
Modelling a Hospital Information
System with Decentralized Label

Model

Slawomir Holodniuk

Kongens Lyngby 2011
IMM-MSC-2011



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-MSC: ISSN 0909-3192



Summary

Electronic Medical Records (EMR) systems are even more popular solutions
now-a-days in the health sector. Successful implementation of this type of sys-
tems strongly depends on how secure they are. In this master thesis we verify
how good can the Decentralized Label Model serve the purpose of implement-
ing a secure EMR system. We also investigate what is the relation between the
Decentralized Label Model and Aspect Oriented Programming with respect to
meeting security requirements when implementing an EMR system using these
two concepts.



ii



Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling (IMM), the Technical University of Denmark in partial fulfilment of
the requirements for acquiring the M.Sc. degree in engineering.

The Decentralized Label Model is a software security framework for providing
formal verification of confidentiality and integrity properties of software systems.
The thesis examines applicability of the Decentralized Label Model in the area
of Electronic Medical Records systems.

The thesis consists of a summary report and a CD with the source code of the
implemented system.

Kongens Lyngby, June 2011

Slawomir Holodniuk



iv



Contents

Summary i

Preface iii

1 Introduction 1
1.1 Electronic Medical Records - motivation and challenges . . . . . 1
1.2 Decentralized Label Model for the Hospital Information System . 3
1.3 Hospital Information System - gathering security requirements . 3

2 Case study: Hospital Information System 13
2.1 Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Databases design . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Decentralized Label Model 25
3.1 Access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Labels ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Label checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Case study: realisation in JIF 33
4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Data labels design . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Meeting the security-related requirements . . . . . . . . . . . . . 34
4.4 Package record . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Package interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Package utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 SQL tables implementation . . . . . . . . . . . . . . . . . . . . . 49



vi CONTENTS

5 Case study: usage scenarios 51
5.1 Test case: add patient - authorized attempt . . . . . . . . . . . . 52
5.2 Test case: add patient - unauthorized attempt . . . . . . . . . . . 53
5.3 Test case: reading administrative record - authorized attempt . . 54
5.4 Test case: reading administrative record - unauthorized attempt 55
5.5 Test case: adding diagnose - authorized attempt . . . . . . . . . 56
5.6 Test case: adding diagnose - unauthorized attempt . . . . . . . . 57
5.7 Test case: archiving record - authorized attempt . . . . . . . . . 58
5.8 Test case: archiving record - unauthorized attempt . . . . . . . . 58

6 Case study: benchmark realisation in Aspect Oriented Pro-
gramming 61
6.1 Aspect Oriented Programming . . . . . . . . . . . . . . . . . . . 61
6.2 Adaptable Access Control and the Hospital Information System . 66

7 Comparison & Conclusions 71
7.1 Comparison - JIF disadvantages . . . . . . . . . . . . . . . . . . 72
7.2 Comparison - JIF advantages . . . . . . . . . . . . . . . . . . . . 75
7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A HIS 79
A.1 HIS Implementation Reference . . . . . . . . . . . . . . . . . . . 79



Chapter 1

Introduction

1.1 Electronic Medical Records - motivation and
challenges

The Hospital Information System to be modelled is an example of an EMR
(Electronic Medical Record) system. The EMR systems aim at replacing (or
supporting) the paper-based medical records. The old fashioned style of register-
ing medical information of patients at private General Practitioners offices, hos-
pitals, medical-care companies, and similar tends to be superseded by network-
enabled information systems to ease storage, retrieval, sharing and analysis of
medical records.
This process started in western countries in 70’s - at that point of time the
software solutions were used by single departments of hospitals mainly for ad-
ministrative purposes. As the time went by, these applications were adjusted
and extended to support also the work of clinicians. Then, the medical records
started being used also in GP’s consulting rooms to provide medical informa-
tion about patients. As the requirement of medical-care support systems shifted
from purely administrative to what is understood now as EMR systems, new
chances, but also new challenges arose.
At present, the software solutions for medial-records sector seem to be inevitable
in a cost-efficient public health care service. The highest-developed countries
(as USA, Switzerland and United Kingdom) put great effort and assign huge



2 Introduction

amounts of money for pursuing successful nation- or region-wide EMR systems.
Public health care service is one of the biggest (with respect to received amount
of money) budget beneficiaries. In USA, it consumes yearly around $800 bln,
that is 21% of Federal Budget (see figure 1.1 ). Improvement of the health-care
service efficiency may possibly save enormous volume of money. The experience
of employing IT in both public and private sectors suggests that using innovative
information systems usually effects in major savings.

Figure 1.1: Public health service funding from Federal Budget of U.S. [1]



1.2 Decentralized Label Model for the Hospital Information System 3

1.2 Decentralized Label Model for the Hospital
Information System

The main question this thesis is trying to answer is if the Decentralized Label
Model is an applicable framework for implementing a secure EMR system.
The Decentralized Label Model is a framework for ensuring confidentiality and
integrity of data processed by information systems. It is a very abstract frame-
work - the Decentralized Label Model is only a theoretical concept of how to
ensure data privacy. However there exists an implementation of this framework
- it is called Java Information Flow (JIF). JIF is a java-based programming
language implementing the features of the Decentralized Label Model. It is de-
veloped by i.a. Andrew Myers - a co-author of the Decentralized Label Model.
Answering the question of how applicable is the Decentralized Label Model for
implementing a secure EMR system, we use the JIF language to implement such
a system. The implemented system and the implementation process experiences
will be the base for evaluation of the Decentralized Label Model.

Implementation of an EMR system, even when not paying attention to its se-
curity properties, is a big task requiring a lot of time and effort. For this reason
we will focus mainly on the security properties of the system, and keep the
functionality as simple as possible.
The next section presents the security requirements, and justifies them by show-
ing the sources thereof.

1.3 Hospital Information System - gathering se-
curity requirements

Development of an information system involves requirements elicitation - a pro-
cess of establishing requirements for the developed system. A software require-
ment is a desired property or functionality of a software system. A software
system is considered as successful if it meets its requirements. The main source
of requirements are the stakeholders - people, groups and organizations that can
affect of be affected by a successful or unsuccessful development of the software
system. It is only the stakeholders who decide (explicitly or non-explicitly) if
the developed system is successful, thus their concerns and wishes about the
system are key factors in the software development process.
It is not different in the case of the Hospital Information System. Multiple
parties that are involved in the health-care process, law-makers, regulators and



4 Introduction

the public opinion do have a stake both in the development process and the
operational phase of an EMR the system. To get in this study the modelling of
the Hospital Information System as realistic as possible, we will investigate who
are stakeholders of a typical Electronic Medical Record system, what are their
stakes, and what concerns and wishes for the Hospital Information System they
may have. This information is mainly gathered from papers about the challenges
in implementing EMR systems [5, 19, 14, 28], specifications of requirements for
such system [27, 26, 17], and comparative studies and governmental agencies
guidelines [6, 20, 12, 13].

These sources for sure are not exhaustive. First, it seems that a general speci-
fication of security requirements for EMR systems has not been yet published.
Second, in a real-life software development process (and requirements engineer-
ing) an important source of requirements are the people who are to be the users
of the system (in this study these are e.g. doctors, nurses and administrative
staff of a hospital). Unfortunately, it is infeasible to get in touch with such peo-
ple for this study. On the other hand, the requirements posed by those people
concern mainly the functionality, and the user interface of the system - what
features should be there, how the screens should look like, etc. In this study we
are concerned mainly with the security requirements, which are not the most
important from the medical-care staff’s point of view. The mentioned papers
seem to be sufficient for the security requirements elicitation process. The main
categories of requirements identified for the Hospital Information System are:

• Data Confidentiality Requirements - sensitive data protection against
unauthorized disclosure

• Data Integrity Requirements - sensitive data protection against unau-
thorized change / deletion

• Maintainability Requirements - reconfigurability of the system, easi-
ness of specifying and changing the data security policies

• Interoperability Requirements - ability to exchange information with
other systems

Requirements falling into these four categories are the most often encountered
in the mentioned reference papers, thus it is reasonable to focus on them and
put most effort on elaborating them.

Later in this section a few popular and proven requirements elicitation tech-
niques (like stakeholders analysis, goals analysis, business processes analysis



1.3 Hospital Information System - gathering security requirements 5

etc.) are used to gather the interesting requirements - those, which are related
to security, maintainability and interoperability of the Hospital Information Sys-
tem.

1.3.1 Stakeholders

Project stakeholders are persons, groups and institutions which can affect or
can be affected by the project. It is only the stakeholders who decide about a
success or a failure of the developed system.
The stakeholders analysis helps us with getting with requirements elicitation
closer to a real-life situation, as development of virtually any middle- to large-
scale software solution requires recognizing the needs of the project stakeholders.
The EMR systems belong to this class of software solutions.

Table 1.1 presents the stakeholders of the Hospital Information System project.
Each stakeholder is assigned four attributes:

• Exposure - extent to which a success or a failure of the Hospital Infor-
mation System will affect the stakeholder

• Power - the ability of the stakeholder to affect the software development
process (also the authority to kill the process) or importance of the opinion,
when deciding if the system is a success or a failure.

• Urgency - the extent to which the stakeholder can affect the development
process immediately

• Importance - ”average” of the Exposure, Power and Urgency. It
indicates how important the stakeholder is.

Each attribute can take one of three values:

• * - low

• ** - medium

• *** - high



6 Introduction

Stakeholder Exposure Power Urgency Importance
Software provider ** (***) *** *** ***
Hospital Managers *** *** *** ***
Medical staff * ** * **
Patients ** *** * **
Data Protection Agencies * *** * **

Table 1.1: The stakeholders and their attributes

Software provider

Summary : the software provider is the company that will develop the Hospital
Information System. It’s exposure is medium to high as selling a system
that does not obey the governmental privacy regulations can result in
liability which could ruin the company. The software provider may kill
the project instantly, thus power and importance are also on high levels.

Stake : the good name of the company and perhaps it’s existence

Needs : the software provider looks for a technology that can assure the secu-
rity requirements of the Hospital Information System will be met. This
technology has to have a sound scientific background, as this would dra-
matically decrease the risk of liability in case of a patient records leak.

Hospital Managers

Summary : the hospital managers are the people who are responsible for run-
ning the hospital where the Hospital Information System is to be deployed.
They are the customer of the software provider as they make decision
about buying the software. The exposure is high as buying and employ-
ing a system that does not obey the governmental privacy regulations can
result in law liability and a loss of job. On the other hand a successful
system can give them a lot of benefits due to savings.

Stake : their job positions

Needs : the hospital managers have to be sure that the system they buy does
obey the data privacy regulations. System security and reliability are the
top required qualities.



1.3 Hospital Information System - gathering security requirements 7

Medical staff

Summary : the medical staff are the target users of the Hospital Information
System. They are to operate on the system on a daily basis - it should
become their working tool. In case of a successful implementation the
medical staff will have the work easier and their working conditions are
improved. Otherwise the medical staff is not affected too much, thus the
exposure is medium. The medical staff may decide not to use the system
if they find it poor and unpleasant, thus power is medium. However this
can only happen when the system is already deployed, that is why the
urgency is low

Stake : better working conditions

Needs : the medical-care staff wants the Hospital Information System to be
user-friendly, fast, responsive and reliable.

Patients

Summary : the patients are the subjects for the Hospital Information Sys-
tem. The Hospital Information System is expected to process the patient
records. The exposure of the patients is medium as in the case the sys-
tem is unsuccessful and their medical data leaks, their privacy is severely
damaged and if it is successful they will notice improvement in the service
quality. The urgency is low as the patients may only complain about the
system after it is deployed and operating.

Stake : the privacy of their data and the quality of medical-care service

Needs : the patients wants the system to be fast (shorter waiting time), reliable
and protect their privacy

Data protection agencies

Summary : the data protection agencies are public law enforcement agencies
concerned with protection of the citizens’ privacy. They are not affected
by the system, thus their exposure is low. The urgency is also low as
only when the system is operating and a data leak happens they can
act. However, in such situation the agencies can order to shut down the
system and take appropriate legal steps against the software provider and
the hospital managers

Stake : the data privacy of the citizens



8 Introduction

Needs : the Hospital Information System should obey regulations concerning
patient records privacy

1.3.2 The Hospital Information System goals

Goal analysis helps identifying the goals of the developed system.
The goal analysis in this study is restricted only to the security-related goals.
The multitude of non-security goals for such an information system is usually
overwhelming, yet not a must to look after as far as the system’s security is
concerned.

An arrow in the diagram shows the ”sub-goal” relationship, whereas a line
between two goals (round-tangles) with label conflict indicates that two goals
are in conflict.
The gray background color of a round-tangle indicates that the goal is of the
top priority.

Figure 1.2: The security goals of the Hospital Information System



1.3 Hospital Information System - gathering security requirements 9

1.3.3 Business Processes Analysis

Business processes are the operations performed by an organization to meet its
goals. Subset of these operations is to be improved and (partially of fully) au-
tomatized by information systems. Likewise the Hospital Information System
is expected to provide improvement and automation of some business processes
of a hospital. As the scope of this project and focus are restricted to security
attributes of the Hospital Information System, we will not put effort on the
non-security related aspects of the business processes. However, the knowledge
and analysis of them is necessary to derive the security requirements, as they
shall reveal (at least indirectly) i.a. the information flow in the system, which is
a basis for specifying desired confidentiality and integrity properties of the data
flowing through the system.

