade-off. The best
subtree at this pruning level was then found using classregtree and used as the
final classification tree.

The Gini index The Gini index is a measure of the impurity of a split, i.e.
how well observations with different responses are separated. Gini indices closer
to one indicate higher impurities, meaning that the split does not separate ob-
servations with different responses well. Thus we wish to minimize this objective
function, gini(f), where f denotes the function that gives the split and gini(f)
is the impurity measure of the split f . Let B1 denote the set of observations
from the training data that are put into one side of the split f , and B2 the set
of training observations that are put into the other side of the split. Also, let π̂k
denote the fraction of observations from class k in B1. Then the Gini index [57,
p. 309] is defined as

gini(f) =

K∑
k=1

π̂k(1− π̂k).

The minimum value of the Gini index is zero, achieved when π̂k is one or zero,
and the maximum value is 1/4, achieved when π̂k = 1/2.

Uncertainty on coefficient estimates Since decision trees are made from
locally optimal decisions at each step, there is no guarantee that the solution
is optimal. For the same reason, a small change in data may change the final
decision tree substantially. For these reasons there is little sense in analyzing
the importance of features, nor is it possible analytically. Since no coefficients
are estimated, there is no sense in talking of uncertainty estimates either.

A way to gain an idea of the importance of features is to first split the training
data into several subsets, as in cross-validation. One feature at a time could

5.4 Classification of independent components 71

then be left out, and test errors over each fold collected. These test errors
would then give an idea of the effect on performance of each feature. This
is computationally intensive though, and other more advanced uses of decision
trees such as random forests, boosting, or bagging [57] would probably be better
choices than optimizing features for the simple decision tree.

Implementation Decision trees are, in their most general formulation, com-
putationally infeasible. With the restrictions described here imposed, they be-
come computationally feasible. However, it is still a computationally intensive
method.

The MatLab function classregtree was used with default settings except for
a supplied cost matrix to construct large trees. The cost matrix reflects the
class weighting described in subsection 5.4.3. The built-in cross-validation in
classregtree was used to find the optimal pruning level, at which the large tree
was then pruned to give the final tree.

5.4.5.5 Support vector machines

Support vector machines (SVM) are a generalization of optimal separating hyper
planes (OSH). We present the binary cases of these methods. In classification
through optimal separating hyper planes, the observations to be classified are
assumed to be perfectly linearly separable. This means that the two classes can
be separated by a linear function. SVMs, on the other hand, do not require the
classes to be perfectly linearly separable.

For both OSHs and SVMs classes are assumed to have the labels -1 and 1. The
classification of an observation x is then sgn(

∑m
j=1 xj + β0). We describe OSH

before explaining the differences between OSHs and SVMs that make SVMs
preferable.

Optimal separating hyper planes Optimal separating hyper plane classi-
fication is performed by maximizing the minimal distance between points from
each class. A decision boundary is defined between the two classes such that
the distance from the decision boundary to the nearest observation from either
class is equal. This distance is denoted by M . The width of the margin is then
2M , and no observations lie within the margin. We scale the model parameters
such that yi(

∑m
j=1 xi,j +β0) = 1 for the observations xi that exactly lie on the

hyper planes that define the margin. The constraint that no observations lie

72 Artifact removal

between the hyper planes
∑m
j=1 xj + β0 = −1 and

∑m
j=1 xj + β0 = 1 can then

be expressed as

yi(

m∑
j=1

xi,j + β0) ≥ 1 ∀i.

To minimize generalization error, the margin should be as wide as possible. The
decision boundary

∑m
j=1 xj + β0 = 0 that maximizes M = 1/‖β‖2 is found by

minimizing the objective function [55, p. 262]

1

2
‖β‖22 −

n∑
i=1

λi(yi(βxi + β0)− 1),

where the constraint that no training observations can lie in the margin (yi(βxi+
β0) ≥ 1) is incorporated in the penalty term

∑n
i=1 λi(yi(βxi + β0) − 1), and

λi ≥ 0∀i. A violation of the constraint results in a positive contribution from the
penalty term such that the objective function can be minimized as long as the
constraint is violated. The dual of this minimization problem is the quadratic
programming problem of maximizing

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjyiyjXi,:Xj,:. (5.11)

Quadratic programming problems are optimization problems in which the sum
of a number of squared variables plus a sum of the same variables not squared,
and a constant term are sought minimized or maximized subject to linear equal-
ity and inequality constraints. Since research concerning optimization of such
problems is vast, it is desirable to pose optimization problems in this form.

In the transformation to the dual problem, the inequality constraints yi(βxi +
β0) ≥ 1 are substituted by

λi ≥ 0

λi [yi(βXi,: + β0)− 1] = 0.

Hence λi can only be non-zero for observations x that lie exactly on one of the
edges of the margin, since yi(βXi,: + β0) = 1 in this case. The observations on

5.4 Classification of independent components 73

these edges, i.e. those that have corresponding non-zero values of λi are called
the support vectors. The support vectors and their corresponding λi define the
model.

More details can be found in most textbooks on machine learning, for exam-
ple [55, 6, 57].

Generalization to support vector machines By allowing some observa-
tions to lie within the margin, the assumption of perfect separability may be
relaxed. This is exactly what is done to obtain SVMs from OSHs. The distances
of the misclassified observations, i.e. those within the margin, are constrained by
specifying a penalty C on each misclassified observation. This leads to the same
quadratic programming problem as above in (5.11), except for the constraints
on λi, which are 0 ≤ λi ≤ C∀i.

The kernel trick [57] is often used with SVMs since the kernel trick enables
the construction of decision boundaries in infinite space. This typically allows
for better separability of classes. Here, we used radial basis function kernel,
κ(x1,x2) = exp(−‖x1 − x2‖22/(2σ2)). C and σ are chosen through cross-
validation.

Uncertainty on coefficient estimates The SVM model becomes more dif-
ficult to interpret when the kernel trick is used since the model is expressed in
terms of the kernel functions. This makes it difficult to derive the effects of
the different variables on class assignment. Due to these complexities, we have
deemed investigations of feature importance for SVMs to be out of the scope of
this project.

Implementation Support vector machines constitute the most computation-
ally intensive classification method tested here. SVMs are computationally dif-
ficult even if the parameters C and σ have been determined beforehand. Since
they must be found by cross-validation, SVMs by far outrank the other methods
in computational difficulty of model estimation.

The SVM implementation that we used in this project was the variant from
BCILab called svmlight. This implementation is meant for binary problems. To
handle multiple classes, 1v1 voting is used.

To determine the values of C and σ, we performed a cross-validation over the
values 10−2, 10−1, . . . , 105 for C and 10−4, 10−1, . . . , 103 for σ, since values in

74 Artifact removal

these ranges have previously achieved a good performance in the IC classification
task [56].

5.4.5.6 ADJUST

The algorithm ADJUST attempts to detect ICs that fall into one of a number
of classes of artifacts. This is accomplished by finding appropriate thresholds
of certain features using Gaussian mixed models, based on data. The ICs that
exceed these thresholds for certain features are classified as one of the possible
types of artifacts, depending on which thresholds were exceeded.

The features used in ADJUST were also used here. These are features 1 to 11.

More details on ADJUST can be found in [41].

Uncertainty on coefficient estimates ADJUST does not use any sort of
feature coefficients.

Implementation ADJUST runs quite fast, with the feature calculations tak-
ing the longest time to compute. Compared to the other methods we used,
ADJUST is faster than all since the feature calculations are faster.

The code for the ADJUST plug-in to EEGLab was used, albeit the implemen-
tations of features were altered slightly as described in section 5.3.

5.4.5.7 BBCI

The BBCI algorithm aims to distinguish neural from artifactual components. It
uses SVM to classify ICs based on a number of features. All but one of these
were also used for the project described in this report. The features that are
used in BBCI are features 12, 13, 14, 15, 18,19, 20, and 21. Additionally, one
feature, the “current density norm”, is used in the BBCI algorithm, but not
here. Details on this feature, and why we could not incorporate it, are given in
appendix H.

To find the best parameters for SVM, cross-validation was used. This search
was performed over powers of 10, seeming to range from -3 to 4. The exact
search range is not mentioned in the paper describing the algorithm [56], but

5.4 Classification of independent components 75

all values reported as being best lie in this range. In our implementation, we
searched over the same values as in our use of SVM, namely 10−2, 10−1, . . . , 105

for C and 10−4, 10−1, . . . , 103 for σ.

More details, in particular explanations of features, are given in [56].

Uncertainty on coefficient estimates BBCI is based on an SVM classifier,
making the remarks for SVM apply here as well.

Implementation Since BBCI uses SVM to make classifications, the running
time for BBCI is high, just as was the case for SVM.

Our implementation of the method does not include all the features that are
described in [56]. There is one feature suggested in the BBCI paper that is
not used in out implementation of the proposed algorithm. This feature is the
current density norm, which requires an unrestricted dipole fit to be meaningful.
If the dipole fit is restricted to contain only a certain number of dipoles, then
the current density norm will be almost identical for all fits. The dipole fit in
EEGLab has exactly this restriction, making this feature irrelevant. The current
density norm is described in appendix H.

5.4.6 Qualitative comparison of classification methods

The assumptions underlying models, the estimation of models, and the forms
all come together to result in different advantages and disadvantages of each
model. We now describe such advantages and disadvantages of the models used
in this project.

Interpretability Interpretability of models is advantageous for a couple of
reasons. Firstly, an easily interpretable model affords insight into the problem
by showing which parts of an observation are most important for classification.
Secondly, it is possible to check that the model makes intuitive sense based on
preliminary knowledge of the classification problem. This is a down-to-earth
guard against over fitting.

Decision trees constitute the model that is easiest to interpret since the visu-
alization of decision trees is very intuitive. At each node, it is clear why an
observation is sent down a branch, ending up at the final classification.

76 Artifact removal

In LDA, QDA, and logistic regression (in all its variants), it is also easy to see
the effect of changes in feature values since these methods are based on linear
(and quadratic for QDA) combinations of features.

On the other hand, SVMs obscure the effect of features since the classification
is based on complicated functions of the features.

Model estimation The difficulty of estimating a model based on data is also
different for different methods. For some models, the estimation method results
in unique solutions that do not change much when data is changed to a small
degree, which is desirable. The speed by which these solutions are found also
differs between models.

LDA and QDA for example are easy to estimate since this estimation solely
consists of estimating covariance matrices, and then calculating matrix products
with the mean vectors. Hence the estimates of these models are unique for each
set of data.

In logistic regression, the model is found by numerical minimization of the neg-
ative log-likelihood. This is a convex problem, which means that the solution
is unique. Also, several algorithms of varying complexity and speed exist to
solve convex problems. All such algorithms require several iterations, obviously
implying that it is slower to estimate the logistic regression model than it is to
find the LDA and QDA models. When regularized logistic regression is used,
the parameter that controls the degree of regularization must be determined.
Cross-validation is often used for this purpose.

The cost function that must be minimized in SVM is also convex. In SVM, two
parameters control the model estimation. To find the best values of these, nested
cross-validation is often used. This of course slows down the model estimation.

Decision trees are constructed based on a number of locally optimal decisions.
Since a small change in data may cause a change in one of those locally optimal
decision, and thus affect all future decisions, a small change in data can lead to
a large change in the final tree.

Assumptions All of logistic regression, LDA, and QDA use the ratio of the
probability that an observation x is one class versus the probability that an
observation is in the other class [62, p. 358]

5.4 Classification of independent components 77

P (Y = 1|x)

P (Y = 0|x)
.

The difference between the methods lies in the assumptions. LDA and QDA
assume that both populations are normal, and LDA further assumes equal co-
variances. Logistic regression makes no such distributional assumptions. When
assumptions of normality are fulfilled, LDA and QDA are likely to obtain better
performance than logistic regression since they exploit the assumptions. Often,
however, it may be difficult to ascertain whether assumptions are valid. Hence
logistic regression is often a better choice.

Neither support vector machines nor decision trees make any assumptions on
the distribution of data.

5.4.7 Determining the best model

We split the entire data set into ten different partitions to obtain several es-
timates of performance for each model, as well as several coefficient estimates
for each model. By training on nine of the ten partitions, and testing on the
remaining tenth, we got ten estimates of the performance of each model. We
made sure to use the same partitions for each model. This enables direct com-
parisons of the models since the training and test data sets are the same for
each model.

During training of the models, we minimized a misclassification measure related
to the misclassification rate as described in 5.4.3. Since we wish to use the model
that is best over all classes, and not just able to detect ICs from the largest class,
we continue to use the same measure in this final comparison of models. Hence
we assign higher ranks to models with lower misclassification measures, defining
the misclassification measure mcm as

mcm =

K∑
k=1

n

nk
mcrk,

where K is the number of classes and mcrk is the relative misclassification
rate for class k. The relative misclassification rate for class k is one minus the
proportion of correctly classified samples from class k.

78 Artifact removal

5.4.7.1 Comparing two models

To test whether two models are significantly different, we performed the sign
test, which is the non-parametric equivalent of a paired t-test, on the ten mis-
classification measures. The sign test is performed by first finding the differences
between misclassification measures of the two models for each test data set, re-
sulting in ten differences. The number of negative differences is then counted.
This number is compared to the binomial distribution to test whether the data
is in accordance with the hypothesis that the two models show similar perfor-
mance. Formally, the sign-test tests whether the medians of two populations
are significantly different. Let X be a random variable denoting the number
of negative differences. Under the null hypothesis that the two models show
similar performance, and thus have the same median, each difference has equal
probability of being positive or negative. Hence the number of negative differ-
ences is distributed according to the binomial distribution with ten trials and
probability of success 0.5, X ∼ Bin(10, 0.5). We then wish to find the probabil-
ity of observing the observed data, or a more extreme outcome, under the null
hypothesis. Assume the number of negative differences x is less than or equal
to five, the median of the null-distribution of differences. We then find (5.12)

p = P(X ≤ x). (5.12)

If x is not less than or equal to five, we instead find p = P(X ≤ 10−x) to find the
probability of the observed, or more extreme data. Since we wish to assess the
difference between the two models, we are also interested in the other extreme
outcome, namely that there are more negative differences than expected. Since
the binomial distribution is symmetrical, we find this probability by multiplying
p by two. Thus the final p-value is 2p.

We denote the total number of models compared by nmodels. The number of
binary comparisons is then

∑nmodels−1
i=1 i) = nmodels(nmodels−1)

2 . Two models
are said to perform equally well if 2p is greater than

αbonf = 2
α

nmodels(nmodels− 1)

The significance level αbonf is the Bonferroni correction to obtain an overall
significance level of α, which we set to 0.05.

5.4 Classification of independent components 79

5.4.7.2 Determining the best model

We are interested in ranking the models from best to worst. For this to make
sense, it is necessary that the performance of models is transitive. That is, if
model A is better than model B, is better than model C, this should imply that
model A is better than model C.

First, we compare each pair of models by counting the number of cross-validation
folds in which one model outperforms the other. The model that outperforms
the other the most often is ranked as the best of the two. These binary rankings
can then be put together to obtain a ranking of all the models from best to worst.
By performing the binary rankings first, we can use the sign-test to determine
whether differences in performance are statistically significant. The final ranking
of all models will then include indications of whether the performance of two
adjacent models in the ranking is statistically significant or not.

We check whether a ranking of models is transitive by drawing a directed graph
in Maple with edges going from worse models to better models. If the directed
graph is acyclic, the ranking of the models is transitive. Otherwise, it is not.
When the ranking containing all models is not transitive, models cannot be
sorted in order of performance. For the classification settings in which rankings
turn out to be transitive, we give these rankings. Otherwise, we do not sort the
models.

We also use box plots of the misclassification measures for each model in each
classification scenario to assess classification performance. Additionally, we will
look at the mean of the misclassification measure and the standard deviation of
this for each model over the ten cross-validation folds.

80 Artifact removal

Chapter 6

Seizure detection

The pipeline to construct a seizure detection model is shown in figure 6.1. Fig-
ure 6.1 also shows the relation of seizure detection to the rest of the project.

Complete
data

ICs Clean
EEG

III.6.2 Estimate
corrupted data

III.6.1 Detect
corrupted data

III.5.2 ICA III.5.3, III.5.4 Remove
artifactual ICs
Find method to remove
artifactual ICs:
IV.9.1 Exploratory analyses
III.7.2 Choose features
III.7.3 Find best classification
method

Backproject
neural ICs
to data space

III.6.3 Learn model
to detect seizures

II.3 Raw
data

Seizure detection
model

Figure 6.1: Flow of data to obtain a seizure detection model. The parts that are
not grayed out are the ones that data are passed through. The grayed out box
represents the part of the project that aims to construct an automatic classifier
of ICs.

In the following sections, we describe how we detect erroneous values of EEG
recordings, how we estimate them, and finally the method that we use to train
a seizure detection model.

82 Seizure detection

6.1 Detection of corrupted data

To detect corrupted recordings due to loose electrodes, we make use of the fact
that at most a few electrodes are usually loose simultaneously. We split the
data into intervals of one second. The range of values in each channel is found
for each second. The mean range and standard deviation of the ranges over the
channels are then found in each second. If the range of a channel deviates by
more than two standard deviations from the mean range, we judge the data in
that second for that channel to be corrupted.

6.2 Estimation of corrupted data

Missing data is a common problem in data analysis that arises within almost
all applications. In the field of EEG, loose electrodes cause missing values in
the recorded data. The HypoSafe data sets contain many intervals, about 80%
of the total recorded time, during which one or more electrodes are missing.
Missing data is problematic since few analysis techniques are able to handle
missing values. We describe ways to handle missing data. However, a profound
analysis of missing data approaches was out of the scope of this project. We
state a few naive approaches before describing our solution to the problem. A
good overview of approaches to handling missing data is given in [39].

The values referred to as missing in the HypoSafe data are, in reality, not
missing, but extreme to an extent that indicates a loose electrode. Since the
electrodes continuously record the EEG, values for all time points do exist. We
will refer to values clearly recorded from a loose electrode as missing, since the
desired values, i.e. the electrical activity on the scalp, is in fact missing in these
cases. Intervals of loose electrodes are detected as described above.

Remove intervals of missing values The simplest way to handle missing
values is to remove all intervals in which one or more channels have missing
values. This would ensure that only properly recorded data is used in further
analyses. If entire intervals are removed, the data from all the attached elec-
trodes is also lost however. Thus a lot of useful data is lost in this process. Since
a large part of the recordings have one or more loose electrodes, this is not a
viable solution. This method is discussed in more detailed in [39], where it is
referred to as complete-case analysis.

6.2 Estimation of corrupted data 83

Set missing values to a numerical constant Another approach is to set
all missing values to a certain constant, for example zero, or the mean of other
observations of the same variable. This would avoid the problem of extremely
large values unbalancing the analysis. However, any relation between the values
in each channel, and the event of interest, will be obscured by this approach.

Factorization of available data to estimate missing data The signals
recorded at the different electrodes are actually different linear combinations
of the same brain activity. This spatial mixing of electrical signals implies
that EEG recordings from different electrodes are highly correlated. Assuming
that the linear mixing remains constant, it makes sense to express the value
at each electrode as a linear combination of the values at the other electrodes.
The assumption of non-changing linear mixing processes is sensible since the
brain tissue determines the linear mixing, and the brain tissue does not change.
We will estimate the missing values, and then fill the missing values with the
estimates.

Due to the linear relations among channels, we model the data as a product of
two matrices.

Y = AS.

The matrices A and S that give the closest values to the non-missing data
that represent the best model of relations between electrodes. This model is
conditional on observed data and multivariate, preserving associations amongst
the channels, as recommended in [39, p. 72].

The challenge is then to find A and S such that ‖A×S−Y ‖2 is minimized. We
take missing values into account by introducing the matrix W , whose (i, j)th

element is zero if the yi,j is missing, and one otherwise. We disregard missing
values while finding A and S by minimizing

∑
i,j

Wi,j(Yi,j −
∑
h

Ai,hSh,j)
2. (6.1)

We optimize using gradient descent, alternately updating A and S. Details are
given in appendix F.

84 Seizure detection

6.3 Model

Common spatial patterns (CSPs) are spatial patterns that distinguish between
EEG from two different conditions [36]. CSPs are those spatial patterns across
the scalp that are common between the two conditions, but explain most vari-
ance in one condition, and least in the other. CSPs can then be said to maximize
the proportion of explained variance in data in one condition relative to the
other. In this way, the spatial patterns that are most discriminative between
the two conditions are likely to be found. Since we suspect brain activity to
differ from normal EEG during seizures this method seems to be a tool likely to
identify seizures. Indeed, good performance in discriminating between normal
subjects and subjects with a brain disorder is well documented in [36].

An m ×M matrix WT for m channels and M spatial patterns is sought, such
that

S = WY,

where Y is the data matrix and S the activation of each spatial pattern over
time. W can be found by first solving the generalized eigenvalue problem

Cov(Y |k = 1)w = λCov(Y |k = 2)w,

where Cov(Y |k = i) is the covariance of observations from population i, and w
the generalized eigen vector that solves the problem. The columns ofW consists
of such w. We can then construct two diagonal matrices Λ1 and Λ2, one for
each class, such that the jth element of Λi is the variance of the jth pattern for
the ith class

Λi = WCov(Y |k = i)W.

We let λ(j)
i denote the jth element of Λi. By scaling the columns of W , we can

satisfy the equality λ(j)
1 + λ

(j)
2 = 1 for all j. Clearly, then, a high variance in

one condition implies a low variance in the other condition [48, pp. 341-342].
Classification on the transformed data is then performed by a classifier, where
a simple classifier such as LDA is a common choice.

CSPs are well suited to interpretation since the identified patterns are precisely
those that differ most between the two conditions. This makes it easy to relate

6.3 Model 85

the results to the disorder or other difference between conditions being studied.
The brain areas that show most differing activity between conditions may then
be studied further, either to see if they may be the cause of the difference between
conditions, or to investigate how these areas are effected by each condition.

