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Abstract—Addressing the image correspondence problem by
feature matching is a central part of computer vision and 3D
inference from images. Consequently, there is a substantial
amount of work on evaluating feature detection and feature
description methodology. However, the performance of the
feature matching is an interplay of both detector and de-
scriptor methodology. Our main contribution is to evaluate
the performance of some of the most popular descriptor
and detector combinations on the DTU Robot dataset, which
is a very large dataset with massive amounts of systematic
data aimed at two view matching. The size of the dataset
implies that we can also reasonably make deductions about
the statistical significance of our results. We conclude, that
the MSER and Difference of Gaussian (DoG) detectors with
a SIFT or DAISY descriptor are the top performers. This
performance is, however, not statistically significantly better
than some other methods. As a byproduct of this investigation,
we have also tested various DAISY type descriptors, and found
that the difference among their performance is statistically
insignificant using this dataset. Furthermore, we have not been
able to produce results collaborating that using affine invariant
feature detectors carries a statistical significant advantage on
general scene types.

Keywords-Interest point detector, Interest point descriptor,
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I. INTRODUCTION

The computational efficiency of a sparse image represen-
tation consisting of salient interest points, also referred to as
features, is a major motivation for feature based methods for
solving the image correspondence problem. Various detec-
tors and descriptors have been proposed, but the question of
how to optimally design an interest point characterization
still remains open. The success of feature-based methods
depends on the quality of the local characterization. In gen-
eral it is not an easy task to judge the performance of such
methods, because it is hard to validate if correspondence
exist. However given knowledge about the geometry of the
observed scene, it becomes easy to verify if two interest
points corresponding in feature space also corresponds in
the real scene. We therefore propose to use the DTU Robot
dataset with known surface geometry presented in [1], [2]
(see Sec. II for a brief description and Fig. 1). Based on this
dataset we are able to systematically analyze the design of
feature methods and due to the large variation in scene types
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Figure 1. Example of data and setup. Two images of the same scene with
one close up (a) and one distant from the side (b), and the reconstructed 3D
points (c). Corresponding interest points can be found using the geometric
information of the scene with known camera positions and 3D scene surface
as schematically illustrated in (d). Illustration from [1].

we can judge the statistical significance of our findings.
Finding correspondence between image pairs using inter-

est points is based on the assumption that common interest
points will be detected in both images. For this to be useful,
corresponding interest points have to be localized precisely
on the same scene element, and the associated region around
each interest point should cover the same part of the scene.
Commonly, candidate points are detected using an interest
point detector and a description of the local image structure
– the so-called descriptors – surrounding the interest points
are extracted. Following the extraction of descriptors, a
comparison of these is made using a relevant similarity
metric in order to determine correspondence between interest
points. The rationale is that descriptors capture the essential
visual appearance of the scene region covered by the interest
point, and as a consequence the same scene point seen
from different viewpoints and/or with different lighting
should have similar descriptors. Therefore descriptors should
preferably be invariant, or approximately, with respect to
changes in viewpoint and lighting.

Early work on correspondence from local image features
was based on rotation and scale invariant features [3], [4],



and interest points from planer scenes was evaluated in
[5]. Later the interest points have been adapted to affine
transformation, to obtain robust characterization to larger
viewpoint changes. These methods have been surveyed in
[6], but the performance has been evaluated on quite limited
datasets consisting of ten scenes each containing six images.
The suggested evaluation criteria have since been used in
numerous works together with this small dataset.

Different approaches have been taken when describing
the local visual appearance of interest points. A majority
of approaches extract some descriptive feature, such as
histograms of differential geometric image properties in each
pixel [3], [7], [4], [8], using integral images [9], [10], or the
responses of steerable filters [11], differential invariants or
local jets [12], [13], [14], [5]. The SIFT [3], GLOH [7], and
DAISY [8], [15], [16], [17] descriptors also includes a spatial
pooling step in order to agglomerate the descriptive feature
in an arrangement around the interest point. A selection of
descriptors have previously been evaluated in [7] on the
same dataset as used in [6]. Again the limitations of the
dataset restricts the ability to generalize the results from
this survey to a wider class of scene types and more natural
variation in illumination.

The ground truth in the data from [6] was obtained by
an image homography. This limits the scene geometry to
planar surfaces or scenes viewed from a large distance
where a homography is a good approximation. Fraundorfer
and Bishof [18] addressed this limitation by generating
ground truth and requiring that a matched feature should
be consistent with the camera geometry across three views.
In Winder et al. [17], [19], [16], [20] results from Photo
Tourism [21] were used as ground truth.

