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The iteratively reweighted multivariate alteration detection (IR-MAD) algorithm may be used both for
unsupervised change detection in multi- and hyperspectral remote sensing imagery and for automatic
radiometric normalization of multitemporal image sequences. Principal components analysis (PCA), as
well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD
images, both linear and kernel-based (nonlinear), may further enhance change signals relative to
no-change background. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric
normalization, and kernel PCA/MAF/MNF transformations are presented that function as transparent
and fully integrated extensions of the ENVI remote sensing image analysis environment. The train/test
approach to kernel PCA is evaluated against a Hebbian learning procedure. Matlab code is also available
that allows fast data exploration and experimentation with smaller datasets. New, multiresolution
versions of IR-MAD that accelerate convergence and that further reduce no-change background noise
are introduced. Computationally expensive matrix diagonalization and kernel image projections are
programmed to run on massively parallel CUDA-enabled graphics processors, when available, giving an
order of magnitude enhancement in computational speed. The software is available from the authors’
Web sites.

Multiresolution
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1. Introduction

In a standard change detection situation involving optical
remote sensing imagery, two multi- or hyperspectral images of
the same scene are acquired at two different points in time and
then compared. Between acquisitions, ground reflectance changes
will have occurred at some locations, but in general not every-
where. In order to observe the changes, the images are accurately
registered to one another and—optionally—corrected for atmo-
spheric and illumination effects. The necessary preprocessing
steps having been performed, it is common to examine functions
of the spectral bands (differences, ratios, or other linear or
nonlinear band combinations) that bring change information
contained within them to the fore. Singh (1989) gives a good,
but now somewhat outdated, survey of change detection algo-
rithms for remotely sensed data. For more recent reviews in a
more general context, see Radke et al. (2005) or Coppin et al.
(2004) and in the context of very-high-resolution imagery,
Marchesi et al. (2010). Alternatively, the objective may not be to
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observe change, but rather to eliminate relative differences
between the images arising from effects due to the atmosphere,
sensor gain, or differing solar illumination conditions. This can
sometimes be achieved by linear radiometric normalization using
invariant pixels identified within the images, that is, on the basis
of no-change rather than change observations (Schott et al., 1988;
Hall et al., 1991; Moran et al., 1992; Yang and Lo, 2000; Furby and
Campbell, 2001; Du et al., 2002).

In a series of publications (Nielsen et al., 1998; Canty et al.,
2004; Canty and Nielsen, 2006, 2008; Nielsen, 2007), the multi-
variate alteration detection (MAD) transformation and a modifica-
tion involving iterative reweighting (IR-MAD or iMAD) were
proposed, both for unsupervised change detection and for auto-
matic radiometric normalization. More recently, Nielsen (2011)
discussed, among other applications, the successful use of kernel
versions of maximum autocorrelation factor (MAF) and minimum
noise fraction (MNF) transformations for the postprocessing of
difference images for change detection.

In this contribution, we present efficient and easy-to-use
software implementations for IR-MAD and radiometric normal-
ization, as well as for kernelized versions of principal components
analysis (PCA), and the MAF and MNF transformations. The paper
is organized as follows. In Section 2 we briefly outline the IR-MAD
transformation, pointing out its advantages both for change
detection and for radiometric normalization, and introduce new,
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multiresolution variants of IR-MAD. In Section 3 the kernel
methods are summarized. In Section 4 we outline some specific
choices made in the software implementations and describe IDL
and Matlab programs for IR-MAD, radiometric normalization,
kernel PCA, MAF, and MNF. The IDL routines, which function as
fully integrated extensions of the ENVI remote sensing image
analysis environment, can run on conventional CPU architectures
as well as take advantage of the massively parallel capabilities
of graphics processors. In Section 5, examples illustrating IR-MAD
applied to multispectral imagery and the postprocessing of
change images with kernel transformations are presented and
the adopted train/test approach to kernel transformations is
examined. Conclusions are drawn in Section 6.