Implementation We used the implementation of CSP in BCILab, which is
described in detail in [7]. In this implementation, the data is first band-pass
filtered with a lower limit of 7Hz and an upper limit of 30Hz. Thus only data
with frequencies between 7Hz and 30Hz is used. Also, the logarithms of the
spatial activations (wTCov(Y)w) are passed to the classifier instead of the
raw spatial activations. The six eigen vectors that maximize the difference in
variance between the two conditions are chosen to constituteW [7]. The patterns
that are found to be best are passed as features to LDA for classification.

Each second in the HypoSafe data was labeled as being part of a normal period
of EEG, or a seizure. We trained and tested the CSP model by using the brain
activity at each label and a quarter of a second to each side as one labeled
segment.

86 Seizure detection

Part IV

Results and discussion

Chapter 7

Artifact removal

7.1 Exploratory data analysis

Exploratory analyses give a preliminary idea of the amount of information
present in data. The final results can be compared to the preliminary results
from exploratory analyses as a simple check that the final results are sensible.

In addition to serving as a check on the final results, exploratory analyses are
useful for understanding a problem. Relations between features and classes can
be extracted and visualized to gain an idea of the degree to which each feature is
informative of class membership. Additionally, visualization of relations between
features makes it possible to detect redundant features.

As described in part II, two studies with data sets containing labeled ICs were
analyzed in this project. To prevent differences between the two studies from
obscuring the visual analyses, we performed all exploratory analyses separately
for each study.

Relations between features only depend on the explanatory variables, and not on
the class assignments of observations. Hence we performed exploratory analyses
of relations between features in the two cases of including all, or only labeled
ICs.

90 Artifact removal

Conversely, relations between features and classes do depend on the classes in-
cluded for classification. Thus exploratory analyses of relations between features
and targets were performed in all the four scenarios described in subsection 5.4.1.

We will now give an overview of the exploratory analyses that we performed.
Next, the results from the analyses concerning relations between features are
given. Then we go on to describe the results from analyses concerning relations
between features and classes. Finally, we summarize these preliminary results.

7.1.1 Analyses

The details of principal component analyses and mutual information are given
in section 5.2 and subsection 5.3.4. The focus here is on how we used these
methods for exploratory analyses.

7.1.1.1 Principal component analysis

Principal component analysis (PCA) finds the linear combinations (principal
components) of features that explain the most variance in data. PCA is ex-
plained in detail in section 5.2. These principal components can be viewed as
new explanatory variables such that the first new explanatory variable explains
most variance, the second variable second most variance, and so on. We plot the
values of each of the first three principal components (PCs) for each observation
in a 3D coordinate system. By coloring observations from each class with a
specific color, this reveals whether the classes are easily linearly separable. A
sign that classes are easily linearly separable is that clouds of each color appear
separately from the rest in the 3D plot.

We also plot the fraction of variance explained by each PC. This allows us to
see by how much different linear combinations of original features differ in their
ability to explain data.

To investigate which features are most important in distinguishing between
classes, we plot the weight of each original feature in the first three PCs.

7.1 Exploratory data analysis 91

7.1.1.2 Correlation

It is also interesting to see whether some of features actually describe the same
quantity. This was done by investigating the correlation between each pair of
features.

7.1.1.3 Mutual information

To capture any non-linear relations between features, we also looked at the mu-
tual information between pairs of features. Finally, mutual information between
each feature and the class assignment was plotted. High values of mutual infor-
mation between a feature and classes implies that the feature is a good predictor
of class label.

7.1.2 Relations between features and classes

First we present exploratory analyses when all classes of ICs are distinguished
between, i.e. the multiclass scenario. Next, we show results from exploratory
analyses in the binary setting when only the classes neural and non-neural were
analyzed.

7.1.2.1 Multiclass classification

Principal component analysis Figure 7.1 shows the projections of feature
vectors of ICs onto the first three principal components of the feature matrix.
Face-on views of these plots, which show the projections onto just two of the
components at a time, are given in appendix A in figure A.1.

Although a cloud of mostly unidentified observations seems to be distinguishable
from neural components in the top right of figure 7.1, a lot of other points are
hidden behind this black cloud. Since there are many unidentified observations,
and the class of unlabeled ICs is added to the plot last, the illusion of separable
clouds appears. Also, the light blue cloud of neural components is mixed with
all the other types of components. The overlap of unlabeled ICs with the other
classes is more apparent in the plot for the cue data set in which there are fewer
observations. The plot including all ICs from the cue data set is shown in the
top left of figure 7.1.

92 Artifact removal

Projections of feature vectors from labeled ICs onto the first three PCs are
shown in the bottom row of figure 7.1. The plots from both data sets show
clouds of neural and muscle components with different centers, although the
clouds overlap to a high degree. For the emotion data, a separate cloud of
heart components can be seen below the majority of the points. Also, lateral
eye movements are somewhat separated from the other classes. Thus these
plots hint that it will be possible to separate at least the components that were
manually labeled, although a linear separation might be difficult to achieve.

Figure 7.1: Projections of feature vectors of ICs onto first three PCs. The
projections of the feature vectors are colored according to the class they are
from. The top row shows projections of observations when the unlabeled ICs
are included, and the bottom row shows the results when only labeled ICs are
plotted. The left column shows ICs from the cue data set, and the right column
shows ICs from the emotion data set, both of which are described in part II.

Mutual information Mutual information between each feature and the class
labels is shown in figure 7.2 for both data sets, both including and not including
the unlabeled ICs.

7.1 Exploratory data analysis 93

The last 12 features are measures that aim to detect the similarity in the time
series to that of the ECG signal. It is somewhat odd that these have substantially
higher MI with classes in the cue data set than in the emotion data set.

Feature 18, which is the fit error of the fitted power curve to the typical power
curve from EEG, also has high MI with classes.

The first and 14th features also show high values of MI across all plots. The
first feature is a measure of the discontinuity of the distribution of activity on
the scalp map, while the 14th is the logarithm of the mean power in the α
band. We expect the logarithm of the mean power in the α band to be high
for neural components. Hence both these features should aid identification of
neural components.

The logarithm of mean power in the θ band (feature 23) also has high MI in all
plots. Since the θ band consists of low frequencies, and most artifacts have high
frequencies, this is yet another feature that is likely to help detect neural ICs.

The consistency of the patterns over all four cases indicates that the results are
not random, but reflect real structures in data.

94 Artifact removal

Figure 7.2: Mutual information between each feature and class assignment into
eye blink, neural, heart, lateral eye movement, muscle, or mixed IC. The class
of mixed ICs was only included in the top row. The left column holds results for
the cue data set, and the right column for the emotion data set. The plots in
the top row were obtained using all components, while the bottom row contains
plots calculated solely from manually labeled components.

7.1 Exploratory data analysis 95

7.1.2.2 Binary classification

Principal component analysis Figure 7.3 shows the projections of compo-
nents onto the first three principal components, color coded to indicate class
membership. Easy linear separation seems achievable in the emotion data set,
in both the case including unlabeled ICs, and in the case that only includes
labeled ICs (top and bottom plot of right column in figure 7.3, respectively).
However, linear separation does not seem possible for either case in the cue data
set since the clouds of colored points overlap to a large extent. This might be
due to the much smaller number of components in the cue data set, since enough
information might not be available to obtain appropriate principal components.

Mutual information Figure 7.4 shows the mutual information between each
feature and the class assignment, for each data set and for both cases of either
including or not including unlabeled ICs.

As in the multiclass case, feature one, the measure of generic discontinuity from
ADJUST, has a high MI with classes in all four cases in figure 7.4.

Feature 14, the logarithm of the mean power in the α band, also has high MI
in all cases, again in correspondence with the multiclass case.

In general, the patterns in the plots for the binary case are similar to the patterns
in the multiclass case. This similarity may indicate that the difficulty in solving
the binary and multiclass problems are similar.

96 Artifact removal

Figure 7.3: This plot shows the projections of feature vectors of ICs onto the
three principal components of the feature matrix. The colors of observations
indicate which class they are from. Only the ICs that were manually labeled
as neural components are assigned to the class of neural ICs. All other ICs are
assigned to the class of artifactual components. The top row shows projections
of all ICs, including those without labels. The bottom row only includes projec-
tions of ICs that were given manual labels. The left column shows projections
of ICs from the cue data set, while the right column shows projections of ICs
from the emotion data set.

7.1 Exploratory data analysis 97

Figure 7.4: Mutual information between each feature and class assignment as
neural or artifactual. The left column holds results for the cue data set, and the
right column for the emotion data set. The plots in the top row were obtained
using all components, while the bottom row contains plots calculated solely from
manually labeled components.

98 Artifact removal

7.1.3 Relations between features

Variance explained Figure 7.5 shows the fraction of variance explained by
each principal component. The figure contains plots for both data sets, both
including and excluding the independent components that were not manually
labeled. As is often the case, the last principal components account for nearly
none of the variance in the feature vectors. That the first PCs explain a large
part of the variance implies that the dimension of the feature space is smaller
than the number of features. This is true for both data sets, both when non-
unidentified components are included and when they are not.

Figure 7.5: This graph shows the fraction of variance accounted for by each
principal component of the feature values. The top row holds the fraction of
variance explained by the PCs when all ICs were included. The bottom row
shows the fraction of variance explained by PCs when only features from man-
ually labeled ICs were included. The left column is based on the cue data set,
while the right column is calculated from the emotion data set.

7.1 Exploratory data analysis 99

Loadings of PCs The contributions of features to each of the first three
PCs are shown in figure 7.6. The loading is the term given to the weight of a
feature in a principal component. By taking the absolute values of these, we
can visualize the degree of contribution to each principal component by each
feature. Some patterns are repeated in all the four plots.

Feature one, which is the measure of generic discontinuity of the scalp map,
contributes a lot to one of the first PCs in both the cue and emotion data sets,
both when the unlabeled ICs are included and when they are not.

Also, features 23 and 24, which are the logarithms of mean power in the θ and
β bands, are given high weights in the first PC in all cases.

Feature 14, the logarithm of the mean power in the α band, is also weighted
highly consistently in the first principal component.

The second and third principal components do not exhibit such patterns con-
sistently across all four plots.

The ECG detection features for ICs from the emotion data set, are all weighted
highly in either the second or the third PCs. The reason that such heart PCs
were not found in the cue data set may be that there were not enough examples
of heart ICs in the cue data.

Feature 17, the z-coordinate of the dipole fit, also has a high loading in one of
the first PCs in all plots.

Mutual information Figure 7.7 shows the mutual information between each
pair of features calculated from the emotion and cue data sets, both with and
without non-labeled components. The mutual information between a feature
and itself is of course high, implying that the highest values can be found in the
diagonal. Most pairs of features have little mutual information, as evidenced by
the mainly blue color in the four plots, which signifies the value 0. We discuss
the pairs of features that have non-zero MI here.

Some patterns are repeated on all the four plots. Feature 14, for example, has
non-zero MI with features 22-24. Features 14, 22, 23 and, 24 are the logs of the
mean power in the α-, δ-, θ, and β-bands, respectively. Since the α-, δ-, and
θ-bands are all low frequent, it is to be expected that non-zero activity in one
of these bands is related to non-zero activity in the other bands.

Furthermore, feature eight has non-zero MI with features three, four, and five.

100 Artifact removal

Figure 7.6: Absolute values of loadings of the first three principal components.
The top row shows the loadings for the PCs of the feature matrices when all
ICs were included, and the bottom row shows the loadings of PCs when only
labeled ICs were included. The left column shows the results for the cue data
set, while the right concerns the emotion data set.

Feature eight is the mean weight of the frontal electrodes. Features three and
four are the mean of the weights of sensors on the left and the right, respec-
tively, and feature five is the spatial average difference of frontal and posterior
electrodes. The mutual information for these three pairs ((feature eight, feature
three), (feature eight, feature four), and (feature eight, feature five)) are highest
in the two plots based only on labeled components.

Other pairs of features that have non-zero MI in all plots are (22, 23), (24, 25),
and (28, 29). Non-zero MI for these pairs is to be expected since features 22-25
are the logarithms of the mean power in the bands δ, θ, β, and γ, respectively.
Features 28 and 29 are the first and second estimates of the Hurst exponent
from wfbmesti.

7.1 Exploratory data analysis 101

Additionally, the last twelve features have non-zero pairwise MI for several pairs.
Since the last twelve features are all aimed at detection of the ECG, this is to
be expected.

These patterns are the same in all plots, which is to be expected since the
features, and hence the relations between them, are the same in all cases.

Figure 7.7: Mutual information between each pair of features. The left column
holds results for the cue data set, and the right column for the emotion data set.
The plots in the top row were obtained using all components, while the bottom
row contains plots calculated solely from manually labeled components.

7.1.3.1 Correlation

Correlations between pairs of features are shown in figure 7.8. Again, the di-
agonal shows the correlation between a feature and itself. Hence the diagonal
contains all ones. As was the case for mutual information, we also see that the
correlation between most pairs of features is zero or close to zero. Some patterns

102 Artifact removal

of non-zero values, however, do appear consistently across the four plots.

Features 28 and 29 have a correlation of one in all plots. Since these are the
first and second estimates of the Hurst exponent, this is not odd. It is strange,
however, that the third estimate (feature 30) is negatively correlated with the
first two estimates.

Likewise, features 22 and 23 are also highly correlated in all four plots. These
two features also had high MI. Since these features are the logarithms of the
mean band power in bands δ and θ, this is not surprising.

Finally, note the lower right corner of all four plots in figure 7.8. Features 32
to 43 measure the success with which QRS complexes were detected at regular
intervals in the activation time series of the IC. That some of these features are
negatively correlated is somewhat puzzling, while the positive correlation is to
be expected.

7.1 Exploratory data analysis 103

Figure 7.8: Correlation between each pair of features. The left column holds
results for the cue data set, and the right column for the emotion data set. The
plots in the top row were obtained using all components, while the bottom row
contains plots calculated solely from manually labeled components.

104 Artifact removal

7.1.4 Summary

Based on the plots of projections of IC features onto the first three PCs, it
seems that a linear separation is achievable, both in the binary and the multi-
class setting.

The similar results for the MI between features and class assignment in the
binary and multiclass settings indicate that the difficulty in solving the binary
and multiclass problems may be similar. It may also be an indication that neural
components are easy to identify in general, since neural ICs are assigned to one
class in both the binary and multiclass problem.

The low dimensionality of the feature space that seems evident from these anal-
yses (figure 7.5) can be increased by introducing non-linear functions of one or
more features. The increase in dimension will hopefully aid in distinguishing
between independent components of different types.

Thus classification might be easier using non-linear classifiers, but should be
possible with linear methods. Also, features differ substantially in how much
information related to class assignments they carry. The features that carry
most information are the same both when unlabeled ICs are included and when
they are not, and in the binary and multiclass problems.

7.2 Performance of classification methods

We investigated classification within four paradigms determined by two binary
variables. One binary variable was whether to include all ICs, or just the ICs
with labels. The second binary variable determined whether or not the clas-
sification would be binary. With binary classification, we distinguish between
neural and non-neural components. Otherwise we try to classify into each class,
such that different types of artifacts are distinguished between.

Classification methods were tested in each of the four scenarios, both using all
features and using only those chosen by the MI-criterion. Using only features
chosen by the MI-criterion did not improve performance. Evidence for this is
given in appendix J. Hence we only give the performance results of classification
methods using all features. More detailed performance measures in the forms
of confusion matrices can be seen in appendix J.1.

We compared 12 classification algorithms as well as the BBCI method proposed

7.2 Performance of classification methods 105

in [56] and the algorithm ADJUST, proposed in [41].

As previously mentioned, some of the classification methods are used in two
different ways. QDA and LDA are evaluated both as voting schemes between
binary models, and taking all classes into consideration at once 5.4.5. In the
binary classification paradigms, we would expect the voting scheme versions of
a model to give identical results to the version taking all classes into account
at once. In the multiclass problems, we would expected the performance of the
voting scheme version of a method to be a little lower than for the multiclass
version of the method.

Also, we expect the standard version and the BCILab versions of LDA, which
are equal as shown in appendix B, to perform equally well both in binary clas-
sification and when used for multiclass problems through voting schemes.

First, we show box plots of the misclassification measure mcm, described in
subsection 5.4.7, for each model from the ten cross-validation folds. We then
discuss the means and standard deviations of the means of mcm for each model
in each scenario. Next, we give rankings of models in the cases where the
ranking is transitive. These rankings are based on the number of times each
model outperforms another model, as described in subsection 5.4.7. Finally, we
relate the performance of the classification methods to the exploratory analyses.

7.2.1 Box Plots

Figure 7.9 shows box plots of the misclassification measures for each of the
classification methods. The box plots in figure 7.9 were made based on the
misclassification measures from the ten cross-validation folds. Misclassification
measures cannot be compared across scenarios, but only across models in the
same scenario. The top row of figure 7.9 shows results from the scenarios in
which only manually labeled ICs were considered. The bottom row shows re-
sults from using all ICs. The left column shows results from classification into
multiple classes, while the right column concerns binary classification. Red
lines in figure 7.9 indicate median values, and the boxes around them show 95%
confidence intervals for the medians.

7.2.1.1 Multiclass classification using only labeled ICs

Most models show similar performance in the multiclass scenario using only
labeled ICs. The BBCI method and QDA, however, have substantially higher

106 Artifact removal

misclassification measures than the other methods. Since QDA is a more com-
plex version of LDA, which obtained the best performance, it seems that the
QDA model has been over fit. Such an over fit occurs readily in the data we had
available since some classes are very small. Small classes make the estimation
of class specific covariance matrices, necessary in QDA, unstable.

Strangely, the binary standard and BCILab versions of LDA perform differently.
As expected, the multiclass version of LDA outperforms the binary LDA models
with voting schemes.

Contrary to expectations, binary QDA in a voting scheme outperformed the
multiclass version of QDA. As mentioned above, this oddity may be attributed
to sparsity of data in some classes.

Multiclass LDA was the best model in this scenario.

7.2.1.2 Binary classification using only labeled ICs

When performing binary classification of labeled ICs, logistic regression and
logistic regression with forward selection perform substantially worse than all
the other models. In particular, MNR and MNR with forward selection perform
a lot better, at about the same level of the other models. In the binary case,
MNR reduces to logistic regression. Hence these performance differences are
very strange.

The medians of misclassification measures of the other models do not differ
significantly at the 5% level, as seen from the boxes around the medians. SVM
obtains the lowest median, and thus best performance.

7.2.1.3 Multiclass classification using all ICs

The performance of models differs to a large degree when all ICs are used in
the multiclass setting . The variance of misclassification measures over cross-
validation folds is also large for most models, and all models have at least one
outlier. The greater variation in misclassification measures indicates that the
classification problem is substantially more difficult to solve when unlabeled ICs
are included as a separate class.

Logistic regression with forward selection in the 1v1 voting scheme achieved the
best performance, also outperforming MNR with forward selection.

7.2 Performance of classification methods 107

7.2.1.4 Binary classification using all ICs

To compare our results to the state of the art, we classified the components
in each of the available data sets using ADJUST [41], which detects different
types of artifacts. Only a few types of artifacts are detected both by ADJUST
and the methods we investigated. It was not possible to acquire the data used
in the development of ADJUST so we resorted to binary classification to allow
comparisons between ADJUST and the other models. Since ADJUST goes
through an entire data set and picks out the artifactual ICs, the fairest setting
for comparing ADJUST to our methods was the binary classification setting
involving all ICs. The confusion matrix resulting from this classification is
shown in the lower right of figure J.4. The comparison of ADJUST to the
other methods is not as clean as the comparisons over the other methods. Since
ADJUST works by processing an entire data set at time, and finding artifactual
ICs, it was not possible to pass the same cross-validation folds consisting of
single ICs to ADJUST as were passed to the other methods for evaluation. We
attempted to project out unlabeled ICs to enable comparison in the scenario
using only labeled ICs. Unfortunately, something went wrong in the ADJUST
algorithm when the data set with unlabeled ICs projected out of data was passed
to ADJUST.

Since ADJUST detects artifacts, all components not identified as artifactual
were put into the neural component category. Most components were not clas-
sified as artifacts, implying that most were classified as neural components. Thus
it is not surprising that almost all neural components were classified correctly
(lower right square of lower right image in figure J.4). Conversely, only 50% of
artifactual components are classified correctly.

Both the voting scheme and multiclass versions of QDA performed substantially
worse than all other methods. SVM, MNR, MNR with forward selection, de-
cision trees, LDA, and BBCI performed a little worse than the models with
the lowest medians of misclassification measures. These models, that performed
very well, and similarly, were the BCILab and standard versions of LDA, logistic
regression with forward selection L1-regularized logistic regression, standard lo-
gistic regression, and ADJUST. Out of these methods, ADJUST had the largest
range of misclassification measures, as well as high outliers. Also, ADJUST was
unable to detect about 50% of artifactual components. The best of the other
models was L1-regularized logistic regression. L1-regularized logistic regression
only missed 10% of the artifactual components. However, this comparison may
be unfair to ADJUST since ADJUST solely aims at detecting pure artifacts. In
the artifact class that we investigated, mixed components (unlabeled ICs) are
also included.

108 Artifact removal

7.2.2 Means and standard deviations of misclassification
measures

Table 7.1 shows the mean misclassification measures and the standard devia-
tions of these means for each model tested in each classification scenario. The
misclassification measures can only be compared over models within the same
classification setting, and not between scenarios.