First, we will sketch a simplified medical-care staff hierarchy of an imaginary
hospital to identify who are the principals that are expected to use the Hospital
Information System.
Second, we will briefly discuss the most common business processes that are ex-
pected to involve usage of the Health Information System. From this discussion
we will derive the basic security policies following the need-to-know principle -
who needs to access which data to perform his tasks.

1.3.3.1 Medical-care staff organizational Structure

For the sake of clearness and abstraction the organizational structure (presented
in figure 1.3) is very basic and simplified. It lists the medical-care staff and
depicts the subordination relationships. This structure conveys an implicit in-
formation: both the Chief Nurse and the Head of Ward should be granted
privileges that are supersets of the union of all subordinates’ privileges.

1.3.3.2 Business Processes

The business processes diagram (figure 1.4) and the business processes table
(table 1.2) present the most common and important (from the security point
of view) business processes of a hospital. Registration, assignment of staff,
treatment and making out a patient is a main business scenario for a hospital,
therefore the business processes that comprise this scenario are in the area of
interest in this analysis.



10 Introduction

Figure 1.3: The medical-care staff structure of a sample hospital

Figure 1.4: Business processes diagram for a sample hospital

1.3.4 Requirements

The mentioned reference papers and the analysis done thus far allow to state
following security-related requirements for the Hospital Information System:

R1 : patient record should be accessible (reading and writing) only for persons
and parties explicitly named by the patient. Exception: requirement R7

R2 : the medical part of a patient record should be accessible only to the



1.3 Hospital Information System - gathering security requirements 11

medical-care staff

R3 : the administrative part of a patient record shall be accessible only to the
administrative staff

R4 : the medical part of the patient record should be accessible only to the
medical-care staff members explicitly assigned to the patient

R5 : the users may only append information to the patient record - no infor-
mation shall be altered

R6 : the unauthorized attempts to access a patient record shall be logged

R7a : reading a patient record by unauthorized parties shall be allowed in
emergency cases.

R7b : event described in R7a shall be logged.

R8 : it should take not more than one hour for a trained person to specify and
re-configure simple patient record security policies. The training should
take no longer than one week.

R9 : enforcement of a newly specified patient record security policy should take
no more than one day

R10 : the Hospital Information System shall authenticate the users

R11 : the Hospital Information System shall provide an interface for commu-
nication with other EMR systems

R12 : a patient record exchanged with other system should be transmitted
securely

R13 : the technology employed for system implementation shall have sound
scientific background

R14 : the Hospital Information System shall implement following authentica-
tion schemes: username-password and smart-cards.



12 Introduction

Domain Process Description
Registration

register patient add a new patient
to the registries

make out patient archive patients record

Staff assignment
assign nurse assign a nurse for a patient

assign doctor assign a doctor to a patient
Billing

charge for treatment add a payment information for
patient treatment

Nursing
check medicine check what medicine to give to

a patient
Treatment

assign medicine assign medicine to a patient

make diagnose write down a diagnose
for a patient

check diseases search a patient’s record for
history record previous diseases

add entry do diseases append to the record information
history record about the current disease

Table 1.2: Business Processes of a sample hospital



Chapter 2

Case study: Hospital
Information System

In this chapter we discuss the design of the prototype Hospital Information
System.

2.1 Conceptual Design

In this section we present the conceptual design of the Hospital Information
System.

First we need to mention, that design of the Hospital Information System is not
a simple task, as there are two conflicting circumstances related to the prototype
system:

• the system should be as realistic as possible in order to correctly val-
idate the Decentralized Label Model in the area of Electronic Medical
Recordsystems.

• the system should be kept simple due to implementation time constraints



14 Case study: Hospital Information System

For these reasons the conceptual design grasps only the most representative data
items that can be found in Electronic Medical Recordsystems. The selected data
items are the most common for these system and seem to be sufficient for eval-
uating the privacy protection ensured by Decentralized Label Model, later on.
Also the internal complexity of the system is reduced. Normally, large infor-
mation systems (like EMR systems ) involve deployment of the software on
many machines (they are distributed) and work together with other external
systems. Due to mentioned implementation time constraints we design a single
self-containing application deployed at one host.
On the other hand the system is expected to cooperate with databases, which
makes it much more realistic, as a vast range of information systems now-a-days
retrieves from and uploads processed information to databases.

Figure 2.1: The conceptual design of the Hospital Information System

The figure 2.1 presents graphically the conceptual design of the Hospital In-
formation System. The box in the middle (MainApp) symbolizes the self-
containing system which will process the patient record data. It is surrounded
by a number of cylinders representing the databases, these are:



2.1 Conceptual Design 15

• administrative record - here resides all the administrative information
about the patients, like their name, next of kin, social security ID etc.

• assigned staff - every patient is assigned a doctor and a nurse taking
care of him. These staff members have got special privileges for access-
ing the record of the patient. This database contains information about
assignment of the medical staff to the patients.

• credentials - the users have to log in to the system before they can per-
form any action on it. In this table the < user−name, hashedpassword >
pairs are stored. The authentication of the users is done against this
database.

• logs - the system is expected to log the security-related events. The logs
go into this database.

• medical records - here all the health-related information about the pa-
tients is stored, like what treatments they are undergoing, what medicine
they are taking, what allergies they have got, etc.

• roles - the staff members of a hospital using the Hospital Information
System assume various roles, like doctor, nurse or an administration clerk.
This database embraces the information what roles the staff members
assume.

• staff - here the information about the hospital staff is stored

For finer grained description of the databases design please refer to table 2.7.

Below the MainApp box there is another box symbolizing an optional authen-
tication mechanism - this external mechanism could be used for authentication
of the users if the password scheme is not sufficient. However authorization of
the action performed by users is expected to done by the MainApp.

Summarizing the conceptual design, there is one self-containing application co-
operating with a number of databases and possibly an external authentication
mechanism. Now we will go to the functional design of the system, presented in
the form of use cases.



16 Case study: Hospital Information System

2.2 Use cases

In this section we display the functional design of the Hospital Information Sys-
tem.

The required functionality of the system is presented in the form of use-cases:
simple usage scenarios. There are following use-cases identified for the system:

• authenticate - authenticate a user to the system

• create user - add a new user (hospital staff member) to the system

• read medical record - get the medical information from the patient
record

• update medical record - update the medical information in the patient
record

• read administrative record - get the administrative information from
the patient record

• update administrative record - update the administrative information
in the patient record

• assign staff - assign a doctor or a nurse to a patient

The overview of the use cases is presented in the use case diagram (figure 2.2).
The detailed description of the use cases is presented in tables 2.1, 2.2, 2.3, 2.4
,2.5 and 2.6.

The sequence diagrams 2.3, 2.4, 2.5, 2.6 and 2.7 present the control-flow in
the use cases. There is no sequence diagram for the use case authenticate as
the control flow in this use case depends on the chosen external authentication
mechanism (if decided to use it).

2.3 Databases design

Table 2.7 presents the design of the above mentioned databases the MainApp is
interacting with.



2.3 Databases design 17

Figure 2.2: The use cases of the Hospital Information System

Use case name: authenticate
Summary: checking the identity of a user
Actors: a user U
Pre-conditions: -
Basic scenario: 1. U types-in his user-name

2. U types-in his password
Alternative scenarios: an external authentication mechanism can be

used
Post-conditions: if the credentials were correct:

- U is authenticated and the system displays
command prompt
- the log-in event is logged
else:
- U is informed about incorrect credentials

Comments: -

Table 2.1: authenticate use-case



18 Case study: Hospital Information System

Figure 2.3: Sequence diagram of the reading medical record use case

Figure 2.4: Sequence diagram of the update medical record use case



2.3 Databases design 19

Figure 2.5: Sequence diagram of the reading administrative record use case

Figure 2.6: Sequence diagram of the update administrative record use case



20 Case study: Hospital Information System

Use case name: read medical record
Summary: a user reads the medical record of a patient
Actors: a user U
Pre-conditions: U is authenticated
Basic scenario: 1.U performs operation of reading the medical

record of a patient
Alternative scenarios: -
Post-conditions: if U is a medical staff member to authorized

to read data from the medical record
- the medical record is displayed to U
else:
- the event of issuing a unauthorized operation
is logged

Comments: -

Table 2.2: read medical record use-case

Use case name: update medical record
Summary: a user updates the medical record of a patient
Actors: a user U
Pre-conditions: U is authenticated
Basic scenario: 1.U performs operation of updating the med-

ical record of a patient
Alternative scenarios: -
Post-conditions: if U is a medical staff member to authorized

to write data of the medical record
- the medical record is updated
else:
- the event of issuing a unauthorized operation
is logged

Comments: -

Table 2.3: update medical record use-case



2.3 Databases design 21

Use case name: read administrative record
Summary: a user reads the administrative record of a pa-

tient
Actors: a user U
Pre-conditions: U is authenticated
Basic scenario: 1. U performs operation of reading the ad-

ministrative record of a patient
Alternative scenarios: -
Post-conditions: if U is a Clerk

- the administrative record is displayed to U
else:
- the event of issuing a unauthorized operation
is logged

Comments: -

Table 2.4: read administrative record use-case

Use case name: update administrative record
Summary: a user updates the administrative record of a

patient
Actors: a user U
Pre-conditions: U is authenticated
Basic scenario: 1. U performs operation of updating the ad-

ministrative record of a patient
Alternative scenarios: -
Post-conditions: if U is a Clerk

- the administrative record is updated
else:
- the event of issuing a unauthorized operation
is logged

Comments: -

Table 2.5: update administrative record use-case



22 Case study: Hospital Information System

Use case name: Assign Staff
Summary: a user assigns medical-care staff to a patient
Actors: a user U
Pre-conditions: U is authenticated
Basic scenario: U assigns a medical-care staff member to a

patient
Alternative scenarios: -
Post-conditions: if U is a Clerk

- the medical-care staff member is assigned to
the patient
else:
- the event of issuing a unauthorized operation
is logged

Comments: -

Table 2.6: assign staff use-case

Figure 2.7: Sequence diagram of the staff assignment use case



2.3 Databases design 23

Database Entity Description
Roles the roles of staff (doctor, nurse etc.)

staffId unique identifier of staff member
role a role the staff member may assume

Staff the hospital staff
staffId unique identifier of staff member
userName system user-name
personalData -
qualifications professional qualifications

Assigned Staff assignment of doctors and nurses to patients
patientId unique identifier of a patient
doctor unique identifier of a staff member (doctor)
nurse unique identifier of a staff member (nurse)

Credentials credentials of system users
userName system user-name
hashed password -
personalData -
expires date when the account expires

Administrative administrative part of patient records
Record

patientId unique identifier of patient
personalData -
ssID social security identifier
nextOfKin contact to a relative of the patient

Medical medical part of patient records
Records

patientId unique identifier of patient
diseasesHistory a list of diseases the patient went through
currentMedicine the medicine taken currently by the patient
allergies patient’s allergies for food, medicine etc.
specialNote doctor’s special note about the patient
treatmentHistory the measures taken to treat the patient

Table 2.7: Design of HIS databases



24 Case study: Hospital Information System



Chapter 3

Decentralized Label Model

In this chapter we explain what is the Decentralized Label Model. This chapter
is based on the articles presenting the model ( [22, 24, 23]) and the on-line JIF
manual [2].

3.1 Access control

The requirements for the Hospital Information System stated in 1.3.4 related
to the data confidentiality and integrity (R1-5,7 ) demand implementation of
an access control mechanism. Meeting these requirements is only possible if the
system can authenticate the users and authorize their actions on the patient
records. These two functionalities(authentication and authorization) comprise
access control - an extremely extensively researched topic in the computer se-
curity.
Authentication is a process of verifying individual’s identity. This step precedes
authorization. One needs to prove identity in order to be recognized by a system
as a legitimate user.
Authorization is a process of deciding if the authenticated user attempting to
perform an action is allowed to do so. In the case of the Hospital Information
System the subject of the authorization process are the hospital staff members
using the Hospital Information System. They need to prove their identity before



26 Decentralized Label Model

performing any actions in the system. After authentication the hospital staff
members can do actions on the system, e.g. read a medical record of a patient.
This action however is restricted to the medical staff only, so the authorization
mechanism should check if the user attempting to perform the reading medical
record action is a member of the medical staff.

Now we will present the Decentralized Label Model and explain how it could
provide access control for the data processed by the Hospital Information Sys-
tem. Explaining the Decentralized Label Model will be based on the case study
of the Hospital Information System, as this will trim the extent to which the
explanations reach and should help understanding the the case study itself.

3.2 Basics

The Decentralized Label Model is a framework for ensuring data confidentiality
and integrity in software systems. The basic concept behind this framework is
following: every data entity (e.g. a database record, a text read from console
etc.) in a system is associated with security policies for this entity. These se-
curity policies tell who is allowed to read from and write to the respective data
entity. A set of policies for a data entity is called a label.