2. Change detection

The observations (pixel vectors) in a bitemporal, p-band,
multispectral image may be represented by random vectors
X=(X;...Xp)" and Y =(Y; ...Y,)" for the first and second acquisi-
tions, respectively. The components X; and Y; correspond to the
original spectral bands and are conventionally ordered by wave-
length. The MAD algorithm determines transformation matrices

A=(a,,a;...a;), B=(by,b,...by) 1)

such that the components of the transformed random vectors
U=A"X, V=B'Y are ordered by similarity, where similarity is
measured by positive band-wise linear correlation (Nielsen et al.,
1998; Nielsen, 2007). The transformations are obtained by apply-
ing standard canonical correlation analysis (CCA) (Hotelling,
1936). The elements of the vectors U and V are referred to as
the canonical variates.

Taking paired differences (in reverse order) of the canonical
variates generates a sequence of transformed images

Mi=Uy_it1—Vp_isv1, i=1,....p, (2)

referred to as the MAD variates. The MAD variates have statistical
properties that make them very useful for visualizing and analyz-
ing change information. Thus, for instance, they are uncorrelated,
cov(M;,M;) =0, i #j, and have variances given in terms of the
canonical correlations p; by

var(M;) = o'ﬁ,,i =2(1 —Pp_it1h 3)

which, by virtue of the chosen ordering, are successively decreasing.

2.1. Iterative reweighting

If the scenes were acquired under similar illumination condi-
tions and if no ground reflectance changes whatsoever occurred
between the two acquisitions, then the only differences between
them would be due to random effects such as instrument noise
and atmospheric fluctuation. From the central limit theorem, we
would expect that the histogram of any linear combination of
spectral bands would be very nearly Gaussian. In particular, the
MAD variates, being uncorrelated, should follow a multivariate
normal distribution with diagonal variance-covariance matrix.
Since MAD variates associated with genuine changes will deviate
more or less strongly from such a distribution, we expect an
improvement of the sensitivity of the MAD transformation if
emphasis is placed on establishing an increasingly better back-
ground of no change against which to detect change. This can be
done in an iteration scheme in which observations are weighted
by the probability of no change, as determined in the preceding
iteration, when the sample means and variance-covariance
matrices for the next iteration are estimated, thus leading to the
iteratively reweighted MAD (IR-MAD) algorithm (Nielsen, 2007).

The probability weights may be determined by observing that
the sum of the squares of the standardized MAD variates
represented by the random variable Z,

where gy, is given by Eq. (3), will be %2 distributed with p degrees
of freedom in the absence of change (distribution function
P,.,(2)). Accordingly, each observation is weighted by a no-
change probability given by

Pr(no change) = 1-P,2,,(2), 5)

where z is the realization of the random variable Z. Other weighting
schemes are possible, for instance using Gaussian mixture cluster-
ing of change/no-change observations (Canty and Nielsen, 2006).
Iteration of the MAD transformation continues until some stopping
criterion is met, such as lack of significant change in the canonical
correlations.

2.2. Generalization

Convergence to a no-change background depends on the
presence of a sufficiently large fraction of invariant pixels in the
scene (Canty and Nielsen, 2008), so that application of IR-MAD to a
bitemporal image in which the no-change background is very small
may not give a satisfactory result. This can often be remedied by
running IR-MAD on a manually chosen spatial subset for which the
ratio of no-change to change is believed to be higher and then using
the transformation coefficients obtained to generalize to the full
scene. The minimum ratio of no-change to change required for
successful conversion of IR-MAD is discussed in detail in Canty and
Nielsen (2008).

2.3. Multiresolution

For large images, e.g., satellite full scenes, recalculation of
probability weights in Eq. (5), and hence convergence of the
algorithm, is slow. We have developed scaled, or multiresolution,
variants of IR-MAD that accelerate convergence and at the same
time reduce the noise in the no-change background pixels.