Moreels and Perona [22] evaluated feature descriptors
similar to [18] based on pure geometry by requiring three
view geometric consistency with the epipolar geometry. In
addition they used a depth constraint based on knowledge
about the position of their experimental setup. Hereby they
obtained unique correspondence between 500-1000 detected
points from each object. The limitation of their experiment is
the use of relatively simple scenes with mostly single objects
resulting in little self-occlusion. However, self-occlusions are
very frequent in real world scenes and many interest points
are typically found near occluding boundaries, limiting the
applicability of their conclusions.

The aim of this work is to compare pairs of feature
detectors and descriptors, to find the best combination.
To keep the computational burden manageable the number
of candidates have to be limited, and we thus only use
candidates which have previously been reported to perform
well. As for the detectors we choose Harris, Harris Affine,
Harris Laplace, Hessian Laplace, Hessian Affine, MSER,
and Difference of Gaussian (DoG), because they are popular
and reported to work well in the literature [1], [23].

As for the feature descriptors, the state of the art is
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Figure 2. The central frame in the nearest arc is the key frame, and the
surface reconstruction is attempted to cover most of this frame. The three
arcs are located on circular paths with radii of 0.5 m, 0.65 m and 0.8 m,
which also defines the range of the linear path. Furthermore, Arc1 spans
+/− 40◦, Arc2 +/− 25◦ and Arc3 +/− 20◦. Illustration from [1].

currently the SIFT [3] and DAISY descriptors [8], [15],
[16], [17] which we choose to use and implement using
the framework of Winder and Brown [17]. We also include
conventional (normalized) cross correlation as a baseline,
since much work has been done using this descriptor.
The DAISY descriptors however cover a wide range of
descriptors; as such we choose to divide our analysis into
two, where we first identify the best DAISY descriptors on a
subset of the detectors. This is the subject of Sec. III, where
21 different variants of the DAISY descriptor are evaluated.
Each combination is evaluated using ROC-curves (Receiver
Operating Characteristics). Two representative descriptors
are carried on to the last part of the analysis, reported in
Sec. IV, where a matrix of the seven detectors and four
descriptors are evaluated. A discussion of our results and
recommendations is found in Sec. V.

II. DATA AND EVALUATION

In this investigation we use the DTU Robot dataset
[1], [2]1 illustrated in Fig. 1. This dataset is constructed
under controlled settings using an industrial robot. The set
consists of 60 complex scenes, and Fig. 2 shows how each
scene is viewed from 119 positions with known camera
geometry. The dataset also incorporates light variation, but
in this work we only focus on diffuse lighting. In addition
the 60 scenes have been surface scanned using structured
light. Together with the camera geometry this allows us
to accurately determine the correct camera correspondences

1http://roboimagedata.imm.dtu.dk/
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Figure 3. Matching criteria for interest points. This figure gives a
schematic illustration of a scene of a house and two images of the scene
from two viewpoints. (a) The consistency with epipolar geometry, where
corresponding descriptors should be within 2.5 pixels from the epipolar
line. (b) Window of interest with a radius of 5 pixels and corresponding
descriptors should be within this window, which is approximately 3 mm
on the scene surface. Ground truth is obtained from the surface geometry.
Illustration from [1].

without matching visual features. In real outdoor scenes, as
presented in [16], there is no alternative to have ground truth
based on feature matching, but this could likely bias the
result.

A. Evaluation criteria

The evaluation framework used is similar to the one
reported in [1], which only includes an evaluation of the
matching performance of different detector methods on the
DTU Robot dataset. We want to determine if a pair of corre-
sponding features are correct or not, where correspondence
is found by the Euclidean distance between feature descrip-
tors. Fig. 2 illustrates how the features are matched between
one key frame and all other images. Fig. 3 shows the two
criteria that we use for determining correct correspondence.
Correct matches have to be within 2.5 pixels of the epipolar
line and the corresponding 3D point must be within a 5 pixel
error margin corresponding to approximately 3 mm.

Given an image pair, where one image is the key frame,
a detector-descriptor pair is evaluated by

1) For each feature in the key frame find the distance to
the best δb and the second best δs matching feature in
the other image.

2) For each feature correspondence compute the ratio,
r = δb

δs
, between the match score of the second best

and the best correspondence. It is also determined if
the best match is correct or not.

3) Using this ratio, r, as a predictor for correct matches,
c.f. [3], the ROC (Receiver Operating Characteristic)
curve, as a function of r, is constructed based on all
features in an image pair. We compare the area under

the ROC curve (AUC). The area is between zero and
one, where one indicates perfect performance of the
detector-descriptor pair.