The figure 3.1 presents a part of the Hospital Information System from the
perspective of the Decentralized Label Model. It shows schematically what are
the policies like in the Hospital Information System. In the middle we have
got the MainApp - the self-contained application processing patient records. It
reads and writes the administrative record from the ”Administrative Records”
database. Data transferred between these two are symbolised by a rectangle
called ”Administrative Record”. Underneath the name of the rectangle there is
a string {Patient → Clerk;Patient ← Clerk}. This is the label of this data
entity. The first security policy (Patient → Clerk) says that the owner of the
policy is the Patient and he allows the Clerk to read this data. The second se-
curity policy (Patient← Clerk) says that the owner of the policy is the Patient
and he allows the Clerk to write this data. The security policies are separated
by a semicolon (’;’).
Similar situation is with the interface data. The box called ”interface” sym-
bolises the information displayed to the user and the input of the user. The
label for this data entity is {? → User; ? ← User} . It says that the owner of
the security policies is top principal (denoted as ’?’) and that the User can read
from and write to this data entity. More thorough explanation of the security



3.2 Basics 27

Figure 3.1: The Hospital Information System from the Decentralized Label
Model perspective

policies and principals is given in later on in this chapter.
The figure 3.1 presents only a small segment of the whole system. There are
many more databases and information entities with various labels, but they are
organised in the similar manner as the Administrative Record.

3.2.1 Security policies

The security policies comprising labels are of two types:

• confidentiality policies: one principal grants another principal the right to
read a data entity

• integrity policies: one principal grants another principal the right to write
to a data entity

The notation of the security policies is following:



28 Decentralized Label Model

• confidentiality policy: o→ r - principal o allows principal r to read

• integrity policy: o← w - principal o allows principal w to write

3.3 Labels

The security policies combined using join (t or ’;’) and meet (u ) operators
form labels. A label consist of confidentiality policies and integrity policies,
which are mutually independent. That means, the meet and join operators
work only on pairs of policies of the same kind: pairs of confidentiality policies
and pairs of integrity policies The notation used for the labels is following:

• C(l) - confidentiality policies of label l

• I(l) - integrity policies of label l

In the previous section we have seen examples of labels, one of which was l1 =
{Hospital → Clerk;Hospital ← Clerk}. The above functions applied to this
label are:

• C(l1) = {Patient→ Clerk} - confidentiality policies of label l1

• I(l1) = {Patient← Clerk} - integrity policies of label l1

3.4 Labels ordering

The labels in the Decentralized Label Model form a lattice. Lattice is a partially
ordered set (POSET) in which for any pair of elements (e1, e2)there exists a
supremum (lowest upper bound (LUB) of these two - LUB(e1, e2), also known
as their join - e1 t e2) and infimum (greatest lower bound (GLB) of these two -
GLB(e1, e2), also known as their meet - e1 u e2). The ordering of labels in the
Decentralized Label Model is specified as follows:



3.4 Labels ordering 29

Ordering of labels

for labels l1 and l2:

l1 v l2 ⇐⇒ C(l1) vC C(l2) ∧ I(l1) vI I(l2)

which we read:

”l2 is at least as restrictive as l1 if and only if the confidentiality policy of the
l2 is at least as restrictive as the confidentiality policy of l1 and the integrity
policy of the l2 is at least as restrictive as the integrity policy of l1”.

To define ordering of confidentiality policies a function readers is introduced:

Readers function

readers : P × C → 2P

(p, o→ r) 7→ {q|o � p⇒ q � o ∨ q � r}

where P is the set of all principals, C is a set of all possible confidentiality
policies over P , and p, o and r are principals.

The function returns for a given principal p and a confidentiality policy (o→ r)
a set of principals that p permits to read the data entity.

The ordering of confidentiality policies is defined as follows:



30 Decentralized Label Model

Confidentiality policies ordering

for two confidentiality policies c1 and c2:

c1 vC c2 ⇐⇒ (∀p ∈ P ) readers(p, c1) ⊇ readers(p, c2)

which we read:

”confidentiality policy c2 is as restrictive as confidentiality policy c1 if and only
if for all principals the readers set of c1 is a superset of the readers set of c2”

In a similar (actually dual) way is defined the relation between integrity policies.
A function writers is introduced:

Writers function

writers : P × C → 2P

(p, o← w) 7→ {q|o � p⇒ q � o ∨ q � w}

where P is the set of all principals, C is a set of all possible integrity policies
over P , and p, o and r are principals.

The function returns for a given principal p and an integrity policy (o ← r) a
set of principals that p permits to write to the data entity.
The ordering of integrity policies is defined as follows:

Integrity policies ordering

for two integrity policies i1 and i2:

i1 vI i2 ⇐⇒ (∀p ∈ P ) writers(p, i1) ⊆ writers(p, i2)

which we read:

”integrity policy i2 is as restrictive as integrity policy i1 if and only if for all
principals the writers set of i1 is a subset of the readers set of i2”



3.5 Label checking 31

3.5 Label checking

The fundamental and key idea in the Decentralized Label Model is the way, how
the security policies are enforced. In order to prove, that the security policies
specified for the data entities within the system hold, the information flow in
the system is analysed. A special program (called verifier , which in fact is a
compiler) analyses the information flow in the system and based on that it can
prove, that the security policies are not violated.
The security policy determines the security classification (the label) of the asso-
ciated data entity. Knowing the information flow in the system, it is possible to
say if a data entity of higher security classification is written into a data entity
of lower security classification. Should this happen, the verifier will tell that
there is a possible read up / write down (c.f. Bell-LaPadula model) occurring,
and this way a security policy violation is reported.
The data entities security classifications (labels) are partially ordered. Hence, it
possible to say that one label is more restrictive than another one, unless the
labels are incomparable. In such cases the Decentralized Label Model is conser-
vative - if there is a data flow between data entities which labels are comparable,
a policy violation is reported.



32 Decentralized Label Model



Chapter 4

Case study: realisation in JIF

In this section we present how was the Hospital Information System imple-
mented in the Java Information Flow language [21], the challenges and problems
during the system implementation process, and restrictions of the JIF encoun-
tered during the implementation.
To see the detailed technical specification of the implementation please refer to
the appendix A.1.

4.1 General

The JIF implementation of the Hospital Information System follows the design
specified in the chapter 3. The core software application called in the design
section MainApp has been implemented as a JIF program consisting of three
logically separated packages:

• record - the classes in this package are a ”mapping” of the patient data
stored in the databases. These classes are responsible for fetching the
actual data from the databases, storing them while the program is running,
and uploading the modified data to the databases. They provide interface



34 Case study: realisation in JIF

for the patient record data modification. The package name is record, as
the classes in it cater processing of the data that comprise the patient
record - both medical and administrative information.

• interface - this package embraces all the classes that constitute the user
interface (or rather View component of the Model-View-Controller design
pattern) and software interfaces (communication with SQL databases).
They facilitate communication between the MainApp and the user, and
between MainApp and the databases.

• utils - this package accommodates classes that provide features of logging,
authentication and some other neat functionalities used throughout the
system

4.2 Data labels design

Table 4.1 presents the labels of the data processed by the Hospital Information
System . These labels contain the security policies concerning the data pro-
cessed by the system.

The columns of the table are:

• table - the name of the table from which the data is pulled out

• column - the name of the column in the table where the data is located

• label - the label the data is labelled with

The databases themselves are not labelled, as there is now way to do it in JIF.
Instead, the data pulled out from these databases is labelled and as labelled
types starts circulating in the program.

4.3 Meeting the security-related requirements

In the section 1.3.4 we discussed the security requirements for the Hospital In-
formation System. Now we specify the labels for for the data entities circulating



4.3 Meeting the security-related requirements 35

Table Column Label

Roles
Staff all {Clerk → ∗;
Assigned Staff Clerk ← ∗}
Credentials

Administrative {Patient[patientId]→ Clerk;
Record[patientId] all Patient[patientId]← Clerk}

Medical all {Patient[patientId]→ doctorOf(patientId),
Record[patientId] nurseOf(patientId);Patient[patientId]

Diseases[patientId]
all {Patient[patientId]→ doctorOf(patientId);

Treatements[patientId] Patient[patientId]← doctorOf(patientId)}

Table 4.1: Design of data labels

in the system. These labels reflected the textual policies conveyed by the secu-
rity requirements.

4.3.1 Data privacy

The implementation of the system in the JIF language could have been done
possibly in at least two general ways:

• on-the-fly : the labels would be implemented at the interface between the
MainApp and the databases (see table 2.7) - whenever a query is executed
on the database, the query statement and the result of the query execution
would be labelled. The labels of the data would be read from one place
holding all of them, and put on the program variables ”on-the-fly”



36 Case study: realisation in JIF

• mapping - the structure of the data in the database is mapped into Java
classes. The classes contain labelled fields - the security policies are placed
in the mapping classes, they are sparse.

The first solution (on-the-fly) is very attractive, as the labels for all the sensitive
data are stored in one place.This should increase maintainability and correctness
of the implementation. However implementation of a method for generating la-
bels depending on the data submitted or read from the database is in general
not possible - why, it is explained later in this section. Also analysis power of the
JIF compiler would be significantly restricted, as the label of the composition of
many labelled types it the (least) upper bound of all the components. This way
of implementation would imply handling labels that are too restrictive, and in
consequence, of no practical use.
The second solution is less convenient - the security policies are sparse, and
there is a need to a implement a number of additional Java classes, to map the
data from the database. Implementation and maintenance of the security poli-
cies scattered in many places in the code is not an easy task. It also increases
probability of errors induction. However, this is the feasible way to implement
the designed Hospital Information System. And that is why it has been chosen
and followed.

Both of these solutions require ”hard-coding” of the security policies in the
JIF classes in one way or another. Creating labels in the run-time from input
streams (text files, databases) is impossible.
The method of static analysis of the code naturally rules this idea out - it is
not possible to make a fully conservative static analysis of a program data flow
when there is some undetermined input influencing the data. This also applies
to the static analysis done by the JIF compiler.
Dynamic analysis of the data flow possibly could cater the feature of generating
labels in the run-time, however in the current JIF version (3.3.1) it does not.

4.3.2 Authentication

The requirement R10 states that the users of the Hospital Information Sys-
tem should be authenticated. Whenever a user tries to log in to the system,
he is supposed to proof that he is the one who he claims to be. In the cur-
rent implementation, the authentication is done on username-password scheme.
When the program is started the user is required to input the username and
respective password. The credentials are stored in the database in a form of
<username,hashed-password> pair. The hashing function is SHA-1.



4.4 Package record 37

4.4 Package record

Having discussed the general matters concerning the JIF implementation of
the Hospital Information System, no we will go through and discuss the class
diagrams of the three packages comprising the Hospital Information System
system:

• package record

• package interface

• package utils

Figure 4.1 presents all the classes comprising the record package. These are:

• MedicalRecord - a class mapping a number of general medical data, like
allergies or currently taken medicine.

• Diagnoses - a class mapping medical diagnoses (statements describing
what diseases have been detected when a doctor examined the patient).

• Treatments - a class mapping information about what treatments the pa-
tient has undergone

• AdministrativeRecord - a class mapping administrative-related informa-
tion about a patient, e.g. name, next of kin etc.

• AssignedStaff - a class mapping data about designation of a doctor and a
nurse to a patient

• PatientsList - a class mapping the list of all patients enrolled in the system

The reason behind mapping the data from the database into JIF classes is
very important and reflect the idea for ensuring data confidentiality and in-
tegrity in the Hospital Information System. And the reason is that the la-
belling of the data (in Decentralized Label Model sense) is done in the mapping
classes. The fields in these classes are of type labelled-type - a JIF type including
both the data type (e.g. String, int etc.) and label representing the policy re-
lated to field variable. For example the field currentMedicine is a labelled-type:



38 Case study: realisation in JIF

(String,{Patient→ Doctor,Nurse;Patient← Doctor}] meaning that the data
type is String and the security policy (label) is that the Patient allows to read
this information by the Doctor and the Nurse, but writing this information is
restricted only to the Doctor.

Almost all the classes in this package (package record) implement methods for
loading the data from the database (load), uploading them into the database
(upload), and creating a new entry in the database (create). This state of mat-
ters also flows out of the decisions to implement the data security in the mapping
classes.

To give an impression how the mapper classes are like, we will briefly discuss
a part of such a class , namely Diagnoses (listing 4.4). This class maps the
diagnoses made to the patient by his doctors.
At the beginning of the listing there is a declaration of a label called dataLabel.
This is the label used for diagnoses data. It says that the Doctor can read and
write this data. The policy saying that the Sysroot allows itself to write the
data is there solely for implementation reasons - but we can forget it as this
policy only raises the security classification of the label.
The label of the label (as labels are also labelled types in JIF) is {?← ?} - the
safest (with respect to integrity) label - nobody can write to a variable with
this label. This way we ensure that the labels are not overwritten, which could
cause a security breach. All the labels in the implementation of the Hospital
Information System follow this scheme.
Later on there is declaration of a table holding the diagnoses. It is labelled with
label dataLabel.
Then we have got a method of adding a diagnose (called addDiagnose) accepting
following parameters:

• currentUser - the role the user is playing in the system

• currentUserId - the id of the user (staffId)

• diagnose - the diagnose to be added

Virtually any method in the system accepts the first two parameters - they are
necessary for the caller clause (currentUser) and for logging (currentUserId).
The caller clause says with whose authority the method needs to be invoked.
This mechanism assures that the caller principal (currentUser) is the real caller.
First statement in the method is an act for statement - it checks if the principal
current user is granted all the privileges of a doctor (in fact if he is a doctor). If



4.4 Package record 39

the condition is true, a new diagnose is added to the database. Else the attempt
of illegitimate operation is logged. In the former case, the SQL command is
created from variables. What is worth noticing in here, is the parametrization
of the SQLQueriesHandler - the parameter is the label dataLabel - the same
the diagnoses are labelled with. This assures that only variables of less or
equal restrictiveness can comprise the SQL command - this way data leakage is
prevented on the point of interaction between the JIF program and the database.



