
Imaging Robot

Jonathan Dyssel Stets

Kongens Lyngby 2010
IMM-B.Sc-2010-42

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-B.Sc: ISSN 0909-3192

Summary

This thesis is focuses on designing an interface to control an industrial robot,
with the goal of making it applicable for imaging. This can be done by creating
two interfaces which will communicate together with a Command File, a file that
contains the coordinates and directions of the robot arm. One of the interfaces,
programmed in C++, works as a hardware and client interface. This interface
controls the robot, light sources and an attached camera. The other interface,
programmed in Matlab, controls the calculations of the robot arm coordinates
and directions, and includes a graphic representation of how the robot will move.
A library of functions for robot motions has been created; and the challenge
has been to make the robot move on the surface of a sphere and to secure it
from collisions with the surroundings or obstacles. The results show that it
has been an adequate solution to create the interface with this architecture and
consequently made the robot more accessible and easier to control.

ii

Resumé

Denne opgave fokuserer p̊a hvordan der kan designes et interface til en indus-
trirobot, s̊aledes at den kan bruges til imaging. Dette er gjort ved at lave to
interfaces der kommunikerer sammen ved hjælp af en kommando fil der inde-
holder koordinater og retninger til robot armen. Det ene interface fungerer som
hardware og klient interface, og er programmeret i C++. Dette interface styrer
robotten, lyskilder og et, p̊a robotten, fastgjort kamera. Det andet interface,
programmeret i Matlab, styrer beregninger af robot armens koordinater og ret-
ninger, og kan desuden grafisk repræsentere hvordan robotten vil bevæge sig. Et
bibliotek af funktioner for robot bevægelser er blevet opbygget, og udfordringen
har været at f̊a robotten til at bevæge sig p̊a overfladen af en kugle og at sikre
den fra at kollidere med omgivelserne eller hindringer. Resultatet viser at det
har været en fyldestgørende løsning at lave et interface med denne arkitektur
og har derfor gjort robotten mere tilgængelig og letter at styre.

iv

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfilment of the requirements for acquiring a
Bachelor degree in engineering.

The thesis is about creating a user interface for an industrial robot with the
purpose of making it applicable for imaging.

Lyngby, December 2010

Jonathan Dyssel Stets

vi

Acknowledgements

I would like to thank my advisor Associate Professor Henrik Aanæs for helping
me realise this project and giving me a unique opportunity to work with the
robot. I would like to thank my advisor PostDoc Anders Lindbjerg Dahl for
an excellent supervision at the friday meetings, and throughout the course.
Furthermore I would like to thank Assistant Professor Line Katrine Harder
Clemmensen and Professor Rasmus Larsen for guidance and assistance at the
Friday meetings. I would also like to give thanks to Jannik Boll Nielsen for
assisting parts of the theory and Natalie Gill for helping to revise.

viii

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Problem statement . 5

1.4 Delimitation . 5

1.5 Thesis structure . 6

2 Choice of Method 7

2.1 Problem analysis . 7

2.2 Methodology . 8

3 Theory 13

3.1 Geometry . 13

3.2 Quaternions and Euler angles . 19

3.3 How the robot works . 21

4 Implementation 27

4.1 Hardware and Software Architecture 27

4.2 Design process and Implementation 29

x CONTENTS

5 Validation and Evaluation 37
5.1 Test and results . 37
5.2 Validation . 41

6 Discussion 43

7 Conclusion 45

A Test Functions 47
A.1 Collision Detection . 47
A.2 Geometric Functions and Directions 48
A.3 Graphical User Interface . 49

Chapter 1

Introduction

This chapter will briefly introduce the problem, provide background informa-
tion on how the system currently operates, and then show why it needs to be
improved.

1.1 Background

Testing how well an image algorithm works is crucial before implementing or
just doing further work on an algorithm. It is advantageous to determine how
the algorithm behaves in a specific environment with for example low or high
light intensity or situations where objects are imaged from different angles. To
be able to test image algorithms, a lot of data is necessary in order to validate
if an algorithm is legit. Large datasets of images therefore need to be gathered
and this can be done in various ways. Collecting images of buildings in different
lighted situations or with shadows cast and from various angles, could be taken
in person with a camera. The newest idea is to recreate a similar scenario, by
using small scale model houses, and controlled light sources in the form of high
power light emitting diodes (LED’s). A robot with a mounted camera can be
used to move around the model scenario, capturing a large amount of images,
while it is possible to control the shadow cast and light intensity along with the

2 Introduction

exact position of the camera. The robot used is known as an industrial robot
produced by ABB Robotics.

Figure 1.1: Industrial robot from ABB Robotics. The robot being used
for imaging is painted matte black so almost no light is reflected. Source:
http://www.manufacturingtalk.com/news/abd/abd224.html

The robot is placed in a closed cage to reduce the light intake, and the walls
and the ceiling are painted in a matte black color, to minimize unwanted light
reflections. The robot cage is often referred to as the robot cell.

Figure 1.2: The robot cell on the left and the robot computer on the right. The
robot cell has an infra-red sensor light grid, that immediately stops the robot
from moving if crossed.

1.2 Motivation 3

1.2 Motivation

When imaging an object, a camera is used to take pictures of the object from
multiple directions. To avoid using multiple cameras and manually moving the
camera around to different positions, a single camera is mounted on the arm
of an industrial robot. Industrial robots are used for multiple purposes in the
industry such as assembling products and move objects, which typically requires
a quick operation with a great precision and accuracy. By using the industrial
robot with a mounted camera, we can obtain a very powerful tool for imaging;
since the robot can perform preprogrammed sequences of motions faster and
more precise than a human, and without any assistance while its running. Using
the robot also makes it possible to generate datasets for testing image related
algorithms. Testing algorithms requires datasets that represent many different
situations, which could be different lighting, and then afterwards comparing the
results. The robot also enables imaging for an almost unlimited amount of data
points with a very high precision, which for the human would have been almost
impossible, or taken many valuable hours. An example of the robot in use, is
the evaluation of interest point detectors independently of image descriptors [1].
Where the robot is used to generate datasets containing 60 scenes of a range of
different objects, where each scene have 119 positions of the camera. The key
point of this experiment is the repetition of motions and the precise location of
the camera.

Figure 1.3: Example of a robot application. A scene is created and two images
are cached, one close up (a), and one distant from another angle (b). (c) is a
reconstructed 3D image of the scene, consisting 3D points. Using the geometric
information of the scene from the 3D points, and the known camera positions,
corresponding interest points can be found (d). Figure from [1], Figure 1.

4 Introduction

Another application of the robot is analysing dairy and meat products. It is
possible to analyse the quality of a meat or dairy product by using a laser
diode to light up the product, and a imaging sensor that ranges within the near
infra-red and short wave infra-red spectral, to capture the results. The size and
concentration of the particles in the product will result in differences of how
the laser light is absorbed and reflected. Regardless of whether the robot would
be carrying either the imaging sensor or the laser light it this would require a
complete control of the robot.

