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ABSTRACT

This paper introduces a nonlinear feature extraction method
based on kernels for remote sensing data analysis. The
proposed approach is based on the minimum noise frac-
tion (MNF) transform, which maximizes the signal variance
while also minimizing the estimated noise variance. We here
propose an alternative kernel MNF (KMNF) in which the
noise is explicitly estimated in the reproducing kernel Hilbert
space. This enables KMNF dealing with non-linear relations
between the noise and the signal features jointly. Results
show that the proposed KMNF provides the most noise-free
features when confronted with PCA, MNF, KPCA, and the
previous version of KMNF. Extracted features with the ex-
plicit KMNF also improve hyperspectral image classification.

Index Terms— Kernel methods, signal to noise ratio, ker-
nel principal component analysis, kernel minimum noise frac-
tion, feature extraction

1. INTRODUCTION

Feature extraction methods are used to create a subset of new
features by linear or nonlinear combinations of the existing
ones. Linear feature extractors have been extensively used
for remote sensing data analysis. Among these methods, an
approach that is becoming progressively more popular is the
minimum noise fraction (MNF) transform [1], which extends
principal component analysis (PCA) by maximizing the sig-
nal variance while also minimizing the estimated noise vari-
ance. In recent years, kernel methods have emerged as an
excellent tool to develop nonlinear feature extraction meth-
ods [2]. The kernel MNF (KMNF) is the standard kerneliza-
tion of the canonical MNF in which noise is estimated in the
original input space and then both signal and noise are trans-
formed via suitable mappings endorsed with the reproducing
kernel property [3]. In this paper, we propose an alternative
KMNF formulation in which the noise is explicitly estimated
in the reproducing kernel Hilbert space. This simplifies the
formulation and enables KMNF dealing with non-linear rela-
tions between the noise and the signal features jointly.
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2. NONLINEAR FEATURE EXTRACTION WITH
KERNELS

This section presents a kernel method for the nonlinear ex-
traction of features that maximizes the signal to noise ratio.
We propose a formulation in which the noise is estimated di-
rectly in the kernel space and then a transform that maximizes
the signal covariance while minimizes the estimated noise co-
variance is found. First, a brief introduction of standard linear
and kernel feature extraction methods is given. Then the novel
KMNF formulation is presented.

Notationally, we are given a set of n training feature vec-
tors xi ∈ R

N in the input space (i.e. N spectral channels
or bands). This can be also expressed using matrix notation,
X = [x1, . . . ,xn]�, where � denotes matrix transposition,

X̃ indicates the centered version of X, and Cxx = 1
nX̃�X̃

represents the empirical covariance matrix of the input data.
In this context, linear feature extraction can be carried out
by projecting the data into the subspace characterized by the
projection matrix U, of size N × np, so that the np extracted

features of the original data are given by X̃′ = X̃U.

2.1. Minimum Noise Fraction (MNF)

The principal component analysis (PCA) projects linearly the
input data onto the directions of largest input variance [4].
Therefore, to perform PCA, one has to solve:

PCA: U = arg max
U

{Tr(U�CxxU)}

subject to U�U = I,
(1)

where I is the identity matrix of size np × np. This can also
be expressed, using Lagrange multipliers, as the eigenvalue
problem Cxxui = λiui (or singular value decomposition
of Cxx), which yields a set of sorted eigenvalues {λi}np

i=1

(λi ≤ λi+1) and the corresponding eigenvectors {ui}np

i=1.

The variance of the projected data X̃′ equals the eigenvalues.

The main limitation of PCA is that it does not consider the
characteristics of the noise present in the input vectors. PCA
simply performs a coordinate rotation that aligns the trans-
formed axes with the directions of maximum variance of the
original data distribution and assumes that the noise variance
is low corresponding to the last eigenvectors. Therefore, there
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is no guarantee that the directions of maximum variance will
not be affected by the variance of the data noise.

Assuming that we had access to the signal S and the noise
N, the ideal objective would be to maximize the signal to
noise ratio (SNR), i.e. the ratio between the signal and the
noise variances for all the features:

SNR: U = arg max
U

{
Tr

(
U�CssU
U�CnnU

)}
subject to U�CnnU = I.

(2)

However, neither the signal nor the noise covariance matrices,
Css and Cnn, are known.