Only labeled ICs,
multiclass

Only labeled ICs, bi-
nary All ICs, multiclass All ICs, binary

Mean SD Mean SD Mean SD Mean SD
LDA(bcilab), 1vR 19.5 3.06 0.433 0.0757 334 32.1 0.958 0.0886

LDA(standard), 1vR 21.9 12.4 0.433 0.0757 276 102 0.958 0.0886
SVM, 1v1 20.8 11.8 0.256 0.036 464 80.8 2.27 0.198
QDA, 1vR 15.2 4 0.424 0.0643 582 93.3 9.18 0.695

Logistic(forward), 1v1 10.4 1.68 3.24 0.174 153 66 1.11 0.00414
Logistic(L1), 1v1 19.3 5.51 0.482 0.0386 484 90.4 0.794 0.071

Logistic, 1v1 12.7 3.03 3.24 0.174 330 69.6 1.11 0.00414
MNR 14.2 3.46 0.558 0.0427 450 85.9 3.8 0.155

MNR(forward) 10.8 2.53 0.497 0.0508 213 45.9 2.97 0.228
Decision tree 20.6 3.69 0.467 0.0434 200 43.2 2.34 0.317

LDA 6.51 2.27 0.394 0.0445 303 72.9 4.07 0.366
QDA 43.5 10.6 0.381 0.0477 580 93.6 9.05 0.812
BBCI 46.8 12.3 0.635 0.101 347 83.4 2.8 0.118

ADJUST - - - - - - 1.39 0.179

Table 7.1: Means and standard deviations of the misclassification measuremcm,
described in subsection 5.4.7, for each model over the ten cross-validation folds,
in each classification setting. ADJUST could only be tested in the binary setting
using all ICs. Thus means and standard deviations of the misclassification
measure are not reported for ADJUST in the other classification scenarios. The
misclassification measures can only be compared over models within the same
classification setting, and not between settings.

The results from table 7.1 correspond very well to the results based on the box
plots above. Also, the methods that showed identical performance in the box
plots also have identical statistics here, another indication that those methods
obtained identical misclassification measures in each cross-validation fold. Using
the normal approximation, approximate 95% confidence intervals for the means
can be obtained by adding and subtracting two times the standard deviation to
the mean.

As seen previously, the BCILab and standard formulations of binary LDA per-
form identically in binary settings, but differently in the multiclass scenarios.

7.2 Performance of classification methods 109

The multiclass version of LDA outperforms both the binary version when only
labeled ICs are used, but is outperformed by both when all ICs are used in
the binary setting. Also, the interval calculated from the mean performance of
multiclass LDA plus and minus two standard deviations of this mean does not
overlap with the performance of the binary LDA methods in these three sce-
narios. In the multiclass setting using all ICs, though, the interval does contain
the mean misclassification measures of both binary LDA versions, indicating no
significant difference.

When only labeled ICs are used, the strange phenomenon of binary QDA out-
performing multiclass QDA in the multiclass setting, and vice versa in the binary
setting, occurs again. The performance of the binary and multiclass versions
do not differ significantly when all ICs are used, neither in the multiclass or the
binary setting, though.

Logistic regression outperforms multinomial regression, both with and without
forward selection, in both multiclass classification scenarios. Conversely, multi-
nomial regression outperforms logistic regression, again both with and without
forward selection, in the binary setting using only labeled ICs.

Since BBCI is a SVM with only a subset of the features used in our SVM, we
expect the BBCI algorithm to perform worse than SVM consistently. This, how-
ever, is not the case in the multiclass scenario using all ICs. The large standard
deviations, though, imply that the performances do not differ significantly in
this case.

7.2.3 Ranking of models

In the two scenarios using all ICs, a transitive ranking of models was possi-
ble. These rankings are based on the number of times a model outperforms
the model at the previous rank. If a model outperforms another a significant
number of times, we use the inequality symbol in the list of rankings. If a model
outperforms the previously model at chance level, under the hypothesis that
they perform equally, then we use equality. Since ADJUST was not tested on
the same cross-validation folds as the other methods, it does not make sense to
compare ADJUST in these rankings. We show the rankings here, from best to
worst:

• All ICs, non-binary classification
Logistic(forward), 1v1 = Decision tree =MNR(forward) = LDA(standard),

110 Artifact removal

1vR = Logistic, 1v1 = LDA = BBCI = LDA(bcilab), 1vR =MNR = SVM,
1v1 = Logistic(L1), 1v1 > QDA = QDA, 1vR

• All ICs, binary classification:
Logistic(L1), 1v1 = LDA(standard), 1vR > LDA(bcilab), 1vR = Logistic,
1v1 > Logistic(forward), 1v1 > SVM, 1v1 = Decision tree =MNR(forward)
= BBCI > MNR = LDA > QDA > QDA, 1vR

These rankings, based on the number of times a model outperforms another, are
in agreement with the box plots. However, only few models show significantly
different performances, especially in the binary case. This is probably due to
the conservative Bonferroni correction, since the p-value used in each binary
test of two models was only

2
0.05

12 · 13
≈ 6.41 · 10−4.

The p-value of 0.05 is divided by the number of comparisons, which is 12∗13
2 = 78,

since we compare 13 different models.

7.2.4 Relations to exploratory results

Based on the exploratory results, we expected linear separation of classes to
be possible in all four paradigms, albeit easiest with binary classification. It
is surprising that decision trees and SVMs, which are both able to catch non-
linear effects, were the best methods in the binary setting. When all features
were used, though, the performance of LDA was not significantly different. The
superiority of SVMs when only some features were used may be because the
absence of some features destroys the linear separability.

In the multiclass problem, we found that LDA and QDA performed best. LDA
was best when only manually labeled components were used, whereas QDA was
best when all ICs were used. This is interesting for several reasons.

Firstly, LDA does not explain non-linear effects, and QDA can only account for
non-linear effects that are quadratic. Hence the multiclass problem is more linear
than the binary problem, contradicting the hypotheses from the exploratory
analyses.

Secondly, the need for quadratic effects in distinguishing between classes when
all ICs are used is in line with the exploratory results. The small step in increased

7.3 Summary 111

complexity between LDA and QDA in going from only manually labeled ICs to
all ICs is evidence that the two problems are really quite similar. This means
that the ICs without labels do have characteristics in common by which they can
be distinguished. Hence further work should make it possible to detect neural
components, artifacts, and noisy components. The noisy components which
do not belong to any class cleanly should then be kept since they probably
contain at least some neural activity which may be extracted in more advanced
analyses.

7.3 Summary

We now put forth some general considerations on the classification performance
results.

Firstly, results concerning model performances relative to each other are con-
sistent across the different evaluation methods. This is reassuring since we
compared models based on several different measures, namely means and me-
dians of misclassification measures, as well as the number of data partitions in
which a model achieved lower misclassification measures than the other models.
The consistency over all these measures indicates that the performance differ-
ences are not due to a few outliers. If only means had been used, for example,
one very high mean misclassification measure in one cross-validation fold for
some model would decrease the overall evaluation of that model substantially.
By evaluating using medians as well, we avoid this problem. That the results
over all evaluation measures agree is then a sign that the models maintained
consistent performances over the different cross-validation folds.

Since the BBCI method was proposed as a binary classifier to distinguish arti-
facts from neural components, a poor performance in the multiclass scenarios
was to be expected. However, BBCI outperformed SVM in the multiclass set-
ting using all ICs. The variance of the misclassification measure of both BBCI
and SVM were large in this case, though, meaning that the difference in perfor-
mances might be due to chance.

Also, as already mentioned, the evaluation of ADJUST is probably unfair since
ADJUST aims to detect purely artifactual ICs. When evaluating ADJUST,
we interpreted all ICs not classified as artifacts as being classified as neural
components by ADJUST. A fairer comparison would only look at whether all
artifacts were detected, and compare this result to the other methods, which
should then be changed to also just detect artifacts, thereby not necessarily
classifying all ICs. When tested, ADJUST obtained one of the better, although

112 Artifact removal

not the best, performances compared to the other models.

Classification when not including unlabeled ICs was much better than when
unlabeled ICs were included. Since labeled ICs have characteristic features, it
is not surprising that classification of only labeled ICs is easier.

Some strange results occurred for logistic regression and QDA. In the multi-
class settings, the binary versions of these methods would often outperform the
multiclass version, and vice versa.

Table 7.2 shows the best model in each of the four scenarios investigated. These
models obtained both the lowest median and mean misclassification measures,
as shown in figure 7.9 and table 7.1, respectively.

Inclusion of labeled ICs
only Inclusion of all ICs

Binary classification SVM
L1-regularized logistic re-
gression

Multiclass classification Multiclass LDA
Logistic regression with
forward selection in 1v1
voting scheme

Table 7.2: Best model for each of the four classification scenarios.

The classification methods were trained on ICs that were obtained through
different algorithms. Since good performance was achieved even though ICs
from different algorithms were used, we do not expect that the algorithm used
to obtain ICs will influence the classification performance on future data.

7.4 Feature analyses

Variance of the estimated coefficients of features, and the features that were
chosen for inclusion in classification are described in this section.

We used some classification methods with built-in feature choosing strategies.
These were L1-regularized logistic regression and logistic and multinomial re-
gression with forward selection. We compare the features chosen by these meth-
ods to those chosen by the MI criterion, described in subsection 5.3.4.

Next, we compare analytical estimates of coefficient variance to the variance of

7.4 Feature analyses 113

coefficient estimates over cross-validation folds. However, we only have analyt-
ical estimates of variance for logistic and multinomial regression, and LDA. To
ease the analyses, we focus on the binary classification problems.

7.4.1 Best features

In this subsection, we describe the features chosen by each of L1-regularized
logistic regression, logistic and multinomial regression with forward selection,
and by the MI criterion. The results are split into the four classification scenarios
described in subsection 5.4.1.

We quantify selection of features through the fraction of times that each feature
was chosen in the ten cross-validation folds. Plots of these fractions and their
standard deviations are shown in plots for each of the four methods.

If a feature is chosen for inclusion in the classification method in r of the cross-
validation folds, the fraction of times the feature was chosen is obviously r/10.
We assume that the cross-validation folds are independent of each other. This
implies that the number of times a feature is selected is binomially distributed.
The variance of the fraction r/10 is then

(r/10)(1− r/10)

10
,

and the standard deviation is

σ̂ =

√
(r/10)(1− r/10)

10
.

The fraction r/10 is shown as filled blue circles. We show the uncertainty on
r/10 by plotting red asterisks at r/10− σ̂ and r/10 + σ̂.

7.4.1.1 Multiclass classification with all independent components

The features chosen by the MI criterion and by methods with feature selection
strategies are shown in figure 7.10. Figure 7.10 is constructed from multiclass
classification including all ICs.

114 Artifact removal

All features are chosen by L1-regularized logistic regression in all ten cross-
validation folds, indicating that a high value for the regularization-parameter λ
had been chosen, which implies that all features were needed for good classifica-
tion. Also, all features except feature 15 (measure of similarity between power
curve of IC and that of typical EEG) were chosen in all ten folds by the MI
criterion.

None of the ECG detection features were chosen in all ten cross-validation folds
by either of logistic or multinomial regression with forward selection.

Fewer features were chosen by MNR than by logistic regression, probably be-
cause the advantage of taking all classes into account simultaneously yields
classification information such that some features are redundant.

7.4.1.2 Multiclass classification solely with labeled independent com-
ponents

The features chosen by the MI criterion and by methods with feature selection
strategies are shown in figure 7.11.

That L1-regularized logistic regression included all features except feature 43
in all cross-validation folds indicates that a high value was chosen for the reg-
ularization parameter λ. A high value for λ, in turn, indicates that the best
performance during training was achieved when most features were used to dis-
criminate between classes.

Except for some ECG detection features and feature 15 (measure of similarity
between fitted power curve of IC and that of typical EEG), the MI criterion
selected all features in all folds.

The results from logistic and multinomial regression with forward selection are
similar, as could be expected since logistic regression is a special case of multi-
nomial regression. The difference between the two methods is that multinomial
regression takes all classes into account simultaneously, while a voting scheme
is used to generalize logistic regression to multiple classes.

Conversely, logistic and multinomial regression with forward selection only se-
lected a few features in all folds. The features that were selected in all folds
by both logistic and multinomial regression were features 1 (measure of generic
discontinuity), 2 (spatial eye difference), 5 (spatial average difference between
frontal and posterior electrodes), 11 (maximal variance), 14 (logarithm of mean
power in the α band), 16 (number of Talairach areas assigned to the dipole fit

7.4 Feature analyses 115

coordinates of an IC), 17 (z-coordinate of dipole fit), 25 (logarithm of mean
power in the θ band), and 26 (x-coordinate of dipole fit).

Feature 7 (the variance of weights on posterior electrodes) was also chosen by
logistic regression with forward selection in all folds. Feature 22 (the logarithm
of mean power in the δ band) was also chosen by logistic regression. Multinomial
regression chose feature 23 (the logarithm of mean power in the θ band), but
not 22. Since 22 and 23 were seen to be highly correlated in the exploratory
analyses, it is likely that these two features serve the same purpose in logistic and
multinomial regression. It seems odd that feature 22 was consistently chosen in
logistic regression, while feature 23 was chosen in MNR.

7.4.1.3 Binary classification with all independent components

Figure 7.12 shows the fractions of runs in which each feature was chosen by
each of the classification methods with built-in feature choosing strategies, and
by the MI-criterion when all ICs are taken into account and only the classes of
neural and non-neural ICs are distinguished between.

Almost all features were chosen by the MI-criterion and L1-regularized logistic
regression in all ten cross-validation folds. The only two features not chosen
by the MI-criterion in all cases were features 15 (measure of similarity between
power curve of IC and typical EEG) and 31 (number of fitted dipoles). The
only feature not chosen by L1-regularized logistic regression in all folds was the
last ECG detection feature.

The plots for logistic and multinomial regression are identical, as they should
be since multinomial regression reduces to logistic regression in the binary case.
The features chosen were features 1 (spatial kurtosis), 8 (mean of weights of
frontal electrodes), 10 (temporal kurtosis), 13 (logarithm of range of time series),
14 (logarithm of mean power in the α-band), 16 (number of anatomical brain
areas of dipole fit), 19 (2D DFT of electrode weights), 23 (logarithm of mean
power in the θ-band), and 29 (estimate 2 of Hurst exponent).

7.4.1.4 Binary classification solely with labeled independent compo-
nents

The features chosen by the MI criterion and by methods with feature selection
strategies are shown in figure 7.13.

116 Artifact removal

The first thing to notice is that the plots for logistic and multinomial regres-
sion are identical. This is reassuring since multinomial regression in the binary
case reduces to logistic regression. Since these plots are identical, we refer to
both methods as logistic regression with forward selection in the analysis of
figure 7.13.

Again, all features except feature 43 were chosen by L1-regularized logistic re-
gression.

The MI criterion did not choose the ECG detection features in all folds, and
logistic regression with forward selection did not choose any of the ECG features
in any fold. This is in accordance with the exploratory analyses, in which MI
between ECG features and class labels was low.

Apart from the ECG detection features, the measure of similarity between the
fitted power curve and the typical EEG power curves (feature 15), and the
number of fitted dipoles (feature 31), the MI criterion selected all features in all
folds.

Conversely, logistic regression with forward selection only selected a few features
in all folds.

7.4.2 Variance of feature values

For most of the models, analytical estimates of the variance of coefficient and
bias estimates are non-trivial. To estimate the variances, we used the estimates
from the ten cross-validation folds.

However, the influence of features cannot be easily derived for QDA and SVM.
In QDA, coefficients for each feature as well as for each pair of features, i.e. the
quadratic terms, are used. The number of quadratic terms is the square of the
number of linear terms, so investigating the variance of all coefficient estimates
is impractical. Investigating only linear terms would be meaningless since this
would ignore the feature effects from the quadratic terms. In SVM, the support
vectors define the model in an infinite dimensional space. Since SVM models
are defined by support vectors, i.e. specific training samples, it does not make
sense to talk of the variance of coefficient estimates in SVM models. Likewise,
coefficients are not estimated in decision trees. Hence it does not make sense to
estimate variance of coefficient estimates for decision trees either.

Empirical variance estimates from the coefficient estimates in the ten cross-
validation folds for all other models than QDA, SVM, and decision trees are

7.4 Feature analyses 117

given in appendix K. For all models, the standard deviations are very small.

To simplify the presentation, we only look at the case of binary classification
using labeled ICs.

For logistic regression and LDA, we did have analytical expressions for the vari-
ance of coefficient estimates. We compare the analytical results to the empirical
variance estimates.

7.4.2.1 Linear discriminant analysis

Since we were only able to derive an analytical expression for an estimate of
the variance of the intercept and coefficient in a univariate LDA model, we
calculated the LDA model using only one explanatory variable. We used our
own implementation of the standard formulation of LDA within the framework
of BCILab.

We chose the one variable to include in the model to be feature one since previous
analyses showed that feature one is a good predictor of class label.

We used the same ten cross-validation folds that we have used throughout
all analyses to calculate the binary LDA model ten times. The variance of
the intercept and coefficient estimates over the ten cross-validation folds were
2.2881 · 10−4 and 1.3479 · 10−3, respectively. Compare these to the correspond-
ing analytical estimates of 2.1023 · 10−3 and 5.7121 · 10−3, respectively. These
estimates are surprisingly close. Thus the rule of error propagation is a simple
method to estimate the uncertainty of coefficient and intercept estimates for
univariate LDA. Details on the analytical variance estimates are given in ap-
pendix B. A complete analytical exposition of variance of estimates from LDA
is presented in [9]. It seems that the variance estimates presented in [9] are com-
putationally complex, so the simple approximation we present may be better
suited for practical use.

7.4.2.2 Logistic regression

Figure 7.14 shows the analytical variance estimates of coefficient estimates.
These are incredibly large, in particular compared to the empirical variance
estimates. The large variance estimates are most likely due to several fitted
probability values close to zero and one. The product of the fitted values and
one minus the fitted values is present in the denominator in one of the terms in

118 Artifact removal

the analytical expression for variance estimates. Since fitted values close to one
or zero will cause this denominator to be close to zero, the variance estimates
blow up.

7.4.3 Summary

Based on the analyses of chosen features, it seems that feature 15 (similarity of
IC power curve and that of typical EEG) is the least informative. Additionally,
feature 1 (generic discontinuity measured based on scalp map) seems to be very
informative. Since neural components tend to exhibit scalp maps with activation
over large areas, it makes sense that feature 1 is informative. Another feature
that was chosen often was feature 14 (logarithm of mean power in α-band).
Feature 14 is also typically high for neural components. In general, the choices
of features are in accordance with the exploratory analyses.

The most surprising result is that almost all features were consistently chosen
by the MI criterion and by L1-regularized logistic regression.

The best agreement between the feature choosing strategies occurred in the
binary case for the ECG features, which were only chosen rarely.

Furthermore, the variances of the feature coefficient estimates over the ten cross-
validation folds turned out to be small, indicating consistent model estimates
over the ten data partitions.

Analytical estimates of the variance of feature coefficient estimates in logistic re-
gression were off by a magnitude of 13. Conversely, the analytical expression for
an analytical estimate of the intercept and coefficient estimates in the univariate
LDA model were in very good accordance with the empirical variance.

7.4 Feature analyses 119

Figure 7.9: Misclassification measure of the investigated classification methods
under each scenario described in subsection 5.4.1. The box plots are based on
the test error from the ten cross-validation folds. Red lines indicate medians,
and the notches (trapezoids to each side of the red lines) represent the 95%
confidence intervals. Blue dashed lines, and the horizontal lines at the ends
of the blue dashed lines, indicate the range of values. Red asterisks represent
outliers. The misclassification measures can only be compared across models
within each scenario, and not between scenarios. The top row shows classifica-
tion performances when only manually labeled ICs were used. The bottom row
shows results from classification taking all ICs into account. The left column
shows results from classification into multiple classes while the right column
shows results from binary classification.

120 Artifact removal

Figure 7.10: Fraction of times that features were chosen in the ten cross-
validation folds by the MI criterion, L1-regularized logistic regression, and lo-
gistic and multinomial regression with forward selection. All classes were con-
sidered, and all ICs were used. Blue circles represent the fraction of times that
a feature was chosen. Red asterisks represent the fraction plus and minus the
standard deviation of the fraction.

7.4 Feature analyses 121

Figure 7.11: Fraction of times that features were chosen in the ten cross-
validation folds by the MI criterion, L1-regularized logistic regression, and lo-
gistic and multinomial regression with forward selection. All classes were con-
sidered, and only labeled ICs were used. Blue circles represent the fraction of
times that a feature was chosen. Red asterisks represent the fraction plus and
minus the standard deviation of the fraction.

122 Artifact removal

Figure 7.12: Fraction of times that features were chosen in the ten cross-
validation folds by the MI criterion, L1-regularized logistic regression, and logis-
tic and multinomial regression with forward selection. Only the classes neural
and non-neural were distinguished between, and all ICs were used. Blue circles
represent the fraction of times that a feature was chosen. Red asterisks represent
the fraction plus and minus the standard deviation of the fraction.

7.4 Feature analyses 123

Figure 7.13: Fraction of times that features were chosen in the ten cross-
validation folds by the MI criterion, L1-regularized logistic regression, and logis-
tic and multinomial regression with forward selection. Only the classes neural
vs. non-neural were considered, and only labeled ICs were used. Blue circles
represent the fraction of times that a feature was chosen. Red asterisks represent
the fraction plus and minus the standard deviation of the fraction.

Figure 7.14: Coefficient estimates and analytical variance estimates of the coef-
ficient estimates.

124 Artifact removal

Chapter 8

Seizure detection

We will now describe the results relating to detection of seizures in the EEG of
type I diabetics. Section 8.1 gives the results from data reconstruction. Next,
we describe the performance of the seizure detection model in section 8.2.

8.1 Estimation of corrupted data

Empirical results showed successful reconstruction of missing data. We used a
data set without missing values, from which we removed 7% of the data since this
is about the proportion missing from the seizure data. We then reconstructed
these missing values. The result of such a reconstruction is shown in figure 8.1.