In the ENVI implementation, pyramid representations of the
images are calculated to a given depth; that is, the spatial
resolutions are degraded by factors of 1 (no degradation), 2, 4,
etc. Starting at the lowest resolution, the IR-MAD algorithm is run
to convergence and the MAD variates are then resampled to the
next higher resolution. The IR-MAD algorithm is run again on the
correspondingly higher resolution images in the pyramid, but
allowing only those observations to participate that have change
probabilities, as determined from the up-sampled MAD 2 values,
that exceed some threshold (e.g., 0.9). This procedure is repeated
until the original image resolution is reached. The effect of the
scaling is to pass the “spatial awareness” achieved at coarser
scales up to finer scales, but at the same time to allow the details
of regions of significant change to be successively refined. Since
only a fraction of the pixels are involved at each resolution,
convergence is fast.

The Matlab implementation carries the weights (equal to the
no-change probabilities) in IR-MAD across scale space from
coarse to finer scales after letting the iterations run to conver-
gence at each level in scale space. The coarse-scale versions can
be calculated in several ways; here it is done by smoothing with a
five-by-five Gaussian filter. Unlike the ENVI implementation, no
subsampling is done to create a pyramid representation.
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2.4. Radiometric normalization

The usefulness of the IR-MAD transformation for radiometric
normalization stems from the fact that the MAD variates in Eq. (2)
are invariant under linear or affine transformations of either or
both of the original images (Nielsen et al., 1998; Canty et al,,
2004). Given this linear invariance, we can select for radiometric
normalization all pixels that satisfy Pr(no change) < t, where t is a
decision threshold; see Eq. (5). The pixels so selected will
correspond to invariant features as long as the overall radiometric
differences between the two images can be attributed to linear
effects. This means that the relative radiometric normalization
procedure can be carried out fully automatically.

3. Kernel transformations for postprocessing

As opposed to linear spectral transformations (PCA, MAF/MNF),
nonlinear transformations, especially kernel MAF/MNF analysis of
difference images, have been found to give conspicuously better
suppression of both noise and signal in the no-change background
(Nielsen, 2011). The kernel versions of PCA and MAF/MNF handle
nonlinearities by implicitly transforming data by nonlinear map-
ping functions ¢ into higher, even infinite, dimensional feature
space and then performing a linear analysis in that space. We
outline these transformations briefly in the following.

3.1. Kernel principal components analysis

The so-called primal form of linear PCA is the eigenvalue
problem
L] xXTxw=w, (6)
where X is an n x p data design matrix in which n p-component
centered observation vectors x; are stored as rows. The variance-
covariance matrix XTx/(n—1) is p x p symmetric positive defi-
nite. The dual form is obtained by multiplying Eq. (6) from the left
by X to give (A now subsumes the factor n—1)

xXxXTv= v, 7

where voc Xw. The so-called Gram matrix XXT is nxn sym-
metric positive semidefinite with (i, j)th element given by the
inner product x7x; of observations. The kernel formulation for PCA
(Scholkopf et al., 1998) is obtained from the dual form by kernel
substitution, replacing the inner products by kernel functions
K(x;,%;). The kernel functions implicitly represent inner products

(b(x,»)Td)(xj) of nonlinear mappings ¢(x) of the observations x to
some higher dimensional feature space. Kernel PCA then consists
of the solution of the symmetric eigenvalue problem

Kv=7Jv, (€))

where (K); = 1(x;,%;) and KC is assumed to correspond to column-
centered (means-subtracted) observations ¢(x) in the nonlinear
feature space. The kernel matrix has n? elements, where n is the
number of observations. Therefore it is necessary to subsample and
train on only a small portion of observations in order to be able to
carry out kernel PCA (and also MAF/MNF analysis) on the large
numbers of pixel vectors involved in remote sensing imagery.