40 Case study: realisation in JIF

// c l a s s f o r hand l ing d iagnoses o f made f o r a p a t i e n t
class Diagnoses {

// wi th t h i s l a b e l the d iagnoses shou ld be l a b e l l e d
f ina l label {∗<−∗} dataLabel =

new label {Patient−>Doctor ; Patient<−Doctor ; Sysroot <−∗};

// c h r o n o l o g i c a l l i s t o f d iagnoses
public St r ing {∗ dataLabel } [ ] { ∗ dataLabel } d iagnose s = null ;
. . .

public void addDiagnose Sysroot<−∗}
( p r i n c i p a l {Sysroot<−∗}currentUser ,
S t r ing {Sysroot<−∗} currentUserId ,
S t r ing {Sysroot<−∗;∗<−currentUser } diagnose )
where c a l l e r ( currentUser ){

i f ( currentUser a c t s f o r Doctor ){
try{

SQLQueriesHandler [{∗ dataLabel } ] handler =
new SQLQueriesHandler [{∗ dataLabel } ] ( ) ;

handler . executeUpdate (
”INSERT INTO Diagnoses ( pat i ent Id , ” +
” diagnose , author , date ) VALUES ( ” +
” ’ ” + pat i en t Id + ” ’ ” + ” , ’ ” +
diagnose + ” ’ ” + ” , ’ ” + currentUser Id +
” ’ ”+ ” , ” + ”NOW( ) ”+ ” ) ”

) ;
}catch ( Exception ex ){}

} else {
Logger . l og ( currentUser , ” unauthor ized command” ,

” user t r i e d to add a diagnose to the pa t i en t : ”
+ pat i en t Id ) ;

}
}
. . .

}
Listing 4.1: Part of the class Diagnoses



4.4 Package record 41

AdministrativeRecord
-dataLabel: label
+pat ient Id:  Str ing
+personalData: String
+ssId: Str ing
+nextOfKin: Str ing
+create(patientId: Str ing,
         personalData: String, ssId: String, 
         nextOfKin: String): boolean
+load(patientId: String): boolean
+update(): boolean
+pr in t ( )

AssignedStaff
+pat ient Id:  Str ing
+doctorStaff Id: Str ing
+nurseStaff Id: Str ing
+create(patientId: String): boolean
+load(patientId: Str ing)
+update(): boolen
+pr in t ( )
+assignNurse(nurse: String): boolean
+assignDoctor(nurse: String): boolean

Diagnoses
-dataLabel: label
-patientIdLabel: label
+pat ient Id:  Str ing
+diagnoses: String[]
+addDiagnose(diagnose: String)
+pr in tA l l ( )
+readAl l ( )

PatientsList
-dataLabel: label
+pat ients:  Str ing[]
+ load()
+p r in t ( )

MedicalRecord
-doctorLabel: label
-nurseLabel: label
-patientIdLabel: label
+pat ient Id:  Str ing
+currentMedicine: Str ing
+alergies: Str ing
+specialNote: Str ing
+create(patientId: String): boolean
+load(patientId: String): boolean
+update(): boolean
+pr in t ( )
+assignMedicine(medicine: String)
+appendAlergy(alergy: String)
+writeSpecialNote(note: String) 

ALL THE METHODS HAVE TWO 
ADDITIONAL PARAMETERS:
1) p: principal 
2) userName: String
used for providing the JIF code 
with principals authority (1) 
and logging functionality (2)

Treatments
-dataLabel: label
-patientIdLabel: label
+pat ient Id:  Str ing
+treatments:  Str ing[ ]
+addTreatment(diagnose: String)
+pr in tA l l ( )
+readAl l ( )

HIS.record

Figure 4.1: The UML class diagram of the record package



42 Case study: realisation in JIF

4.5 Package interface

The package interface gathers together classes that facilitate the communication
between:

• user and MainApp (let us denote this interface U2App) - the user of the
Hospital Information System interacts with the system by a command
prompt.

• the MainApp and the SQL database (let us denote this interface App2Db -
the data processed by the MainApp are permanently stored in a database.
Therefore there is a need to communicate this data.

These interfaces are a not Java interfaces - they are just collections of classes
facilitating communication between the system actors.

The interface U2App consist of three classes:

• Main - the main class of the system. The method main of this class is
the starting point of the program execution. This method reads from the
input parameters the id of the patient for whom the program is started.
Only knowing that the program can tell what is the role of the user (e.g.
Doctor, Nurse, etc.) for the specified patient

• Console - this class allows the MainApp to read from and write to the
standard output. The standard Java streams System.in and System.out
are blocked in JIF - they cannot be used, perhaps for security reasons:
they are not labelled-types and therefore cannot be assigned a label. This
prevents establishing the sensitivity of the data communicated through
these streams.

• CommandsProcessor - here the commands typed-in by the user are parsed,
validated and eventually executed. For each command there is a private
method that executes a valid command, e.g. by calling the method As-
signedStaff.assignDoctor when ”assignDoctor” command was issued by
the user.

The interface U2App is text-based, as the current JIF implementation does not
support the Java threaded model. It means, that a JIF program is not able to
create threads, which is requisite to implement a Graphical User Interface



4.5 Package interface 43

(GUI). In fact, implementing a text-based interface is more time and effort con-
suming than creating a GUI - modern IDE’s offer an easy way to ”click-out” a
GUI in a few minutes.

As mentioned earlier in this section, the standard Java streams are blocked in
JIF. The JIF class jif.runtime.Runtime provides methods to access the standard
input and standard output. However they are not operational - they are buggy
and apparently not fully implemented.
For this reason there was a need to implement the standard input and output
operations in some other way. The thing seemed hopeless, but it turned out
that there is a way to use plain Java classes (and libraries, for that matter) by

1. creating a JIF ”signature” class - one containing only signatures of fields
and methods,

2. creating a Java class implementing the methods which signatures are in
the ”signature” class

This way one can use many handy Java classes that are not implemented in
JIF. And this is the way the Console class was implemented.

Few more words about the Main.main method and the patient id passed as its
parameter (see listing 4.5).
Why a run of the program can be done for only one patient at a time? This
only restricts the usability of the program, as one needs to re-run the program
for different patients.

The answer is: security.

Or more precisely, the poorness of the JIF implementation. The principal type
in the current JIF implementation is not flexible enough. It is not parametrized
- a principal Doctor denounce the role of a doctor. It is not possible to distin-
guish between doctors, and the requirements to the Hospital Information System
impose that: doctors are assigned to patients. Say a user A is the doctor of a
patient X and a user B is the doctor of the patient Y. Then if A and B are not
the same, A is not playing the role of a doctor for Y, and B is not playing the
role of a doctor for X either. The role of a user depends on the assignment to
patients (see AssignedStaff class).



44 Case study: realisation in JIF

For this reason the patient id must be specified at the beginning of the program,
to set up the role of the user.

. . .

class Main author i ty ( Sysroot ){

. . .
public stat ic f ina l void main{∗<−∗}

( S t r ing {∗<−∗}[]{∗<−∗} args )
where author i ty ( Sysroot ){
. . .
pa t i en t Id=args [ 0 ] ;
. . .
S t r ing userName=

AuthenticationManager . au thent i ca t e ( ) ;

// c r e a t e the p r i n c i p a l depending on the
// ” r o l e ” o f user
f ina l p r i n c i p a l currentUser =

AuthenticationManager . r o l e ( userName , pa t i en t Id ) ;
. . .
/∗ Sysroot can ac t f o r anybody but t h i s

check i s necessary f o r s t a t i c a n a l y s i s
dur ing the comp l ia t ion time ∗/

i f ( Sysroot a c t s f o r currentUser ){
CommandsProcessor cp =

new CommandsProcessor ( ) ;
cp . s t a r t S e s s i o n ( currentUser ,

userName , pa t i en t Id ) ;
. . .
}

}
}

Listing 4.2: Part of the class Main



4.6 Package utils 45

M a i n
+main(args: Str ing[])
 

label L  

SQLQueriesHandler
+rowsNumber:  in t
+columnsNumber:  int
+getValue(row: int, column: int): String
+getRowsNumber():  int
+execute(): boolean
+executeSelect(query: String): String[]
+executeUpdate(): boolean

CommandsProcessor
-addDiagnose(parameters: String[])
-addPatient(parameters: String[])
-addTreatment(parameters: String[])
-archiveRecord(parameters: String[])
-assignDoctor(parameters: String[])
-assignMedicine(parameters: String[])
-assignNurse(parameters: String[])
-createUser(parameters: String[])
-l istPatients(parameters: String[])
-readAdministrativeRecord(
                     parameters: String[])
-readAssignedStaff(parameters: String[])
-readDiagnoses(parameters: String[])
-readMedicalRecord(parameters: String[])
-readTreatments(parameters: String[])
+pr in tHe lp( )
+pr intSyntaxError()
+startSession()

label L  

Console
+pr int( text :  Str ing)
+pr int ln( text :  Str ing)
+readLine():  Str ing

THE PROGRAM 
STARTS HERE!

ALL THE METHODS HAVE TWO 
ADDITIONAL PARAMETERS:
1) p: principal 
2) userName: String
used for providing the JIF code 
with principals authority (1) and 
logging functionality (2)

HIS.interface

Figure 4.2: The UML class diagram of the interface package

4.6 Package utils

The utils package contains classes which provide functionalities that are not
directly related to processing of the patient record data, but are required by the
system, like:

• logging - inserting into the database log entries when security policies
violation attempts happen, e.g. when a Doctor attempts to read the
administrative data of his patient (this is disallowed)

• authentication - verification of the user identity

• string processing - string parsing etc.



46 Case study: realisation in JIF

The logging class offers a method for inserting a log entry to the database. It
takes as parameters the event type (e.g. ”unauthorized reading attempt”) and a
more precise description (e.g. ”user doc1 tried to read the administrative record
of patient p2 ”). The logging class is presented in listing 4.6

The authentication is password-based. The hashed passwords are stored in the
Credentials table. The listing 4.6 presents a part of the AuthenicationManager
class.
The method role returns the role a user is playing in the system (e.g. Doctor).
The first parameter (userName) is the id of the user, the second is the id of the
patient (patientId) from whose perspective the role is played. For the same user
and various patients the roles may be (and usually is) different - a user can be
a doctor for one patient, but can be ”nobody” (in the roles terms) to another
one. It depends on the medical staff assignment to the patient.
The method authenticate performs the authentication process - it verifies the
credentials submitted by the user. One of the worth noticing points in this
method is the declassification of the userName variable. The declassify con-
struct allows to downgrade the security classification of data. It is requisite at
this point of the program, as due to high classification of the password, the user-
Name variable is also considered highly confidential (there is a if condition on
the password variable with the userName inside) and needs to be downgraded,
so everybody can read it.