Figure 1.4: Laser beam pointed at the surface of a dairy or meat product. The
optical properties of the surface and subsurface helps determining the quality of
the food product with no physical contact and therefore no contamination risk.
Figure from [7], Figure 1.

The robot has, as earlier mentioned, no user interface designed for the tasks
mentioned above. It is therefore fairly complicated for an inexperienced user
to operate without understanding the syntax of the existing software and also
programming every series of motions the robot has to make. This process is
not only time-consuming, but also entertains a high risk: the user could poten-
tially give the wrong instructions to the robot, which could result in damage to
either people, the robot or their surroundings. Since the robot is used in the
industry to carry relatively heavy objects, the damage it could do to either a
person or equipment could be quite extensive. Damages occur when the robot is
programmed to do motions that either outreaches its working cell, or when the
path between two points in a motion goes straight through an obstacle located
within the robot cell. Of course, these errors are predictable, but easy to over-
look, and it would therefore be nice if any collisions with objects or obstacles
could be detected before running the robot.

Programming an interface for the robot will result in a more effective and flawless
system, open up for a wider spectrum of usability, and expand the range of users
who can use the robot. Creating a solid interface for the robot, would open the
possibilities for various other applications.

1.3 Problem statement 5

1.3 Problem statement

On the background of the needs described in the motivation section, the main
goal of this project is to create a functional user interface for the robot. The
overall problem statement is therefore as follows:

Create an interface to control the IMM imaging robot, an industrial robot with
attached devices for imaging, within aim of making it more accessible.

In short, the interface will be programmed in Matlab and C++. The interface
has to be designed so that it can be used for multiple purposes, and needs to
be designed so that it is not possible for the user to collide the robot with the
surroundings. There is of course many ways to find a solution to the problem, so
the problem will be further analysed in the next chapter, and the exact method
to solve the problem will be discussed.

1.3.1 Why is it a problem

The Robot itself is not very difficult to program, since it has driver software
with predefined operations. To move the robot from one point to another is
done simply, by just sending a set of coordinates to the new position. The
robot can either be controlled with an advanced remote control, or by sending
commands through a Local Area Network Protocol. This gives a flexibility to
make the robot move anywhere within its scope. This flexibility also makes
it harder for a potential new user of the robot to use it, and to make it do
simple or more advanced tasks without having to go through a lot of trouble
learning the robots language and syntax. Another aspect of this, is security.
The robots flexibility makes its dangerous to work with, using it wrong can
cause a lot of damage to people, machinery and the surroundings. In order to
avoid this, a good solution for predicting the robots behaviour is necessary. The
more difficult aspect of designing the interface is mostly designing algorithms to
calculate the geometry, but implementing this so it actually works in practice
is also going to be a challenge.

1.4 Delimitation

The purpose of this project is creating an interface for the robot where the
central focus is on the robot and the robot motions. Since this is a practical

6 Introduction

Figure 1.5: Diagram over the connection. The interface sends commands to
the robot via a TCP/IP protocol. The robot computer and server receives the
commands from the protocol and sends electrical signals to the robot to control
the motor-rotations. Programming advanced paths and sending them to the
robot, along with predicting the robots behaviour will is a challenge.

project, the main challenges in this project is what method to choose to realise
this project, and then implement it. Geometric considerations and how to realise
these, are weighted higher than going into details about how specific imaging
algorithms works. The project is based on existing software that enables sending
coordinates and rotations to the robot, how the software works is studied, but
not how the socket is programmed and how the RAPID code is working. RAPID
is the software and language used to program the robot.

1.5 Thesis structure

The background, motivation and problem statement have now been stated. The
thesis is divided into seven chapters. The next chapter will describe and discuss
which method should be used to solve the problem stated above. Afterwards a
short introduction to the theory used to solve the problem will be examined and
afterwards implemented in a solution. The solution will be tested and evaluated
and finally discussed. The thesis will end with suggestions of future work and a
conclusion.

The source code of all the software can be found at :

http://www.student.dtu.dk/∼s072112/bachelor/

The following should be remembered: The camera mounted on the robot arm,
will in this report often be referred to as the ”tool”, since this camera also could
be replaced with other tools such as a laser.

The robot robot cage is often referred to as the robot cell.

Unless other is mentioned, then a right handed coordinate system, with Z axis
pointing up is used throughout the thesis, since this is how the robot is defined.

http://www.student.dtu.dk/~s072112/bachelor/

Chapter 2

Choice of Method

This section will discuss the extent of the problem and also subdivide the prob-
lem into smaller steps.

2.1 Problem analysis

The final expected outcome of this project, is as stated in the problem statement,
to create a user interface to the robot, to make it applicable for a wide range
of tasks while simultaneously remaining user friendly for inexperienced users.
Creating an interface for the robot, is also a part of a larger problem, which
is about testing algorithms and analyse food products. The solution for the
specific problem this report is about can also could be used as a tool for solving
other problems in the future. The obstacles associated with this task include
designing a graphic user friendly interface, that works well with the robot and
stabilizing it so that no unexpected errors occur or are mistakenly created by
the user. Since this is a rather specific project, there is not a lot of experience
in previous research about how to create a good interface for a robot that has
to perform imaging. Although there is some similar projects about using robots
for imaging, there is a lack of documentation regarding good functional user
interfaces. The problems statement describes a problem that could be solved in
a variety of ways, since it does not specify what method to use, and exactly how

8 Choice of Method

Figure 2.1: Example of a similar project from University of Waterloo, Canada.
The robot is used for multiple purposes, such as human-robot interfaces and
interaction[5].

the problem should be solved. The problem is not just one problem, but is really
several problems that can be divided into smaller steps or subtasks. Dividing
the problem into subtasks, both makes it more manageable and also possible to
solve it with partial solutions. When dividing the problem into smaller subtasks,
it automatically enables half-way, or partial solutions, which will safeguard the
outcome of the project from a completely failing, if something goes wrong in a
single subtask. Although a partial solution is not the ultimate goal, it is helpful
if something unpredictable arises, turns out to be impossible, or at least more
difficult than expected. Another advantage of subdividing the problem, is to go
from working on a problem that has rarely been solved, to go to a set of smaller
problems that have been worked on before.

2.2 Methodology

On the basis of problem analysis, to design a good interface for the robot, a
method used to solve the problem will be discussed in this section. The most
important part of the interface, is being able to control the robot motions, but
it actually consists of 3 main parts; the robot motion control, the light (LEDs)
and the camera. To control the robot, it is necessary to calculate motions for
the robot and send them to the robot server which will translate them into
stepping motor rotations. The existing robot socket is programmed in C++
and so is the LED and camera control, because of that, it would be obvious
to continue programming the all the hardware controls in C++. Calculating
the coordinates, the different motions and displaying the graphically, is by far
the simplest to do in Matlab and the build in GUI (Graphical User Interface)
editor. This could also be done in C++, but programming a GUI in C++ is
far more time consuming. Communication between the two interfaces will be

2.2 Methodology 9

solved by generating a Command File that will contain the information about
the coordinates calculated in the Matlab interface, and can be loaded with the
C++ interface and send to the robot from there. The connection between the
interfaces and the robot, the LEDs and the camera is described in 2.2.