Alternatively, a kernel version of generalized Hebbian learning
(Kim et al., 2005; Giinter et al., 2007), called the kernel Hebbian
algorithm (KHA), may be used. The KHA iteratively calculates the
first r < n kernel principal component projections on the basis of
all of the data as

yi=Ax;, j=1,....n 9)

Here y; is a column vector consisting of the first r kernel principal
components of the jth observation, k; is the jth column of the full
kernel matrix, and A is an rxn matrix of coefficients trained
according to the update rule

A1 =Ai+nlyel —LTyly)AlL yi=A(K),. (10)

In this expression, A; signifies the coefficient matrix after presenta-
tion of the ith training observation, #; is a (gradually decreasing)
learning rate parameter, e; is a unit vector with a “1” at the ith
position, and LT(-) returns the lower triangular portion of its matrix
operand.

After a training phase, which may involve several passes
through the entire set of n observations, Eq. (9) is used to project
the image along the first r nonlinear principal directions. The
kernel principal axes themselves, i.e., the eigenvectors w in the
nonlinear feature-space equivalent of Eq. (6), are not explicitly
available. However, the first r eigenvalues are given by

aK@aK) .
;:\/; =1, (1

where a; is the ith row of A. These correspond to the solution of
Eq. (8) with the full kernel matrix. We shall return to the KHA in
Section 5 when we investigate the validity of subsampling for
kernel projections of change images.

3.2. Kernel MAF/MNF

As in the case of kernel PCA, kernel versions of the maximum
autocorrelation factor (MAF) analysis and minimum noise frac-
tion (MNF) analysis based on the dual formulation and kernel
substitution can be formulated (Nielsen, 2011). For the kernel
MAF problem this results in the generalized eigenvalue problem

K2y = IC K, (12)

where K is the kernel matrix defined in Section 3.1 and (non-
symmetric) K4 contains kernelized versions of differenced data.
In Nielsen (2011), IC4 has elements

K(Xi(1),%;(N)—X;(r + 4)), (13)

where r denotes position and 4 is a small spatial shift, corre-
sponding to carrying out the differencing in original feature space
followed by kernelization. In the current version of the software,
K€, may optionally be chosen to have elements

(X (1), X;(1) —K(X;(1),X; (1 + A)) (14)

corresponding to differencing in extended feature space, which is
conceptually more satisfactory. Note that rk(x;(r),x;(r)) are the
elements in K. The autocorrelation that is maximized is 1-1/(24).
Solution of the generalized symmetric eigenvalue problem,
Eq. (12), is discussed in the Appendix.

Similarly, for kernel MNF analysis, we solve KC?v = AKCyKLv,
where (nonsymmetric) /Cy contains kernelized versions of data,
to estimate the noise part. The noise fraction that is minimized
is1/A.

Obviously, these transformations may be used for general
feature generation, dimensionality reduction, etc., and not just
for change detection postprocessing.

4. Software

High-level program scripts were written in IDL and Matlab to
code the methods outlined in the two preceding sections and are
described below in Sections 4.1 and 4.2, respectively. We present
first some general design decisions made in the implementations.
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Sign ambiguity: To avoid ambiguity in the signs of the canoni-
cal transformations and hence of the IR-MAD variates, it was
required that the correlations of the canonical variates, like those
of the original bitemporal image bands, be positive; i.e.,

pi=alLyb;>0, i=1,...p, 15)

where X, is the covariance matrix for the images X and Y. This
does not completely remove the ambiguity in the signs of the
eigenvectors a; and b;, since if we reverse both simultaneously the
condition is still met. The ambiguity was resolved in our pro-
grams by requiring that the sum of the correlations of the
canonical variates U with each of the components X; of the first
image, j=1,...,p, be likewise positive.

Regularization: To counter possible near-singularity problems
in the solution of the generalized eigenvalue problems involved in
CCA, particularly when the number of spectral bands p is large,
the IR-MAD scripts allow regularization with length and mini-
mum curvature regularization (Nielsen, 2007).

