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ABSTRACT

This contribution deals with change detection by means of sparse principal component analysis (PCA) of simple
differences of calibrated, bi-temporal HyMap data. Results show that if we retain only 15 nonzero loadings (out
of 126) in the sparse PCA the resulting change scores appear visually very similar although the loadings are
very different from their usual non-sparse counterparts. The choice of three wavelength regions as being most
important for change detection demonstrates the feature selection capability of sparse PCA.
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1. INTRODUCTION

Principal component analysis (PCA) first described by Hotelling in 19332 is a very popular way of orthogonalizing
and compressing multi- and hypervariate data. Because the principal components (PCs) are weighted linear
combinations of all the original variables they are sometimes difficult to interpret. Sparse PCA carries out the
transformation in a way such that some or even many weights (also known as loadings) are forced to zero. This
facilitates interpretation of the resulting sparse principal component scores. Section 2 describes PCA including
a sparse version. Section 3 describes an example and gives results, and Section 4 concludes.

2. PRINCIPAL COMPONENT ANALYSIS

Let us consider a data set with n observations and p variables organized as the usual data matrix X with n
rows and p columns; each column contains measurements over all n observations from one variable and each row
consists of a vector of measurements z from p variables for a particular observation, the superscript 7 denotes
the transpose. Without loss of generality we assume that the variables in the columns of X have mean value
ZEro.

In ordinary PCA we find projections z7u = u”x of the rows of X which maximize the variance Var{uTz} =

u”Su with u”u = 1 where S is the sample variance-covariance matrix, S = X7 X/(n—1) =1/(n—1) > I, z;x]
which is p by p. This may be done by means of a Lagrange multiplier technique where we maximize L =
ul Su — AMuTu — 1) without constraints by setting the partial derivatives L/0u = 2(Su — Au) to zero. If XT X
is rank 7 < min(n, p) this leads to r non-zero eigenvalues \; and r orthogonal or mutually conjugate unit length
eigenvectors u; (ufu; = 0,4 # j; ul'u; = 1) from the eigenvalue problem Su; = \ju;. We see that the sign of
u; is arbitrary. To find the principal component scores for an observation x we project x onto the eigenvectors,

xTu; = uiT:v. The variance of these scores is uiTSui = )\ZuZTuZ =\
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Figure 1. Left: HyMap bands 27 (828 nm), 81 (1,648 nm) and 16 (662 nm) as RGB, 30 June 2003 8:43 UTC. Right:
HyMap bands 27 (828 nm), 81 (1,648 nm) and 16 (662 nm) as RGB, 4 August 2003 10:23 UTC.

2.1 Sparse PCA

Sparsity, i.e., the fact that several weights or loadings (u above) are zero is enforced by adding the constraint
card(u) < m, m < p to the usual PCA formulation: maximize u’ Su with uTu = 1. Here card is the cardinality
meaning the number of nonzero elements in the eigenvector. In principle this requires maximization under an
Ly-norm constraint. In? %8 this is rewritten to a sparse regression problem with so-called elastic net constraints
(here for the leading sparse principal component only): minimize Y ;. ||; — Ou”z;||3 + Xa||ul|3 + A1]jull1 with
0]l = 1 and where the Lo-norm is replaced by the Lj-norm. z; is the ith row of X.

Sparse PCA is calculated on data normalized to unit variance.

3. BI-TEMPORAL HYMAP DATA

Here we use all 126 spectral bands of 400 rows by 270 columns 5 m pixels HyMap! data covering a small agri-
cultural area near Lake Waging-Taching in Bavaria, Germany. HyMap is an airborne, hyperspectral instrument
which records 126 spectral bands covering most of the wavelength region from 438 to 2,483 nm with 15-20 nm
spacing. Figure 1 shows HyMap bands 27 (828 nm), 81 (1,648 nm) and 16 (662 nm) as RGB acquired at 30
June 2003 8:43 UTC (left) and 4 August 2003 10:23 UTC (right). The data at the two time points were radio-
metrically calibrated and orthorectified using GPS/IMU measurements, a DEM and ground control points. One
pixel accuracy was obtained. These data are dealt with in*® also.

Figure 2 shows the simple difference image between the August and the June images.
Figure 3 shows ordinary leading principal component loadings (the leading eigenvector, left) and scores (right).

Figure 4 shows the percentage of explained variance (PEV) of the leading sparse principal component as a
function of the number of nonzero elements in the eigenvector. We see that if we choose 100 nonzero elements
we sacrifice very little explained variance.

Abrupt changes in PEV occur at around 80, 55 and (to a lesser extent) 15 nonzero elements. Hence we
calculate and inspect leading sparse principal component loadings (eigenvectors) and scores for 100, 80, 55 and
15 nonzero elements, see Figures 5 to 8. No-change regions have values close to zero in the simple differences



Figure 2. Simple differences: August minus June data, HyMap bands 27 (828 nm), 81 (1,648 nm) and 16 (662 nm) as
RGB.

0.12 T

0.1

0.08

0.06

0.04

0.02

-0.02

0.5 1 15 2 25

Figure 3. Left: Leading eigenvector. Right: Leading scores.

and also in the (sparse) principal component scores and thus appear middle gray. Change regions have either
low or high values and appear as either dark or bright regions.

We see that the wavelength region to first get zero weights is 738-1,128 nm (Figure 5), followed by 707-1,327
nm (Figure 6), and 438-1,489 nm (Figure 7). With only 15 nonzero weights wavelengths around 1,516, 1,807
and 2,206 nm (bands 71, 94 and 109) are highlighted (Figure 8) as being important for change detection in this
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Figure 4. Percentage explained variance of leading sparse principal component vs number of nonzero elements in eigen-
vector.
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Figure 5. Left: Leading sparse eigenvector with 100 nonzero elements. Right: Leading sparse scores, 100 nonzero elements.

case. This is an example of the feature selection capability of sparse PCA.

We note that the visual differences between the usual and the sparse scores are very small for all examples
shown.

Change detected over the five weeks is due to growth of the main crop types such as maize, barley and
wheat. On pastures, which are constantly being grazed, in forest stands and in the lake to the south, no change
is observed. Furthermore, both solar elevation and azimuth have changed which gives rise to edge effects where
abrupt height differences on the ground occur.
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Figure 6. Left: Leading sparse eigenvector with 80 nonzero elements
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Figure 7. Left: Leading sparse eigenvector with 55 nonzero elements. Right: Leading sparse scores, 55 nonzero elements.

4. CONCLUSIONS

Because it forces the eigenvectors (or loadings) to have (several) zero elements sparse PCA facilitates the in-
terpretation of the resulting principal components. This is demontrated in a case study with hyperspectral
HyMap data from South Germany with 126 spectral bands and 400 rows by 270 columns 5 m pixels where visual
differences between different scores were small in spite of very different loadings.

The fact that the sparse PCA for few (here 15) nonzero weights points to three wavelength regions as being
the most important ones for the change detection, may be considered as a form of feature selection.
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Figure 8. Left: Leading sparse eigenvector with 15 nonzero elements. Right: Leading sparse scores, 15 nonzero elements.
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