4) The AUC is used as the performance measure of a
detector-descriptor combination on a pair of images.

These AUCs are the basis for our statistical analysis. The
AUC is chosen as a performance measure, in line with [16],
because it elegantly removes the need to balance between
many false positive or many false negatives. As a result it
strongly relates to the underlying discriminative power of
the method.

We compare different detector-descriptor methods by
computing the mean performance, i.e. the mean AUC over
the 60 sets for each position, c.f. Fig. 6, 7 and Tab. II. Based
on the central limit theorem, we assume these means to be
normal distributed. We compare the means using students
t-test

µ1 − µ2

σ̂
, (1)

where µ1 and µ2 are the two means to be compared and σ̂
is an estimate of the standard deviation. When computing
an estimate of the variances, σ̂2, we perform an analysis
of variance, assuming that for a given method and a given
problem, performance is given by two factors

Performance = Problem Difficulty + Method + Noise .

Since we are interested in comparing the methods the
variance due to the Problem Difficulty is factored out,
which reduces the overall variance, σ̂2, making it easier for
a difference in means to be significant.

B. Implementation

All feature detectors are computed by implementations
provided by the authors of [3], [24], [25]2, whereas we
implemented our own interest point descriptors. They are
estimated on an affine warped image patch sampled ac-
cording to the parameters obtained from the interest point
detection and rotated to one dominant gradient direction. The
image patch is sampled with a radius of three times the scale
of the feature point and we discard points that exceed the
image borders. We found this to be a good tradeoff between
performance and number of discarded sample points. In the
experiments described in Sec. III we use a patch size of
66 × 66 pixels whereas the patches in the experiments in
Sec. IV are 30×30. This is especially a consequence of the
pixel similarity estimates where we have feature vectors of
900 dimensions. Using the 66×66 pixel patches this would
be 4356 dimensions, which approximately slows the calcula-
tion down with a factor four. We only observed a minor loss
in precision, which is shown in Tab. I “spatial layout – 1-8-8”

2http://www.robots.ox.ac.uk/∼vgg/research/affine/



Figure 4. Layout of the descriptors for spatial summation. The circles
mark the size of the sample points and the dark color shows the Gaussian
weighing. First row one ring with six samples – (1-6) (a), two rings with
eight samples in each – (1-8-8) (b), three rings with four, eight and twelve
samples – (1-4-8-12) (c). Second row one ring with six samples – large
footprint – (1-6 lf) (d), small footprint – (1-6 sf) (e). One ring with six
samples – large sample area – (1-6 lg) (f), small sample area – (1-6 sg)
(g).

should be compared to “HesAff” and “HarAff” – “DAISY-
I” and “DAISY-II” in Tab. II. It shows a performance loss
of 0.013 caused by reduction in patch size.

Our implementation of the DAISY descriptor closely
follows the description of Winder et al. [16]3. To ensure
that the only difference between the DAISY and SIFT
descriptors were the sampling, we chose to implement our
own SIFT descriptor. To validate the performance we did a
small experiment to compare to the original implementation
of Lowe [3]4, and we obtained similar performance with
patches of 66 × 66 pixels and about 5% fewer matching
descriptors with the 30 × 30 patches.

III. COMPARING DAISY DESCRIPTORS

Brown et al.[20] presents a framework for optimizing
feature descriptors. They have chosen the DAISY-type de-
scriptor presented in Winder and Brown [17], because it is
easily reconfigurable. The optimization is based on three
outdoor scenes where ground truth is obtained from the
bundler software [21], which is based on the SIFT frame-
work [3]. In this experiment we have performed a similar
investigation to Brown et al., but based on the extended DTU
Robot dataset, where ground truth geometry is based on
precise calibration and structured light scanning. In order to

3http://cvlab.epfl.ch/∼brown/patchdata/patchdata.html
4http://www.cs.ubc.ca/∼lowe/keypoints/

Comparison Type Performance
Descriptor type Type 1 0.781

Type 2 0.785
Type 3 0.791

Spatial layout 1-6 0.786
1-8-8 0.804
1-4-8-12 0.802
1-6 lf 0.784
1-6 sf 0.778
1-6 lg 0.784
1-6 sg 0.763

Descriptor dimensionality Small 0.783
Large 0.788

Scene types Houses 0.751
Books 0.791
Fabric 0.831
Greens 0.799
Beer cans 0.696

Affine vs. Laplace Laplacian 0.783
Affine 0.788

Table I
MEAN AUC FOR DIFFERENT GROUPINGS OF THE DESCRIPTOR TYPES.