To quantify the performance of the factorization, we compare the test error

test_error =
(1−W)‖A ∗ S − Y ‖22

‖1−W‖1

to the training error

126 Seizure detection

training_error =
W‖A ∗ S − Y ‖22

‖W‖1

on a randomly chosen data set with no missing values. The average test error per
value was 65.8959 while the average training error per value was 0.0670. This is
a difference of magnitude 100, indicating that the underlying structure of data
is not well described by this factorization model. It is likely that improvements
can be made by taking temporal patterns into account when reconstructing data
in addition to the spatial relations being used by the current model. This is an
obvious focus area for future work.

8.2 Performance of seizure detection model

As mentioned previously, we use the developed IC classification method to in-
vestigate the influence of artifacts on seizure detection. First we show results
from a detection model trained on non-denoised data, and applied to raw test
data. Next we show results from the detection model trained on denoised data,
and applied to both raw and denoised data.

Originally, we wanted to use the best classification model from the binary clas-
sification scenario using all ICs. However, this model did not classify any of the
ICs from the HypoSafe data sets as artifactual. Since we wanted to use one of
the models trained on all ICs, including the unlabeled ICs, we used the model
from the multiclass setting instead.

We first compare the scalp map patterns found by the seizure detection model
trained on raw data and that trained on denoised data. Next, we compare
seizure detection performance.

8.2.1 Scalp maps

Figure 8.2 shows the scalp patterns found by the seizure detection models trained
on raw and denoised data, respectively. Clearly, the scalp patterns are different,
indicating that the denoised data is different from the raw data, and that this
difference influences the final model. The first scalp pattern for the model
trained on raw data (left part of figure 8.2) resembles an IC for eye lateral
movements. Likewise, the second scalp pattern resembles the activity seen for
ICs representing lateral eye movements. Patterns four, five, and six also look

8.2 Performance of seizure detection model 127

similar to scalp maps for muscle artifacts. Conversely, only patterns one, five,
and six resemble scalp maps from artifactual ICs in the right figure, which shows
the scalp patterns used by the model trained on denoised data.

Hence it seems that the model trained on raw data exploits artifacts in seizure
detection.

8.2.2 Seizure detection performance

Figure 8.3 shows confusion matrices of the training errors for the model trained
on raw data, and that trained on denoised data. Since the two confusion matrices
are identical, it seems that non-artifactual patterns that indicate seizures are
used by the model to detect seizures.

Figure 8.4 shows confusion matrices for test errors from the model trained on
raw data and applied to raw test data, and the model trained on denoised data
applied to both raw and denoised test data. The confusion matrices showing
test errors from the model trained on denoised data and applied to raw and
denoised test data (middle and right) are identical. In both of these, no seizures
were detected.

The left part of figure 8.4 shows the test errors resulting from applying the
model trained on raw data and tested on raw test data. In this case, 20% of the
seizures were detected, and 80% missed. False seizure detections were issued in
15% of the normal state intervals.

The very low performance on test data of the model trained on denoised data
hints that part of the seizure detection success of models based on raw data
exploit patterns of artifacts during seizures.

128 Seizure detection

Figure 8.1: Top: original EEG data snippet from one channel. This snippet is
part of a larger data matrix with 64 channels and 387200 observations. Middle:
Data from top plot with some data removed. Bottom: Missing data in the
middle plot has been reconstructed and appended to the non-missing data from
the middle plot. The data was reconstructed based on the full data matrix, with
other snippets of data removed. About 7% of data was removed in total, since
this is approximately the proportion of corrupted data in the HypoSafe data.
All data that was removed was removed as entire intervals, resembling patterns
of corrupted data due to loose electrodes. The bottom plot is amazingly similar
to the top plot containing the true data.

8.2 Performance of seizure detection model 129

Figure 8.2: The left plot shows the scalp patterns used in classification by the
seizure detection model trained on raw data, and the right plot shows the scalp
patterns used for seizure detection by the model trained on denoised data.

Figure 8.3: Confusion matrices showing seizure detection rates on training data.
The left plot shows the performance of the model trained on raw data on the
same raw training data. The right plot shows the training errors when denoised
training data is used. Class 1 represents states of normal blood sugar and class
two represents seizures.

130 Seizure detection

Figure 8.4: Confusion matrices showing seizure detection rates on test data.
The left plot shows the performance of the model trained on raw data on raw
test data. The middle and right plots show the performance of the model trained
on denoised data on raw and denoised test data, respectively. Class 1 represents
states of normal blood sugar and class two represents seizures.

Chapter 9

Conclusion

We used the results from the IC classification investigations to compare per-
formance of seizure detection models trained on raw and on data cleaned by
removing the ICs classified as artifactual by the best IC classification method.
The model trained on raw data was tested on raw data, and the model trained
on cleaned data was tested on both raw and clean data. The model trained on
clean data showed identical performance on the raw and clean data, detecting
no seizures in either case. Conversely, the model trained on raw data correctly
identified 20% of the seizures. Although 15% of normal intervals were misclassi-
fied as seizures by the model trained on raw data, the performance by the model
based on raw data must be said to outperform the model trained on clean data.
The superior performance of the model trained on raw data may have been
caused by the removal of too much data during the cleaning process, which
would be the case if neural components were wrongly classified as artifactual
ICs. However, a reliance on characteristic patterns of artifacts during seizures
may also explain why the model trained on raw data obtained the best results.

Our two questions relating to the first aim of investigating the effect of arti-
facts on seizure detection may then be answered as follows. Training on data
cleaned by removing artifactual ICs does not improve seizure detection perfor-
mance, at least not with the classification performances that can currently be
obtained. Secondly, yes, it does seem that the presence of artifacts may help
seizure detection.

132 Conclusion

We obtained classification performance of independent components (ICs) sur-
passing the current state of the art methods, which was one of our aims. How-
ever, the presence of mixed ICs, including both neural and artifactual activity,
complicates the classification problem. When mixed ICs are not included in
classification, very high performance of more than 85% correct classifications in
all the classes of eye blinks, neural, heart, lateral eye movement, and muscle
ICs is obtained. When mixed ICs are not included, and neural ICs are distin-
guished from artifactual ICs, 96% of neural ICs are classified correctly, while
91% of artifactual ICs are correctly classified. When including mixed ICs and
distinguishing neural from all other ICs, we obtained 90% correct classifications
of neural ICs, and 88% correct classifications of non-neural ICs. The best per-
formance previously reported, as far as we know, is 90.5% in the binary problem
of distinguishing neural from non-neural ICs [56].

We quantified classification performance using a misclassification measure that
caused classes of different sizes to be weighted equally. When including inde-
pendent components (ICs) containing both neural and artifactual activity in the
classification problem, logistic regression with L1-regularization and forward se-
lection of features performed best. Without mixed ICs, LDA and SVM were
best, although most of the compared methods performed similarly. The high
performance of simple methods such as LDA and logistic regression indicates
that it should be possible to achieve higher performance.

The MI-criterion that we used to select features chose almost all features. This
may be due to the conservative Bonferroni correction applied to take the multi-
ple hypothesis tests into account. However, it may also be due to a real presence
of class information in almost all features. The fact that L1-regularized logistic
regression also chose almost all features supports the second reason. Thus we
conclude that almost all features (except feature 15) carry class-related infor-
mation.

Our analytical estimate of the uncertainty of estimates in the univariate LDA
model were in good accordance with the empirical estimates. Extending the an-
alytical estimate to the multivariate case presents a way to estimate uncertainty
of coefficient estimates even when little data is available.

Also, the empirical variance of coefficient estimates over cross-validation folds
was very small for all features in all models. The small variance indicates that
the model estimates are robust and reflect real structures in data.

These feature analyses fulfill our third aim of investigating the importance of
features on classification performance.

9.1 Future work 133

9.1 Future work

Several issues are still open for future investigations. Firstly, the problem of
mixed ICs must be dealt with if a practical classifier of ICs is to be constructed.
We propose to use probabilities of class membership for this purpose, such that
an ICs is classified as a mixed IC if there is no class for which the probability of
membership is higher than some threshold. The probabilities may be obtained
from a model trained only on labeled ICs, since such models performed much
better than when trained on all ICs in our analyses. The problem of mixed ICs
may also be circumvented by denoising data based on the ICs from dimension-
reduced data, since mixed ICs will probably not appear in such data. This
solution was suggested in [64].

The effect of the reference with which EEG was recorded has not been investi-
gated, but may also influence classification performance. It is necessary to take
any such effects into account in a generally applicable classifier.

Our results so far indicate that artifacts in EEG recordings may be used to
detect seizures, and that it is difficult to detect seizures based solely on neural
activity.

134 Conclusion

Appendix A

Exploratory analyses

Figures A.1, A.2, A.3, and A.4 show the projections of feature vectors from ICs
onto 2D coordinate systems. Each 2D coordinate system is spanned by a pair of
two of the first three PCs. Colors indicate the class of the IC from which each
feature vector was calculated.

These projections of feature vectors are easier to view than the 3D figures 7.1
and7.3 in chapter 7.1 since only two dimensions are shown at a time in fig-
ures A.1, A.2, A.3, and A.4.

Figure A.1 shows the projections of feature vectors of ICs onto 2D coordinate
systems spanned by two of the first three PCs. Figure A.1 shows projections
of all ICs, including the unlabeled ICs. The PCs in figure A.1 are based on
the standardized matrices of features from all ICs. As explained in part II, the
emotion data set comprises substantially more ICs than the cue data set. The
large number of ICs in the emotion data is evident from figure A.1, since the
clouds of observations in the left column, which relates to the emotion data, are
denser than the clouds in the right column.

One observation is clearly an outlier along the third PC in the emotion data.
The outlier makes it very difficult, if not impossible, to discern patterns along
the other PC when the third PC is included in the plot. Along the first and sec-
ond PCs, though, a cloud of neural and on of unlabeled ICs are clear, although

136 Exploratory analyses

overlapping. Clouds representing the other classes cannot be seen. Thus the
right column of figure A.1 indicates that neural and mixed ICs might be sepa-
rable, but separation of artifactual ICs is likely to be difficult.

Projections of IC feature vectors from the cue data are shown in the right column
of figure A.1. Again, the cloud of projections of neural ICs only overlaps to a
small degree with the cloud of projections of feature vectors from mixed ICs, in
all three plots in the right column of figure A.1. Thus it seems that neural and
mixed ICs are separable, but that artifactual ICs will be difficult to distinguish
from mixed and neural ICs.

Figure A.2 shows projections of feature vectors from labeled ICs onto each pair
of the first three PCs derived from the standardized matrix of feature vectors
from labeled ICs for each of the cue and emotion data sets. Plots relating to the
emotion data are shown in the left column of figure A.2 while the right column
relates to ICs from the cue data.

For both the cue and the emotion data, the first PC separates the class of
neural ICs from artifactual classes well. In the emotion data, the third PC
separates the heart ICs from the other classes. However, the clouds of different
artifacts overlap to a great extent in both the cue and emotion data, for all the
first three PCs. This overlap indicates that it might be difficult to distinguish
between types of artifacts.

Figures A.3 and A.4 show the same projections as figures A.1 and A.2, but
projections are only colored according to the classes neural and non-neural.
Figure A.3 includes all ICs, while figure A.4 only includes projections of feature
vectors from labeled ICs. Again, the left columns show projections of feature
vectors from ICs from the emotion data, while the right columns show feature
vectors of ICs from the cue data.

The first PC separates neural from non-neural feature vectors well, both when
unlabeled ICs are included and when they are not, and for both data sets.

137

Figure A.1: Face-on views of two principal components at a time. These compo-
nents are the first three PCs that result from a PCA of the cue and emotion data
sets when unlabeled ICs are included. The PCAs were performed on the stan-
dardized feature matrices of the ICs for each of the cue and emotion data sets.
Projections of feature vectors of ICs are colored according to the class of the
IC, either eye blink, neural, heart, lateral eye movement, muscle, or unlabeled

138 Exploratory analyses

Figure A.2: Face-on views of two components at a time. The three first PCs
shown here were calculated based only on the labeled ICs for each of the cue
and emotion data sets. The PCAs were performed on the standardized feature
matrices. Projections of feature vectors of ICs are colored according to the class
of the IC, either eye blink, neural, heart, lateral eye movement, or muscle.

139

Figure A.3: Face-on views of two principal components at a time. These com-
ponents are the first three PCs that result from a PCA of the cue and emotion
data sets when unlabeled ICs are included. The PCAs were performed on the
standardized feature matrices of the ICs for each of the cue and emotion data
sets. Projections of feature vectors of ICs are colored according to the class of
the IC, either neural or non-neural.

140 Exploratory analyses

Figure A.4: Face-on views of two components at a time. The three first PCs
shown here were calculated based only on the labeled ICs for each of the cue
and emotion data sets. The PCAs were performed on the standardized feature
matrices. Projections of feature vectors of ICs are colored according to the class
of the IC, either neural or non-neural.

Appendix B
Linear Discriminant

Analysis

Assumptions of normally distributed data and a common covariance matrix for
all classes are exploited by the classifier “linear discriminant analysis” (LDA).
For simplicity, we only present the case of binary classification here, such that
the number of classesK is equal to two. However, we use general terms whenever
a more general presentation does not introduce extra complexity.

LDA classifies an observation to the class that results in the highest likelihood of
the observation. Following [57, pp. 20-21], we minimize the expected prediction
error by classifying an observation x into class k as follows

k = arg min
k∈{1,2,...,K}

K∑
i=1

P(Y = i|x) · loss(i, k),

where Y is a random variable denoting the class of the observation x. The
function loss(i, k) is the loss imposed by classifying an observation from class i
into class k. When i is equal to k, the loss is zero. If the loss is set equal to one
whenever i is not equal to k, then the observation x will be classified into the
class i that the observation x is most likely to belong to, i.e. the class i that
maximizes P(Y = i|x).

142 Linear Discriminant Analysis

Let fk denote the probability density function for class k and πk the prior
probability that an observation is from class k. We use the proportion of samples
from each class as prior probabilities, such that πk = nk

n where n is the total
number of observations and nk is the number of observations from class k. Using
Baye’s rule, we find the probability that an observation x belongs to class k to
be

P(Y = k|x) =
fk(x)πk

f1(x)π1 + f2(x)π2
.

We assume that observations from both classes are normally distributed with
the same covariance matrix, as shown in (B.1)

x ∼ N (µ1,Σ) for x from class 1
x ∼ N (µ2,Σ) for x from class 2.

(B.1)

Thus we have that

fk(x) =
1

√
2π

m√|Σ| exp(−1

2
(x− µk)TΣ−1(x− µk)),

where m is the number of variables and thus dimension of µk.

Instead of using the zero-one loss function described above, we use the strategy
described in subsection 5.4.3. Thus we set loss(i, k) equal to zero if i is equal
to k, but use the loss ni

n if i is not equal to k. Writing this out, the objective
function that we wish to minimize becomes

K∑
i=1

P(Y = i|x) · loss(i, k) =

K∑
i=1

fi(x)πi
f1(x)π1 + f2(x)π2

· n
ni
· δi,k

=

K∑
i=1

fi(x)πi
f1(x)π1 + f2(x)π2

· 1

πi
· δi,k

=

K∑
i=1

fi(x)

f1(x)π1 + f2(x)π2
· δi,k,

143

where δi,k is the Kronecker delta function which is zero if i and k are equal and
one otherwise. To minimize the objective function, we need to classify into the
class for which fi(x)

f1(x)π1+f2(x)π2
is highest. Hence we classify into class one when

(
f1(x)

f1(x)π1 + f2(x)π2

)
/

(
f2(x)

f1(x)π1 + f2(x)π2

)
=
f1(x)

f2(x)
≥ 1 (B.2)

We manipulate the above requirement to get a linear expression in the observa-
tion x.

f1(x)

f2(x)
≥ 1⇔ log

(
f1(x)

f2(x)

)
≥ 0⇔

log

 1√
2π

k
√
|Σ|

exp(− 1
2 (x− µ1)TΣ−1(x− µ1))

1√
2π

k
√
|Σ|

exp(− 1
2 (x− µ2)TΣ−1(x− µ2)))

 ≥ 0⇔

log

(
exp(− 1

2 (x− µ1)TΣ−1(x− µ1))

exp(− 1
2 (x− µ2)TΣ−1(x− µ2)))

)
≥ 0⇔

− 1

2
(x− µ1)TΣ−1(x− µ1)−

(
−1

2
(x− µ2)TΣ−1(x− µ2)

)
≥ 0⇔

− 1

2
(xTΣ−1x− xTΣ−1µ1 − µT1 Σ−1x+ µT1 Σ−1µ1)−

(−1

2
(xTΣ−1x− xTΣ−1µ2 − µT2 Σ−1x+ µT2 Σ−1µ2)) ≥ 0⇔

xTΣ−1µ1 −
1

2
µT1 Σ−1µ1 − xTΣ−1µ2 +

1

2
µT2 Σ−1µ2 ≥ 0⇔

xTΣ−1(µ1 − µ2)− 1

2
µT1 Σ−1µ1 +

1

2
µT2 Σ−1µ2 ≥ 0.

(B.3)

We conclude that those observations, x, for which xTΣ−1(µ1−µ2)− 1
2µ

T
1 Σ−1µ1+

1
2µ

T
2 Σ−1µ2 is greater than zero should be classified as class one.

B.0.1 BCILab version of LDA

The implementation of LDA in BCILab differs from the standard version. We
wanted to make sure that the two formulations were equivalent, both analytically

144 Linear Discriminant Analysis

and empirically. We show the analytical equivalence here, and compare the
results from the two versions in chapter IV.

First we introduce the row vectors wT
1 and wT

2 .

wT
1 = (µ2 − µ1)TΣ−1

wT
2 = wT

1 (µT2w1 −
µ1 + µ2

2
w1)−1

= (µ2 − µ1)TΣ−1

(
µT2 Σ−1(µ2 − µ1)− (µ1 + µ2)T

2
Σ−1(µ2 − µ1)

)−1

in the above we used the symmetry of Σ to get (Σ−1)T = (ΣT)−1 = Σ−1

= (µ2 − µ1)TΣ−1

(
µT2 Σ−1µ2 − µT2 Σ−1µ1 −

1

2
µT2 Σ−1µ2 +

1

2
µT1 Σ−1µ1

)−1

= (µ2 − µ1)TΣ−1

(
1

2
µT2 Σ−1µ2 +

1

2
µT1 Σ−1µ1 − µT2 Σ−1µ1

)−1

= (µ2 − µ1)TΣ−1

(
1

2
(µ2 − µ1)TΣ−1(µ2 − µ1)

)−1

=

=
2

a
(µ2 − µ1)TΣ−1

where a = (µ2 − µ1)TΣ−1(µ2 − µ1).

The model can now be expressed as

xTw2 −
1

2
(µ1 + µ2)Tw2, (B.4)

where we classify to class one when B.4 is less than zero.

145

xTw2 −
1

2
(µ1 + µ2)Tw2 = xT

2

a
Σ−1(µ2 − µ1)− 1

2
(µ1 + µ2)T

2

a
Σ−1(µ2 − µ1)

=
2

a
xTΣ−1(µ2 − µ1)− 1

a
(µ1 + µ2)TΣ−1(µ2 − µ1)

=
1

a
(2xTΣ−1(µ2 − µ1)− (µ1 + µ2)TΣ−1(µ2 − µ1))

=
1

a
(2xTΣ−1(µ2 − µ1)− (µT2 Σ−1µ2 − µT2 Σ−1µ1 + µT1 Σ−1µ2 − µT1 Σ−1µ1))

Use that µT2 Σ−1µ1 = µT1 Σ−1µ2 to reduce

=
1

a
(2xTΣ−1(µ2 − µ1)− (µT2 Σ−1µ2 − µT1 Σ−1µ1))

=
1

a
(2xTΣ−1(µ2 − µ1)− µT2 Σ−1µ2 + µT1 Σ−1µ1)

Use that a = (µ2 − µ1)TΣ−1(µ2 − µ1)⇒ a+ 2µT1 Σ−1µ2 − 2µT2 Σ−1µ2

= µT2 Σ−1µ2 + µT1 Σ−1µ1 − 2µT1 Σ−1µ2 + 2µT1 Σ−1µ2 − 2µT2 Σ−1µ2

= µT1 Σ−1µ1 − µT2 Σ−1µ2 to get

=
1

a
(2xTΣ−1(µ2 − µ1) + a+ 2µT1 Σ−1µ2 − 2µT2 Σ−1µ2)

=
1

a
(2xTΣ−1(µ2 − µ1) + 2(µ2 − µ1)TΣ−1µ2) + 1

=
2

a
(xTΣ−1(µ2 − µ1)− (µ2 − µ1)TΣ−1µ2) + 1

=
2

a
(x− µ2)TΣ−1(µ2 − µ1) + 1.

By classifying to class one when the above expression is less than or equal to
zero, we get the same model as before, derived in (B.3). This is what is done in
BCILab.

2

a
(x− µ2)TΣ−1(µ2 − µ1) + 1 ≤ 0⇔ 2(x− µ2)TΣ−1(µ2 − µ1) ≤ −a

⇔ 2(x− µ2)TΣ−1(µ2 − µ1) ≤ −(µ2 − µ1)TΣ−1(µ2 − µ1)

⇔ 2(x− µ2)TΣ−1(µ2 − µ1) ≤ 2µT2 Σ−1µ1 − µT2 Σ−1µ2 − µT1 Σ−1µ1

⇔ 2xTΣ−1(µ2 − µ1)− 2(µT2 Σ−1µ2 − µT2 Σ−1µ1)

≤ 2µT2 Σ−1µ1 − µT2 Σ−1µ2 − µT1 Σ−1µ1

⇔ 2xTΣ−1(µ2 − µ1)− µT2 Σ−1µ2 + µT1 Σ−1µ1 ≤ 0

⇔ 0 ≤ xTΣ−1(µ1 − µ2) +
1

2
µT2 Σ−1µ2 −

1

2
µT1 Σ−1µ1.