4.6 Package utils 47

// Class p r o v i d i n g l o g g i n g f u n c t i o n a l i t y f o r the HIS
class Logger{

public stat ic boolean l og { <− }
( p r i n c i p a l { <− } currentUser ,
S t r ing { <− } type , S t r ing { <− } d e s c r i p t i o n )
where c a l l e r ( currentUser ){

SQLQueriesHandler [{∗−>∗; <− } ] handler
= new SQLQueriesHandler [{∗−>∗; <− } ] ( ) ;

S t r ing updateStr ing =
”INSERT INTO Logs VALUES ” ;

updateStr ing += ” (NOW( ) , ’ ” + type + ” ’ , ’ ”
+ d e s c r i p t i o n + ” ’ ) ” ;

Console [{∗−> currentUser ;∗<−currentUser ;
Sysroot <−∗; <− } ] c on so l e =
new Console [{∗−> currentUser ;
∗<−currentUser ; Sysroot <−∗; <− } ] ( ) ;

i f ( handler . executeUpdate ( updateStr ing ) ){
conso l e . p r i n t l n ( ”\n\ tLogging : ” +

type+ ” , ” + d e s c r i p t i o n + ”\n” ) ;
return true ;

} else {
conso l e . p r i n t l n (

”\n\ t C r i t i c a l Error : Fa i l ed to l og .\n” ) ;
}
return fa l se ;

}
}

Listing 4.3: The Logger class



48 Case study: realisation in JIF

// c l a s s r e s p o n s i b l e f o r a u t h e n t i c a t i o n o f HIS use rs
class AuthenticationManager{

// f i n d out what r o l e s the user i s
// p l a y i n g f o r the p a t i e n t
public stat ic p r i n c i p a l {Sysroot<−∗} r o l e {∗<−∗}

( S t r ing {Sysroot<−∗}userName ,
S t r ing {∗<−∗}pat i en t Id ){
. . .
return r o l e ;

}

// t h i s method r e t u r n s the username o f t
// he a u t h e n t i c a t e d user
public stat ic St r ing {Sysroot−> ; Sysroot<−∗}

authent i ca t e {∗<−∗}()
where c a l l e r ( Sysroot ){

f ina l label{∗<−∗} c r e d e n t i a l s L a b e l =
new label {Sysroot−>∗;Sysroot <−∗};

. . .
Console [ c r e d e n t i a l s L a b e l ] c on so l e =

new Console [ c r e d e n t i a l s L a b e l ] ( ) ;
c on so l e . p r i n t ( ” user−name : ” ) ;
S t r ing usr = conso l e . readLine ( ) ;

c on so l e . p r i n t ( ”password : ” ) ;
// hash the password
St r ing hashPwd = MyUtils .SHA1( conso l e . readLine ( ) ) ;
// here the v e r i f i c a t i o n o f c r e d e n t i a l s happens
. . .
// the userName v a r i a b l e has to be d e c l a s s i f i e d
return d e c l a s s i f y ( userName , {Sysroot−> ; Sysroot <−∗});

}

}
Listing 4.4: Part of the class AuthenticationManager



4.7 SQL tables implementation 49

Logger
+log(eventType: String, 
         description: Sting )

MyUt i l s
+pr int( text :  Str ing)
+pr int ln( text :  Str ing)
+readLine():  Str ing
+valueAt(str ing: Str ing, del imiter:Str ing,
                index: int)
+spl i tStr ing(text: Str ing, 
                     delimiter: String): String[]
+SHA1(text: Str ing): Str ing
-convertToHex(data: byte[]): String

AuthenticationManager
+role(staffId: String, patientId: String):
pr incipal
+authenticate(): Str ing

ALL THE METHODS HAVE TWO 
ADDITIONAL PARAMETERS:
1) p: principal 
2) userName: String
used for providing the JIF code 
with principals authority (1) and 
logging functionality (2)

HIS.ut i ls

Figure 4.3: The UML class diagram of the utils package

4.7 SQL tables implementation

The data handled by the Hospital Information System are permanently stored
in a database. In this respect the implementation is very realistic. Many of the
information systems interact with databases to read and output processed data.
This is also the way the Hospital Information System was implemented.
All the data handled by the Hospital Information System are placed in one
database called hisDB. The database is composed of a number of tables, as
presented in the table 2.7.



50 Case study: realisation in JIF



Chapter 5

Case study: usage scenarios

In this section we present a number of Hospital Information System usage sce-
narios, the results of performing them on the the system implemented in JIF
and conclusions how is the implementation meeting the design.

The usage scenarios we decided to perform are:

1. adding a patient to the system

2. adding diagnose

3. reading administrative record

4. archiving record

As well as testing functionality , the scenarios have been performed in a way
that shows if the implementation is obeying the security policies - we have
made attempts to break the policies (e.g. reading medical record by a Clerk)
and evaluate how the implementation is coping theses attempts.

The mode of testing is functional. We test the implementation of selected,
representational use cases. The use cases are specified in section 2.2. Functional



52 Case study: usage scenarios

testing belongs to the class of black-box test - what matters for the test result
is the visible outcome of the performed test, thus in the test we will focus more
on the visible outcome than the internal state of the system.

5.1 Test case: add patient - authorized attempt

This test case verifies the implementation of the functionality of adding a new
patient to the system. The test will be executed with the assumption that the
user is authorized to perform the operation of adding a new patient to the sys-
tem.

Table 5.1 presents the test case and the figure 5.1 presents a screen-shot of the
test case result.

Test case name: add patient authorized
Summary: user of role Clerk adds a new patient to the

system
Actors: user adm1
Use case tested: N/A
Use case variant: N/A
Pre-conditions: - user adm1 is an Clerk

- adm1 is authenticated
Scenario: 1. the user adm1 issues command ”addPa-

tient”
Expected result: a new patient is added to the system
Test result: Accepted
Comments: -

Table 5.1: Test-case add patient authorized

Figure 5.1: A screen-shot of the test case add patient authorized



5.2 Test case: add patient - unauthorized attempt 53

5.2 Test case: add patient - unauthorized at-
tempt

This test case verifies the implementation of the functionality of adding a new
patient to the system. The test will be executed with the assumption that the
user is not authorized to perform the operation of adding a new patient to the
system.

Table 5.2 presents the test case and the figure 5.2 presents a screen-shot of the
test case result.

Test case name: add patient unauthorized
Summary: user of role Doctor adds a new patient to the

system
Actors: user adm1
Use case tested: N/A
Use case variant: N/A
Pre-conditions: - user doc1 is a Doctor

- doc1 is authenticated
Scenario: 1. the user doc1 issues command ”addPa-

tient”
Expected result: the user is denied the operation and the event

is logged

Test result: Accepted
Comments: -

Table 5.2: Test-case add patient unauthorized

Figure 5.2: A screen-shot of the test case add patient unauthorized



54 Case study: usage scenarios

5.3 Test case: reading administrative record -
authorized attempt

This test case verifies the implementation of the reading administrative record
use case. The use case will be executed with the assumption that the user is
authorized to perform the reading administrative record operation.

Table 5.3 presents the test case and the figure 5.3 presents a screen-shot of the
test case result.

Test case name: read administrative record authorized
Summary: user of role Clerk reads the administrative

record of a patient
Actors: user adm1
Use case tested: read administrative record
Use case variant: the user plays role Clerk
Pre-conditions: - the program is run for patient pat1

- user adm1 is an Clerk
- adm1 is authenticated
- patient pat1 is registered in the system

Scenario: 1. the user adm1 issues command ”readAdm-
Record”

Expected result: the administrative record of patient pat1 is
displayed

Test result: Accepted
Comments: -

Table 5.3: Test-case read administrative record authorized

Figure 5.3: A screen-shot of the test case read administrative record authorized



5.4 Test case: reading administrative record - unauthorized attempt 55

5.4 Test case: reading administrative record -
unauthorized attempt

This test case verifies the implementation of the reading administrative record
use case. The use case will be executed with the assumption that the user is
not authorized to perform the reading administrative record operation.

Table 5.4 presents the test case and the figure 5.4 presents a screen-shot of the
test case result.

Test case name: read administrative record unauthorized
Summary: user of role else than Clerk reads the admin-

istrative record of a patient
Actors: user doc1
Use case tested: read administrative record
Use case variant: regular
Pre-conditions: - the program is run for patient pat1

- user doc1 is a Doctor
- doc1 is authenticated
- patient pat1 is registered in the system

Scenario: 1. the user doc1 issues command ”readAdm-
Record”

Expected result: the user is denied access to the administrative
record,the event is logged

Test result: Accepted
Comments: -

Table 5.4: Test-case read administrative record unauthorized

Figure 5.4: A screen-shot of the test case read administrative record unauthorized



56 Case study: usage scenarios

5.5 Test case: adding diagnose - authorized at-
tempt

This test case verifies the implementation of the adding diagnose use case. The
use case will be executed with the assumption that the user is authorized to
perform the add diagnose operation.

Table 5.5 presents the test case and the figure 5.5 presents a screen-shot of the
test case result.

Test case name: add diagnose authorized
Summary: user of role Doctor reads adds a diagnose for

a patient
Actors: user doc1
Use case tested: add diagnose
Use case variant: regular
Pre-conditions: - the program is run for patient pat1

- user doc1 is an Doctor
- doc1 is authenticated
- doctor doc1 is assigned patient pat1
- patient pat1 is registered in the system

Scenario: 1. the user doc1 issues command ”addDiag-
nose” with required parameters

Expected result: the new diagnose is added to the system
Test result: Accepted
Comments: -

Table 5.5: Test-case read add diagnose authorized

Figure 5.5: A screen-shot of the test case add diagnose authorized



5.6 Test case: adding diagnose - unauthorized attempt 57

5.6 Test case: adding diagnose - unauthorized
attempt

This test case verifies the implementation of the adding diagnose use case. The
use case will be executed with the assumption that the user is not authorized
to perform the add diagnose operation.

Table 5.6 presents the test case and the figure 5.6 presents a screen-shot of the
test case result.

Test case name: add diagnose unauthorized
Summary: user of role else than Doctor reads adds a di-

agnose for a patient
Actors: user doc1
Use case tested: add diagnose
Use case variant: the user plays role Nurse
Pre-conditions: - the program is run for patient pat1

- user nurse1 is an Nurse
- nurse1 is authenticated
- doctor nurse is assigned patient pat1
- patient pat1 is registered in the system

Scenario: 1. the user nurse1 issues command ”addDi-
agnose” with required parameters

Expected result: the user is denied adding the diagnose, the
event is logged

Test result: Accepted
Comments: -

Table 5.6: Test-case read add diagnose unauthorized

Figure 5.6: A screen-shot of the test case addd diagnose unauthorized



58 Case study: usage scenarios

5.7 Test case: archiving record - authorized at-
tempt

This test case verifies the implementation of the archive record use case. The
use case will be executed with the assumption that the user is authorized to
perform the archive record operation.

Table 5.7 presents the test case and the figure 5.7 presents a screen-shot of the
test case result.

Test case name: archive record authorized
Summary: user of role Clerk archives the record of a pa-

tient
Actors: user adm1
Use case tested: archive record
Use case variant: regular
Pre-conditions: - the program is run for patient pat5

- user adm1 is a Clerk
- doc1 is authenticated
- patient pat5 is registered in the system

Scenario: 1. the user adm1 issues command ”archiveRe-
cord”

Expected result: the record is archived
Test result: Accepted
Comments: -

Table 5.7: Test-case read archive record authorized

Figure 5.7: A screen-shot of the test case archive record authorized

5.8 Test case: archiving record - unauthorized
attempt

This test case verifies the implementation of the archive record use case. The
use case will be executed with the assumption that the user is not authorized



5.8 Test case: archiving record - unauthorized attempt 59

to perform the archive record operation.

Table 5.8 presents the test case and the figure 5.8 presents a screen-shot of the
test case result.

Test case name: archive record unauthorized
Summary: user of role Nurse archives the record of a pa-

tient
Actors: user doc1
Use case tested: archive record
Use case variant: regular
Pre-conditions: - the program is run for patient pat5

- user doc1 is a Doctor
- doc1 is authenticated
- patient pat5 is registered in the system

Scenario: 1. the user doc1 issues command ”archiveRe-
cord”

Expected result: the user is denied archiving the record, the
event is logged

Test result: Accepted
Comments: -

Table 5.8: Test-case read archive record unauthorized

Figure 5.8: A screen-shot of the test case archive record unauthorized



60 Case study: usage scenarios

x



Chapter 6

Case study: benchmark
realisation in Aspect Oriented

Programming

In this chapter we make a benchmarking of the Decentralized Label Model/JIF
against the Adaptable Access Control [7] - a recenly published (2009)
scheme for providing access control in the area of Electronic Medical Record
system.

The Adaptable Access Control (AAC) is strongly based on Aspect Oriented
Programming, thus first we will briefly introduce the basic concepts of the AOP
- a programming paradigm catering cross-cutting concerns. (AOP)

6.1 Aspect Oriented Programming

In this section we discuss briefly what is the Aspect Oriented Programming and
give an example of how it looks.



62 Case study: benchmark realisation in Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a programming paradigm for separa-
tion of cross-cutting concerns. A cross-cutting concern in programming is a
functionality that is shared by many features.
A well-known example of a cross-cutting concern are for example undo-redo or
logging functionalities.
Many software applications are expected to log the actions of the users (e.g. for
audit reasons). It means that in a large number of places in the code some log-
ging functions have to be called. Change of the way the logging is done results
normally an overhaul of the whole application - in any place the logging is done.
Adding, deleting, or modifying a cross-cutting concern affects major parts of
code. For this reason there is a need for a technique that could separate these
concerns, and the Aspect Oriented Programming is such a technique.

6.1.1 Basics

Aspect Oriented Programming allows to specify cross-cutting functionalities
only in one place, and whenever one of these functionalities is needed, it is
called. The difference between AOP and abstraction of functionalities in soft-
ware components (structured programming) is the way of specifying when a
cross-cutting functionality is called. In the structured and imperative program-
ming paradigms (broadly used programming paradigms in software development
now-a-days) separation of concerns is achieved by means of encapsulation in
classes (or components) and procedures, respectively.
Continuing the example of logging functionality, in the structured programming
paradigm the logging functionality could be encapsulated in a logger class (see
an example in listing 6.1), and whenever and action is to be logged, the action
code would invoke methods of the logger class. In the imperative programming
paradigm, the logging functionality would be specified in a set of procedures,
similarly as in the case of structured programming (see an example in listing
6.2).



6.1 Aspect Oriented Programming 63

class ActionLogger {
. . .
public stat ic boolean addEntry (

Action act ion , Object [ ] parameters ){
// c r e a t i n g a l o g entry from the input parameters
. . .
DatabaseConnection dc = new DatabaseConnection ( ) ;
dc . execute ( act ionLogInser tStatement )
. . .