THE TABLE SHOWS MEAN VALUE OF ALL POSITIONS. IN FIG. 4 THE
SPATIAL LAYOUT IS SHOWN.

keep the computational burden manageable, we only did this
experiment on the Harris affine and Harris Laplace features.

The descriptors proposed by Brown et al.[20] are varied
in the spatial layout and differential-geometric response. The
spatial layout that we have tested are illustrated in Fig. 4.
We have varied the number of sample points, the size of
sample points and their relative distance. We employ three
differential-geometric responses – the directional binned
gradients in four and eight directions (Type 1), average
positive and negative gradients (Type 2) and steerable filters
(Type 3). The experimental result is summarized in Tab. I.
This approach closely follows Winder et al.[16].

The results show that the effect of changing the
differential-geometric response is limited, so it is clearly
an advantage to select either Type 1 or 2, because the
computational cost of these descriptors is much lower. There
is a small advantage in selecting a spatial layout where two
rings are sampled, but three ring sampling does not give an
improvement. Fig. 5 shows that this advantage is seen for all
positions. The dimensionality difference arise from number
of sample directions in Type 1, combinations of positive
and negative gradients in Type 2, and number of directions
of the steerable filters in Type 3. But there is almost no
difference in selecting the large dimensionality over the
small. There is a clear difference in Scene type, where
the AUC is significantly higher for less specular objects
like fabric than for specular objects like beer cans. The
difference between affine and non-affine feature detectors
is surprisingly small, which might be a result of complexity
of the evaluated scenes with many occluding boundaries.
The findings regarding affine detectors are confirmed by the
experiments presented in Sec. IV.
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Figure 5. Performance evaluation of the DAISY descriptor. Average AUCs for Type 2 descriptors are shown in (a - d). The vertical axis in the graphs
show the AUC, and the horizontal is the angle (a,c,d) and distance (b) relative to the key-frame. Each graph corresponds to the sample path shown in
Fig. 2, with Arc 1 (a), Linear Path (b), Arc 2 (c) and Arc 3 (d). The labels relate to the descriptor design shown in Fig. 4. In (e - f) probability density
functions for different descriptor designs are shown for a 30◦ angle where (e) is affine interest points and (f) is non-affine. This shows that with a sparse
sampling the performance goes down for the non-affine, but the affine invariance can be compensated by a dense sampling.

Corr SIFT DAISY-I DAISY-II Avg.
Har 0.615 0.767 0.729 0.741 0.713
HarAff 0.629 0.818 0.791 0.798 0.759
HarLap 0.635 0.814 0.784 0.790 0.756
HesAff 0.636 0.795 0.773 0.779 0.746
HesLap 0.630 0.757 0.740 0.742 0.717
MSER 0.648 0.846 0.826 0.832 0.788
DOG 0.646 0.849 0.837 0.843 0.794
Avg. 0.634 0.807 0.783 0.789 0.753

Table II
MEAN AUC OVER ALL POSITIONS FOR THE FEATURE DETECTOR AND

DESCRIPTOR COMBINATIONS. TOP 3 PERFORMERS HIGHLIGHTED WITH
BOLD-FACE (HAR IS HARRIS CORNERS, HARAFF IS HARRIS AFFINE,

HARLAP IS HARRIS LAPLACE, HESAFF IS HESSIAN AFFINE AND
HESLAP IS HESSIAN LAPLACE FEATURE DETECTORS RESPECTIVELY).

From this study, we choose the two-ring DAISY de-
scriptor with small (DAISY-I) and large dimensionality
(DAISY-II) for further analysis. This is done together with
SIFT and a vector of simple pixel intensities (normalized
cross correlation). These four descriptors are analyzed in
combination with seven feature detectors.

IV. COMPARING DETECTOR-DESCRIPTOR
COMBINATIONS

In this section we present the evaluation of detector-
descriptor combinations with the aim of finding the best
performers. We compare a combination of the four feature
descriptors (SIFT, DAISY-I, DAISY-II and cross correlation)
with seven feature detectors. These detectors are Harris
corner detector [26], Harris Laplace, Harris affine, Hessian
Laplace, Hessian affine [6], MSER [24], and Difference of
Gaussians (DoG) [3]. The combined result is summarized
in Tab. II and Fig. 6

To evaluate the significance of the performance difference
we have estimated the average standard deviation σ̂ of (1).
Overall we obtain σ̂ = 0.08, but if we exclude cross
correlation, which has a higher variance than all others, then
we obtain σ̂ = 0.05. To give an idea of significance based on
Student’s t-test from (1) we consider a difference larger than
0.05 as significantly different on a 84% confidence level and
0.1 as significant on a 98% level.