146 Linear Discriminant Analysis

This shows the analytical equality of the standard formulation of LDA and that
used in BCILab.

B.0.2 Uncertainty of coefficient estimates, univariate case

We use the rule of error propagation E to estimate the variance of the coefficient
estimates. The case of a single variable is considerably simpler than the multi-
variate case, so we first present the univariate case. The coefficient estimate is
then

xσ−1(µ1 − µ2),

where σ is the common standard deviation of the two populations, and µ1 and
µ2 the respective means. The intercept estimate is

1

2
µT2 σ

−1µ2 −
1

2
µT1 σ

−1µ1.

Since the true values σ, µ1, and µ2 are unknown they must be estimated from
data. Let n1 denote the number of observations from population one, n2 the
number of observations from population two, and set n = n1 + n2. Since data
is assumed normally distributed we have the following distributions for the re-
spective estimators s, X̄1, and X̄2

X̄i ∼ N (µi,
σ2

nk
)

(n− 1)s2

σ2
∼ χ2(n− 1)⇔ s2 =

σ2

n− 1
Z,

where Z ∼ χ2(n− 1).

The expected values and variances of each of these quantities are as follows

E(X̄i) = µi V ar(Xi) =
σ2

nk

E(s2) = σ2 V ar(s2) = V ar

(
σ2

n− 1
Z

)
=

σ4

(n− 1)2
· 2(n− 1) =

2σ4

(n− 1)
,

147

where we implicitly assume that the variance is estimated based on all data at
once, and not an aggregate estimate from the two variance estimates from the
separate populations.

Due to the assumption of normality, we have independence relations between
the estimators of mean values and of variance. Since there is no relation between
the two populations, the two estimators of mean values are also independent

X̄1 ⊥ s2, X̄2 ⊥ s2, X̄1 ⊥ X̄2.

This allows us to use the simple rule of error propagation, since independence
implies zero correlation. First we define the function that defines the coefficient
estimates (f1) and the function that defines the intercept estimate (f2).

f1(X̄1, X̄2, s) =
1

s2
(X̄1 − X̄2)

f2(X̄1, X̄2, s) =
1

2
X̄2

2

1

s2
− 1

2
X̄2

1

1

s2
=

1

2s2
(X̄2

2 − X̄2
1).

Then we take the derivative of each of these functions with respect to each
coordinate.

∂f1(X̄1, X̄2, s)

∂X̄1
=

1

s2

∂f1(X̄1, X̄2, s)

∂X̄2
= − 1

s2

∂f1(X̄1, X̄2, s)

∂s2
=

1

s4
(X̄2 − X̄1)

∂f2(X̄1, X̄2, s)

∂X̄1
= −X̄1

s2

∂f2(X̄1, X̄2, s)

∂X̄2
=
X̄2

s2

∂f2(X̄1, X̄2, s)

∂s2
=

1

2s4
(X̄2

1 − X̄2
2).

148 Linear Discriminant Analysis

We can now plug these calculations into the rule of error propagation to get the
desired variance of the coefficient estimate.

V ar(f1(X̄1, X̄2, s)) ≈ V ar(X̄1)
1

s4
+ V ar(X̄2)

1

s4
+ V ar(s2)

(
1

s4
(X̄2 − X̄1)

)2

=
σ2

n1

1

s4
+
σ2

n2

1

s4
+

2σ4

(n− 1)

(
1

s4
(X̄2 − X̄1)

)2

.

Since we still do not know the true value σ, we use s instead. This allows
simplification of the expression

σ2

n1

1

s4
+
σ2

n2

1

s4
+

2σ4

(n− 1)

(
1

s4
(X̄2 − X̄1)

)2

≈ s2

n1

1

s4
+
s2

n2

1

s4
+

2s4

(n− 1)

(
1

s4
(X̄2 − X̄1)

)2

=
1

n1s2
+

1

n2s2
+

2(X̄2 − X̄1)2

(n− 1)s4
.

We now find the variance of the intercept estimate in the same way

V ar(f2(X̄1, X̄2, s)) ≈ V ar(X̄1)
X̄2

1

s4
+ V ar(X̄2)

X̄2
2

s4
+ V ar(s2)

(
1

2s4
(X̄2

1 − X̄2
2)

)2

=
σ2

n1

X̄2
1

s4
+
σ2

n2

X̄2
2

s4
+

2σ4

(n− 1)

(
1

2s4
(X̄2

1 − X̄2
2)

)2

≈ s2

n1

X̄2
1

s4
+
s2

n2

X̄2
2

s4
+

2s4

(n− 1)

(
1

2s4
(X̄2

1 − X̄2
2)

)2

=
X̄2

1

n1s2
+

X̄2
2

n2s2
+

1

2(n− 1)s4

(
X̄2

1 − X̄2
2

)2
.

B.0.3 Uncertainty of coefficient estimates, multivariate case

The multivariate case is more complex. In this case, we have the following
distributional assumptions

149

X1 ∼ N (µ1,Σ), X̄1 ∼ N (µ1,Σ/(n1))

X2 ∼ N (µ2,Σ), X̄2 ∼ N (µ2,Σ/(n2))

Σ̂ ∼Wp(Σ, n− 1),

where Wm denotes the mth dimensional Wishart distribution and n − 1 is the
number of degrees of freedom for the covariance matrix estimate ˆSigma. As
above, we assume that the covariance matrix is estimated based on all observa-
tions. The estimate of the inverse covariance matrix, Ψ = Σ−1 then follows the
mth dimensional inverse Wishart distribution,

Ψ̂ ∼ IW (Σ−1, n− 1).

Since Σ−1(µ1 − µ2) = Ψ(µ1 − µ2) gives the vector of coefficients, the jth coef-
ficient βj is

βj =

m∑
h=1

ψj,h(µ1,h − µ2,h),

where ψj,h is the entry in the jth row and hth column of Ψ. I have not been
able to find a reference describing the correlation structure of elements of Ψ.
Hence I cannot apply the chain rule as desired, and my analytical treatment of
the variance of coefficients in the multivariate case stops here.

A complete analysis of estimates from LDA is presented in [9].

150 Linear Discriminant Analysis

Appendix C

Quadratic Discriminant
Analysis

As in linear discriminant analysis, we start out with the ratio of the densities
of the two distributions into which we wish to classify observations. We classify
into class one if this ratio is larger than or equal to one.

f1(x)

f2(x)
≥ 1.

Both f1 and f2 are assumed to be multivariate normal. No assumptions are
made about their means or covariance structures. We take logarithms and
simplify to get the classification criterion.

152 Quadratic Discriminant Analysis

log

(
f1(x)

f2(x)

)
= log(f1(x))− log(f2(x))

= log

(
1

√
2π

k√|Σ1|
exp(−1

2
(xxx−µµµ1)TΣ−1

1 (xxx−µµµ1))

)

− log

(
1

√
2π

k√|Σ2|
exp(−1

2
(xxx−µµµ2)TΣ−1

2 (xxx−µµµ2))

)

= log((2π)−k/2) + log(|Σ1|−1/2)

(
−1

2
(x− µ1)TΣ−1

1 (x− µ1)

)
−
[
log((2π)−k/2) + log(|Σ2|−1/2)

(
−1

2
(x− µ2)TΣ−1

2 (x− µ2)

)]
=

1

2
log
(
|Σ2|−1/2

)
(x− µ2)TΣ−1

2 (x− µ2)− 1

2
log
(
|Σ1|−1/2

)
(x− µ1)TΣ−1

1 (x− µ1)

=
1

2

[
log
(
|Σ2|−1/2

){
xTΣ−1

2 x+ µT2 Σ−1
2 µ2 − 2xTΣ−1

2 µ2

}
−
[
log
(
|Σ1|−1/2

){
xTΣ−1

1 x+ µT1 Σ−1
1 µ1 − 2xTΣ−1

1 µ1

}]]
=

1

2

[
xT
(

log
(
|Σ2|−1/2

)
Σ−1

2 − log
(
|Σ1|−1/2

)
Σ−1

1

)
x
]
− xT

(
Σ−1

1 µ1 − Σ−1
2 µ2

)
+

1

2

[
µT2 log

(
|Σ2|−1/2

)
Σ−1

2 µ2 − µT1 log
(
|Σ1|−1/2

)
Σ−1

1 µ1

]
.

Thus we classify to class one when

1

2

[
xT
(

log
(
|Σ2|−1/2

)
Σ−1

2 − log
(
|Σ1|−1/2

)
Σ−1

1

)
x
]
− xT

(
Σ−1

1 µ1 − Σ−1
2 µ2

)
+

1

2

[
µT2 log

(
|Σ2|−1/2

)
Σ−1

2 µ2 − µT1 log
(
|Σ1|−1/2

)
Σ−1

1 µ1

]
≥ 0,

and to class two otherwise.

Appendix D

Logistic regression

D.1 Logistic regression with all the gory details

In logistic regression each data point is assumed to be Bernoulli distributed

Yi|Xi,: ∼ Bernouilli(pi), Yi ∈ {0, 1}.

We wish to model the probability pi as a function of the explanatory variables
Xi,: such that we can make predictions about an unseen response based on
Xi,:. Since probabilities are restricted to lie in [0, 1], the model of pi must use a
function with range [0, 1]. The logistic function g(x) = ex

1+ex satisfies this. The
model of pi, where pi = P(†i = 1|Xi,:) is then

pi(β) =
exp(β0 +

∑m
j=1 βjXi,j)

1 + exp(β0 +
∑m
j=1 βjXi,j)

.

The estimation problem lies in finding the estimates of βj , j = 0, 1, . . . , k. We do
this by optimizing the likelihood-function. That is, we find the values of βj , j =

154 Logistic regression

0, 1, . . . , k for which the observed data is most likely. The likelihood function is
defined as the product of the probability densities of all observations (D.1).

L(β) =

n∏
i=1

f(yi|β), (D.1)

where y is the vector of observations. Since

P(Yi = 1|Xi = xi) = pi

P(Yi = 0|Xi = xi) = 1− pi ⇒
f(yi|β) = pi(β)yi(1− pi(β))1−yi ,

the likelihood function becomes

n∏
i=1

pi(β)yi(1− pi(β))1−yi .

The estimate of β is

β̂ = arg max
β

n∏
i=1

pi(β)yi(1− pi(β))1−yi

= arg max
β

n∑
i=1

log
(
(pi(β))yi(1− pi(β))1−yi

)
= arg max

β

n∑
i=1

(yi log(pi(β)) + (1− yi) log(1− pi(β))) .

(D.2)

This must be solved numerically. We used the function glmfit in MatLab, which
fits generalized linear models. Logistic regression is obtained by specifying the
binomial distribution for observations.

The observations were given prior weights according to their class, such that
observations from larger classes had lower weights as explained in 5.4.3. The
weights are re-calculated in each iteration of the numerical maximization of (D.2)

D.1 Logistic regression with all the gory details 155

such that observations with higher estimated variance (p̂i(1− p̂i)) are weighted
higher. The weight for the ith observation in the sth iteration when prior weights
are not used is (p̂i(1 − p̂i))s. When prior weights wi are used, the weight is
wi(p̂i(1− p̂i))s. The vector w contains the prior weights.

Another way to obtain weighted logistic regression is by using (D.3) instead
of (D.2).

β̂ = arg max
β

n∑
i=1

wi (yi log(pi(β)) + (1− yi) log(1− pi(β))) . (D.3)

where wi is the weight assigned to the ith observation. This is a more direct
way of taking weights into account. This was implemented by using the im-
plementation of l1-regularized logistic regression described below, with λ set to
1.

D.1.1 Forward selection of parameters

It is likely that only some features are relevant in a classification problem. To
increase interpretability of a model and reduce risk of over fitting, it may be
wise to include only some features. In logistic regression, this can be done by
starting with a model with not explanatory variables, and then adding those
variables that seem to explain variability in data best. This is called forward
selection. Two common alternatives are backward and stepwise selection. In
backward selection, the starting point is a model that includes all variables.
The variables that explain least variability are then removed iteratively. In
stepwise selection, variables can both be added and removed in each iteration.
Since these two alternatives are more computationally demanding, we chose to
use forward selection.

Deviance is a measure of the degree to which a model agrees with data [58, p. 23].
The test statistic used to test whether a simpler model is significantly different
from a larger model is the deviance of the larger model minus the deviance of the
smaller model, which is assumed to be nested within the larger model. Under
the null hypothesis, the deviance approximately follows the χ2-distribution with
degrees of freedom equal to the difference in parameters between the larger
and the simpler model [62, p. 299]. Since we use forward selection, we attempt
to add one variable at a time. This causes the deviance to follow the χ2-
distribution with one degree of freedom. Using the 5% significance level, we
add the concerned variable if the test statistic is greater than χ2

0.05(1) = 3.841.

156 Logistic regression

This corresponds to a p-value less than 0.05, which means that the deviance
of the model with the concerned variable gives a significantly better fit to data
than the model without the concerned variable, at the 5% significance level.
The deviance is defined as (D.4)[58, p.23].

D(y,β) = −2 log(f(yi|β)) = −2 log

(
(

n∏
i=1

pi(β)yi(1− pi(β))1−yi

)

= −2

(
(

n∑
i=1

yi log(pi(β)) + (1− yi) log((1− pi(β)))

)

= 2

(
(

n∑
i=1

yi log(
1

pi(β)
) + (1− yi) log(

1

1− pi(β
))

) (D.4)

Other authors [62, p. 299] define the deviance as the test statistic used to test
whether a certain model is the true model (the null hypothesis), or the true
model is the saturated model. This definition is shown in (D.5)

Drel(Y,β) = 2(log(f(yi|βsaturated))− log(f(yi|βmodel))), (D.5)

where βsaturated is the vector of parameters for the saturated model and βmodel
the vector of parameters for the model being tested. The saturated model is
the model that includes all main and interaction effects between features [62,
p.298]. By this definition, the deviance follows a χ2 distribution with degrees of
freedom equal to the number of parameters in the saturated model minus the
number of parameters in the smaller model.

When testing a model against the saturated model these definitions of deviance
give identical results. When comparing two arbitrary nested models, M0 and
M1 defined above, by finding the differences in deviance according to defini-
tion (D.5), we get

Drel(Y,βsaturated)−Drel(Y,βmodel) =

2(log(f(yi|βsaturated))− log(f(yi|βsaturated)))− (2(log(f(yi|βsaturated))− log(f(yi|βmodel)))) =

2 (log(f(yi|βmodel))− log(f(yi|βsaturated))) = −2 log(f(yi|βsaturated))− [−2 log(f(yi|βmodel))] =

Dabs(Y,βsaturated)−Dabs(Y,βmodel)

D.1 Logistic regression with all the gory details 157

Thus the test statistic to compare two models is the same for the two defi-
nitions. However, the interpretation of the measure for a single model differs.
Whereas (D.5) can always be understood as the difference in explanatory ability
between the model under consideration and the saturated model, the definition
in (5.8) has no such interpretation.

D.1.2 L1-regularized logistic regression

Another way to limit the number of explanatory variables in a model is to
penalize the cost likelihood function by the L1 norm of the coefficient vector.
This also decreases the risk that coefficients of correlated explanatory features
are estimated at high values in such a way that the effects of the variables cancel
each other out in the model. We give a small example to make this scenario
clearer. Assume x1 and x2 are highly correlated explanatory variables and that
neither has any substantial influence on the response variable. Then a model in
which x1 has a very large coefficient β1 and the coefficient of x2 is nearly the
same with opposite sign β2 ≈ −β1 will be nearly equivalent to a model with
small β1 and β2. The first model will give a wrong idea of the relation between
explanatory variables and the response, might cause numerical instabilities if
the coefficient estimates are of very high magnitudes, and high uncertainty will
be associated with predictions. For these reasons a model with small or zero
coefficients for x1 and x2 would be preferable.

Using the L1 norm of the coefficient vector as penalty, we need to maximize
(D.2) plus the penalty, weighting both terms to reflect the degree to which we
want a good fit relative to our desire for a simple model. We also take weights
of observations into account as shown in (D.6).

β̂ = arg max
β

n∑
i=1

wi

λyi log(pi(β)) + (1− yi) log(1− pi(β)) + (1− λ)

m∑
j=1

|βj |


(D.6)

The parameter λ must lie between zero and one and determines the degree to
which the coefficient vector should be simple relative to the ability of the model
to fit data well. Higher values of λ cause the model to fit training data better
at the cost of more non-zero estimates of the coefficients. The best value for λ
can be found by cross-validation.

To find the coefficient estimates, we use a simple numerical optimization algo-
rithm in which the first derivative of (D.6) with respect to the coefficients is

158 Logistic regression

needed.

D.1.2.1 Derivatives of the log-likelihood

Using the chain rule for differentiation, we find the derivative (D.7). We set

f
logistic_log−likelihood
i = yi log(pi(β)) + (1− yi) log(1− pi(β))

and use that

∂f
logistic_log−likelihood
i

∂pi(β)
= yi

1

pi(β)
+(1−yi)

−1

1− pi(β)
= yi

1

pi(β)
+(yi−1)

1

1− pi(β)
.

The derivatives of the log-likelihood function with respect to the parameters are
then

Derivative w.r.t. intercept:

∂
∑n
i=1wi

(
λf

logistic_log−likelihood
i − (1− λ)

∑m
j=1 |βj |

)
∂β0

=

n∑
i=1

wiλ
∂pi(β)

∂β0

(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
Derivative w.r.t. coefficients:

(h ∈ {1, 2, . . . , k})
∂
∑n
i=1wi

(
λf

logistic_log−likelihood
i − (1− λ)

∑m
j=1 |βj |

)
∂βh

=

n∑
i=1

wi

[
λ
∂pi(β)

∂βh

(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
− (1− λ) sgn(βh)

]
,

(D.7)

and the derivatives of pi(β) are

D.1 Logistic regression with all the gory details 159

∂pi(β)

∂β0
=

exp(β0 +
∑m
j=1 βjXi,j)(

1 + exp(β0 +
∑m
j=1 βjXi,j)

)2 =
pi(β)

(1 + exp(β0 +
∑m
j=1 βjXi,j)

∂pi(β)

∂βh
=

Xi,h exp(β0 +
∑m
j=1 βjXi,j)(

1 + exp(β0 +
∑m
j=1 βjXi,j)

)2 =
Xi,hpi(β)

(1 + exp(β0 +
∑m
j=1 βjXi,j)

.

Using that

1− pi(β) =1−
exp(β0 +

∑m
j=1 βjXi,j)

1 + exp(β0 +
∑m
j=1 βjXi,j)

=

1 + exp(β0 +
∑m
j=1 βjXi,j)

1 + exp(β0 +
∑m
j=1 βjXi,j)

−
exp(β0 +

∑m
j=1 βjXi,j)

1 + exp(β0 +
∑m
j=1 βjXi,j)

=

1

1 + exp(β0 +
∑m
j=1 βjXi,j)

=
pi(β)

exp(β0 +
∑m
j=1 βjXi,j)

,

(D.7) can be simplified as follows

n∑
i=1

wiλ
∂pi(β)

∂β0

(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
=

n∑
i=1

wiλ
pi(β)

1 + exp(β0 +
∑m
j=1 βjXi,j)

(
yi

pi(β)
+ (yi − 1)

exp(β0 +
∑m
j=1 βjXi,j)

pi(β)

)
=

n∑
i=1

wiλ
1

1 + exp(β0 +
∑m
j=1 βjXi,j)

yi + (yi − 1) exp(β0 +

m∑
j=1

βjXi,j)

 =

n∑
i=1

wiλ

(
yi

1 + exp(β0 +
∑m
j=1 βjXi,j)

+ (yi − 1)pi(β)

)
=

n∑
i=1

wiλ

(
yi(1 + exp(β0 +

∑m
j=1 βjXi,j))

1 + exp(β0 +
∑m
j=1 βjXi,j)

− pi(β)

)
=

n∑
i=1

wiλ (yi − pi(β)) .

160 Logistic regression

Thus we get the final expressions for the derivatives as shown in (D.8)

∂
∑n
i=1wi

(
λf

logistic_log−likelihood
i − (1− λ)

∑m
j=1 |βj |

)
∂β0

=

n∑
i=1

wiλ (yi − pi(β))

∂
∑n
i=1wi

(
λf

logistic_log−likelihood
i − (1− λ)

∑m
j=1 |βj |

)
∂βh

=

n∑
i=1

wi [λXi,h (yi − pi(β))− (1− λ) sgn(βh)] .

(D.8)

D.1.2.2 Finding the parameter estimates

We take advantage of the fact that maximizing the log-likelihood (D.6) is equiv-
alent to minimizing the negative log-likelihood (D.9)

β̂ = arg max
β


n∑
i=1

wi

λf logistic_log−likelihoodi − (1− λ)

m∑
j=1

|βj |


= arg min

β

−
n∑
i=1

wi

λf logistic_log−likelihoodi − (1− λ)

m∑
j=1

|βj |

 .

(D.9)

To find the coefficient estimates, we start with an initial random guess. We
then change this guess by moving a step size µ in the direction opposite to the
gradient (D.10).

β
new_simple
h = βh − µ ·

n∑
i=1

−wi [λXi,h (yi − pi(β))− (1− λ) sgn(βh)] ,

(D.10)

D.1 Logistic regression with all the gory details 161

where we use the gradient that is negative of that shown in (D.8) since (D.8) is
the gradient relevant to the maximization problem (D.6), but we wish to solve
the minimization problem (D.9). We set Xi,0 to one for all i, and sgn(β0) to
zero.