}
}

// To p rov i de the l o g g i n g f u n c t i o n a l i t y o f ac t ions , each a c t i o n
// shou ld make a c a l l o f the addEntry method , l i k e t h i s :
. . .
public boolean act ion Inse r tE l ement (

Object element ){
ActionLogger . addEntry (

new Action ( ” InsertElement ” , element ) ) ;
. . .

}
. . .
// and the same way f o r a l l a c t i o n s . . .

Listing 6.1: Logging functionality in Java

bool addLogEntry (char∗ act ion , void∗ parameters ){
// c r e a t i n g a l o g entry from the input parameters
. . .
return i n s e r t In toDatabase ( ”Logs” , &logText )

}
// To p rov i de the l o g g i n g f u n c t i o n a l i t y o f ac t ions , each a c t i o n
// shou ld make a c a l l o f the addLogEntry procedure , l i k e t h i s :

bool ac t i on Inse r tE l ement ( void∗ element ){
void∗ params [ 1 ] ;
params [ 0 ] = element ;
addLogEntry ( ” InsertElement ” , params )
. . .

}
// and the same way f o r a l l a c t i o n s . . .

Listing 6.2: Logging functionality in C



64 Case study: benchmark realisation in Aspect Oriented Programming

On the other hand in the Aspect Oriented Programming the cross-cutting func-
tionalities are specified in so-called aspects. An aspect is a tuple of a set
of places in the code where the cross-cutting functionality should be executed
(called join points) and the functionality code to be executed (this code is
called advice).

Now some terminology from the Aspect oriented programming:

• join point - a point in a program code, where an advice can be executed.
Sample join points are

– method invocation

– object constructor invocation

– variable or field assignment

– variable or field reading

• point-cut - a set of join points. The point-cuts can be specified gener-
ically, e.g. by patterns - every possible join point is compared against
the pattern, and if it matches, it belongs to the point-cut, otherwise not.
Example: all code points where a method which name starts with string
”get” is invoked. All ”getters” invocation would comprise this point-cut.

• advice - the code of a cross-cutting functionality. An advice can be exe-
cuted, before, after or around (instead of) a join point.

• aspect - a 2-tuple of point-cut and advice. It specifies which advice and
when should be executed.



6.1 Aspect Oriented Programming 65

// l o g g i n g f u n c t i o n a l i t y wi th AspectJ
aspect Logger{

// Logger o b j e c t f o r a c t i o n s
private Logger l o g g e r = new Logger ( LogType . a c t i on ) ;

// a l l the j o i n p o i n t s where the l o g g i n g shou ld be
// done − whenever a method wi th name s t a r t i n g
// wi th ” a c t i o n ” i s c a l l e d
po intcut a c t i o n C a l l ( Object [ ] actionParams ) :

c a l l (∗ ∗ ac t i on ∗( Object [ ] ) ) && args ( actionParams ) ;

// adv ice to be executed a f t e r an a c t i o n
a f t e r : a c t i o n C a l l ( Object [ ] actionParams )
{

// actionParams [ 0 ] i s a c t i o n name
l o g g e r . addLog ( ” ac t i on c a l l : ” + actionParams [ 0 ] ) ;

}
}

Listing 6.3: Logging functionality in AspectJ language

Usually in Aspect Oriented Programming cross-cutting concerns are built on top
of easier separable functionalities - that is basically the idea of this programming
paradigm. The easily separable functionalities are implemented in other pro-
gramming paradigms (e.g. structured or imperative programming paradigms),
an then the cross-cutting concerns are intertwined into the base code. This pro-
cess is called weaving and is done by special programs called aspect weavers.

6.1.2 Aspect Weavers

An aspect weaver takes as input the non-cross-cutting functionalities code and
the aspects. For each join point the weaver inserts the advices of the aspects
which point-cut includes the join point. The weaving is a pre-compilation oper-
ation. The advices code is added to the base code before the latter is compiled.
This way the weaving process does not induce any runtime errors - except the
ones already existing in advices. This is an important fact for the use of Aspect
Oriented Programming for ensuring data security and providing access control
mechanism in software systems, in particular in case of an Hospital Information
System.



66 Case study: benchmark realisation in Aspect Oriented Programming

6.2 Adaptable Access Control and the Hospital
Information System

In this section we will investigate how the Adaptable Access Control could be
used to meet the security requirements of the Hospital Information System.

Data security and access control are indeed cross-cutting concerns. If a software
system is expected to protect data confidentiality and integrity, it should do it
throughout the whole system. Coming back to the Hospital Information Sys-
tem, it is not good enough to protect the patient’s private informations only in
one component of the system. Protection of sensitive data has to be ensured in
the whole system. However without a formal method like model checking,static
or dynamic program analysis, protection of data confidentiality and integrity is
not very reliable. Code control and inspections performed by humans do not
give any formal premise to conclude that some security properties hold in a
software system.
Aspect Oriented Programming could be called ”the third way” - it is more for-
malized, automatized and deterministic than code reviews. If the weaver is
correctly implemented and the weaving process goes correctly (can be verified
formally) - the resulting software code may be guaranteed secure in some re-
spects. This is an important property for the Hospital Information System. It
has to be proven secure.

The Adaptable Access Control is an access control mechanism designed to pro-
tect data confidentiality and integrity in Electronic Medical Records. The au-
thors designed and implemented following:

1. a syntax for specifying data security policies for ”tree structured data”

2. an XML schema (”Access Control rules in XML”) and parser for these
security polices

3. a syntax for specifying a mapping between the variables / methods names
in a system implementation and their aliases used in the policy file

4. an XML schema (”Application Specification”) and parser for those map-
pings

5. a set of abstract aspects templates for aspect code generation, and the
aspect code generator itself (”Access control rule translator”)



6.2 Adaptable Access Control and the Hospital Information System 67

The figure 6.1 presents the work-flow in the Adaptable Access Control. The
security policies and and the application mapping are input files for the aspect
code generator. The generator produces ”Access control aspects” - code of
aspects that will be weaved into the EMR application (here assumed to be a
”Struts-based Web EMR application ”)

Figure 6.1: Work-flow in the Adaptable Access Control [7]

6.2.1 Adaptable Access Control policies for the Hospital
Information System

The analysis performed in the ”Gathering requirements” section (1.3) has been
concluded with a listing of security requirements for the Hospital Information
System. Now we will try to specify a Adaptable Access Control policy file em-
bracing those requirements.

The listing 6.4 presents the policies specified in the AAC policy file format. This
policy file includes all access control policies that has been implemented in the
Hospital Information System using the JIF language.

The authors of the Adaptable Access Control did not publish the software im-
plementing the ”access control rule translator” neither they have shown how
to specify the mapping (”application specification”) thus we could not really



68 Case study: benchmark realisation in Aspect Oriented Programming

implement a system and test it. However the authors did make a prototype
application which has proven secure [7], thus we assume that it is possible
to implement the Hospital Information System and intertwine the access con-
trol mechanism in it. Because of the fact that no actual implementation was
done using the Adaptable Access Control we will restrain from comparing the
JIF and Adaptable Access Control with respect to time needed to develop a
Hospital Information System using either technology.



6.2 Adaptable Access Control and the Hospital Information System 69

<< PatientRecord , PWD # authen t i c a t i on by username−password pa i r

/ MedicalRecord : :
Create :

( ” Administ rat ivePerson ” in User . r o l e s ) ;
Read , Update :

( ”Doctor” in User . r o l e s ) and
( User . name = Data . car ingDoctor or

Context . isEmeregency ) ;
Archive :

( ” Administ rat ivePerson ” in User . r o l e s ) ;

/ MedicalRecord / currentMedic ine :
Read :

(
( ”Doctor” in User . r o l e s ) and
( User . name = Data . car ingDoctor or

Context . isEmeregency )
) or
(

( ”Nurse” in User . r o l e s ) and
( User . name = Data . car ingNurse or

Context . isEmeregency )
) ;

Update :
( ”Doctor” in User . r o l e s ) and
( User . name = Data . car ingDoctor ) ;

/ Diagnoses : :
Add :

( ”Doctor” in User . r o l e s ) and
( User . name = Data . car ingDoctor ) ;

/ Administrat iveRecord
Create , Read , Update :

( ” Administ rat ivePerson ” in User . r o l e s ) ;

>>

Listing 6.4: The security policies for Hospital Information System in Adaptable
Access Control format



70 Case study: benchmark realisation in Aspect Oriented Programming



Chapter 7

Comparison & Conclusions

In this chapter we list the constraints of the JIF language and compare the
JIF against the Adaptable Access Control according to the ability to meet the
security requirements for the Hospital Information System. On this basis we
evaluate the JIF and present the result of this evaluation in the section 7.3.3.

As the authors of the Adaptable Access Control claim an actual implementation
of the scheme, we decided to focus more on evaluating JIF than Decentralized
Label Model, as JIF and Adaptable Access Control belong together on the same
abstraction level.

First of all we should note, that the JIF language, which is a framework for im-
plementing systems based on the Decentralized Label Model, does not present
the flexibility and interoperability of the latter. In the papers demonstrating
the Decentralized Label Model [23, 24, 22], the security policies (labels) are
truly distributed and dynamic. It is proposed there to label various distributed
data sources and make dynamic checks of the labels. This conceptions is very
attractive, and if implemented, may be really powerful and effective. However
the implementation of the Decentralized Label Model in the JIF language (ver-
sion 3.3.1) does not ensure these properties.



72 Comparison & Conclusions

7.1 Comparison - JIF disadvantages

In the following sections we will present the most important constraints of the
JIF that obstruct implementing a real-life EMR system in this language.

7.1.1 Threaded model not supported

A software system implemented in JIF have to be stand-alone programs. The
whole system has to be implemented as single deployment component. Cur-
rently JIF does not support the threaded model, thus accepting communication
from other software components over a network is not possible. Creating net-
work sockets for multi-client data exchange requires the threaded model [3]. It
is only possible to implement simple one-to-one communication channels, which
is not sufficient for a systems that is expected to receive queries from many users
and external systems simultaneously.

Lack of the threaded model makes it also impossible to implement a Graphical
User Interface for JIF programs. The times of command prompt interfaces for
end-users have already passed long time ago. The modern user interfaces are
graphical. Especially a system like Hospital Information System should provide
a graphical user interface of great usability. This software attribute is very
important for the Hospital Information System, as an unclear and obscure user
interface may badly affect the perception of the medical staff, and cause misin-
formation.

The Adaptable Access Control access control mechanism can be built on top of
any Java program, in particular one using the threaded model.

7.1.2 Hard-coded security policies (labels)

The labels containing the security policies have to be hard-coded into the JIF
programs and thus they have to be known fully in advance. It is not possible to
create and manipulate a label in the runtime. It has to be specified before the
program is compiled.
Unfortunately the developers of JIF decided to go more in the direction of static
program analysis, which blocked the path of developing a dynamic labels man-
agement. The dynamics of labels in the current JIF implementation is basically



7.1 Comparison - JIF disadvantages 73

restricted to dynamic labels comparison (checking if one label is more restrictive
than another one in the runtime). This is way too little for implementation of
a software system in which the security policies are a subject of changes. Tak-
ing the example of the Hospital Information System, if for example there was
a new policy for accessing the Administrative Record, saying that doctors now
have to access the Social Security ID (for some legal reason), then the Hospital
Information System maintenance people would have to dig into the JIF code
and change the labels in there. This is unquestionably not realistic as we shall
not expect them to know JIF, or even java for that matter.
It would be very neat if the dynamics of the labels was more elaborated in the
future releases of JIF. The current state of matters excludes JIF as an imple-
mentation language for a real-life Electronic Medical Record system.

The Adaptable Access Control allows to specify the policies in one file, which is
a subject of modification. This significantly improves the maintainability of the
software. If the policies for the data processed by the system change, a security
administrator changes only the policy file and re-compiles the whole application.
This is way easier and less time consuming than diving into code of a complex
and obscure programming language. Re-compilation and re-deployment of a
program supported by Adaptable Access Control is a major issue for the system
availability , which is crucial for EMR systems. However change of the security
policies in JIF programs requires this same action, thus we can say that JIF is
not a winner in the flexibility of policies management comparison.

7.1.3 Primitive and hard-coded principals

Most of the comments on poor label dynamics applies to the principals. A prin-
cipal is a construct used to abstract a user category or role in JIF. Creation and
manipulation of JIF (v 3.3.1) principals in runtime is not possible.
Also the way the hierarchy of the principals (in the sense of act-for relationship)
is obscure. There is no easy built-in language constructs (or software) for man-
aging the principals hierarchy in the runtime. However it is a bit better than in
the case of managing labels, as it is possible.

In the Adaptable Access Control the users can assume various roles that are
connected to some privileges in the system. Furthermore the roles a user is
assuming may change in the runtime without a need for a re-compilation of the
program. The user roles and other attributes are available in the policy file and
in the runtime through User object. This feature of Adaptable Access Control
makes it superior to JIF in respect to user roles management.



74 Comparison & Conclusions

However there is no (explicit) support in Adaptable Access Control for user or
roles hierarchy. It is not mentioned in [7] how to specify the hierarchy of roles.
Perhaps this feature could also be supported by the User object.