The performance is computed for all 28 combinations
on all 119 camera positions, where the distribution of the
performance was evaluated over all 60 scenes. Our central
evaluation criterion is the mean over these 60 scenes for a
given position and detector-descriptor combination. Due to



Figure 6. Mean AUC for the MSER detector displayed for all four descriptors and for all positions. The vertical axis in the graphs show the AUC, and
the horizontal is the angle (a,c,d) and distance (b) relative to the key-frame. Each graph corresponds to the sample path shown in Fig. 2, with Arc 1 (a),
Linear Path (b), Arc 2 (c) and Arc 3 (d). It is seen that the SIFT and the two DAISY descriptors have very similar performance, compared to a σ̂ = 0.05,
but outperform the correlation.

space limitations we are only able to present a summarized
evaluation as shown in Fig. 6 and Tab. II outlining our
conclusions.

Fig. 6 shows a combination with the same detector but
different descriptors. Cross correlation is clearly outper-
formed by the other descriptors. SIFT and DAISY has
almost identical performance, and Tab. II shows that their
average difference is less than 0.015, which is statistically
insignificant.

In Fig. 7 the SIFT descriptor is shown in combination with
the seven detectors. We chose to show SIFT, but very similar
results were obtained for the DAISY descriptors. Here there
is a difference in performance where MSER and DOG
detectors perform about one standard deviation better than
the Harris affine and Harris Laplace detectors, and about two
standard deviations better than the Harris based detectors,
which is statistically significant. Harris corner detector with
no scale adaption performs well when the scale change is
not to large.

So, our experiments suggest that the best choice is a DOG
or MSER detector with a SIFT or DAISY descriptor, or a
perhaps a Harris corner detector if the scale change is low.
The dataset used also has different categories of scene types
like ’fabric’, ’books’, ’model houses’, etc. and running the
experiments on a specific scene type did not change the

overall picture. Compared to the results in [1], where the
recall rate of detectors was evaluated on the same dataset, it
is interesting to see that the best performers in a full feature
tracking frame work are not identical to the ones with the
best recall rates. Again this implies that the discriminative
power of the extracted features vary for different feature
detectors. This last point is especially noteworthy for the
MSER detectors. Both the descriptor experiment presented
in Sec. III and this combined experiment show that an
affine detector has an advantage, but this advantage is small
compared to variance making it statistically insignificant, see
Fig. 8.

V. DISCUSSION

Based on the experiments reported in this paper the
general conclusion is that the best detector-descriptor com-
bination is either the DOG or MSER detectors and SIFT or
DAISY descriptors. If the scale change is low a Harris corner
detector would be superior and also faster and simpler to run
and implement. The experiments also show, that many other
performance differences exist, which confirm other studies,
but these differences are not statistically significant. This
demonstrates a need for considering statistical significance
when performing these type of comparisons, necessitating
the use of large datasets to make meaningful estimates of
significance and variance, such as the dataset used here [1].
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Figure 7. Mean AUC for the SIFT descriptor displayed for all seven detectors and all positions. The vertical axis in the graphs show the AUC, and the
horizontal is the angle (a,c,d) and distance (b) relative to the key-frame. Each graph corresponds to the sample path shown in Fig. 2, with Arc 1 (a), Linear
Path (b), Arc 2 (c) and Arc 3 (d). Here it is seen that the MSER and DOG detectors are the top performers, outperforming the Harris based detectors on
a statistically borderline level, and significantly outperforming the hessian based descriptors. The performance of the ’pure’ Harris corner detector is very
scale dependent. Similar results are obtained for the two DAISY descriptors, as indicated in Fig. 6. The validity of our findings is further cooperated by
considered the probability distribution functions for each position, in (e) the pdf is shown for 0.86◦ of Arc 2.

Furthermore, it is interesting to note that the DOG detec-
tors perform much better than the Hessian type detectors,
although they are very similar, i.e. the DOG is basically a
well-engineered approximation of the Laplace filter, which is
equal to the trace of the Hessian. This indicates that perhaps
a better-engineered version of the Harris Laplace corner
detector, inspired by the DOG detector, could be made. This
is especially interesting in the light that the Harris corners
performed better than the Hessians.

A last point of curiosity is that we have not been able
to produce results collaborating that using affine invariant
feature detectors carries a statistical significant advantage
on general scene types. However this type of invariance may
have merit in e.g. 3D reconstruction of urban type scenes or
other near-planar scenes.
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