To avoid taking too large steps, thereby risking missing the minimum, or taking
too small steps, which would increase the time to convergence, we adapt the
step size µ in each iteration. Also, we only take a step if the step causes the cost
function to decrease. If this is not the case, we decrease the step size but do
not change the coefficient and bias estimates. If the cost function does decrease,
we update the estimates as shown in (D.10) and increase µ by multiplying the
former value by 1.5 and using this new value for µ.

Also, instead of updating the coefficients exactly as in (D.10), we split the update
into two steps. This split ensures that the coefficient estimates do not oscillate
around zero. We do this by first updating according to the non-penalty part of
the gradient as follows (D.11)

β
new_temporary
h = βh + µ ·

n∑
i=1

wiλXi,h (yi − pi(β)) . (D.11)

We then update according to the penalty as shown in (D.12)

β
new_penalized_temporary
h = β

new_temporary
h − µ · (1− λ) sgn(βh), for h ∈ {1, 2, . . . , k}.

(D.12)

The penalized update step is not performed for the bias β0. Now comes the
step that protects from oscillation of estimates around zero

β
new_guess
h =

{
β
new_penalized_temporary
h sgn(β

new_penalized_temporary
h) = sgn(β

new_temporary
h)

0 sgn(β
new_penalized_temporary
h) 6= sgn(β

new_temporary
h),

(D.13)

where h ∈ {1, 2, . . . , k}. Finally, the coefficient estimates are updated if the
cost function decreased. To sum up, the algorithm is shown in Algorithm 1 on
page 67. For ease of reading, details have been left out. These can be found in
Algorithm 2 on page 165.

162 Logistic regression

D.1.3 Convexity

We now show that the minimization problem in logistic regression is convex,
both with and without L1-regularization. Convexity is desirable property be-
cause it ensures the uniqueness of a solution. Also, research into optimization
of convex functions has a long history and easily implementable algorithms with
linear and quadratic convergence are well known.

A twice differentiable function is convex if and only if its Hessian is positive
semi-definite [3, p. 198]. Thus we need to show that the Hessian of the function
being minimized in logistic regression is positive semi-definite. We have already
found the gradient (D.7), so we can get the Hessian by differentiating this with
respect to each of the variables β0,β1, . . . ,βk.

The (s, t)th entry in the Hessian of a function f is the partial derivative of f
with respect to the sth variable, which is then differentiated with respect to the
tth variable. The second order partial derivatives of f logistic_log−likelihoodi are
given in (D.14), calculated using the chain and product rules for differentiation

∂∂
{
−wiλf

logistic_log−likelihood
i

}
∂βs∂βt

=
∂
{
−wiλ∂pi(β)

∂βs

(
yi

1
pi(β) + (yi − 1) 1

1−pi(β)

)}
∂βt

=

−wiλ
[∂∂pi(β)

∂βs∂βt

(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
+

∂pi(β)

∂βs

∂pi(β)

∂βt

(
yi

(−1)

(pi(β))2
+ (yi − 1)

1

(1− pi(β))2

)]
.

(D.14)

To see that the Hessian is positive semi-definite, we continue evaluation of the
second order partial derivatives.

D.1 Logistic regression with all the gory details 163

−wiλ
[∂∂pi(β)

∂βs∂βt

(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
+
∂pi(β)

∂βs

∂pi(β)

∂βt

(
yi

(−1)

(pi(β))2
+ (yi − 1)

1

(1− pi(β))2

)]
=

−wiλ
∂pi(β)

∂βt

[
Xi,s

(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
+
∂pi(β)

∂βs

(
yi

(−1)

(pi(β))2
+ (yi − 1)

1

(1− pi(β))2

)]
=

−wiλ
∂pi(β)

∂βt
Xi,s

[(
yi

1

pi(β)
+ (yi − 1)

1

1− pi(β)

)
+ pi(β)

(
yi

(−1)

(pi(β))2
+ (yi − 1)

1

(1− pi(β))2

)]
=

−wiλ
∂pi(β)

∂βt
Xi,s

[(
(yi − 1)

1

1− pi(β)

)
+ pi(β)

(
(yi − 1)

1

(1− pi(β))2

)]
=

−wiλXi,sXi,tpi(β)

[(
(yi − 1)

1

1− pi(β)

)
+ pi(β)

(
(yi − 1)

1

(1− pi(β))2

)]
,

where Xi,0 = 1 for all i. Since

yi = 1⇒
[(

(yi − 1)
1

1− pi(β)

)
+ pi(β)

(
(yi − 1)

1

(1− pi(β))2

)]
= 0,

yi = 0⇒
[(

(yi − 1)
1

1− pi(β)

)
+ pi(β)

(
(yi − 1)

1

(1− pi(β))2

)]
= − 1

1− pi(β)

(
1 + pi(β)

1

1− pi(β)

)
< 0,

and−wiλpi(β) < 0, the product of−wiλpi(β) and
[(

(yi − 1) 1
1−pi(β)

)
+ pi(β)

(
(yi − 1) 1

(1−pi(β))2

)]
is non-negative. Thus we may set

qi,j = Xi,j

√
−wiλpi(β)

[(
(yi − 1)

1

1− pi(β)

)
+ pi(β)

(
(yi − 1)

1

(1− pi(β))2

)]
,

and qi = (qi,0, qi,1, . . . , qi,k). We can then express the Hessian of a single obser-
vation as

Hi = qiq
T
i .

The Hessian for all observations is then

H =

n∑
i=1

Hi =

n∑
i=1

qiq
T
i ,

164 Logistic regression

and by left- and right-multiplying an arbitrary vector z onto H, we get

zTHz =zT

(
n∑
i=1

Hi

)
z =

n∑
i=1

zT (Hi) z =

n∑
i=1

zTqiq
T
i z =

n∑
i=1

(zTqi)
2 ≥ 0,

Showing that the Hessian is positive semi-definite and thus that the cost function
being minimized is convex.

D.2 Variance of coefficient estimates for logistic
regression

1 fitted = ml_predict(feats, model);
2 fittedprobs=fitted{2};
3 fits = fittedprobs(:,1); % extract probabilities for membership of

class 1
4 fits(fits > (1-eps*100)) = 1-eps*100; % cut off observations at

extremes of support
5 fits(fits < (eps*100)) = eps*100;
6
7 var_obs_temp=fits.*(1-fits);
8 var_obs=var_obs_temp;
9 var_pearson_obs=obsweights’.*((train_targets’-fits).^2)./var_obs;

10 var_pearson = sum(var_pearson_obs)/(length(obsweights)-44); % -43 for
the 43 features and minus 1 for the intercept

11
12 Xmat = [ones(length(obsweights), 1) feats];
13
14 diagonal = obsweights’.*var_obs;
15 Sigmainv = Xmat’ *diag(diagonal) *Xmat;
16 Sigma=inv(Sigmainv);
17
18 mean_ests = [model.model.b model.model.W];
19 var_ests = var_pearson^2*diag(Sigma)’;

D.2 Variance of coefficient estimates for logistic regression 165

Algorithm 2 Numerical minimization for L1-regularized logistic regression
to find coefficient estimates
β ← Nm+1(0m+1, Im+1) {initialize coefficient estimates}
max_eval ← 100 {stopping criterion; maximum number of iterations}
µ← 1, its ← 0, nconverged_parameters ← 0{initialize variables}
param_conv ← 0 {initialize parameter convergence to zero to enter loop}
tolx← 10−3 {amount by which all parameters must change less than to obtain
convergence}
exp_term ← exp

(
β0 +

∑m
j=1 βjXi,j

)
cost_current←

∑n−1
i=0 −wi

[
λ
[
yi

(
β0 +

∑m
j=1 βjXi,j

)
− log (1 + exp_term)

]
− (1− λ)

∑m
j=1 |βj |

]
while its ≤ max_eval ∧ nconverged_parameters < m+1 do
for i = 0→ n− 1 do
Ji,1 ← −λwiyi

exp_term
1+exp_term {the ith row in the first column of J con-

tains derivatives of the non-penalized cost function with respect to the
intercept, evaluated at the data point i}
for j = 1→ m do
Ji,j ← −λwi

(
yiXi,j −Xi,j

exp_term
1+exp_term

)
{the ith row in the jth col-

umn of J contains the derivatives of the non-penalized cost function
with respect to the jth variable at each data point}

end for
end for
for i = 0→ n− 1 do
for j = 1→ m do
J_penali,j ← −(1 − λ)wi sgn(βj+1){the ith row in the jth column of
J_penal contains derivatives of the penalty on the cost function with
respect to the jth variable. }

end for
end for
J_penal ← -J_penal {execute non-penalized updates}
for j = 0→ m do
β
new_temporary
j ← βj − µ ·

∑n−1
i=0 Ji,j

end for
{execute penalized updates, which the intercept estimate is not affected
by}
for j = 1→ m do
β
new_penalized_temporary
j ← β

new_temporary
j − µ ·

∑n−1
i=0 J_penali,j

end for
{set estimate to zero if zero was crossed in the penalty update}
for j = 1→ m do
if sgn(β

new_temporary
j) 6= sgn(β

new_penalized_temporary
j) then

βnewj ← 0
else
βnewj ← β

new_penalized_temporary
j

end if
end for
βnew0 ← β

new_temporary
0

exp_term_new ← exp
(
βnew0 +

∑m
j=1 β

new
j Xi,j

)
cost_new←

∑n−1
i=0 −wi

[
λ
[
yi

(
βnew0 +

∑m
j=1 β

new
j Xi,j

)
− log (1 + exp_term_new)

]
− (1− λ)

∑m
j=1 |βnewj |

]
cost_improvement ← cost_current - cost_new {this is positive if the new
estimates are better}
nconverged_parameters←0
if cost_improvement>0 ∧|cost_improvement| < inf then
for j = 0→ m do
parameter_change ← |βnewj − βj |
if parameter_change < tolx then
nconverged_parameters←nconverged_parameters+1

end if
end for
β ← βnew

exp_term←exp_term_new
costs_current←costs_new
µ← 1.5µ

else
µ← 0.5µ

end if
its ← its+1

end while

166 Logistic regression

Appendix E

Error propagation

An approximation of the variance of a function of several random variables with
known variances can be achieved with the rule of error propagation [54].This
rule uses the first order Taylor approximation to a function by using the variance
of this approximation. First we briefly describe the first order Taylor approxi-
mation. We then proceed to find the expectation and variance of the first order
Taylor approximation of a function of random variables.

Taylor approximation consists of using the first derivative of a function in
approximating the value of that function at a particular value. First we describe
the first order Taylor expansion.

Take a univariate function f . The first order Taylor expansion is then [45]

f(x) ≈ f(x0) + f ′(x0)(x− x0) +O((x− x0)2),

where x0 is the point that we approximate around. Thus the approximation is
best at points x close to x0. We use the notation f ′(x0) to mean the derivative
of f evaluated at x0. Finally, O((x− x0)2) denotes the order of growth of error
in the approximation as a function of the difference between x and x0. If f is a
multivariate function, the first order Taylor expansion becomes

168 Error propagation

f(x) ≈ f(x0) +

p∑
j=1

(
f ′(x0,j)(xj − x0,j) +O((xj − x0,j)

2)
)
,

where we let f ′(x0,j) denote the derivative of f with respect to the jth coordi-
nate, evaluated at the jth coordinate of x0, x0,j . As x → x0,

∑p
j=1O((xj −

x0,j)
2)→ 0 i.e. the error term vanishes.

To obtain the first order Taylor approximation, we drop the error term. The
first order Taylor approximation then becomes (E.1).

f(x) ≈ f(x0) +

p∑
j=1

f ′(x0,j)(xj − x0,j). (E.1)

Estimates using the first order Taylor approximation We first find the
expectation of the first order Taylor approximation of a function of random
variables. Let X denote a random vector. Expanding around the mean of X,
µ, the first order Taylor approximation becomes

f(X) ≈ f̂(X) = f(µ) +

p∑
j=1

f ′(µj)(Xj − µj).

The expectation of the approximation to f is then

E(f(X)) ≈ E(f̂(X)) = E

f(µ) +

p∑
j=1

f ′(µj)(Xj − µj)


= f(µ) +

p∑
j=1

E (f ′(µj)(Xj − µj))

= f(µ) +

p∑
j=1

f ′(µj)(E (Xj)− µj)

= f(µ) +

p∑
j=1

f ′(µj)(µj − µj) = f(µ).

169

The variance is

V ar(f(X)) ≈ V ar(f̂(X)) = V ar

f(µ) +

p∑
j=1

f ′(µj)(Xj − µj)

 = V ar

 p∑
j=1

f ′(µj)(Xj − µj)


=

p∑
j=1

f ′(µj)
2V ar((Xj) + 2

p∑
j=1

p∑
h=j+1

f ′(µj)f
′(µh)Cov(Xj , Xh).

If the coordinates of X are pairwise uncorrelated, this simplifies to

V ar(f(X)) ≈ V ar(f̂(X)) =

p∑
j=1

f ′(µj)
2V ar((Xj).

170 Error propagation

Appendix F

Factorization of data to
estimate missing values

Steepest gradient descent to estimate factors of data matrix To re-
construct the missing values based on the non-missing values from the other
channels, a factorization of the data can be used. We assume

Y = AS.

The challenge is then to find A and S such that ‖A×S−Y ‖2 is minimized. We
take missing values into account by introducing the matrix W , whose (i, j)th

element is zero if the Yi,j is missing, and one otherwise. We disregard missing
values while finding A and S by minimizing

∑
i,j

Wi,j(Yi,j −
∑
h

Ai,hSh,j)
2.

We optimize using gradient descent, alternately updating A and S. Thus we
must partially differentiate 6.1 with respect to Aq,r and Sq,r. For Aq,r, we get

172 Factorization of data to estimate missing values

∂
∑
i

∑
jWi,j(Yi,j −

∑
hAi,hSh,j)

2

∂Aq,r
=
∂
∑
i

∑
jWi,j(Y

2
i,j + (

∑
hAi,hSh,j)

2 − 2Yi,j
∑
hAi,hSh,j)

∂Aq,r

=
∂
∑
i,jWi,j((

∑
hAi,hSh,j)

2 − 2Yi,j
∑
hAi,hSh,j)

∂Aq,r

=
∂
∑
i,jWi,j(

∑
hAi,hSh,j)

2

∂Aq,r
−
∂
∑
i,jWi,j(2Yi,j

∑
hAi,hSh,j)

∂Aq,r

=
∑
i,j

Wi,j

(
∂(
∑
hAi,hSh,j)

2

∂
∑
hAi,hSh,j

·
∂
∑
hAi,hSh,j
∂Aq,r

)
− 2

∑
j

Wq,jYq,jSr,j

=
∑
i,j

Wi,j

(
2

(∑
h

Ai,hSh,j

)
·
∂
∑
hAi,hSh,j
∂Aq,r

)
− 2

∑
j

Wq,jYq,jSr,j

=
∑
j

Wq,j2

(∑
h

Aq,hSh,j

)
Sr,j − 2

∑
j

Wq,jYq,jSr,j

= 2
∑
j

Wq,j

((∑
h

Aq,hSh,j

)
Sr,j − Yq,jSr,j

)

= 2
∑
j

Wq,jSr,j

((∑
h

Aq,hSh,j

)
− Yq,j

)
.

(F.1)

Thus the (q, r)th element of the gradient of A, GA is calculated as shown in the
last line ofF.1. To find the elements of the gradient of S, we proceed similarly
by differentiating with respect to Sq,r

173

∂
∑
i

∑
jWi,j(Yi,j −

∑
hAi,hSh,j)

2

∂Sq,r
=
∂
∑
i

∑
jWi,j(Y

2
i,j + (

∑
hAi,hSh,j)

2 − 2Yi,j
∑
hAi,hSh,j)

∂Sq,r

=
∂
∑
i,jWi,j((

∑
hAi,hSh,j)

2 − 2Yi,j
∑
hAi,hSh,j)

∂Sq,r

=
∂
∑
i,jWi,j(

∑
hAi,hSh,j)

2

∂Sq,r
−
∂
∑
i,jWi,j(2Yi,j

∑
hAi,hSh,j)

∂Sq,r

=
∑
i,j

Wi,j

(
∂(
∑
hAi,hSh,j)

2

∂
∑
hAi,hSh,j

·
∂
∑
hAi,hSh,j
∂Sq,r

)
− 2

∑
i

Wi,rYi,rAi,q

=
∑
i,j

Wi,j

(
2

(∑
h

Ai,hSh,j

)
·
∂
∑
hAi,hSh,j
∂Sq,r

)
− 2

∑
i

Wi,rYi,rAi,q

=
∑
j

Wi,r2

(∑
h

Aq,hSh,j

)
Ai,q − 2

∑
i

Wi,rYi,rAi,q

= 2
∑
j

Wi,r

((∑
h

Aq,hSh,j

)
Ai,q − Yi,rAi,q

)

= 2
∑
j

Wi,rAi,q

((∑
h

Aq,hSh,j

)
− Yi,r

)
.

With these gradients, steep gradient descent can be used to find the matrices A
and S.

To save computations, if the estimated data is to be IC decomposed, an SVD of
each of A and S can be performed. Since these matrices are smaller, it is cheaper
to pre-whiten data by pre-whitening each of A and S, and then multiplying,
instead of pre-whitening the product of A and S.

We now perform a singular value decomposition (SVD) on A and S such that
we end up with an SVD of the original data, with reconstructed missing values.
We factorize A and S as follows

A = UAΣA(V A)T

S = USΣS(V S)T ,

where UA, V A, US , and V S are unitary matrices and ΣA and ΣS are k × m
and m×n diagonal matrices, respectively. Thus UA(UA)T = Ik,k, V A(V A)T =

174 Factorization of data to estimate missing values

Im,m, US(US)T = Im,m, and V S(V S)T = In,n. m ≤ n is the number of
dimensions used to reconstruct the missing values. We now set

Q = ΣA(V A)TUSΣS ,

and find the SVD decomposition of the k × n matrix Q

Q = UQΣQ(V Q)T .

The SVD decomposition of Y , through which we reconstruct missing values, is
then

U = UAUQ

V T = (V Q)T (V S)T

Σ = ΣQ,

since

Y = AS = UAΣA(V A)TUSΣS(V S)T = UAQ(V S)T

=UAUQΣQ(V Q)T (V S)T = UΣV T .

We can check that U and V are unitary, as required in an SVD decomposition

UUT = UAUQ(UAUQ)T = UAUQ(UQ)T (UA)T = UAIk,k(UA)T = Ik,k

V V T = V SV Q(V Q)T (V S)T = V SIn,n(V S)T = In,n,

as desired.

Appendix G

Implementation

All numerical calculations were performed in MatLab. The toolboxes and stand-
alone code that was used, but implemented by others, are listed here.

• EEGLab [14]

• BCILab [16]

• immoptibox [43]

• MatLab official Stats toolbox

• MatLab official Wavelets toolbox

• ADJUST [41]. The methods that calculate features were modified to allow
for differences in the number of channels and ICs. The code was also
changed so feature calculations that assume several epochs in data made
sense for continuous data sets, by splitting such data into smaller intervals
for the purpose of calculating these features.

• Reconstruction of data, SVDMissingData.m, by Morten Mørup

176 Implementation

Appendix H
Current density norm, the

left out BBCI feature

The current density norm measures the complexity of the dipole fit. For ar-
tifacts, this complexity should be high since it should be difficult to match
artifactual activity to a source in the brain. A mathematical description fol-
lows.

Let z be a vector denoting the amplitude of M dipoles at fixed locations and
orientations in the brain. Let aj be the spatial pattern of the jth IC, i.e.
the vector of length k that holds the activation of each of the k electrodes for
component j. Finally, let F be the k × M lead-field matrix which contains
information on the conductive properties of brain tissue. That is, F describes
the activity caused by each dipole in z on the scalp. Thus z must satisfy the
equation

aj = Fz (H.1)

The z that minimizes the squared error ‖Fz−aj‖22 subject to the simultaneous
minimization of λ‖Γz‖22 can be expressed as

(FTF + λΓTΓ)−1FTaj = Jλaj ,

178 Current density norm, the left out BBCI feature

where Γ is a weight matrix that reduces the bias that would otherwise cause
superficial dipoles [35] (i.e. dipoles close to the scalp) to be over estimated,
implying a “tendency to reconstruct superficial currents” [35]. Γ is a diagonal
matrix, where the diagonal diag is calculated as

colnorms = (‖F.1‖2, ‖F.2‖2, . . . , ‖F.M‖2) Where F.h indicates the hth column of F

diag =
colnorms.2/p + β2

colnorms.1/p
,

where . indicates element wise operation, and the fraction is also element wise.
Also, β is the 90th percentile of colnorms.1/p divided by the signal to noise
ratio(SNR).

The number

log

(
Jλ

aj
‖aj‖2

)

quantifies the complexity of the fit, i.e. the complexity of the z that comes
closest to satisfying (H.1). A more complex z is a vector with many non-zero
non-elements, implying that many dipole sources are necessary to explain the
electrical activity on the scalp. For artifact components with dipoles outside the
scalp, this fit will necessarily be complex, and hence log

(
Jλ

aj

‖aj‖2

)
will be large

in such cases. However, the dipole fits provided by EEGLab assume that just
one, or two symmetrical with respect to the midline, dipoles explain the scalp
activity for a neural component. Thus only one (or two symmetrical) dipoles
are fitted, making the current density norm meaningless.

Appendix I

Feature quantifying
similarity to ECG time

series

In previous attempts at component classification, components representing the
ECG turned out to be the most frequently misclassified components. Thus we
introduce a feature specifically aimed at detecting ECG components by exploit-
ing the shape of the QRS complex. The QRS complex is a pattern that occurs
once in every heart beat, and is the part of the heart’s cycle with the largest am-
plitude. Thus components representing the pulse are likely to exhibit patterns
similar to the QRS complex at regular intervals.