Orthogonal regression: Radiometric normalization (Section 2.4)
is carried out by linear least-squares regression of the target
image (the one being normalized) on the reference image.
Ordinary least-squares regression allows for measurement uncer-
tainty in one variable only, whereas here both variables have
measurement uncertainty associated with them—in fact, which
variable is termed reference and which is termed target data is
arbitrary. Therefore orthogonal linear regression, which treats
the data symmetrically, is applied for normalization (Canty et al.,
2004).

Projecting and centering: For multispectral images we work
with training and test data (this is typically needed for large data
sets). For example, in the case of kernel PCA, having solved the
eigenvalue problem (8) with training observations ¥;, j=1,...,n,
we project all of the image pixels x,, v=1,...,m, along the first r
principal directions in the nonlinear feature space according to

LI
Pi[p(x,)] = —=(V)); K(X;,Xy),

where (/4;,v;) are eigenvalue/eigenvector pairs for (8) and x(x;,x,)
is a centered kernel matrix. We may wish to center the test data
with the training data mean

i=1,...,r,v=1,...,m, (16)

_ 1
D train = n Z e

i=1

or with the test data mean

_ 1
Drest = m Z o).

v=1

If the test data cannot be held in memory and we center the test
data with the test data mean, we must kernelize the training data
with the test data twice: once to calculate row and column means
and once to actually center. If we center the test data with the
training data mean, we need to kernelize the training data with
the test data only once: the mean values needed come from the
training kernel. Details are given in Nielsen (under review).
Parallelization: Kernel transformations are so-called memory-
based methods, in the sense that the training data used to
determine the transformation coefficients are also required for
generalization. This implies in particular that the final projection
of the image is computationally intensive. The projections, in turn,
involve the multiplication of large matrices, an operation that can
be carried out efficiently in a parallel computing architecture. The
ENVI/IDL scripts for kernel PCA and kernel MAF have been written
to take advantage of CUDA-enabled graphics processors (Halfhill,
2008), if present on the host computer. Use is made of the

high-level IDL bindings to CUDA provided by Tech-X corporation
in their library GPULib.!

4.1. ENVI/IDL

IDL (Interactive Data Language) is an array- and graphics-
oriented programming language with a powerful interface
(ENVI=Environment for Visualizing Images) for importing and
analyzing remote sensing imagery. Since ENVI is itself written in
IDL, it can be extended very easily to include new processing
algorithms, and these can be integrated seamlessly into the ENVI
menu system.

4.1.1. IR-MAD and radiometric normalization

Similarly to other linear spectral transformations included in
the standard ENVI environment, such as PCA and MNF, there are
two ways to run IR-MAD:

(1) by computing image statistics from the current data, i.e., the
bitemporal image itself, or

(2) by reading an existing statistics file and applying it to the
current data.

The first of these is the more common. After prompting for the
(eventually masked) input bitemporal image, the IR-MAD
program generates the canonical variates and the MAD variates
together with a y? image. The 2 image can be used for choosing
invariant pixels for radiometric normalization on the basis of
Eq. (5) as discussed below. A statistics file can also be generated,
in which transformation coefficients calculated with the current
data can be saved.

The second way to run IR-MAD is provided primarily for
situations in which the algorithm fails to converge because the
amount of real change between the acquisitions is too large, and a
useful no-change background is not found; see Section 2.2. If this is
the case, it may be possible, by experimentation, to find a spatial
subset of the data for which convergence is satisfactory. The
generated statistics file (see above) may then be used to generalize
to the entire scene. After responding to the prompt for an existing
statistics file, the user enters the (spatial/spectral) subsets of the
two images (the spectral subsets must of course concur with those
used to generate the statistics file). The MAD transformation is then
performed immediately.

Image pyramids for multiresolution IR-MAD (Section 2.3) are
generated by a partial discrete wavelet transform (PDWT) with
Daubechies wavelets (Daubechies, 1988; Mallat, 1989). The PDWT
uses a recursive filter bank and does not require additional
storage. The inverted filter bank losslessly reconstructs progres-
sively higher resolution images as required by the algorithm. The
multiresolution IR-MAD algorithm is also callable directly from
the ENVI menu and, apart from prompting for the desired pyramid
depth, follows essentially the same input/output conventions.