7.1.4 Missing I/O libraries

The current version of JIF libraries poorly supports the the basic (like reading
from a console or a file) and more elaborated (e.g. SQL databases) input/output
operations. In order to get these working, the developer has to make a ”hack”
(called so by JIF developers), i.e. create JIF signature classes and implement
them in Java. A signature class is a class that contains only signatures of fields
and methods, but not bodies of these.
Knowing this technique, it does not take much time to implement it, but first
one has to learn about. However the more important fact about the ”hack”
is that it introduces a serious threat for the security of the whole application.
The signature classes are excluded from label checking, as they contain only
signatures of the constructors, methods and variables . Anything flowing into
the classes implemented using the ”hack” gets out of control - it is not a subject
of the label checking mechanism. Similarly the values coming out of methods in
these classes can be assigned any security label (in particular, the least restric-
tive label). One needs to pay careful attention when using the ”hack”.

The access control mechanism imposed by Adaptable Access Control is built on
top of existing code providing the functionality of the system. This functionality
most likely include also input/output operations. Thus the communication be-
tween the software components and with other software systems depends solely
on the framework of the underlying implementation, which is the Java platform
for current implementation of Adaptable Access Control. In this respect the
Adaptable Access Control is more flexible than JIF.

7.1.5 Long time of learning JIF

This project lasted for 5 months and that was also the time necessary to master
the JIF language to an extend that allowed to implement the presented system
prototype. The author has already had a strong background in static analysis
of code and in formal verification of programs.
Such a long time of learning the language would probably deter a company
from employing JIF in implementation of an EMR system. The reason for such
a long learning time is that if one wants to implement even a simple security-



7.2 Comparison - JIF advantages 75

enabled program he has to possess the knowledge on virtually any feature of the
language. Also the JIF compiler error messages are not easily understandable
and it takes some time to deduce what they are really telling.

Learning how to specify a security policy file takes a few hours (including reading
the paper about Adaptable Access Control). It is hard to say how much time it
takes to specify the ”application specification” - mapping between variable and
function names to aliases used in the policy file, as the authors of Adaptable
Access Control did not explain it nor they gave information how long it could
take. Anyway the time for understanding the concepts and features of Adaptable
Access Control is many times shorter that the time for learning Decentralized
Label Model and JIF.

7.2 Comparison - JIF advantages

Despite the mentioned serious drawbacks, the JIF language is superior to Adapt-
able Access Control in some respects.

7.2.1 A formal method

The Decentralized Label Model and JIF are have got a sound scientific back-
ground. The lattice model by Denning & Denning [11], relabelling rules [24]
and the specification of the JIF language [21] provide proofs of correctness for
the entire framework. This fact is important from the legal point of view - if
a contract for development of an Electronic Medical Record system states that
protection of the patient record has to be proved formally (or at least semi-
formally), then JIF fulfils this requirement.
Also in case of a data leak, both the software provider and the customer (hospital
managers) can argue that it has not happened due to poor security properties
of the system.

The Adaptable Access Control does not accommodate this need. This access
control mechanism is operations-based - the security checks are done on the
method level. Misspecification or underspecification of the ”application specifi-
cation” (the mapping between the methods names and their aliases in the policy
file) or incorrect specification of the policy file may result in data leaks. This
framework does not provide any formal proofs of security properties.



76 Comparison & Conclusions

7.2.2 End-to-end security

Another exceptional property of the JIF is that it provides end-to-end security.
The JIF verifier checks the information flow in the entire application, and it is
conservative in the checks - if there is a doubt that there may possibly happen
a data leak, it complains about it and prevents compilation of the program.
The checker takes into account all possible data flows and by that it guarantees
formally that if a program has gone through the verification process, it is safe
with respect to the policies specified in the code.
Thus if the policies for the data circulating in the system are specified accord-
ing to the goal security properties of the system, the program will ensure these
properties if it gets through the verification process.

As mentioned before, the Adaptable Access Control is method-based - it only
checks if a user is allowed to execute a method. What happens next with the
data returned by the method is not relevant for Adaptable Access Control.
Potentially it is a major threat for data confidentiality and integrity. If the
Adaptable Access Control policy file is not consistent with the rules who can
access what information, or if there exist in the program a data flow allowing
read-ups or write-downs (violation of data confidentiality) this may lead to
serious data leaks.

7.3 Conclusions

7.3.1 Decentralized Label Model as a framework for im-
plementing Hospital Information System

Examination of JIF on the Hospital Information System case study has shown
that in the current shape is not a proper framework for implementation of Elec-
tronic Medical Record systems.
The main issues of JIF are low flexibility, small number of libraries supporting
interoperability and obscurity of the language. The current version (3.3.1) of
JIF does not seem appropriate for implementation of large systems used for
presentation and simple manipulation of data. It is good for security-critical
code and complex processing of data with different confidentiality/integrity lev-
els and in such applications it is very powerful.
The need of hard-coding security policies and user roles hierarchy makes pro-
grams written in JIF hard to maintain and extend. And as the policies for
patient record protection are a subject of constant management, the system



7.3 Conclusions 77

maintenance team has to be skilled in JIF, and that cannot be expected from
system administrators of a hospital computer system.
There were not many attempts to scrutinize JIF, in particular on a case study
of an Electronic Medical Record system. This facts obstructs growth of a devel-
opers community and development of techniques that may be generic for this
type of systems.
On the contrary, the Adaptable Access Control, a framework for ensuring access
control in Electronic Medical Record systems satisfies most of the requirements
for Electronic Medical Record systems. The authors of the Adaptable Access
Control implemented a prototype system for management of patients records
following an official Taiwan standard for patient records [7].
If the future releases of JIF tackle the issues mentioned in this chapter, possibly
JIF will fit more the into Electronic Medical Record system scenarios.

7.3.2 Related work

There has been only a few middle- to large-scale applications developed in the
JIF and published:

• SIF - Servlet Information Flow - ”a novel software framework for building
high-assurance web applications, using language-based information-flow
control to enforce security” [9]

• SWIFT - ”a new, principled approach to building web applications that
are secure by construction. ... Swift automatically partitions application
code while providing assurance that the resulting placement is secure and
efficient.” [8]

• Fabric - ”a new system and language for building secure distributed in-
formation systems. It is a decentralized system that allows heteroge-
neous network nodes to securely share both information and computa-
tion resources despite mutual distrust. Its high-level programming lan-
guage makes distribution and persistence largely transparent to program-
mers.” [18]

• Civitas - ”the first electronic voting system that is coercion-resistant, uni-
versally and voter verifiable, and suit- able for remote voting.” [10]

• JPMail - an e-mail client developed at Penn State University (USA) [4]

Among these only the JPMail project strived to scrutinize the Decentralized
Label Model and the JIF language. The others were more oriented on the new



78 Comparison & Conclusions

concepts introduced in these projects and did not try to take a critical look on
JIF. This is quite self-explanatory as the co-authors of these project were the
contributors of the JIF language.
The JPMail project aimed both at development of a real-world application and
development of additional tools / mechanism for JIF supporting the former goal.
The conclusions drawn from JPMail implementation process were following:

• ”it is possible to implement a practical application, an e-mail client, in
Jif” [4]

• ”one challenge is in managing principals beyond the limited domain of a
single Jif program execution” [15]

• ”better development tools are essential for making security-typed applica-
tion development practical” [16]

• ”despite the substantial amount of work involved, mail client is neither
flashy nor full-featured” [15]

These conclusions are in accordance with the conclusions drawn from imple-
mentation of the Hospital Information System, however they are sparse and on
a high level of abstraction.

An attempt to implement an EMR system using JIF was done by E. Nodet
[25]. This work was useful for the Hospital Information System project, as it
signalises some of the JIF drawbacks. However lack of explicit goals and criterion
for scrutinizing the JIF language and simplicity of the implemented system did
not give sufficient information on how well-suited is the Decentralized Label
Model and JIF for implementing Electronic Medical Record systems.

7.3.3 Further research

Scrutinization of the JIF language implementation revealed a number of serious
drawbacks, however they could be possibly avoided or eliminated. An interesting
direction of employing the Decentralized Label Model would be implementation
of another framework (not necessarily a programming language) realising the
full potential of the model. Key development goals of this new framework should
be: flexibility,usability and maintainability of programs using this framework.
Pursue of these goals would require strong improvement of labels dynamics,
elaboration of the API for principals hierarchy management and shortening the
technology learning process.



Appendix A

HIS

A.1 HIS Implementation Reference

A.1.1 Class Main

The class Main is the entry point of the whole program. The method main of
this class is the first method invoked when the program is launched.

The class (and the method main) has got the authority of principal Sysroot
who can act for all other principals. This declaration of authority is necessary
for running the program with authority of the user who has successfully logged
in. In the main method there is a call to the AuthenticationManager class to au-
thenticate the user. If the authentication is successful, the CommandProcessor
with authority of the logged in user is instantiated and a session is started.



80 HIS

Methods

main

the main method receives as a parameter the patientId of the patient for whom
the session is started. Whenever launching the program, patientId must be
specified, as the user always has to assume a role (e.g. Doctor, Nurse etc.)
which may be different for a different patients.
The method first authenticates the current user, then it yields the role of the
authenticated user according to the input patientId. After that a session for
the authenticated user is started and command prompt is launched.
The program terminates when the method terminates.

parameters :

• args: String[] - command line parameters - here the patientId is
conveyed

A.1.2 Class MedicalRecord

Fields

doctorLabel : label

This variable holds a label a part of medical record is labelled with - the data
that should be accessible for the Doctor only.
The label of the field is {> ← >} .

nurseLabel : label

This variable holds a label a part of medical record is labelled with - the data
that should be accessible for the Doctor and the Nurse.
The label of the field is {> ← >} .



A.1 HIS Implementation Reference 81

patientIdLabel : label

This variable holds a label of the patientId.
The label of the field is {> ← >} .

patientId : String

This variable holds the id of the patient who is the subject of the record.
The label of the field is {∗patientIdLabel}

currentMedicine: String

The medicine the patient is currently treated with.
The label of the field is {∗nurseLabel}

allergies: String

The allergies the patient is suffering.
The label of the field is {∗nurseLabel}

specialNote: String

Important patient-specific information, e.g. mental diseases, handicapped.
The label of the field is {∗doctorLabel}

Methods

create

This method adds a new medical record entry to the system.

parameters :

• patientId: String - id of the new patient added to the system



82 HIS

load

This method loads from the database the medical record of a patient.

parameters :

• patientId: String - id of the patient whose record is to be loaded

update

This method uploads the medical record to the database.

parameters :
this method takes no parameters

print

This method prints the medical record to the standard output.

parameters :
this method takes no parameters

assignMedicine

This method prints the medical record to the standard output.

parameters :

• medicine: String - name of the medicine to be assigned

appendAllergy

This method adds information about a newly discovered allergy of the patient.



A.1 HIS Implementation Reference 83

parameters :

• allergy: String - name of the allergic substance

writeSpecialNote

This method allows to insert the special note about the patient to the system.

parameters :

• note: String - the special note about the patient

A.1.3 Class AuthenticationManager

The AuthenticationManager class is responsible for authenticating the users and
yielding their roles in the system.

Fields

authenticationLabel : label

This variable holds the label the credentials are labelled with - these data should
be accessible for the Sysroot only.
The label of the field is {> ← >} .

Methods

authenticate

The authenticate method is responsible for authenticating the user - checking if
the credentials provided by the user are correct.

parameters :
this method takes no parameters



84 HIS

returns :
the return type is String. The return value is the name of the user that
has provided correct credentials.

role

The role method is responsible yielding the role of the user.

parameters :

• staffId: String - staff id of the user

• patientId: String - id of the patient for whom the role is played

returns :
the return type is Principal. The return value is the role the user is
assuming in the system.

A.1.4 Class Logger

The Logger class is responsible for logging security-related events in the system.
This includes e.g. attempts of unauthorized data access or emergency access of
patient record.

Methods

log

This method insert a log entry to the logs database.

parameters :

• eventType: String - string describing the type of event (e.g. ”unau-
thorized access attempt”)

• description: String - a more verbose description of the event (e.g.
who was the user, what data was accessed etc.)



A.1 HIS Implementation Reference 85

A.1.5 Class Console

The Console class facilitates standard input and standard output operations:
reading from and writing to the command prompt.

Special Remarks

In the JIF library there exist a class Runtime intended to provide similar func-
tionality. Unfortunately due to implementation failures it does not work prop-
erly and could not be used in the system. In order to facilitate standard input
and standard output operation in the Console class there was a need to create a
JIF signature class and implement it in Java, as use of the standard System.in
and System.out streams is restricted in the JIF library, in fact it is not allowed.

Methods

print

The print function prints a string to the standard output.

parameters :

• text: String - the string printed out to the standard output

println

The println function prints a string + a newline character to the standard
output.

parameters :

• text: String - the string printed out to the standard output

readLine

The readLine function reads a String from the standard input.



86 HIS

parameters :
this method takes no arguments

returns :
the return type is String. The return value is the string read from the
standard input.

A.1.6 Class Assigned Staff

Fields

patientId : String

Id of the patient to whom the staff is assigned.

doctorStaffId : String

Staff id of the doctor who is assigned to the patient.

nurseStaffId : String

Staff id of the nurse who is assigned to the patient.