Figure 2.2: The user interface programmed in Matlab calculates the coordinates,
and saves it to a Command file. The command file is opened in the user interface
programmed in C++, where it sends the coordinates to the robot server via
the Local Area Network (LAN). The user interface programmed in C++ also
controls the camera and the LEDs.

When using a robot for imaging, there are a set of motions which can be helpful
in a variety of situations. When imaging a simple 3 dimensional object, for
example a circular motion around the object is used to cover its full surface of
the object. When imaging a more complex three dimensional objects, it can
be necessary to ’shoot’ the object from various angles, to be able to cover all
details. This can be done by moving the camera in a spherical motion around
the object. Another perspective of imaging is texture and surface scans. This
task can be completed by making the robot move on a line or a surface along
an object. When completing these tasks, it is important that the robot do not
harm anything by colliding with any objects or surroundings. That is why a
collision map should be designed to avoid any damages. The method I have
chosen to approach the problem, is to divide the interface into smaller subtasks.
Each subtask is divided, so that the first tasks are simple, and the later tasks are
more complex to implement. That way, experience will be obtained solving the
each subtask, and it will give me more experience to solve the harder problems
that may occur later on in the process. Dividing the project into smaller tasks,
also makes sure that there are success along the way, and this avoids the risk
of an outcome without positive results at all. The subtasks are divided, so that
each task is a motion that will be implemented in the final user interface, and
will make the overall process more manageable.

10 Choice of Method

2.2.1 Subtasks

The conclusion of the discussion is, that the robot interface needs to have a series
of basic motions, along with a solid interface design. Therefore, the project will
be divided into a series of subtasks listed below.

Tasks Risk
1 Design collision map 2
2 Move robot in line 1
3 Move in ∠ x circle 3
4 Move robot in a half-sphere. 4
5 Design Client and Hardware Interface 4
6 Design Calculation and Graphic Interface 4

A very strong library of simple functions needs to be programmed, and will be
used by the calculation and graphics interface. This is shown in 2.3. As earlier
mentioned, programming the interface in Matlab will be a good solution, since
Matlab can calculate geometry and visualise the results easily. The subtasks
are chosen on the basis of what kind of motions we want the robot to do. The
motions are very basic, and they can therefore be used to cover almost any kind
of task in the process of imaging an object. The basic motions are described
more detailed in the next section.

Figure 2.3: Interface Diagram

2.2.2 Subtasks description

1. Design collision map A collision map, containing the coordinates where
the robot is not allowed to be within, needs to be designed.

2.2 Methodology 11

2. Move robot in line Enter start and end coordinate of line, and enter how
many images to be taken on the line. Enter a direction the camera is pointing.

3. Move in ∠ x circle This is an extension of 3.. The angle of the circle can
be entered, thereby there can be mad a half circle, a quarter circle or similar.

4. Move robot in half-sphere Enter sphere radius and center. Choose
number of data points of the half-sphere from a predefined list. Camera is
always pointing in direction of the sphere center.

5. Design Client and Hardware Interface Description of Hardware in-
terface. Expandable. Terminal like program. Robot joggin, read file etc..

6. Design Calculation and Graphic Interface Description of graphic
interface. Easy, and powerfull. Few buttons. Simple to program. Simple to
operate. Expandable.

12 Choice of Method

Chapter 3

Theory

This section will go through the basic theory needed to create an interface for
the robot. This includes how the robot functions, how imaging is done and how
the geometric calculations are approached.

3.1 Geometry

3.1.1 Spherical coordinate system

The spherical coordinate system is used in many applications, such as geographic
calculations and 3 dimensional computer graphics, and becomes handy when
dealing with spherical and circular objects and rotation angles. The spherical
coordinate system is introduced in this project because it simplifies calculations
of rotations and directions in a three dimensional space.

A point p in the spherical space is described with three coordinates (r, θ, ϕ)
where r is the euclidean distance from the origin o to p, θ is the angle from the
z axis to the vector ŌP and ϕ is the angle from the x axis to the projection of
ŌP on the xy-plane.

14 Theory

Figure 3.1: The spherical coordinate system represented in a Cartesian coordi-
nate system.

The transformation between the two systems can easily be calculated using
simple trigonometric expressions. Transforming from the spherical coordinate
system (r, θ, ϕ) to the Cartesian coordinate system (x, y, z) can be done as follow:

x = r sin θ cosϕ θ ∈ [0, π]

y = r sin θ sinϕ ϕ ∈ [0, 2π]

z = r cos θ r ∈ [0,+∞] (3.1)

Reversing the transformation can be done with the expressions below:

r =
√
x2 + y2 + z2

θ = atan2(z, sqrt(x2 + y2))

ϕ = atan2(y, x) (3.2)

Where atan2 is a special version of arctan that can iterate and check for specific
cases. atan2 can be written as an if statement, described with the following
equations:

3.1 Geometry 15

arctan(
x

y
) x > 0

π + arctan(
x

y
) y ≥ 0, x < 0

−π + arctan(
x

y
) y < 0, x < 0

π

2
y > 0, x = 0

−π
2

y < 0, x = 0

undefined y = 0, x = 0 (3.3)

The transformations stated above will become handy in the further work, and
is from [4] and [3].

3.1.2 Distributing points on a sphere

Distributing points evenly on a sphere is a well known mathematical challenge,
and there exists a number of approaches of how to obtain the best distribution
of points among the surface of a sphere.

1. Equal area points Introduced in [12], the method distributes points, so
that there is an equal area between the points.

2. Geodesic sphere A geodesic sphere is also known from 3D graphics, and it
is essentially a sphere created by triangles. It begins by creating an icosahedron
and then dividing each side of the triangles of the icosahedron into sub-triangles.
The more triangles the icosahedron is divided into, the more points distributed.
This algorithm provides an almost exact distribution of points on the sphere,
however, only supports a finite row of numbers.

3. Move and fit points Described in [8]. Generate the number of wanted
points, and distribute them randomly on the sphere. The algorithm now moves
the points around until they have an almost to even distance from one point
to its nearest neighbours. This algorithm supports any number of points, and
gives a close to even distribution.

16 Theory

Figure 3.2: Left side shows a icosahedron, and right side shows a geodesic sphere.
Starting with the icosahedron and dividing each triangle in three new triangles,
leads to the geodesic sphere.

4. Spiral Method The basic principle behind this method is to create a
spiral of points surrounding and projected on to the surface of a sphere using
the spherical coordinate system. This method can use any number of points,
and works well for a large number of points, as well as smaller amount of points.
Two different approaches to this can be found in the appendix.

I have chosen to evaluate the approach introduced by Rakhmanov, Saff and Zhou
in [11] pp. 9-10. This method described is fairly simple and very permissive to
any number of points. This method also has the advantage of generating the
points in an order that can be adapted directly as a robot path, since the robot
will move in the spiral path, and does not have to enter the circle radius as any
point.