The MNF transform assumes that dataset X can be ideally
split in X = S + N and that the signal and the noise are
mutually orthogonal S�N = N�S = 0. Then, maximizing
the SNR is equivalent to minimizing the noise fraction, NF =
1/(SNR+1):

MNF: U = arg max
U

{
Tr

(
U�CxxU
U�CnnU

)}
subject to U�CnnU = I,

(3)

which gives rise to the generalized eigenproblem Cxxui =
λiCnnui. It is worth noting that, in this case, since U�CnnU
= I, the eigenvalues are equal to the data variance and to the
SNR+1 in the projected space.

However, the main problem of MNF is that of obtain-
ing a good estimation of the noise covariance matrix Cnn =
1
nÑ�Ñ. For remote sensing images, the noise is usually ob-
tained as the difference between the actual pixel value and a
reference ‘clean’ value, N = X − Xr. The reference sig-
nal Xr is estimated from its neighborhood assuming that the
signal is spatially smoother than the noise (e.g. taking as ref-
erence the mean of the values in a spatial neighborhood).

2.2. Kernel Minimum Noise Fraction (KMNF) methods

The previous method assumes that the best extracted features,
X̃′, explaining data distribution and minimizing the noise
variance have a linear relation with the original data matrix,
X̃. However, in many situations this linearity assumption is
not satisfied, and nonlinear feature extraction is needed to
obtain acceptable performance. In this context, kernel meth-
ods are a promising approach, as they constitute an excellent
framework to formulate nonlinear versions from linear algo-
rithms [2, 5]. In this section, we describe the proposed kernel
MNF (KMNF) formulations.

Notationally, consider a nonlinear function φ(x) : R
N →

H that maps the input data into some kernel space of very
large or even infinite dimension, {φ(xi)}n

i=1. The data matrix
for performing the linear feature extraction (PCA or MNF) in
H is now given by Φ = [φ(x1), . . . ,φ(xn)]�. As before,

the centered versions of this matrix is denoted by Φ̃. The

projection of the input data will be given by Φ̃
′
= Φ̃U, where

the projection matrix U is now of size dim(H) × np. Note,

that the input covariance matrix in H, which is usually needed
by the different methods, becomes of size dim(H) × dim(H)
and cannot be directly computed. However, making use of

the representer’s theorem [5], we can introduce U = Φ̃
�
A

into the formulation, where A = [α1, . . . ,αnp ] and αi is
an n-length column vector containing the coefficients for the
ith projection vector, and the maximization problem can be
reformulated solely in terms of the kernel matrix. Note that, in
these kernel feature extraction methods, the projection matrix
U in H might not be explicitly calculated, but the projections
of the input data can be obtained. Therefore, the extracted
features for a new input pattern x∗ are given by:

φ̃
′
(x∗)� = φ̃(x∗)�U = φ̃(x∗)�Φ̃

�
A

= [K̃(x∗,x1), . . . , K̃(x∗,xn)]A,
(4)

which is expressed in terms of the inner products in the cen-
tered feature space that, as in all kernel methods, can be
computed via a positive semidefinite Mercer kernel function
K̃(xi,xj) = φ̃(xi)�φ̃(xj).

As in the linear case, the aim of KMNF is to find direc-
tions of maximum signal to noise ratio of the input data pro-
jected in H, which can be obtained by replacing X̃ by Φ̃ in

(3), i.e. by replacing Cxx by Φ̃
�
Φ̃ and Cnn by Φ̃

�
n Φ̃n:

KMNF: U = arg max
U

{
Tr

(
U�Φ̃

�
Φ̃U

U�Φ̃
�
n Φ̃nU

)}

subject to U�Φ̃
�
n Φ̃nU = I.

(5)

Making use of the representer’s theorem one can introduce U
= Φ̃

�
A into the previous formulation

KMNF: A = arg max
A

{
Tr

(
A�Φ̃Φ̃

�
Φ̃Φ̃

�
A

A�Φ̃Φ̃
�
n Φ̃nΦ̃

�
A

)}

= arg max
A

{
Tr

(
A�K̃2

xxA
A�K̃xnK̃nxA

)}

subject to A�K̃xnK̃nxA = I,

(6)

where we have defined the symmetric centered kernel ma-

trix K̃xx = Φ̃Φ̃
�

containing the inner products between any
two points in the kernel space, and the non-symmetric kernel

K̃xn = Φ̃Φ̃
�
n = K̃�

nx containing the inner products between
the data and the noise in the kernel space. The solution to the
above problem can be obtained from the generalized eigen-
problem