Methods

create

This method adds a new staff assignment entry to the system.

parameters :

• patientId: String - id of the patient for whom the staff assignment
entry is added



A.1 HIS Implementation Reference 87

load

This method loads from the database the staff assignment to a patient.

parameters :

• patientId: String - id of the patient to whom the staff is assigned

update

This method uploads the staff assignment to the database.

parameters :
this method takes no parameters

print

This method prints to the standard output the staff assignment.

parameters :
this method takes no parameters

print

This method prints to the standard output the staff assignment.

parameters :
this method takes no parameters

assignNurse

This method assigns a nurse to the patient.



88 HIS

parameters :

• nurseStaffId: String - staff id of the nurse who is being assigned to
the patient

assignDoctor

This method assigns a doctor to the patient.

parameters :

• doctorStaffId: String - staff id of the doctor who is being assigned to
the patient

A.1.7 Class CommandsProcessor

Fields

currentUser : Principal

The field currentUser contains information what role current user is assuming
(e.g. Doctor, Nurse etc.)

currentUserId : String

The currentUserId is the staff id of the current user.

patientId : String

The id of the patient for which the program is run.



A.1 HIS Implementation Reference 89

Methods

addDiagnose

This method calls the Diagnoses.addDiagnose method to add a diagnose to the
patient’s record.

parameters :

• parameters: String[] - parameters for the Diagnoses.addDiagnose
method

addPatient

This method adds a new medical record, administrative record, and staff as-
signment record for a new patient.

parameters :

• parameters: String[] - parameters used for creating the patient record

addTreatment

This method calls the Treatments.addTreatment method to add a treatment to
the patient’s record.

parameters :

• parameters: String[] - parameters for the Treatments.addTreatment
method

archiveRecord

This method serves for archiving the patient’s record.

parameters :

• parameters: String[]



90 HIS

assignDoctor

This method calls the AssignedStaff.assignDoctor method to assign a Doctor
to the patient.

parameters :

• parameters: String[]

assignNurse

This method calls the AssignedStaff.assignNurse method to assign a Nurse to
the patient.

parameters :

• parameters: String[]

createUser

This method allows to add new users (staff members like Doctors etc.) to the
system.

parameters :

• parameters: String[]

listPatients

This method allows list all patients enrolled in the system.

parameters :

• parameters: String[]



A.1 HIS Implementation Reference 91

readAdministrativeRecord

This method prints to the standard output the administrative record of the
patient.

parameters :

• parameters: String[]

readAssignedStaff

This method prints to the standard output staff ids of the staff members that
are assigned to the patient.

parameters :

• parameters: String[]

readDiagnoses

This method prints to the standard output the diagnoses that were made to the
patient.

parameters :

• parameters: String[]

readMedicalRecord

This method prints to the standard output the medical record of the patient.

parameters :

• parameters: String[]



92 HIS

readTreatments

This method prints to the standard output the treatments the patient has un-
dergone.

parameters :

• parameters: String[]

printHelp

This method prints to the standard output the help information how to use the
program.

parameters :

• parameters: String[]

printSyntaxError

This method prints to the standard output an error that the user has mistyped
a command.

parameters :

• parameters: String[]

startSession

This method starts a command prompt where user can type-in commands.

parameters :

• parameters: String[]



A.1 HIS Implementation Reference 93

A.1.8 Class Diagnoses

Fields

dataLabel : label

This variable holds a label the diagnoses are labelled with - the data that should
be accessible for the Doctor only.
The label of the field is {> ← >} .

patientIdLabel : label

This variable holds a label of the patientId.
The label of the field is {> ← >} .

patientId : String

This variable holds the id of the patient who is the subject of the diagnoses.
The label of the field is {∗patientIdLabel}

diagnoses: String[]

The diagnoses the patient was given by the Doctors.
The label of the field is {∗dataLabel}

Methods

addDiagnose

This method adds a new diagnose to the record of the patient.

parameters :

• diagnose: String - textual description of the diagnose



94 HIS

printAll

This method prints all the diagnoses to the standard output.

parameters :
this method has got not parameters

A.1.9 Class Treatmentsf

Fields

dataLabel : label

This variable holds a label the treatments descriptions are labelled with - the
data should be accessible for the Doctor only.
The label of the field is {> ← >} .

patientIdLabel : label

This variable holds a label of the patientId.
The label of the field is {> ← >} .

patientId : String

This variable holds the id of the patient who is the subject of the treatments.
The label of the field is {∗patientIdLabel}

treatments: String[]

The treatments the patient has undergone.
The label of the field is {∗dataLabel}



A.1 HIS Implementation Reference 95

Methods

addTreatment

This method adds a new treatment description to the record of the patient.

parameters :

• treatment: String - textual description of the treatment

printAll

This method prints all the treatments descriptions to the standard output.

parameters :
this method has got not parameters

A.1.10 Class Utils

This class is embraces all the methods that are general for the whole system
- they are called from various places in the code. It also includes requisite
methods that are accessible in Java libraries, but not in the JIF libraries.

Methods

splitString

This method splits a string into sub-string on a selected delimiter. It is the same
as the standard String.split method which is excluded from the JIF library.

parameters :

• text: String - string to be split.

• delimiter: String - splitting delimiter



96 HIS

returns :
the return type is String []. The return value is array of sub-strings of the
input string split on the selected delimiter.

SHA1

This method returns a SHA1 hash value of the input String. The SHA1 hashing
function is generally recognized a secure hashing function.

parameters :

• text: String - string to be hashed.

returns :
the return type is String. The return value is the hash value of the input
string.

convertToHex

This method converts a byte[] array into a String. It is used by the SHA1
method.

parameters :

• data: byte[] - input byte array.

returns :
the return type is String. The return value is the input array converted
into a String.

A.1.11 Class PatientsList

This class is used to retrieve the list of all patients enrolled in the system.



A.1 HIS Implementation Reference 97

Fields

dataLabel : label

This variable holds a label the patients list is labelled with - the data should be
accessible for the Administrative Person only.

patientsList : String[]

This variable holds an array with the patientId’s of all the patients enrolled in
the system.

Methods

load

This method populates the patients list from the database.

parameters :
this method takes no arguments

printAll

This method prints all the patientsList variable to the standard output.

parameters :
this method takes no arguments

A.1.12 Class SQLQueriesHander

This class is used to as an interface between the JIF code and SQL databases.



98 HIS

Special Remarks

In the JIF library there is no implementation of interfaces to SQL databases.
In order to facilitate querying the databases there was a need to create a JIF
signature class and implement it in Java.

Fields

rowsNumber : int

This variable holds the number of rows of the latest SELECT query result.

columnsNumber : int

This variable holds the number of columns of the latest SELECT query result.

databaseName: int

This variable holds the name of the database which should be queried.

Methods

getValue

This method return the value of the latest SELECT query result at the specific
row and column.

parameters :

• row: int - the row number where the value is placed

• column: int - the column number where the value is placed



A.1 HIS Implementation Reference 99

executeSelect

This method executes a SELECT query on the database.

parameters :

• query: String - the SELECT query to be executed

executeUpdate

This method executes a query affecting database (UPDATE, INSERT or
DELETE)on the database.

parameters :

• query: String - the query to be executed



100 HIS



Bibliography

[1] http://www.whitcam.com/research/wp-content/uploads/2008/04/

taxesgowhere.jpg.

[2] http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html.

[3] http://download.oracle.com/javase/tutorial/networking/

sockets/clientServer.html.

[4] http://siis.cse.psu.edu/jpmail/.

[5] Ab Bakker. Access to ehr and access control at a moment in the past: a
discussion of the need and an exploration of the consequences. International
Journal of Medical Informatics, 2004.

[6] Bob Brown. Protecting the confidentiality of medical records in an inter-
connected environment. Journal of Health Care Compliance, 2010.

[7] Kung Chen, Yuan-Chun Chang, and Da-Wei Wang. Aspect-oriented de-
sign and implementation of adaptable access control for electronic medical
records. Journal of Medical Informatics, 2010.

[8] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partition-
ing. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP’07).

[9] Stephen Chong, K. Vikram, and Andrew C. Myers. Sif: Enforcing con-
fidentiality and integrity in web applications. In Proceedings of USENIX
Security Symposium 2007.

http://www.whitcam.com/research/wp-content/uploads/2008/04/taxesgowhere.jpg
http://www.whitcam.com/research/wp-content/uploads/2008/04/taxesgowhere.jpg
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
http://download.oracle.com/javase/tutorial/networking/sockets/clientServer.html
http://download.oracle.com/javase/tutorial/networking/sockets/clientServer.html
http://siis.cse.psu.edu/jpmail/


102 BIBLIOGRAPHY

[10] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:
Toward a secure voting system. In Proceedings of the IEEE Symposium on
Security and Privacy.

[11] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20:504–513, July 1977.

[12] Michelle Dougherty. The legal ehr: A new compliance focus. Journal of
Health Care Compliance, 2008.

[13] Mehrdad Farzandipour, Farahnaz Sadoughi, Maryam Ahmadi, and Iraj
Karimi. Security requirements and solutions in electronic health records:
Lessons learned from a comparative study. Journal of Medical Systems,
2010.

[14] Beatrice Finance, Saida Medjdoub, and Philippe Pucheral. Privacy of med-
ical records: From law principles to practice. In Proceedings - IEEE Sym-
posium on Computer-Based Medical Systems.

[15] Boniface Hicks, Kiyan Ahmadizadeh, , and Patrick McDaniel. From lan-
guages to systems: Understanding practical application development in
security-typed languages. In Proceedings of the 22nd Annual Computer
Security Applications Conference.

[16] Boniface Hicks, Dave King, and Patrick McDaniel. Jifclipse: Development
tools for security-typed languages. In Proceedings of PLAS07.

[17] Dimitrios Lekkas and Dimitris Gritzalis. Long-term verifiability of the elec-
tronic healthcare records’ authenticity. International Journal of Medical
Informatics, 2007.

[18] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and An-
drew C. Myers. Fabric: A platform for secure distributed computation and
storage. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP’09).

[19] Robert Lowes. Healthcare it: How safe is your patient data? Medical
Economics, 2006.

[20] G.F. Knolmayer M. Luethi. Security in health information systems: An
exploratory comparison of u.s. and swiss hospitals. In Proceedings of the
Annual Hawaii International Conference on System Sciences.

[21] Andrew C. Myers. Practical mostly-static information flow control. In
Proceedings of the 26th ACM Symposium on Principles of Programming
Languages.



BIBLIOGRAPHY 103

[22] Andrew C. Myers and Barbara Liskov. A decentralized model for infor-
mation flow control. In Proceedings of the sixteenth ACM symposium on
Operating systems principles, SOSP ’97, pages 129–142, New York, NY,
USA, 1997. ACM.

[23] Andrew C. Myers and Barbara Liskov. Complete, safe information flow
with decentralized labels, 1998.

[24] Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Trans. Softw. Eng. Methodol., 9:410–442,
October 2000.

[25] Emily Nodet. Data-flow control using jif in a health care system. Master’s
thesis, Technical University of Denmark, 2008.

[26] Brian Regan, O. Tolga Pusatli, Eugene Lutton, and Rukshan Athauda.
Securing an ehr in a health sector digital ecosystem. In 2009 3rd IEEE
International Conference on Digital Ecosystems and Technologies, DEST
’09.

[27] Lillian Røstad and Øystein Nytrø. Personalized access control for a per-
sonally controlled health record. In Proceedings of the ACM Conference on
Computer and Communications Security.

[28] Richie Saville. The doctor will see you now. Computer Fraud and Security,
2010.


	Summary
	Preface
	1 Introduction
	1.1 Electronic Medical Records - motivation and challenges
	1.2 Decentralized Label Model for the Hospital Information System
	1.3 Hospital Information System - gathering security requirements

	2 Case study: Hospital Information System
	2.1 Conceptual Design
	2.2 Use cases
	2.3 Databases design

	3 Decentralized Label Model
	3.1 Access control
	3.2 Basics
	3.3 Labels
	3.4 Labels ordering
	3.5 Label checking

	4 Case study: realisation in JIF
	4.1 General
	4.2 Data labels design
	4.3 Meeting the security-related requirements
	4.4 Package record
	4.5 Package interface
	4.6 Package utils
	4.7 SQL tables implementation

	5 Case study: usage scenarios
	5.1 Test case: add patient - authorized attempt
	5.2 Test case: add patient - unauthorized attempt
	5.3 Test case: reading administrative record - authorized attempt
	5.4 Test case: reading administrative record - unauthorized attempt
	5.5 Test case: adding diagnose - authorized attempt
	5.6 Test case: adding diagnose - unauthorized attempt
	5.7 Test case: archiving record - authorized attempt
	5.8 Test case: archiving record - unauthorized attempt

	6 Case study: benchmark realisation in Aspect Oriented Programming
	6.1 Aspect Oriented Programming
	6.2 Adaptable Access Control and the Hospital Information System

	7 Comparison & Conclusions
	7.1 Comparison - JIF disadvantages
	7.2 Comparison - JIF advantages
	7.3 Conclusions

	A HIS
	A.1 HIS Implementation Reference