The first step is to create the counting-variable hk which will generate a series
of points between -1 and 1 with even spacing in between,

hk = −1 +
2(k − 1)

(N − 1)
1 ≤ k ≤ N (3.4)

where N is the number of points. With the counting-variable hk, the first
spherical coordinate θ can be generated using arccos().

θk = arccos(hk) (3.5)

Notice that the spiral then starts from the bottom and moves up the z − axis

3.1 Geometry 17

since θk runs from π to 0.

Figure 3.3: θ starting in π and moving up to 0.

Now ϕ is calculated:

ϕk = (ϕk−1 +
3.6

N

1√
1− h2k

)(mod2π) 2 ≤ k ≤ N − 1, ϕ1 = ϕN = 0 (3.6)

The N amount of points are now distributed on the surface of the sphere.

Figure 3.4: The points are distributed on the surface of the sphere following a
spiral path.

18 Theory

3.1.3 Point in Square

A fairly simple method exists to determine if a point is within a square. It
constitutes as the following:

Let a square be defined by four corner pointsA = (xA, yA, zA), B = (xB , yB , zB),
C = (xC , yC , zC) and D = (xD, yD, zD) and P = (xP , yP , zP). Notice that all
five points are in the same plane.

Calculating the the area A of the four triangles ABP,BCP,CDP and DAP ,
then adding them together and comparing it with the area of the square will
indicate whether the point is inside or outside of the square. see 3.5. If the
total area of the triangles combined is larger than the area of the square, this
means that the point P is outside the square. Conversely, if this means that if
the two areas are equal, the point P must be either inside the square or on the
borderline.

AABP +ABCP +ACDP +ADAP = AABCD → P is in square

AABP +ABCP +ACDP +ADAP > AABCD → P outside square (3.7)

Figure 3.5: (a) Point inside square, the area of the four triangles adds up to the
area of the square. (b) Point outside square, the area of the four triangles adds
up to a larger area than the square.

3.1.4 Obtaining a plane from 3 points

To determine a plane in the 3 dimensional vector space, 3 points are needed.
Three points are given, A = (xA, yA, zA), B = (xB , yB , zB) and C = (xC , yC , zC).

To write up the equation of the plane, the normal vector~(n) to the desired plane

must be be determined. This will be found by the crossproduct of ~AB and ~AC.
The normal vector ~n and one of the four points can now be inserted into the
scalar equation of the plane:

3.2 Quaternions and Euler angles 19

~n = ~AB × ~AC (3.8)

P : xn(x− xA) + yn(y − yA) + zn(z − zA) = 0 (3.9)

The equation of the plane, comes from the statement that the following equation
should be satisfied for all points R in the plane:

(R−A) · n = 0 (3.10)

3.2 Quaternions and Euler angles

The robot tool orientation , or rotation, is represented in quaternions, which,
in the 3D space, is the most compact way to express an orientation [9] pg. 24.
Quaternions defines an element in R4, a 4 dimensional vector space, and has the
notation

q = (q0, q1, q2, q3) (3.11)

where q0, q1, q2 and q3 are scalars,and also called the components of the quater-
nion [6]. Representing the quaternion in R3, is done with a vector part

~q =~iq1 +~jq2 + ~kq3 (3.12)

so that the quaternion is defined as the sum of the scalar part q0 and the vector
part:

q = q0 + ~q = q0 +~iq1 +~jq2 + ~kq3 (3.13)

20 Theory

Using quaternions for the robots’ rotations provides some major advantages.
For example, the mathematics will facilitate the obtainment of a smooth in-
terpolation is a lot easier because of the mathematics. As earlier mentioned,
quaternions is a very compact way to represent rotations. Finally there is no
danger for gimbal lock to occur, since quaternions operate in a 4 dimensional
space [2]. Gimbal lock and interpolation will be described later on in this chap-
ter.

The existing software uses an alternative rotation format, namely Euler angles,
instead of quaternions. Euler angles is another way of describing rotations in
a 3 dimensional space. The RAPID software has a function to receive robot
rotations in Euler angles[10], so no conversion is necessary to calculate. RAPID
is the software and language used to program the robot.

Figure 3.6: Euler angles in a Cartesian coordinate system.

Euler angles are described with tree parameters, which are rotations of respec-
tively the x-, y- and z-axis. The following applies to the Euler angles:

Rotating about the x-axis, by the angle α brings y into z.
Rotating about the y-axis, by the angle β brings z into x.
Rotating about the z-axis, by the angle γ brings x into y.

Unlike the quaternions, Euler angles does not avoid gimbal lock. To understand

3.3 How the robot works 21

how the gimbal lock, we first need a short introduction to how the robot works.

3.3 How the robot works

3.3.1 Coordinate Systems

Since the robot has multiple rotation axis, a few different coordinate systems
are introduced. The main coordinate is called the Base coordinate system. This
has its zero at the base of the robot, where it is mounted to the floor. The
coordinates in this system, describe the robots TCP (tool centre point). The
TCP is the point of the mounted tool, in this case a camera is used for imaging.
The TCP is visualised with a small metal pointer located close to the camera
lens.

Figure 3.7: Illustrations show the two important coordinate systems. The base
coordinate system describing the location, and the wrist coordinate system de-
scribing the direction.

Another important coordinate system that needs to be introduced, is the Wrist
coordinate system. This decides the direction in which the tool is pointing. In
this case, it is deciding in which direction the camera lens is pointing. The
coordinate system is expressed in Euler angles.

The robot also allows for work in other user defined coordinate systems. The
connection between the base coordinate system, the wrist coordinate system
and user coordinate system is described in the world coordinate system. This
coordinate system, is used as a common coordinate system to transform from
one system to another.

22 Theory

Figure 3.8: The relation between the Base coordinate system, the wrist coor-
dinate system and other user defined systems, is called the world coordinate
system.

The world coordinate system is typically used when multiple robots are working
together in the same environment. Therefore, the world coordinate system is
not used further in this report, but should not be forgotten if another robot
should be implemented in the system.

3.3.2 Interpolation

There are a few ways of choosing the interpolation of the movement. The
interpolation defines how to move from one point to another. This can be done
in a few different ways.

Joint Interpolation This joint interpolation is used when the moving path
does not need to be too accurate. The advantage of this motion is that it
can be done quite quickly, with very few operations. The disadvantage of this
interpolation, is that the path of the robot is less predictable, and consequently
there will be a bigger risk of unpredicted collision. This movement gives a linear
motion in the axis space, but a non-linear movement in the base coordinate
system, and the direction of the tool is not specified.

3.3 How the robot works 23

Linear Interpolation The linear interpolation allows the robot to move in
a straight line from one point to another. Moving the robot this way, slows
the process because it has to move non linearly in the axis space, in order to
move linearly in the base coordinate system. Another disadvantage is that there
will be a higher risk of a Gimbal lock, since the motions of the axis are rather
unpredictable. The advantage of this motion, is that the path is very predictable,
and collision with the surroundings can therefore easily be predicted too. The
orientation of the tool, is constant during the motion, but can also be specified.