K̃2
xxαi = λiK̃xnK̃�

xnαi. (7)

The problem of estimating the noise to compute K̃xn

arises. The approach in [3] estimated the noise in the input
space as explained before, N = X − Xr, and the signal-

to-noise kernel is then computed as K̃xn = Φ̃Φ̃
�
n with

Φ̃
�
n = [φ̃(n1), . . . , φ̃(nn)].
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Fig. 1. Extracted features from the original image. From top to bottom: PCA, MNF, KPCA, standard KMNF, and explicit
KMNF in the kernel space for the first 18 principal components. From left to right: each subimage shows the RGB composite
of 3 components ordered in descending importance.
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Fig. 2. Eigenvalues (variance and SNR) of
the transformed data.

Fig. 3. Classification accuracy (kappa statistics, κ) as a function of the number
of used features extracted with different methods. (a) Original hyperspectral
image. (b) Image corrupted with multiplicative random noise (10%).

3572



Fig. 4. From left to right: (a) RGB composite of the hyperspectral image (bright bare soils and dark vegetated crops); (b)
Ground Truth of the 16 land-cover classes; and (c) and (d) classification maps using the MNF and KMNF features, respectively.

The previous approach has a clear shortcoming. Note that
in the previous KMNF formulation, two kind of kernels need
to be computed thus dealing with objects of different nature
and hence, ideally one should tune different kernel hyperpa-
rameters for each one of them. This implies that, by using
different kernels, one is mapping signal and noise to different
feature spaces and hence the extracted eigenvalues have no
longer the meaning of SNR. We propose here to estimate the
noise explicitly in the Hilbert space defining Φ̃n = Φ̃ − Φ̃r

that results in a noise kernel K̃xn = Φ̃Φ̃
�
n = Φ̃(Φ̃−Φ̃r)� =

Φ̃Φ̃
�−Φ̃Φ̃r)� = K̃xx−K̃xr. For example, if the reference

is obtained as the average of the 4-connected neighboring pix-
els, then K̃xn = K̃xx − 1/4

∑
K̃xri,j

. Then, this signal-to-
noise kernel is used in the generalized eigenproblem (7). This
formulation has clear advantages: 1) since both X and Xr

are the same type of data the kernel function used to compute
K̃xx and K̃xr might be the same; 2) the number of free pa-
rameters is thus lower; 3) data and noise are mapped in the
same Hilbert space and thus the obtained eigenvalues can be
interpreted as data variance and as the SNR in the projected
space; and 4) it is possible to deal with non-linear relations
between the noise and the signal and with non-additive noise.

3. EXPERIMENTAL RESULTS

This section is devoted to the design and application of differ-
ent feature extraction approaches based on maximization of
the signal variance through some linear and nonlinear trans-
forms. The classical 220-bands AVIRIS hyperspectral image
taken over Indiana’s Indian Pine test site in June 1992 is used
in the experiments. The image is 145×145 pixels, contains 16
crop types classes, and a total of 10366 labeled pixels. This
image is a classical benchmark to validate model accuracy
and constitutes a very challenging classification problem be-
cause of the strong mixture of the classes’ signatures.

In this work, we transform all the 220 original bands into
a lower dimensional space of 18 features. It is worth noting
that 20 bands covering the region of water absorption are re-
ally noisy, thus allowing us to analyze the robustness of the
different feature extraction methods to real noise. The signif-
icance of the results for the different methods is analyzed in
different ways:

1. Visual inspection of the extracted features in descend-
ing order of relevance (Fig. 1). The proposed approach
provides more noise-free features.

2. Analysis of the eigenvalues of the transformed data,
which represent signal variance for PCA and SNR for
MNF and KMNF. The proposed approach provides the
highest SNR (Fig. 2).

3. Land cover classification accuracy as the number of
used extracted features increases. The best feature ex-
traction methods are the linear MNF and the proposed
KMNF (Fig. 3a). The proposed KMNF method out-
performs MNF when the image is corrupted with non
additive noise (Fig. 3b).

4. Visual inspection of the classification maps obtained
with a linear discriminant analysis (LDA) classifier us-
ing the best sets of extracted features. The proposed
approach provides more spatially homogeneous land
cover maps than the other methods (Fig. 4).

4. CONCLUSIONS

This paper presented a kernel method for nonlinear feature
extraction that maximices the SNR in remote sensing images.
The method has good theoretical and practical properties for
extracting features in noisy situations.
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