The input images may optionally be masked. There are two
primary reasons for masking the images: (i) “Black edge” pixels.
Often, when full scenes are processed, the image margins contain
no data. The MAD algorithm may then misinterpret these pixels
as no-change background and converge to them. Since the edge
pixels are constants (usually zeroes), the weighted covariance
matrix will quickly become degenerate and the program will
abort. (ii) Large water bodies. Generally, water bodies provide a
good no-change background against which to measure change.
However, if they are large and if illumination effects (e.g., due to
waves, solar glare) lead to a uniform difference in reflectance

1 http://www.txcorp.com/products/GPULib/.
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between the two acquisitions, then they too can constitute a false
no-change background to which the MAD algorithm may con-
verge. Both effects can be countered by appropriate masking.
Cloud cover, on the other hand, is usually not a problem, since it
corresponds to genuine change.

The IDL code takes advantage of ENVI's built-in functionality to
process images of virtually any size. The second-order statistics
(means and covariance matrices) needed for CCA are calculated
by sampling all of the pixels in both input images. To this end, the
image pixels are read in row by row using ENVI's “spectral tiling”
facility, and the statistics are updated with the method of
provisional means. Since the latter algorithm is iterative and
would require an inefficient IDL FOR-loop over the pixels in each
row, it is programmed in C as a so-called dynamic load module
(DLM) extension to IDL.

The radiometric normalization program can be invoked for the
same image pair after IR-MAD has been run. The user is again
prompted to select (a spatial/spectral subset of) the two multi-
spectral images, first the reference image and then the one to be
normalized. Next he or she chooses the corresponding y? image
generated previously by IR-MAD and the minimum probability to
use to identify no-change pixels. After completion, another image
(e.g., a full scene) may be normalized to the reference with the
regression coefficients just determined. This is convenient, for
example, if two images with only a partial overlap are to be
mosaicked.

4.1.2. Kernel transformations

The ENVI/IDL extensions for kernel PCA and kernel MAF may
also be called from the ENVI main menu. The user is queried for
an input file, a training sample size, the number of transformed
components to retain, the kernel type, and the associated kernel
parameters. The available kernels are

Kiin(Xi, %)) = X[ X,
kpoly(xivxj) = (Vx;rxj + r)d.
Koe (X1,%7) = exp(—y1x;—x;1%),

kSig(xivxj) = tanh(yx,ij +7).

Choosing the linear kernel is, apart from the effect of subsam-
pling, equivalent to running linear PCA or linear MAF. The
Gaussian kernel (ks above) is the default. For that kernel, the
parameter y essentially determines the training/generalization
tradeoff, with large values leading to overfitting (Shawe-Taylor
and Cristianini, 2004). It is calculated in terms of a user-defined
parameter NSCALE as

1

Y , 17
/ 2(NSCALE 0)? a7

where o= (llx;—xll>;,; is the average Euclidean distance
between the training observations.

The Gaussian kernel matrix can be calculated efficiently in an
array-oriented language such as IDL. If a CUDA-enabled graphics
device (GPU) is present, kernel matrix evaluation in IDL can be
speeded up considerably with the help of the IDL bindings made
available in the GPULIib library. The data matrices are transferred
to the graphics device with the aid of GPULib procedures. GPULib
routines then work exclusively with device pointers (handles) so
that all computations are performed on the GPU in code opti-
mized for parallel processing. A handle to the kernel matrix, still
residing in graphics memory, is then returned. Avoiding the
bandwidth limitations of host <> device transfers is an important
design consideration in GPULIib. A large palette of GPU counter-
parts of standard IDL functions has been provided in order to

allow as much processing as possible to take place on the graphics
device before results are returned to the CPU.