Circular Interpolation The circle interpolation makes the robot move in a
circle path defined by three points; start point, destination point, and a circle
point. The circle point is the supportive point that sets the curve of the circle
path. This path has the advantage to be predictable, but slow as the linear
interpolation, since the rotations of the axis are non linear. The direction of the
tool can either be set to or be constant during the motion.

Looking at the three different types of the interpolations, the linear interpolation
and the circular interpolation, will be helpful in the design process. Since the
main goal of the result is not focused on speed, but accuracy, we have to discard
the joint interpolation, to avoid any unpredicted damages that may occur.

Figure 3.9: Paths of the 3 different interpolations.

3.3.3 Tool direction

As earlier mentioned, the direction of the tool mounted on the robot arm is
described with Euler angles. In 3.10 it is showed how the camera depends on
each angle. Since the z-axis goes through the camera lens, this axis will decide
how the captured image is rotated. It is therefore only the rotations about the

24 Theory

x and y-axis that interferes with the direction of the camera. To simplify the
calculations of the tool, the γ rotation is neglected. To calculate the rotations
of α and β, the spherical coordinate system will be used.

Figure 3.10: Camera direction in Euler angle system.

Comparing 3.2 and 3.10 a method from translating between the coordinate
systems can be done very simple:

α = 180− ϕ
β = −θ (3.14)

3.3.4 Gimbal Lock

Gimbal lock is a state that occurs in a 3 dimensional space, where 2 of the 3
axes are aligned and consequently limit the motion of the axis from a 3 dimen-
sional space to a 2 dimensional space, because one degree of freedom is lost. In
air- and spacecraft design where gyroscopes are used, is it very important to
avoid ”locking” the gimbals because the unpredictability of the system could
potentially result in fatal consequences. The gimbal lock problem can be fixed
by adding on a 4th gimbal to the system, giving it an extra degree of freedom
and still allowing to move in 3 dimensions when 2 of the gimbals are aligned.

A gyroscope consists of three rings , where each ring represents a rotation around
an axis. Illustrated in 3.11 are two gyroscopes, the right one has the outer ring
representing the x axis pointing out of the paper, the y axis is the middle ring

3.3 How the robot works 25

and pointing to the right, the z axis is the inner ring and is pointing up just
as in 3.6. The right gyroscope has the y axis rotated so that the x and the z
axis are aligned. This results in loss of one degree of freedom, and ”locks” the
gyroscope so is has to move out of this state in order to function normally again
[2].

Figure 3.11: Gimbal lock phenomena. Left gyroscope shows the gimbals with
3 degrees of freedom. Right gyroscope shows how two gimbals are aligned, and
therefore a loss of one degree of freedom.

In robotics, a gimbal lock is also known as singularity or ”wrist flip” and can,
similar to the air and spacecraft design, have fatal consequences for the robot
motion. A robot arm can get into singularity if two axis aligns. For example,
if the 1st and the 3rd axis aligns, the robot arm will then need to quickly and
suddenly make the 2nd axis spin 360◦ or 180◦ to maintain its direction. This
high velocity motion could in some situations be very dangerous and happen
very abruptly.

To avoid damages to surroundings and equipment, a standard for robot and
robot software manufactures has been made to prevent this singularity. This is
also the case for the ABB industrial robot used to this project. The software
will not allow the robot to enter this singularity; rather, it will warn the user
when approaching singularity and then eventually stop.

26 Theory

Chapter 4

Implementation

This section describes how the theory, described in the previous section, is
implemented in the final design.

4.1 Hardware and Software Architecture

When working with a robot where it is possible to switch the tool and being
able to control lights, it is very important that the individual pieces of hardware
do not depend upon each other. It should be possible to operate the robot,
without switching the light or the camera on, and equally possible to test the
lights or the camera without running the robot. This approach will also create
the ability to switch the tool on the robot any time, without allow for changing
the whole hardware architecture. This way of designing hardware is of course
very common in, for example, a laboratory where testing has a high value. This
ability is particularly useful when using an expensive device, like a robot, to
operate a range of different jobs. This architecture is referred to as Cell Control
Architecture[13], where every resource or device contributes to the system.

The design of the software of course needs to match the hardware architecture.
The design therefore needs to be adaptable to its changes in the hardware archi-
tecture as well as functional and useful. The software is consequently designed

28 Implementation

in multiple layers, so that individual functions in the software can be altered, if
needed. The software is split into two pieces, where the first piece is the client
and hardware control software programmed in C++, used to control all the
hardware pieces such as Robot socket, LED control and Camera control. Most
of this software was preprogrammed before this project began, and modified
to fit the needs of this project. The hardware interface can capture and store
images from the camera, turn the LEDs on or off, and finally connect to the
robot via a TCP/IP protocol. To make the hardware interface easier to operate,
a user interface is attached in form of a terminal like application. This terminal
is used to load and execute a command file containing information about how
the system should react.

Figure 4.1: Screenshot of the client and Hardware User Interface terminal ap-
plication.

The other piece of software is the calculation and graphic user interface. This
is where all calculations are done along with a graphic representation of how
the system reacts. The software is programmed in Matlab and the Matlab GUI
Layout Editor which moves Matlab from being a console application to have an
actual graphic user interface. Matlab is an excellent tool for making advanced
calculations simple, and providing a quick graphic representation. The interface
can calculate the motions, coordinates and tool rotations that the robot should
perform, and also test the for collision with obstacles. The calculated motions
can then be saved to a command file, and later loaded into the hardware control
software. The calculation and graphic user interface are programmed so that
it has a main window with two tables and a plot. The first table contains
the coordinates and rotations of the motion and the second table contains the
obstacles. The plot shows a graphic representation of the coordinates, rotations
and the obstacles.

4.2 Design process and Implementation 29

4.2 Design process and Implementation

The process of designing the interface was divided into smaller steps to be
able to evaluate the process as the program was designed. After considerations
about how the final project should turn out, the calculative functions were
designed and tested. Along with the design of the geometric functions, the
hardware interface were created and tested. The GUI was then designed and the
calculative functions were integrated in the GUI. Finally the GUI was tested and
evaluated along with the Hardware interface. The design and implementation
of the geometric calculative functions are described in this section.

4.2.1 Geometric Functions

Circular Motion The scripting behind the generate circle function, is de-
signed so that it can be used for multiple purposes. This means that can not
only generate a circle, but also part of a circle. The function syntax is as follow,

genCircle([C], [N],R,DP,C,D) (4.1)

A circle of DP number of data points with the radius R will be created in the
plane with the normal vector N. C is the circumference of the circle, and ranges
from 0 < C ≤ 2π. D is the displacement, and decides the rotation of the circle
around the center point. 4.2 shows the plot of a circle with the parameters
points = genCircle([0 0 0],[0 0 1],10,20,2*pi,0).

Figure 4.2: Example of a circle plotted.