Discrete wavelet analysis (see section I.1 for background on wavelet analysis)
was used to search for the QRS complex.

In order to detect the QRS complex, we must have an idea of the time scale that
should be searched. In normal ECG, the QRS complex lasts from 0.06 to 0.10
seconds and the number of heartbeats per minute in humans is 60 to 90 [65], the
average of which is 75. The frequency with which QRS complexes occur is then
approximately 1

0.10 −
1

0.06 ≈ 10Hz−17Hz. The average duration of a heartbeat
is approximately 75 heart beats

60seconds ≈ 1.25 seconds. The length of the interval between
two consecutive QRS complexes is then approximately 1.2 seconds, since this is

180 Feature quantifying similarity to ECG time series

Figure I.1: A typical QRS complex and the Daubechies 3 wavelet. The
Daubechies wavelet was chosen because of the similarities in shape between
this wavelet and the QRS complex.

the time between two heart beats minus the average duration of a QRS complex
(1.25− 0.08 = 1.17 ≈ 1.2).

A wavelet analysis of a time series using a wavelet resembling the QRS complex
should give large reconstruction coefficients. These coefficients can then be used
to find the time series that contain QRS complexes. Thus we use discrete wavelet
analysis to make the largest peak in a time interval clearer, while flattening out
smaller peaks.

Wavelets of the type Daubechies 3 were chosen due to the similarity between
the shapes of these and that of the QRS complex I.1, and because others have
previously used Daubechies 3 wavelets to detect ECG in EEG [51].

To allow identification of the QRS pattern, the wavelet must be scaled simi-
larly. We use discrete wavelet analysis for computational efficiency, so we must
choose a scale that is a power of two. To find the correct power, we solve
srate/(2x) = 15 for x since we expect the frequency of QRS complexes to occur
with frequency approximately 15Hz. To make the subsequent analyses, based
on these approximative calculations, more robust we do three parallel analyses
at levels bxc − 1, bxc, and bxc+ 1.

We then quantify the degree of ECG behavior at each of the decomposition
levels bxc − 1, bxc, and bxc + 1. For each level, we find the approximation
coefficients. These coefficients are then split into windows. Each window has
length 1.1 seconds, and there is a space of 0.1 seconds between the end of one
window and the beginning of the next such that the same peak is not detected in
two separate windows, which would make one peak seem as two. The maximal

I.1 Discrete wavelet analysis 181

and minimal values in each window is found, and we store indices in the time
series at which these values were found. Thus we get two vectors, one containing
the indices of the local maximal values, and one containing the indices of the
local minimal values, where the indices are with respect to the entire time series.
We keep track of both the largest positive and negative values since ICs can only
be determined up to sign, which means that the ECG component may either
have large positive or large negative peaks when the QRS occurs.

Before doing further processing, we find the vector that shows the closest re-
semblance to the expected 1.2 second interval between QRS complexes. The
interval between two maximal values is found by subtracting the previous in-
dex from each index, and dividing these differences by the sampling rate to get
the interval lengths in seconds. We then find the mean, the variance, and the
fifth and 95th percentiles of intervals between peaks. These four values are the
features that we use to quantify the resemblance of the time series to the ECG.
Since these operations are done at three scales, we get 12 features in total.

I.1 Discrete wavelet analysis

Wavelet analysis is a way to split a signal into two parts, one of which contains
the large scale trends while the other gives the smaller variations around the
overall trends. In general, the techniques can be applied to both 1D and 2D
signals. However, we will only need the 1D case and thus focus on this. Also,
wavelet analysis can be performed in both a discrete and a continuous form.
Since the discrete form allows for much faster computations, we use this. Hence
this discussion is limited to discrete 1D wavelet analysis.

The large scale trend in a signal can be found by averaging over a few consec-
utive values in a moving window. Conversely, the small scale fluctuations may
be expressed as differences between consecutive values. By repeatedly taking
averages and differences of values in the previous large scale trend, both trends
and small fluctuations may be obtained at several levels. At higher levels, i.e.
after several repetitions of the process, larger large scale trends result since av-
erages are taken over many values of the original signal. We now make this
more concrete.

Assume we have a signal f = (f1, f2, f3, . . . , fn), where n is an even number.
If the original signal does not have an even number of values, we make it even
by appending zeros [1]. The moving window, in which we take averages and
differences, is moved forward by two values between calculating each average
(or difference). Thus the resulting trend and fluctuation each have length n

2 .

182 Feature quantifying similarity to ECG time series

We denote the trend by a1 = (a1
1, a

1
2, . . . , a

2
n/2) and the fluctuation, or detail, by

d1 = (d1
1, d

1
2, . . . , d

2
n/2). The superscripts 1 signify that these are first level trend

and detail coefficients, i.e. the moving averages and differences of the original
signal. We can find the coefficient a1

h by taking scalar products between f and
a scaling signal v1

h to find the trend, and between f and a wavelet w1
h to find

the detail d1
h [1].

We used the Daubechies3 scaling signals and wavelets, named Daubechies6 by
some authors [40]. These have the forms shown in (I.1)[1].

Scaling signals:

v1
1 =(α1, α2, α3, α4, α5, α6, 0, 0, . . . , 0)

v1
2 =(0, 0, α1, α2, α3, α4, α5, α6, 0, 0, . . . , 0)

... =
...

v1
n/2−1 =(α5, α6, 0, 0, . . . , 0, α1, α2, α3, α4)

v1
n/2 =(α3, α4, α5, α6, 0, 0, . . . , 0, α1, α2)

Wavelets:

w1
1 =(β1, β2, β3, β4, β5, β6, 0, 0, . . . , 0)

w1
2 =(0, 0, β1, β2, β3, β4, β5, β6, 0, 0, . . . , 0)

... =
...

w1
n/2−1 =(β5, β6, 0, 0, . . . , 0, β1, β2, β3, β4)

w1
n/2 =(β3, β4, β5, β6, 0, 0, . . . , 0, β1, β2),

(I.1)

where the approximate values of the filter coefficients are

(α1, α2, α3, α4, α5, α6) =(0.3327, 0.8069, 0.4599,−0.1350,−0.08544, 0.035226)

(β1, β2, β3, β4, β5, β6) =(α6,−α5, α4,−α3, α2,−α1).

We find the scaling and fluctuation coefficients at the first level by taking scalar
products with the scaling signals and wavelets in (I.1)

a1
h =v1

h · f
d1
h =w1

h · f .

I.1 Discrete wavelet analysis 183

The operation that performs this decomposition is written [1]

f
DB31

→ (a1|d1).

The second level trend and fluctuation are found by taking the scalar products
of the scaling signals and wavelets (I.1) with a1. The mth level decomposition
is found by repeating this process m times, and written

f
DB3m

→ (am|dm|dm−1| . . . ||d1).

The original signal can be reconstructed as follows (I.2) [1]

f = a1
1V

1
1 + a1

2V
1

2 + . . .+ a1
n/2V

1
n/2 + d1

1W
1
1 + a1

2W
1
2 + . . .+ d1

n/2W
1
n/2. (I.2)

By setting all detail coefficients to zero, we can extract the large trends by recon-
structing the signal using the calculated trend coefficients. This reconstruction
results in the a denoised version of the original signal. We will refer to the values
of the denoised signal as approximation coefficients. An example is shown in
figure I.2.

The discrete wavelet analysis in figure I.2 was performed at the third level since
the ECG signal was recorded at 128 Hz. Solving for x in 128/(2x) = 15, we
find x = log2(128/15) ≈ 3.0931 ≈ 3. Further details on the choice of the level
are given in the description of the QRS detection feature. The emphasis on the
largest peak provided by wavelet analysis is used in the calculation of the QRS
detection feature described in section 5.3.

184 Feature quantifying similarity to ECG time series

Figure I.2: The top figure shows a typical QRS complex. The middle figure is the
top figure with added noise. The bottom shows the third level approximation
coefficients of the signal in the middle figure. Even though the bottom figure
shows a much flatter curve than the original signal, this is preferable to the
noisy middle figure with several smaller peaks.

Appendix J

Confusion matrices

To give a better idea of the performance of the different models under the four
scenarios described in subsection 5.4.1, we give the confusion matrices from
the test data set in this chapter. We remind the reader that these scenarios are
constituted from either using all ICs, or only the manually labeled ICs, and from
either distinguishing between all classes or just distinguishing between neural
and all other ICs. The first section (section J.1) shows the results when all
features were given as input to the classification methods. Section J.2 shows
the confusion matrices from the test data when both training and test data only
included the features chosen by the MI criterion.

J.1 Confusion matrices from classification based
on all features

In this section, we show confusion matrices from each of the four scenarios
described in subsection 5.4.1 when the classifiers are given all features as input.
Figures J.1, J.2, J.3, and J.4 show the confusion matrices of each of the models
that we investigated, except ADJUST. Each figure shows confusion matrices for
all methods under one scenario.

186 Confusion matrices

Firstly, we would like to point out the oddity that the binary implementations of
the BCILab and the standard versions perform equally, while these same imple-
mentations show different performances when used in the voting scheme. Also,
the multiclass implementation of LDA and the binary implementations perform
equally well in the binary classification settings. As expected, the multiclass
version of LDA performs better than both the binary versions (standard and
BCILab) in the voting scheme.

Similarly, the QDA in the voting scheme had equal or better performance than
the version of QDA that takes all classes into account simultaneously in all four
cases. This may be due to the problem of too few observations in some classes
such that it was necessary to remove features at random from the multiclass
version of QDA in order to estimate the model

Strangely, multinomial regression outperforms logistic regression, and multi-
nomial regression with forward selection outperforms logistic regression with
forward selection in the binary cases. We would expect to see identical per-
formance of logistic and multinomial regression in binary classification since
multinomial regression reduces to logistic regression in this case. Conversely,
logistic regression outperforms multinomial regression, both with and without
forward selection, in the multiple class cases.

SVM outperforms BBCI. Since SVM is given all features, whereas the SVM
used in the BBCI algorithm is only given the features described in [56], which is
a subset of the features we use, the superior performance of SVM is expected.

The performances are in general better when only labeled ICs are used. Likewise,
performance is better in the binary case than in the multiple class cases.

J.1 Confusion matrices from classification based on all features 187

J.1.1 All features: Only manually labeled observations,
several classes

Figure J.1

188 Confusion matrices

Figure J.1: Comparison of the performance of the different classification meth-
ods when only manually labeled independent components are included, taking
all classes into account in the classification.

J.1 Confusion matrices from classification based on all features 189

J.1.2 All features: Only manually labeled observations,
binary classification

Figure J.2

190 Confusion matrices

Figure J.2: Comparison of the performance of the different classification meth-
ods when only manually labeled independent components are included in the
binary classification problem.

J.1 Confusion matrices from classification based on all features 191

J.1.3 All features: All observations, several classes

Figure J.3

192 Confusion matrices

Figure J.3: Comparison of the performance of the different classification meth-
ods when all independent components are included, taking all classes into ac-
count in the classification.

J.1 Confusion matrices from classification based on all features 193

J.1.4 All features: All observations, binary classification

Figure J.4

194 Confusion matrices

Figure J.4: Comparison of the performance of the different classification meth-
ods when all independent components are included on the binary classification
problem.

J.2 Confusion matrices from classification based only on best features
according to MI criterion 195

J.2 Confusion matrices from classification based
only on best features according to MI crite-
rion

In this section, we show confusion matrices from each of the four scenarios
described in subsection 5.4.1 when the classifiers are given only the best features
according to the MI-criterion. Figures J.5, J.6, J.7, and J.8 show the confusion
matrices of each of the models that we investigated, except ADJUST. Each
figure shows confusion matrices for all methods under one scenario.

The patterns described for the confusion matrices for methods using all features
also hold these confusion matrices, which were based on classifiers that were
only given the best features according to the MI-criterion.

Compared to the classifiers using all features, those using only the best features
perform equally well, or a little worse. The equal performance is probably due
to the fact that almost all features were chosen by the MI-criterion in all cases,
as explained in section 7.4.

196 Confusion matrices

J.2.1 MI-criterion features: Only manually labeled obser-
vations, several classes

Figure J.5

J.2 Confusion matrices from classification based only on best features
according to MI criterion 197

Figure J.5: Comparison of the performance of the different classification meth-
ods when only manually labeled independent components are included, taking
all classes into account in the classification.. Only the best features according
to the MI criterion were taken into account.

198 Confusion matrices

J.2.2 MI-criterion features: Only manually labeled obser-
vations, binary classification

Figure J.6

J.2 Confusion matrices from classification based only on best features
according to MI criterion 199

Figure J.6: Comparison of the performance of the different classification meth-
ods when only manually labeled independent components are included on the
binary classification problem. Only the best features according to the MI crite-
rion were taken into account.

200 Confusion matrices

J.2.3 MI-criterion features: All observations, several classes

Figure J.7

J.2 Confusion matrices from classification based only on best features
according to MI criterion 201

Figure J.7: Comparison of the performance of the different classification meth-
ods when all independent components are included, taking all classes into ac-
count in the classification. Only the best features according to the MI criterion
were taken into account.

202 Confusion matrices

J.2.4 MI-criterion features: All observations, binary clas-
sification

Figure J.8

J.2 Confusion matrices from classification based only on best features
according to MI criterion 203

Figure J.8: Comparison of the performance of the different classification meth-
ods when all independent components are included in the binary classification
problem. Only the best features according to the MI criterion were taken into
account.

204 Confusion matrices

Appendix K

Empirical variance
estimates of feature
coefficient estimates

206 Empirical variance estimates of feature coefficient estimates

Figure K.1

207

Figure K.1: Blue circles represent mean values of coefficient estimates. Red
asterisks represent the mean values plus and minus one standard deviation.
Only labeled ICs were used.

208 Empirical variance estimates of feature coefficient estimates

Figure K.2

209

Figure K.2: Blue circles represent mean values of coefficient estimates. Red
asterisks represent the mean values plus and minus one standard deviation. All
ICs were used.

210 Empirical variance estimates of feature coefficient estimates

Appendix L

Implementation of mutual
information

1 function MI = MutualInformation(X, nbins) % takes two arguments since
an old version of the code required two arguments, and calls to the
old code thus pass two arguments

2
3 nbins=ceil(min(50,3*log2(1+size(X, 1)/10)));
4
5
6 ptiles = 0:(1/nbins):1;
7 ptiles = ptiles*100;
8 %maxx = max(X);
9 binsplits = prctile(X, ptiles, 1);

10 %binsplits = [binsplits; maxx+2];
11
12 marginal_dists = zeros(nbins, size(X,2));
13 for ivariable = 1:size(X,2)
14 marginal_dists(:, ivariable) = count_interval_observations(X(:,

ivariable), binsplits(:, ivariable));
15 %marginal_dists(:, ivariable)=marginal_dists(:, ivariable)./abs(

diff(binsplits(:, ivariable)));
16 marginal_dists(:, ivariable)=marginal_dists(:, ivariable)/sum(

marginal_dists(:, ivariable));
17
18 end
19
20 joint_dists = zeros(size(X,2), size(X,2), nbins, nbins);
21 for ivariable1 = 1:size(X,2)
22 for ivariable2 = 1:size(X,2)

212 Implementation of mutual information

23 joint_dists(ivariable1, ivariable2, :, :) =
count_rectangle_observations(X(:,[ivariable1, ivariable2])
,...

24 binsplits(:, [ivariable1, ivariable2]));
25 joint_dists(ivariable1, ivariable2, :,:)=joint_dists(ivariable1

, ivariable2, :,:)/size(X,1);
26
27 end
28 end
29
30 PXPY = zeros(size(X,2), size(X,2), nbins, nbins);
31 for ivariable1 = 1:size(X,2)
32 for ivariable2 = 1:size(X,2)
33 for ibin=1:nbins
34 PXPY(ivariable1, ivariable2, ibin, :) = marginal_dists(ibin

, ivariable1).*...
35 marginal_dists(:, ivariable2);
36 end
37 end
38 end
39
40 MI = zeros(size(X,2), size(X,2));
41 for ivariable1 = 1:size(X,2)
42 for ivariable2 = 1:size(X,2)
43 MI(ivariable1, ivariable2) = nansum(nansum(...
44 joint_dists(ivariable1, ivariable2, :, :).*...
45 (log(joint_dists(ivariable1, ivariable2, :, :))-log(PXPY(

ivariable1, ivariable2, :, :)))...
46));
47 end
48 end
49
50 end
51
52 function nobs_intervalwise = count_interval_observations(obs, splits)
53 splits(end) = splits(end)+1;
54 nobs_intervalwise = zeros(length(splits)-1,1);
55 for isplit=1:(length(splits)-1)
56 nobs_intervalwise(isplit) = sum(((obs < splits(isplit+1)) + (obs >=

splits(isplit))) ==2);
57 end
58 end
59
60
61 function nobs_rectanglewise = count_rectangle_observations(obs, splits)
62 splits(end,:)=splits(end,:)+1;
63 nobs_rectanglewise = zeros(length(splits)-1,length(splits)-1);
64 for isplit1=1:(size(splits,1)-1)
65 for isplit2=1:(size(splits,1)-1)
66 nobs_rectanglewise(isplit1, isplit2) = sum(((obs(:,1) < splits(

isplit1+1,1)) + (obs(:,1) >= splits(isplit1,1)) +...
67 (obs(:,2) < splits(isplit2+1,2)) + (obs(:,2) >= splits(

isplit2,2))) ==4);
68 end
69 end

213

70 end

214 Implementation of mutual information

Appendix M

Implementation of
L1-regularized logistic

regression

1 function coefs = mylogregl1(varargin)
2
3 arg_define([0 2],varargin, ...
4 arg_norep(’trials’), ...
5 arg_norep(’targets’), ...
6 arg({’lambd’,’Lambda’, ’lambda’, ’lam’}, 0.5, [0 1], ’

Regularization parameter. The higher the greater the penalty on
many non-zero coefficient estimates.’), ...

7 arg({’obsweights’,’weights’,’observationWeights’}, [], [], ’The
weight of each observation in fit of model. A higher weight for
an observation makes the cost of misclassifying that
observation higher.’), ...

8 arg({’coefs’}, [], [], ’Initial guess at coefficients.’), ...
9 arg({’maxeval’}, 100, [], ’Stopping criterium. Stop if number of

function evaluations exceeds maxeval’), ...
10 arg({’x_change’}, 10^(-8), [], ’Stopping criterium. Stop if all

parameters change less than this.’));
11 estimate_coefficients=true;
12
13 if isempty(obsweights)
14 obsweights = ones(length(targets),1);
15 end
16

216 Implementation of L1-regularized logistic regression

17 classes = unique(targets);
18
19 if length(classes)~=2
20 error(’bcilab09_userscripts:mylogregl1:class_number’, ’y must

contain two classes’)
21 end
22
23 tars = targets;
24 tars(tars==classes(1))=0;
25 tars(tars==classes(2))=1;
26 if isempty(coefs)
27 coefs = randn(size(trials,2),1);
28 end
29 if length(coefs)<1
30 warning([’bcilab:userscripts:mylogregl1’, ’length of initial

coefficient vector estimate is zero. Number of columns in input
data is ’ num2str(size(trials,2))])

31 estimate_coefficients=false;
32 coefs=zeros(size(trials,2),1);
33 end
34 intercept = randn(1,1);
35
36 %l1logistic_fit_error(coefs(2:end), coefs(1));
37 its=0;
38 x=trials;
39 y=tars;
40 observation_weights=obsweights;
41 mu = 1; % step size
42 exp_term = exp((intercept+x*coefs));
43
44 costs_current = observation_weights.*(lambd*(y.*(intercept+x*coefs)-log

(1+exp_term)) - (1-lambd)*sum(abs(coefs)));
45
46 costs_current = -costs_current; % since we are using an algorithm that

minimizes, we
47 %take the negative of the current costs
48 nparams_conv=0;
49 while its <= maxeval && nparams_conv < (length(coefs)+1)
50 % find gradient, i.e. first partial derivative with respect to the
51 % coefficients.
52 J = zeros(size(x,1), length(coefs)+1);
53 J(:,1) = lambd*observation_weights.*(y - exp_term./(1+exp_term));
54 for i=2:(length(coefs)+1)
55 J(:,i) = lambd*observation_weights.*(y.*x(:,i-1) - x(:,i-1).*

exp_term./(1+exp_term));
56 end
57 J=-J;
58
59 if estimate_coefficients
60 for i=1:(length(coefs))
61 Jpenal = zeros(size(x,1), length(coefs));
62 Jpenal(:,i) = -observation_weights.*(1-lambd)*sign(coefs(i)

);
63 end
64 Jpenal=-Jpenal;

217

65
66 % update coefficient estimates
67 coefs_new_temp = coefs - mu*sum(J(:,2:end))’;
68 coefs_new = coefs_new_temp - mu*sum(Jpenal)’;
69
70 coefs_new(sign(coefs_new)~=sign(coefs_new_temp))=0;
71 else
72 coefs_new=coefs;
73 end
74 intercept_new = intercept - mu*sum(J(:,1));
75
76 exp_term_new = exp(intercept_new+x*coefs_new);
77 costs_new = -observation_weights.*(lambd*(y.*(intercept_new+x*

coefs_new)-log(1+exp_term_new)) -...
78 (1-lambd)*sum(abs(coefs_new)));
79
80 cost_current=sum(costs_current);
81 cost_improvement = cost_current-sum(costs_new); % this is positive

if the new estimates are better
82
83 % we only change the estimates of the coefficients if an

improvement in
84 % the cost function was obtained.
85 if cost_improvement>0 && isfinite(cost_improvement)
86 param_changes =abs([intercept coefs’]-[intercept_new coefs_new

’]);
87 intercept=intercept_new;
88 coefs=coefs_new;
89 exp_term=exp_term_new;
90 costs_current=costs_new;
91 mu = mu*1.5;
92 nparams_conv=sum(param_changes<x_change);
93
94 else
95 mu=mu/2;
96 nparams_conv =0;
97 end
98 its=its+1;
99 end

100 coefs = [intercept coefs’]’;

218 Implementation of L1-regularized logistic regression

Bibliography

[1] A Primer on Wavelets and their Scientific Applications. 2nd ed. Chapman
& Hall/CRC, 2008.