After centering of the kernel and solution of the appropriate
eigenvalue problems, the projection is carried out in one or two
passes through the image. If the test data are centered on the test
mean, then, on a first pass, the matrix column, row, and overall
sums required for centering are accumulated. These are applied
on the second pass as each image pixel is projected. For centering
on the training mean, the first pass is unnecessary, as discussed
earlier. If CUDA is available, then both centering and projection
are performed entirely on the graphics device, resulting in an
order-of-magnitude reduction in processing time. (These opera-
tions can be carried out in single precision.) Otherwise the host
CPU is used. The kernel transformation programs do not make use
of the ENVI tiling facility, as they are not intended to be used with
very large images.

For rank determination in the kernel MAF transformation,
calculation of all of the eigenvalues of KX is required; see
Eq. (12). This can also be relegated to the GPU by making use of
the CULA Tools library,? which ports LAPACK routines to CUDA. In
this case, the graphics processor must be capable of double
precision operations.

4.2. Matlab

The Matlab code provided holds everything in memory and is
meant for experimentation on smaller images, not for production
runs on full scenes. It does not make use of graphics hardware for
parallel acceleration of the computations. Otherwise it provides
the same functionality as the ENVI/IDL code and is very easily
changed to try out new ideas. For reasons of space it will not be
described further.

5. Examples

In previous publications, several studies of the application of
IR-MAD and its associated automatic radiometric normalization
to multi- and hypervariate imagery have been given (Canty et al.,
2004; Canty and Nielsen, 2006, 2008; Nielsen, 2007). Therefore, in
this section, we restrict ourselves to examples involving the new
multiresolution algorithms (Section 2.3) and kernel postproces-
sing (Section 3).

5.1. Multiresolution IR-MAD

The multiresolution algorithm implemented in ENVI/IDL is
compared with standard IR-MAD using the Landsat 5 TM bitem-
poral scene shown in Fig. 1. The two images were acquired within
about seven weeks of each other, with changes occurring in the
extent of a reservoir (shallow flooding) and in agricultural areas
to the north. Further changes in the reservoir are likely caused by
phenological effects or higher sediments in the water after a
heavy rain or vegetation growth.

The y? image of the IR-MAD variates (see Eq. (4)) is shown in
Fig. 2, where the scaling is seen to reduce the noise in the
no-change background (black areas). Table 1 compares the signal-
to-noise ratios in all six MAD bands. Noise statistics were estimated
on the basis of differences of one-pixel shifts. A change probability
threshold of 0.9 was used to decide which observations participate
in the successive refinements. The results were found to be fairly
insensitive to the threshold chosen, with similar noise reductions
obtaining for values between 0.85 and 0.95.

2 http://www.culatools.com/.
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Fig. 1. Bitemporal scene over a water reservoir in India. Landsat 5 Thematic Mapper acquired on 29 March 1998 (left) and 16 May 1998 (right). The images are displayed as
RGB composites of bands 7, 5, and 4 in a histogram equalization stretch.

Fig. 2. y? images for IR-MAD transformations of a bitemporal scene of Fig. 3. Left: standard IR-MAD. Right: multiresolution algorithm with pyramid depth 2.

Table 1
Signal-to-noise ratios for the IR-MAD variates for the bitemporal image of Fig. 3.

Algorithm MAD1 MAD2 MAD3 MAD4 MAD5 MAD6
Multires. 23 3.8 11.1 134 7.9 429
Standard 1.1 22 8.4 7.8 4.8 345

Fig. 3. Kernel MAF variates 1, 2, and 3 of all IR-MAD variates as RGB (left) for the bitemporal scene of Fig. 1; kernel MNF variates 1, 2, and 3 of all IR-MAD variates as RGB (right).
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5.2. Kernel MAF/MNF

As an example of kernel MAF and MNF postprocessing of
change images, we use the same imagery as in Fig. 2. Fig. 3 left
shows an RGB representation of kernel MAF variates 1, 2, and 3 of
all six IR-MAD variates from a standard analysis; i.e., the multi-
resolution version is not applied here. Fig. 3 right shows an RGB
representation of kernel MNF variates 1, 2, and 3 of the same six
IR-MAD variates. All variates are stretched linearly between mean
value minus and mean value plus six standard deviations.
Approximately 1000 training samples are used to calculate the
transforms applied. The Gaussian kernel was used with a para-
meter y as determined by (17) with NSCALE=1, so that its ¢ is the
average distance between training observations in the original
feature space. This is a typical value that ensures that the
nonlinearity of the Gaussian kernel is effective.