30 Implementation

Spherical Motion How to distribute points evenly on a sphere is described
in the theory section, and is implemented in a Matlab script with the following
syntax,

genSphere([C], 0,R,DP,SDP, 0) (4.2)

Like the circle, [C] is the center of the sphere, R is the radius and DP are the
number of data points. Described in the theory section, the algorithm starts
from the bottom, where θ = 2π, of the circle and creates a sphere shaped spiral
along the z-axis with DP amount of data points. SDP indicates where to start
logging the data points, so in order to create a half-sphere, SDP should be set to
half of DP/2. The two zeros are not used in the function, but are variables open
for implementing the direction of the sphere. The direction of the sphere could
be stated by spherical coordinates, where θ would be the tilt of the sphere, and
ϕ could be the rotation along the revolution axis. 4.3 shows the plot of a sphere
with the following parameters genSphere([0 0 0],0,10,100,1,0).

Figure 4.3: Example of a sphere plotted.

Plane Grid Motion The plane grid function is basically distributing a num-
ber of points on a plane, bounded the square stretched out by two vectors in
the plane. The vectors and plane is show in 4.4.

4.2 Design process and Implementation 31

Figure 4.4: The plane grid is created by two vectors that is expanded between
three points.

Following syntax is used in the Plane Grid Motion function,

genPlaneGrid([P1], [P2], [P3],DP2,DP3) (4.3)

where P1, P2 and P3 are points as shown in 4.4, DP2 and DP3 is the number
of data points on respectively ~P1P2 direction and ~P1P3 direction. The total
number of datapoints is therefore the product of DP2 and DP3. 4.5 shows an
example of a plane grid with input genPlaneGrid([0 0 0],[0 10 0],[10 0 0],10,10
).

Figure 4.5: Example of a plane plotted.

32 Implementation

Tool Rotation and Direction The direction of the tool on the robot arm
is described as rotations in spherical coordinates. When a motion-series is gen-
erated, such as a circular motion, the best way to calculate the direction of the
tool is by calculating the direction of two points. In the circle example, the two
points could be the center of the circle and and a point on the circle path.

Figure 4.6: The direction of the tool pointing toward the circle center, moving
on a circular path.

Figure 4.7: The direction of the tool pointing towards center of the sphere.

The direction of the tool is in this case calculated by finding the vector from
the tool position on the circle, and the circle center point, and then converting
this to spherical coordinates. The function is therefore as simple as,

genDirections([A], [B]) (4.4)

4.2 Design process and Implementation 33

where A and B are two points, and outputs the rotations, in degrees, necessary
for the tool be placed in A and point toward B. In order to plot the directions,
the rotations are converted back to cartesian coordinates. 4.7 shows an example
of the tool moving in a sphere always pointing toward the center of the sphere.
The little red lines shows the direction of the tool.

Collision map The collision map is designed so that it can detect the collision
between a square plane bound by four points, and a path between two points.
The idea is that every path between two points in the command file will be
checked for collision with squared plans entered in the collision map. The pseudo
code is as follow:

Code 4.1: collisionPlaneDetect()

1 INPUT: 4 points (p1,p2,p3,p4) in space representing a square
2 INPUT: 2 points (p5,p6) representing a path.
3

4 Calculate plane, P, from p1, p2 and p3
5 Calculate line, l, from p5 and p6
6

7 if angleBetween(P,l) = 0
8 output = 0; %Plane and line are parallel, no collision.
9 elseif pointInPlane(P,p5) || pointInPlane(P,p6)

10 output = 1; %path points are in plane, collision.
11 else
12 intsect = intersectionBetween(P,l);
13 d1 = distanceBetween(intsect,p5) + distanceBetween(intsect,p6);
14 d2 = distanceBetween(p5,p6);
15 if d1 != d2
16 %intersection with plane is not between p5 and p6. no collision
17 output = 0;
18 else
19 XY = pointInSquare(p1[x y],p2[x y],p3[x y],p4[x y],intsect[x y]);
20 YZ = pointInSquare(p1[y z],p2[y z],p3[y z],p4[y z],intsect[y z]);
21 XZ = pointInSquare(p1[x y],p2[x y],p3[x y],p4[x y],intsect[x y]);
22 if XY || YZ || ZX
23 output = 1; %intersection w. plane is inside square.
24 else
25 output = 0; %intersection w. plane is outside square.
26 end
27 end
28 end

The function pointInSquare() is used to determine if a point, the intersection
point, is within the borders of a square in a 2 dimensional system. The function
uses the method described in the theory, where the area of the square is calcu-
lated, and the area of the four triangles are formed with the square corners and
the intersection point.

34 Implementation

4.2.2 Graphical User Interface

The graphic user interface is, as earlier mentioned, designed in Matlab GUI
Layout Editor, and consists of a main window that shows a plot with the overall
layout of the motion map and the collision map. From here it is possible to add
new motions or obstacles, these will open in new windows. 4.8 shows the main
window of the GUI.

Figure 4.8: Screenshot of the Matlab program main window. A circle is added
to the motion map (a) and a box is added to the collision map (b). The circle
and the box is display along with where the circle path collides with the box
(c).

The GUI is designed with base in the calculative functions, where the input
boxes on the GUI for the most part is linked directly to the input parameters
of the functions to generate the motion path, and the direction. This means,
that the user can directly adjust these parameters and obtain exactly the wanted
motion, and get it visualised simultaneously. An example of generating a sphere
is showed in 4.9.

4.2 Design process and Implementation 35

Figure 4.9: Screenshot of the Matlab ’insert sphere’ window. Where the settings
for the sphere dimensions and directions are on the left side, and the coordinates
are listed on the right side. The sphere is inserted by clicking the ’Insert Sphere’
button.

36 Implementation

Chapter 5

Validation and Evaluation

The previous chapter, describes how all the functions were implemented, and
how the interface was created. In this chapter, the validation of the project will
be evaluated on the basis of tests and results.

5.1 Test and results

To test the functions, a few experiments have been made to check if the out-
come is as expected. The collision detection, geometric functions, graphical user
interface and hardware interface is tested. This is basically running through the
whole procedure necessary to run the robot.

Collision Detection The collision detection and the geometric functions are
tested in A.3. A set of different coordinates are send in to the function col-
lisionPlaneDetect(), and the expected output is listed. The function collision-
PlaneDetect() is tested for sending a path through the square plane, a path that
lays below the square plane and does not intersect, a path touching the square
plane and a path outside the square plane. The results show that the expected
result agrees with the output of the function.

38 Validation and Evaluation

Geometric Functions and Directions In order to validate the geometric
functions, they also must be tested. The only way to validate the outcome of
the geometric functions, is to plot some examples of the functions. The plots
are available in A.3, and the outcome shown is as expected.

Graphical User Interface Now the implementation of the geometry and the
collision detection can be tested, to see how well they function together. Three
circles are added to the motion map, and plane crossing the 3 circles diagonally
is inserted as an obstacle into the collision map, see 5.1.

Figure 5.1: A motion map consisting 3 circles has been created. Now a squared
plane is added to the collision map.