[2] K. V. Allen and B. M. Frier. “Nocturnal hypoglycemia: clinical manifes-
tations and therapeutic strategies toward prevention”. In: Endocr Pract 9
(2003), pp. 530–543.

[3] Applied Iterative Methods. A K Peters/CRC Press, 2007. isbn: 978-1-
56881-342-4.

[4] G. Bartels, Li-Chen Shi, and Bao-Liang Lu. “Automatic artifact removal
from EEG - a mixed approach based on double blind source separation
and support vector machine”. In: Engineering in Medicine and Biology So-
ciety (EMBC), 2010 Annual International Conference of the IEEE. 2010,
pp. 5383 –5386. doi: 10.1109/IEMBS.2010.5626481.

[5] HENNING BECK-NIELSEN. METHOD AND APPARATUS FOR PRE-
DICTION AND WARNING OF HYPOGLYCAEMIC ATTACK. Mar.
2011. url: \url{http://www.wipo.int/patentscope/search/
en / detail . jsf ? docId = EP9916832 & recNum = 2 & office =
&queryString = ALL \ %3A \ %28hyposafe \ %29 & prevFilter =
&sortOption=Pub+Date+Desc&maxRec=3}.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). 1st ed. 2006. Corr. 2nd printing. Springer,
2007. isbn: 0387310738. url: \url{http://www.worldcat.org/
isbn/0387310738}.

[7] B. Blankertz et al. “Optimizing Spatial filters for Robust EEG Single-Trial
Analysis”. In: Signal Processing Magazine, IEEE 25.1 (2008), pp. 41 –56.
issn: 1053-5888. doi: 10.1109/MSP.2008.4408441.

\url{http://www.wipo.int/patentscope/search/en/detail.jsf?docId=EP9916832&recNum=2&office=&queryString=ALL\%3A\%28hyposafe\%29&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3}
\url{http://www.wipo.int/patentscope/search/en/detail.jsf?docId=EP9916832&recNum=2&office=&queryString=ALL\%3A\%28hyposafe\%29&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3}
\url{http://www.wipo.int/patentscope/search/en/detail.jsf?docId=EP9916832&recNum=2&office=&queryString=ALL\%3A\%28hyposafe\%29&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3}
\url{http://www.wipo.int/patentscope/search/en/detail.jsf?docId=EP9916832&recNum=2&office=&queryString=ALL\%3A\%28hyposafe\%29&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3}
\url{http://www.worldcat.org/isbn/0387310738}
\url{http://www.worldcat.org/isbn/0387310738}

220 BIBLIOGRAPHY

[8] Benjamin Blankertz. BCI Competition IV - Final Results -. Mar. 2011.
url: \url{http://www.bbci.de/competition/iv/results/
index.html}.

[9] TARAS BODNAR and YAREMA OKHRIN. “On the Product of In-
verse Wishart and Normal Distributions with Applications to Discrimi-
nant Analysis and Portfolio Theory”. In: Scandinavian Journal of Statis-
tics 38.2 (2011), pp. 311–331. issn: 1467-9469. doi: 10.1111/j.1467-
9469.2011.00729.x. url: http://dx.doi.org/10.1111/j.
1467-9469.2011.00729.x.

[10] Brian V. Bonnlander and Andreas S. Weigend. “Selecting Input Variables
Using Mutual Information and Nonparametric Density Estimation”. In:
1996, pp. 42–50.

[11] E. W. ter Braak et al. “Maternal hypoglycemia during pregnancy in type 1
diabetes: maternal and fetal consequences”. In: Diabetes Metab. Res. Rev.
18 (2002), pp. 96–105.

[12] Angel Navia Vazquez Carlos Guerrero-Mosquera. “Automatic removal of
ocular artifacts from EEG data using adaptive filtering and independent
component analysis”. In: 17th European Signal Processing Conference
(EUSIPCO 2009). Glasgow, Scotland 2009.

[13] Arnaud Delorme and Scott Makeig. Chapter 09: Decomposing Data Using
ICA. May 2010. url: http://sccn.ucsd.edu/wiki/Chapter_09:
_Decomposing_Data_Using_ICA.

[14] Arnaud Delorme and Scott Makeig. “EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis”. In: Journal of Neuroscience Methods 134 (2004), pp. 9–21.

[15] Arnaud Delorme, Terrence Sejnowski, and Scott Makeig. “Enhanced detec-
tion of artifacts in EEG data using higher-order statistics and independent
component analysis”. In: NeuroImage 34.4 (2007), pp. 1443 –1449. issn:
1053-8119. doi: DOI:10.1016/j.neuroimage.2006.11.004. url:
\url{http://www.sciencedirect.com/science/article/
B6WNP-4MNHY2V-4/2/93de9223a58e55c80f19ecdb50e8dcfe}.

[16] Arnaud Delorme et al. “EEGLAB, SIFT, NFT, BCILAB, and ERICA:
New Tools for Advanced EEG Processing.” In: Comp. Int. and Neurosc.
2011 (2011). url: http://dblp.uni-trier.de/db/journals/
cin/cin2011.html#DelormeMKASVM11.

[17] Makeig S Delorme A and TJ. Sejnowski. “Automatic artifact rejection for
EEG data using high-order statistics and independent component analy-
sis”. In: Third International Workshop on Independent Component Anal-
ysis and Signal Separation. San Diego 2001.

\url{http://www.bbci.de/competition/iv/results/index.html}
\url{http://www.bbci.de/competition/iv/results/index.html}
http://dx.doi.org/10.1111/j.1467-9469.2011.00729.x
http://dx.doi.org/10.1111/j.1467-9469.2011.00729.x
http://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA
http://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA
\url{http://www.sciencedirect.com/science/article/B6WNP-4MNHY2V-4/2/93de9223a58e55c80f19ecdb50e8dcfe}
\url{http://www.sciencedirect.com/science/article/B6WNP-4MNHY2V-4/2/93de9223a58e55c80f19ecdb50e8dcfe}
http://dblp.uni-trier.de/db/journals/cin/cin2011.html#DelormeMKASVM11
http://dblp.uni-trier.de/db/journals/cin/cin2011.html#DelormeMKASVM11

BIBLIOGRAPHY 221

[18] Rohtash Dhiman, J.S. Saini, and A.P Mittal Priyanka. “ARTIFACT RE-
MOVAL FROM EEG RECORDINGS – AN OVERVIEW”. In: NCCI 2010
-National Conference on Computational Instrumentation. 2010.

[19] C. Flykanaka-Gantenbein. “Hypoglycemia in childhood: long-term ef-
fects”. In: Pediatr Endocrinol Rev 1 Suppl 3 (Aug. 2004), pp. 530–536.

[20] D. François, V. Wertz, and M. Verleysen. “The permutation test for fea-
ture selection by mutual information”. In: in: ESANN 2006, European
Symposium on Artificial Neural Networks. 2006, pp. 239–244.

[21] Jun Feng Gao et al. “Automatic Removal of Eye-Movement and
Blink Artifacts from EEG Signals”. In: Brain Topography 23.1 (1
2010). 10.1007/s10548-009-0131-4, pp. 105–114. issn: 0896-0267. url:
\url{http://dx.doi.org/10.1007/s10548-009-0131-4}.

[22] Brain Products GmbH. Brain Vision Analyzer User Manual, version 1.05.
Tech. rep. Brain Products GmbH, 1999.

[23] K. Gramann, T. Tollner, and H. J. Muller. “Dimension-based attention
modulates early visual processing”. In: Psychophysiology 47 (Sept. 2010),
pp. 968–978.

[24] HypoSafe. CLINICAL INVESTIGATION. Feb. 2010. url: \url{http:
//www.hyposafe.com/index.php/site/Pages/clinical_
trials/info}.

[25] Aapo Hyvarinen. Independent component analysis: a tuturial. May 2010.
url: http : / / www . cis . hut . fi / aapo / papers / IJCNN99 _
tutorialweb/node9.html.

[26] A. Hyvärinen and E. Oja. “Independent component analysis: algorithms
and applications”. In: Neural Networks 13.4-5 (2000), pp. 411 –430. issn:
0893-6080.

[27] Aapo Hyvärinen. “Fast and Robust Fixed-Point Algorithms for Indepen-
dent Component Analysis”. In: IEEE Transactions on Neural Networks
10.3 (1999), pp. 626–634. url: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.50.4731.

[28] Immrama Institute. The International 10-20 System of Electrode Place-
ment. Mar. 2010. url: http://www.immrama.org/eeg/electrode.
html.

[29] A. Jain, D. Sarraf, and D. Fong. “Preventing diabetic retinopathy through
control of systemic factors”. In: Curr Opin Ophthalmol 14 (Dec. 2003),
pp. 389–394.

\url{http://dx.doi.org/10.1007/s10548-009-0131-4}
\url{http://www.hyposafe.com/index.php/site/Pages/clinical_trials/info}
\url{http://www.hyposafe.com/index.php/site/Pages/clinical_trials/info}
\url{http://www.hyposafe.com/index.php/site/Pages/clinical_trials/info}
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/node9.html
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/node9.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.4731
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.4731
http://www.immrama.org/eeg/electrode.html
http://www.immrama.org/eeg/electrode.html

222 BIBLIOGRAPHY

[30] Carrie A Joyce, Irina F Gorodnitsky, and Marta Kutas. “Automatic
removal of eye movement and blink artifacts from EEG data using
blind component separation.” In: Psychophysiology 41.2 (Mar. 2004),
pp. 313–325. issn: 0048-5772. doi: 10.1111/j.1469-8986.2003.
00141.x. url: \url{http://dx.doi.org/10.1111/j.1469-
8986.2003.00141.x}.

[31] Claus B. Juhl et al. “Automated detection of hypoglycemia-induced
EEG changes recorded by subcutaneous electrodes in subjects with
type 1 diabetes-The brain as a biosensor”. In: Diabetes Research and
Clinical Practice In Press, Corrected Proof (Jan. 2010). doi: 10 .
1016 / j . diabres . 2010 . 01 . 007. url: \url{http : / / www .
sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-
4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=
1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=
c&_searchStrId=1226016776&_rerunOrigin=google&_acct=
C000050221&_version=1&_urlVersion=0&_userid=10&md5=
0d90939e8fffe4239677405131f33c57}.

[32] R. Jung, W. Berger, and H. Berger. “[Fiftieth anniversary of Hans
Berger’s publication of the electroencephalogram. His first records in 1924–
1931 (author’s transl)]”. In: Arch Psychiatr Nervenkr 227 (Dec. 1979),
pp. 279–300.

[33] T.-P. Jung et al. “Imaging brain dynamics using independent component
analysis”. In: Proceedings of the IEEE 89.7 (July 2001), pp. 1107 –1122.
issn: 0018-9219. doi: 10.1109/5.939827.

[34] H Klekowicz et al. “Automatic analysis of sleep EEG”. In: Front. Neu-
roinform. Conference Abstract: Neuroinformatics. 2008. doi: 10.3389/
conf.neuro.11.2008.01.107.

[35] Th. Kohler et al. “Depth normalization in MEG/EEG current density
imaging”. In: Engineering in Medicine and Biology Society, 1996. Bridging
Disciplines for Biomedicine. Proceedings of the 18th Annual International
Conference of the IEEE. Vol. 2. 1996, 812 –813 vol.2. doi: 10.1109/
IEMBS.1996.651989.

[36] Z. J. Koles. “The quantitative extraction and topographic mapping of the
abnormal components in the clinical EEG”. In: Electroencephalogr Clin
Neurophysiol 79 (Dec. 1991), pp. 440–447.

[37] J. L. Lancaster et al. “Automated labeling of the human brain: a prelim-
inary report on the development and evaluation of a forward-transform
method”. In: Hum Brain Mapp 5 (1997), pp. 238–242.

[38] J. L. Lancaster et al. “Automated Talairach atlas labels for functional
brain mapping”. In: Hum Brain Mapp 10 (July 2000), pp. 120–131.

\url{http://dx.doi.org/10.1111/j.1469-8986.2003.00141.x}
\url{http://dx.doi.org/10.1111/j.1469-8986.2003.00141.x}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}
\url{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5Y-4Y5H5Y1-2&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1226016776&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d90939e8fffe4239677405131f33c57}

BIBLIOGRAPHY 223

[39] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data.
2nd ed. Wiley Series in Probability and Statistics. New York: Wiley, 2002.

[40] MatLab. Wavelet Families: Additional Discussion. Tech. rep. The Math-
Works, Inc., 1994–2008.

[41] A. Mognon et al. “ADJUST: An Automatic EEG artifact Detector based
on the Joint Use of Spatial and Temporal features.” In: Psychophysiology
(2010). doi: 10.1111/j.1469-8986.2010.01061.x.

[42] Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applica-
tions and Related Fields. 6th ed. Lippincott Williams and Wilkins, 2010.

[43] Hans Bruun Nielsen. A MATLAB TOOLBOX FOR OPTIMIZATION
AND DATA FITTING. July 2011. url: \url{http://www2.imm.
dtu.dk/~hbn/immoptibox/}.

[44] H. Nolan, R. Whelan, and R. B. Reilly. “FASTER: Fully Automated Sta-
tistical Thresholding for EEG artifact Rejection”. In: J. Neurosci. Methods
192 (Sept. 2010), pp. 152–162.

[45] “Observed Confidence Levels, Theory and Application”. In: Chapman and
Hall/CRC, 2008. Chap. Appendix A. Review of Asymptotic Statistics,
235–249.

[46] Julie A Onton and Scott Makeig. “High-frequency broadband modulation
of electroencephalographic spectra”. In: Frontiers in Human Neuroscience
0 (2009), p. 12. issn: 1662-5161. doi: 10.3389/neuro.09.061.2009.
url: http://www.frontiersin.org/Journal/Abstract.aspx?
s=537&name=humanneuroscience&ART_DOI=10.3389/neuro.
09.061.2009.

[47] Stig Pramming et al. “Glycaemic Threshold For Changes In Electroen-
cephalograms During Hypoglycaemia In Patients With Insulin Depen-
dent Diabetes”. In: British Medical Journal (Clinical Research Edition)
296.6623 (Mar. 1988), pp. 665–667. url: \url{http://www.jstor.
org/pss/29529969}.

[48] Rajesh P.N. Rao and Reinhold Scherer. “Statistical Pattern Recognition
and Machine Learning in Brain-Computer Interfaces”. In: Statistical Sig-
nal Processing for Neuroscience and Neurotechnology. Ed. by Karim G.
Oweiss. Oxford: Academic Press, 2010, pp. 335 –367. isbn: 978-0-12-
375027-3. doi: DOI:10.1016/B978-0-12-375027-3.00010-7.
url: http://www.sciencedirect.com/science/article/pii/
B9780123750273000107.

[49] Peter Rossing and Dick de Zeeuw. “Need for better diabetes treatment
for improved renal outcome.” In: Kidney international 79 Suppl 1 (Mar.
2011), S28–32. issn: 1523-1755. doi: 10.1038/ki.2010.513. url:
http://www.ncbi.nlm.nih.gov/pubmed/21358699.

\url{http://www2.imm.dtu.dk/~hbn/immoptibox/}
\url{http://www2.imm.dtu.dk/~hbn/immoptibox/}
http://www.frontiersin.org/Journal/Abstract.aspx?s=537&name=human neuroscience&ART_DOI=10.3389/neuro.09.061.2009
http://www.frontiersin.org/Journal/Abstract.aspx?s=537&name=human neuroscience&ART_DOI=10.3389/neuro.09.061.2009
http://www.frontiersin.org/Journal/Abstract.aspx?s=537&name=human neuroscience&ART_DOI=10.3389/neuro.09.061.2009
\url{http://www.jstor.org/pss/29529969}
\url{http://www.jstor.org/pss/29529969}
http://www.sciencedirect.com/science/article/pii/B9780123750273000107
http://www.sciencedirect.com/science/article/pii/B9780123750273000107
http://www.ncbi.nlm.nih.gov/pubmed/21358699

224 BIBLIOGRAPHY

[50] Giulia Rotundo. “The Hurst’s exponent in technical analysis signals”. In:
Practical Fruits of Econophysics. Ed. by Hideki Takayasu. Springer Tokyo,
2006, pp. 121–125. isbn: 978-4-431-28915-9. url: \url{http://dx.
doi.org/10.1007/4-431-28915-1_21}.

[51] M. Sakai and D. Wei. “Separation of electrocardiographic and encephalo-
graphic components based on signal averaging and wavelet shrinkage tech-
niques”. In: Comput. Biol. Med. 39 (July 2009), pp. 620–629.

[52] Shi-Yun Shao et al. “Automatic EEG artifact removal: a weighted support
vector machine approach with error correction.” In: IEEE Trans Biomed
Eng 56.2 (Feb. 2009), pp. 336–44.

[53] L. Shoker, S. Sanei, and J. Chambers. “Artifact removal from electroen-
cephalograms using a hybrid BSS-SVM algorithm”. In: Signal Process-
ing Letters, IEEE 12.10 (Oct. 2005), pp. 721 –724. issn: 1070-9908. doi:
10.1109/LSP.2005.855539.

[54] “Statistics for Environmental Engineers, Second Edition”. In: CRC Press,
2002. Chap. 49.

[55] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Pearson, 2006.

[56] Michael Tangermann et al. “Classification of artifactual ICA components”.
In: Int J Bioelectromagnetism 11.2 (2009), pp. 110–114.

[57] The Elements of Statistical Learning - Data Mining, Inference, and Pre-
diction. Springer Series in Statistics. Springer, 2009.

[58] Poul Thyregod and Henrik Madsen. Introduction to General and Gen-
eralized Linear Models (Chapman & Hall/Crc Texts in Statistical Sci-
ence). 1st ed. CRC, 2010. isbn: 1420091557. url: \url{http://www.
worldcat.org/isbn/1420091557}.

[59] G. Tognini et al. “Diabetes mellitus: CT findings of unusual complica-
tions related to the disease: a pictorial essay”. In: Clin Imaging 27 (2003),
pp. 325–329.

[60] G. D. Tourassi et al. “Application of the mutual information criterion
for feature selection in computer-aided diagnosis”. In: Med Phys 28 (Dec.
2001), pp. 2394–2402.

[61] Filipa Campos Viola et al. “Semi-automatic identification of indepen-
dent components representing EEG artifact.” In: Clin Neurophysiol 120.5
(2009), pp. 868–77.

[62] Larry Wasserman. All of Statistics: A Concise Course in Statistical In-
ference (Springer Texts in Statistics). Springer, 2003. isbn: 0387402721.
url: \url{http://www.worldcat.org/isbn/0387402721}.

\url{http://dx.doi.org/10.1007/4-431-28915-1_21}
\url{http://dx.doi.org/10.1007/4-431-28915-1_21}
\url{http://www.worldcat.org/isbn/1420091557}
\url{http://www.worldcat.org/isbn/1420091557}
\url{http://www.worldcat.org/isbn/0387402721}

BIBLIOGRAPHY 225

[63] Eric W Weisstein. Method of Steepest Descent. Aug. 2011.
url: \url{http : / / mathworld . wolfram . com /
MethodofSteepestDescent.html}.

[64] I. Winkler, S. Haufe, and M. Tangermann. “Automatic Classification of
Artifactual ICA-Components for Artifact Removal in EEG Signals”. In:
Behav Brain Funct 7 (Aug. 2011), p. 30.

[65] Frank G. Yanowitz. Characteristics of the Normal ECG. May 2011. url:
\url{http://library.med.utah.edu/kw/ecg/ecg_outline/
Lesson3/index.html}.

\url{http://mathworld.wolfram.com/MethodofSteepestDescent.html}
\url{http://mathworld.wolfram.com/MethodofSteepestDescent.html}
\url{http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson3/index.html}
\url{http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson3/index.html}

	Preface
	I Introduction
	1 State of the art
	1.1 Artifact removal
	1.2 Seizure detection

	2 Pipeline to learn seizure prediction model
	2.1 Aims
	2.2 Structure

	II Data
	3 Seizure detection
	3.1 Experimental setup

	4 Artifact removal

	III Methods
	5 Artifact removal
	5.1 Construction of classification methods for independent components
	5.2 Independent component analysis
	5.3 Features of independent components
	5.4 Classification of independent components

	6 Seizure detection
	6.1 Detection of corrupted data
	6.2 Estimation of corrupted data
	6.3 Model

	IV Results and discussion
	7 Artifact removal
	7.1 Exploratory data analysis
	7.2 Performance of classification methods
	7.3 Summary
	7.4 Feature analyses

	8 Seizure detection
	8.1 Estimation of corrupted data
	8.2 Performance of seizure detection model

	9 Conclusion
	9.1 Future work

	A Exploratory analyses
	B Linear Discriminant Analysis
	C Quadratic Discriminant Analysis
	D Logistic regression
	D.1 Logistic regression with all the gory details
	D.2 Variance of coefficient estimates for logistic regression

	E Error propagation
	F Factorization of data to estimate missing values
	G Implementation
	H Current density norm, the left out BBCI feature
	I Feature quantifying similarity to ECG time series
	I.1 Discrete wavelet analysis

	J Confusion matrices
	J.1 Confusion matrices from classification based on all features
	J.2 Confusion matrices from classification based only on best features according to MI criterion

	K Empirical variance estimates of feature coefficient estimates
	L Implementation of mutual information
	M Implementation of L1-regularized logistic regression