0 1 1 1 1 1
0 2 4 53 3 10 12

Fig. 4. The first 10 eigenvalues of the kernel PCA for a (100 x 100) - pixel, six-band
Landsat 7 ETM +image. Black curve: with 1% subsampling. Red curve: with KHA
after 50 passes through the dataset. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

-0.16
kernel

As is the case for the IR-MAD variates, in these images areas
with saturated colors (including black and white, if present) are
change regions; grayish regions are no-change. Note how both
kernel MAF analysis and kernel MNF analysis focus on the
extreme change observations. Also, although the coloring of
change pixels is different, it is the same pixels that are highlighted
as representing change.

The effect of subsampling for kernel spectral transformations
can be examined, in the case of kernel PCA, by comparison with
the KHA method (Section 3.1), which generates transformations
on the basis of all of the pixel data. Fig. 4 compares the largest
eigenvalues for kernel PCA applied to a small Landsat 7 ETM +
image using a 1% subsample followed by diagonalization of the
kernel matrix with those obtained from KHA. Fig. 5 compares the
eigenvectors (projection directions in nonlinear feature space) on
the basis of scatterplots of principal component projections for
subsampling and KHA. Correlations begin to deteriorate at the
fifth or sixth eigenvector.

6. Conclusion

We have presented and illustrated efficient and easy-to-use
IDL and Matlab software for multivariate change detection and
radiometric normalization as well as for kernelized versions of
principal components, maximum autocorrelation factors, and
maximum noise fraction transformations. Comparison with the
kernel Hebbian algorithm indicates that the use of 1% subsam-
pling for kernel methods will give satisfactorily reproducible
results for the first five or six eigenvectors. We have also
introduced new, multiresolution variants of the IR-MAD algo-
rithm, together with IDL and Matlab code. The IDL programs
will take advantage of the parallel processing capabilities of
CUDA-enabled graphics processors when they are available. The
software may be obtained from the authors’ Web sites:

IDL/ENVI: http://mcanty.homepage.t-online.de/software.html

Matlab: http://www2.imm.dtu.dk/~aa/software.html.

Fig. 5. Scatterplots of the first six kernel principal components calculated with 1% subsampling and kernel matrix diagonalization (x-axis) with those calculated with KHA

after 50 passes through the dataset (y-axis); see Fig. 4.
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Users of the programs should acknowledge the source by
citing the relevant publications.
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Appendix A

The symmetric generalized eigenvalue problem may be solved
by writing the symmetric right hand side matrix as a product of
matrix square roots,

Aw = JBw = )B'/’B'?w,

where B'/2 = PA2P", with P consisting of columns of eigenvec-
tors, and A"? is a diagonal matrix of square roots of the
eigenvalues of B. If B is full rank, r=n, we retain all columns
and all rows of both P and A. If B has rank r < n we retain only the
first r columns corresponding to the highest eigenvalues (but all
rows) of P and only the r first rows and r first columns of A. Since
P'P=1I, (and PP" =1,), this leads to the desired B=PA!2P"
PA'2PT = PAPT. The problem now rewrites to

(B~'2AB~V2)(B'/>w) = /(B'*w),

which is a symmetric ordinary eigenvalue problem. In this case we
may get the inverse for B'/? as B~/ = (PA!?PT)' = PA~1/PT,
where A™'/2 is an r by r diagonal matrix of inverse square roots of
the eigenvalues.

The IDL and Matlab code solves the above problem, normalizes
the eigenvectors so that the kernel MAF variates have unit
variance, and calculates the kernel MAFs.

Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cageo.2011.05.012.
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