Now the collision detection algorithm is executed, and should find a total of
6 collisions with the inserted obstacle (4 unique collisions and 2 overlapping
collisions). The interface passes the test, and the result is showed in 5.2. It
is worth to mention, that the speed of calculating the collisions is quite slow,
and takes around 5 seconds for a dataset of 60 Motion points and 1 obstacle.
Now the motion map can be saved to a Command File, that will contain the
information about the coordinates and directions. The Command File is listed
in A.3.

Graphical User Interface The Command File generated before, can be
opened in the hardware interface and then send to the robot which will per-
form the motions. 5.3 shows the Command File loaded in the terminal.

5.1 Test and results 39

Figure 5.2: The collision detection is execute and the algorithm finds 6 colli-
sions with the motion map, where 4 is unique collisions and 2 are overlapping
collisions.

40 Validation and Evaluation

Figure 5.3: A Command File is opened in the hardware interface, and is not
ready to send to the robot.

5.2 Validation 41

A set of coordinates and directions has now been generated, checked for collisions
and loaded into the hardware interface. The motions are now ready to be sent
to the robot, which is done by typing ”run” in the terminal window. The robot
right now has two setting for light control, either specified lights or iteration of
all lights. The images captured by the camera will be saved with the file name
stated in the Command File.

5.2 Validation

The test results show that the methods created works properly, but calculating
time is not impressive for the collision map. The algorithms used to test for
collision detection definitely needs to be improved, and maybe expanded to a
certain extend. Currently the collision detection limits the program because
it can only detect collision between a line, stretched between two points, and
a squared object. Extending the collision detection to enable polygons would
be a valuable improvement, and could be done by using a Point in Polygon
(PIP) algorithm. The general geometric functions works as they should, and no
actual improvements are necessary. Although, the algorithm used to generate
the sphere could be modified, so that its possible to create parts of a sphere, like
a quarter sphere. Further work could be done on the sphere function, so that its
possible to rotate it. The connection between the two interfaces works well, but
implementing both interfaces in on application would of course be advantageous
but also difficult. The layout of the interfaces is made fairly simple, and should
be accessible for users with a technical background. The positive results from
the tests shows that the method used to create a user interface for the robot is
valid.

42 Validation and Evaluation

Chapter 6

Discussion

This chapter will discuss the overall process along with some future work.

A user interface for the industrial robot has been designed, tested and proven to
be valid. The problem, as stated in the problem statement, has been narrowed
down to a very specific solution. To solve the problem, the following has been
implemented:

The client and hardware interface The hardware interface was designed
upon an already existing code, which of helped to obtain faster results, but also
limited the program to keep the existing structure. This did not turn out to be
poorly, since the existing code worked well with the architecture of the interface,
even though some modifications needed to be done. There are some minor bugs
in the hardware interface, which includes the singularity problem, a time out
error and a circuit break error. Singularity, as earlier mentioned, returns an
error message, which the software is not programmed to handle. The time out
error looses the connection to the robot if it has been in standby for too long,
and the circuit break error occurs, when the user breaks the safety circuit, either
with one of the stop buttons, or by crossing the infra-red light grid. All these
will cause an error in the program that will interrupt the process and may cause
the program to terminate. These are not crucial errors, since the program in
worst case, needs to be restarted. Besides that, the program is fully usable.

44 Discussion

The calculative and graphic interface The calculative interface was de-
signed from scratch using the Matlab Layout Editor and ordinary Matlab scripts.
All scripts works individually, but is combined so that they work together in
larger functions. Because of this structure, it is possible to test every single one
of them, and use every single one for multiple purposes. After having a small
library of calculative functions, it was fairly easy to implement the GUI upon
these functions. The GUI has been tested and works well, and is also able to
communicate with the hardware interface using a Command file. There are no
definite problems with the calculative interface, but the performance of some of
the algorithms could certainly stand improvements. The interface is designed
to be expandable, and it is therefore easy to implement future functions in the
interface.

It is of course always possible to improve the existing interface. Some of the
major things that could be changed or improved include implementation of the
third Euler angle γ. γ is, as mentioned in the theory chapter, neglected because
it only describes the rotation of the image, see 3.10. This is not really necessary,
since the first two Euler angles α and β is enough to describe the direction of
the camera. But implementing the the third coordinate γ, could in some cases
simplify the rotations for α and β. This would make the interface even more
flexible for mounting other tools, where rotation of the γ coordinate matters.
Another feature to implement, is being able to record a set of coordinates us-
ing the jog feature on the robot, and create a path from these points. This
would require recording the points from the robot and sending them back to
the calculative interface. The collision detection does not work for all shapes,
and the ability to enter any polygon in space, and detect collision with a path,
would be very useful, furthermore, being able to enter the dimensions of the
mounted tool, and detect if the collides even though it is only a matter of a few
millimetres. Another function that would be helpful to implement is enabling
distribution of points on a polygon. Distributing points on a polygon would be
a powerful tool for imaging, where odd shaped surfaces is scanned.

Despite all the changes that could be made, the hardware and client interface
along with the calculative and graphic interface operates well as a tool for con-
trolling the robot, which is why they fulfil the requirements of the problem
analysis and solves the problem.

Chapter 7

Conclusion

A user interface has been created for the robot, a calculative and graphical
user interface programmed in Matlab, and a hardware and client interface pro-
grammed in C++. Using Matlab to calculate the geometry and collision de-
tection offers a good solution and operates well and also holds the potential of
implementing additional functions. Using a C++ programmed terminal appli-
cation to control the client and hardware is a good solution, and is made simple,
so that it is also relatively easy to extend with extra features. The program is
made so that it is possible to do further work, and expand the use of the pro-
gram. Implementing the interface has made the robot more accessible and easier
to control.

46 Conclusion

Appendix A

Test Functions

A.1 Collision Detection

Code A.1: testCollision()

1 clear all
2 clc
3

4 p1 = [0 0 0];
5 p2 = [0 10 1];
6 p3 = [10 10 1];
7 p4 = [10 0 0];
8

9 %Path through plane
10 p5 = [5 5 0]; p6 = [5 5 1];
11 collisionPlaneDetect(p1,p2,p3,p4,p5,p6)
12 %exepected collision
13

14 %Path below plane
15 p5 = [5 5 0]; p6 = [5 5 0.1];
16 collisionPlaneDetect(p1,p2,p3,p4,p5,p6)
17 %not expected collision
18

19 %Path ends on corner of plane
20 p5 = [10 10 1]; p6 = [5 5 0.1];
21 collisionPlaneDetect(p1,p2,p3,p4,p5,p6)
22 %expected collision

48 Test Functions

23

24 %Path outside plane area
25 p5 = [100 100 1]; p6 = [10 10 00];
26 collisionPlaneDetect(p1,p2,p3,p4,p5,p6)
27 %not expected collision

Result:
ans =
1.0000e+000 5.0000e+000 5.0000e+000 5.0000e-001
ans =
0 5.0000e+000 5.0000e+000 5.0000e-001
ans =
1 10 10 1
ans =
0 -1.2500e+000 -1.2500e+000 -1.2500e-001

A.2 Geometric Functions and Directions

Code A.2: testCollision()

1 clc
2 clear all
3 %odd shape plane
4 points = genPlaneGrid([0 0 10],[0 5 15],[15 0 20],15,20);
5 %%normal grid
6 %points = genPlaneGrid([0 0 0],[0 10 0],[10 0 0],10,10);
7 %%normal circle
8 %points = genCircle([0 0 0],[0 0 1],10,20,2*pi,0);
9 %%circum circle

10 %points = genCircle([5 5 5],[1 1 1],10,20,(3/2)*pi,0);
11 %%small sphere
12 %points = genSphere([0 0 0],0,10,10,1,0);
13 %%medium sphere
14 %points = genSphere([0 0 0],0,10,100,1,0);
15 %%large sphere
16 %points = genSphere([0 0 0],0,10,1000,1,0);
17 %%half sphere
18 %points = genSphere([0 0 0],0,10,100,50,0);
19 %%Circle w. directions
20 % points = genCircle([5 5 5],[0 0 1],10,20,2*pi,0);
21 % for n=1:20
22 % directions(n,:) = genDirections(points(n,:),[5 5 5]);
23 % tempDir = sph2car(deg2rad(directions(n,1)),...
24 %deg2rad(directions(n,2)),2);
25 % dirX(n) = tempDir(1);
26 % dirY(n) = tempDir(2);
27 % dirZ(n) = tempDir(3);
28 % plot3([points(n,1) points(n,1)+dirX(n)],[points(n,2)...

A.3 Graphical User Interface 49

29 % points(n,2)+dirY(n)],[points(n,3) points(n,3)+dirZ(n)],’r-’)
30 % hold on
31 % end
32 %%Sphere w. directions
33 % points = genSphere([0 0 0],0,10,50,1,0);
34 % for n=1:50
35 % directions(n,:) = genDirections(points(n,:),[0 0 0]);
36 % tempDir =...
37 % sph2car(deg2rad(directions(n,1)),deg2rad(directions(n,2)),2);
38 % dirX(n) = tempDir(1);
39 % dirY(n) = tempDir(2);
40 % dirZ(n) = tempDir(3);
41 % plot3([points(n,1) points(n,1)+dirX(n)],...
42 %[points(n,2) points(n,2)+dirY(n)],...
43 %[points(n,3) points(n,3)+dirZ(n)],’r-’)
44 % hold on
45 % end
46

47 plot3(points(:,1),points(:,2),points(:,3),’o:’)
48 xlabel(’x’)
49 ylabel(’y’)
50 zlabel(’z’)
51 grid on;
52 axis equal;
53 box off;
54 rotate3d on
55

56 format compact, format short e
57 set(0,’defaultaxesfontsize’,14,’defaultaxeslinewidth’,2,...
58 ’defaultlinelinewidth’,2,’defaultpatchlinewidth’,2)

Figure A.1: odd shape plane and normal grid

A.3 Graphical User Interface

Below is a Command File generated, containing the data of a circle with the
following dimensions:
center = [0,0,2000];

50 Test Functions

Figure A.2: normal circle and circum circle

Figure A.3: small sphere and medium sphere

Figure A.4: large sphere and half sphere

Figure A.5: Circle w. directions and Sphere w. directions

A.3 Graphical User Interface 51

normal = [0,1,1];
datapoints = 20;
radius = 2000;
circum = 2*pi;
displace = (1/2)*pi;

This is a Robot Command File.
Moving in circle 20 points.

START
(P001/20)(Circle) -1414 -1000 3000 -1447 -600 0
(P002/20)(Circle) -908 -1260 3260 -1258 -509 0
(P003/20)(Circle) -313 -1397 3397 -1026 -457 0
(P004/20)(Circle) 313 -1397 3397 -774 -457 0
(P005/20)(Circle) 908 -1260 3260 -542 -509 0
(P006/20)(Circle) 1414 -1000 3000 -353 -600 0
(P007/20)(Circle) 1782 -642 2642 -198 -713 0
(P008/20)(Circle) 1975 -221 2221 -64 -836 0
(P009/20)(Circle) 1975 221 1779 64 -964 0
(P010/20)(Circle) 1782 642 1358 198 -1087 0
(P011/20)(Circle) 1414 1000 1000 353 -1200 0
(P012/20)(Circle) 908 1260 740 542 -1291 0
(P013/20)(Circle) 313 1397 603 774 -1343 0
(P014/20)(Circle) -313 1397 603 1026 -1343 0
(P015/20)(Circle) -908 1260 740 1258 -1291 0
(P016/20)(Circle) -1414 1000 1000 1447 -1200 0
(P017/20)(Circle) -1782 642 1358 1602 -1087 0
(P018/20)(Circle) -1975 221 1779 1736 -964 0
(P019/20)(Circle) -1975 -221 2221 -1736 -836 0
(P020/20)(Circle) -1782 -642 2642 -1602 -713 0
END

52 Test Functions

Bibliography

[1] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup Pedersen. On
recall rate of interest point detectors.

[2] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, interpola-
tion and animation. Technical Report DIKU-TR-98/5.

[3] Matlab Documentation. http://www.mathworks.com/help/techdoc/ref/cart2sph.html.

[4] Per W. Karlsson and Vagn Lundsgaard Hansen. Matematisk Analyse 2.
Institut for Matematik, Danmarks Tekniske Universitet, 1998.

[5] Jonathan Kofman. Intelligent human-machine systems / optomechatronic
systems laboratories. http://www.eng.uwaterloo.ca/(TILDE)jkofman/.

[6] Jack B. Kuipers. Quaternions and rotation sequences. Geometry, Integra-
bility and Quantization.

[7] Rasmus Larsen. Center for imaging food quality.

[8] Move and Fit Points. http://local.wasp.uwa.edu.au/(tilde)pbourke/geometry/spherepoints/.

[9] ABB AB Robotics Products. Technical Reference Manual - RAPID Kernel.

[10] ABB AB Robotics Products. Technical Reference Manual - RAPID
Overview.

[11] Edward B. Saff and Arno B. J. Kuijlaars. Distributing many points on a
sphere. The Mathematical Intelligencer, 19(1):5–11, 1997.

[12] Spherical. http://sitemason.vanderbilt.edu/page/hmbads#code.

54 BIBLIOGRAPHY

[13] Phil Webb and Craig Johnson. Measurement assisted robotic assembly of
fabricated aero-engine components. Assembly Automation.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Problem statement
	1.4 Delimitation
	1.5 Thesis structure

	2 Choice of Method
	2.1 Problem analysis
	2.2 Methodology

	3 Theory
	3.1 Geometry
	3.2 Quaternions and Euler angles
	3.3 How the robot works

	4 Implementation
	4.1 Hardware and Software Architecture
	4.2 Design process and Implementation

	5 Validation and Evaluation
	5.1 Test and results
	5.2 Validation

	6 Discussion
	7 Conclusion
	A Test Functions
	A.1 Collision Detection
	A.2 Geometric Functions and Directions
	A.3 Graphical User Interface

