Combination of recursive supervised and semisupervised filters for improved unbiased estimation

Jerónimo Arenas-García #1, Carlos Moriana-Varo #2, Jan Larsen *3

Dep. Signal Theory and Communications, Universidad Carlos III de Madrid
28911 Leganés-Madrid, Spain
1 jarenas@tsc.uc3m.es
2 cmoriana@tsc.uc3m.es

* Dep. Informatics and Mathematical Modelling, The Technical University of Denmark
2800 Kgs. Lyngby, Denmark
3 jl@imm.dtu.dk

Abstract—In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised and semisupervised methods, the resulting adaptive filter is guaranteed to perform at least as well as the best contributing filter, therefore achieving universal performance. The analysis and behavior of the methods is illustrated through a set of examples in a plant identification setup, analyzing both steady-state and convergence situations.

I. INTRODUCTION

Adaptive filters (AFs) have become very popular tools that offer a convenient solution (mainly) to estimation problems, and are widely used in many signal processing applications. Although they can be applied in stationary situations, AFs become especially convenient for time-varying scenarios, since their iterative nature allows them to track changing solutions [1], [2].

Among the existing techniques, in this paper we will devote our attention to the Recursive Least Squares (RLS) algorithm, which can be obtained as the solution to a well-defined least squares problem. Introduction of a forgetting factor and an exponential window allow the RLS filter to forget the past, and to adapt its parameters to the newly arriving data. An efficient implementation of the filter can be obtained by exploiting the Matrix Inversion Lemma (also known as the Sherman-Morrison-Woodbury formula).

The solution provided by the RLS filter is composed of two terms, one of them depending on the input data only, while the second implies both input and target data. In this paper, we study a modified RLS-like algorithm where the input signal auto-correlation matrix is estimated without applying any forgetting factor. We refer to this algorithm as semi-supervised RLS (RSS), in the sense that unlabeled data (or even a priori information about the input autocorrelation matrix) can be incorporated to the adjustment of the filter weights. Stationary performance of the RSS is studied in steady-state, identifying the conditions under which this filter is expected to outperform standard RLS.

Combination of adaptive filters have recently gained attention in the Adaptive Filter literature as an alternative to varying step size strategies, and as a valid approach to improve AF performance in general. Different combination algorithms and corresponding analyses can be found in [3]–[7]. In this paper, we used the combination scheme of [3] as a way to prevent the degradation that can be incurred by the RSS filter with respect to RLS under certain conditions. Since the combination offers steady-state universal performance, this scheme can be expected to perform as well as the best component filter. Additionally, we will find out that the combination can simultaneously outperform both component filters in certain situations.

The performance of both the basic RSS and the RLS-RSS combination is studied theoretically, and illustrated through several examples in a system identification setup.

II. SEMISUPERVISED RLS ALGORITHM

The RLS filter offers a closed form exact solution of the following cost function:

$$J\left[w(n)\right] = \sum_{i=1}^{n} \lambda^{n-i} [d(i) - y(n, i)]^2$$ (1)

where \(\lambda\) is a forgetting factor, \(w(n)\) are the filter weights at time \(n\), \(d(n)\) is the desired signal, and \(y(n, i) = w^T(n)u(i)\) is the output of the filter at time \(n\) when processing the input regressor received at the \(i\)th iteration, \(u(i)\).

The solution provided by the RSS filter is in the form of the product of the inverse of an estimation of the autocorrelation matrix of the input data, \(R = \mathbb{E}\{u(n)u^T(n)\}\), and of the cross-correlation between the input and desired data, \(z = \mathbb{E}\{d(n)u(n)\}\). To be more precise,

$$w_{RLS}(n) = P(n)z(n),$$ (2)
Practical implementations of RLS avoid the inversion of \(\hat{R}(n) \) at every iteration by applying the Matrix Inversion Lemma to (3), so that matrix \(\hat{P}(n) \) is recursively updated instead. In this way, matrix inversion is replaced by a division by a scalar. Note also that \(\hat{R}(n) \) as given by (3) is singular at early iterations. To avoid this problem, \(\hat{P}(0) \) is typically initialized to the identity matrix multiplied by a large constant.

As we have just seen, the standard RLS algorithm assumes a unique forgetting factor for the estimations of \(R \) and \(z \). In this paper, we decouple the time constants of both estimations, and replace (3) and (4) by

\[
\hat{P}_{\text{RSS}}(n) = \left(\frac{1 - \lambda^2}{1 - \lambda} \right) \left[\sum_{i=1}^{n} \lambda^{n-i} u(i)u^T(i) \right]^{-1}
\]

These changes make sense when the input signal statistics, and the cross-correlation between the input and desired output change at different speeds. One of the most evident examples of this situation, and the one we will consider most in this paper, occurs when the input signal is stationary but the other changes at different speeds. One of the most evident examples is the case, where the input signal statistics, and the cross-correlation between the input and desired output change at different speeds. One of the most evident examples is the case, where the input signal statistics, and the cross-correlation between the input and desired output change at different speeds. One of the most evident examples is the case, where the input signal statistics, and the cross-correlation between the input and desired output change at different speeds. One of the most evident examples is the case, where the input signal statistics, and the cross-correlation between the input and desired output change at different speeds. One of the most evident examples is the case, where the input signal statistics, and the cross-correlation between the input and desired output change at different speeds.
and λ model for RSS steady-state performance for a wide range of
as a function of the forgetting factor
Fig. 1. Theoretical and simulated steady-state EMSE of the RSS algorithm
M 30000 by averaging over
have carried out experiments for a wide range of forgetting fac-
sired behavior, one could opt to combine RLS and RSS filters
application of standard RLS. In order to avoid this very unde-
RSS will actually degrade the performance with respect to the
IB. COMBINATION OF RLS AND RSS ALGORITHMS
In this paper we use the convex combination scheme of [3],
that obtains the output of the overall filter as
\[y(n) = \eta(n) y_{\text{RLS}}(n) + (1 - \eta(n)) y_{\text{RSS}}(n) \] (14)
where \(\eta(n) \) is a mixing parameter that controls the combina-
In order to keep \(\eta(n) \) between 0 and 1, it is defined as the
output of a sigmoid function,
\[\eta(n) = \frac{1}{1 + e^{-a(n)}}. \]
At each iteration, \(a(n) \) is adapted to minimize the square error of
the overall filter, and then \(\eta(n) \) is recovered from the current
value of \(a(n) \). Please, refer to [3] for further details on this
combination scheme.
In [3] it was shown that the considered combination scheme
is universal in steady-state, i.e., the combination performs at
least as the best component filter. Furthermore, it was shown
that under some conditions the combination of two filters
can simultaneously outperform both component filters. This
behavior can be explained by a low correlation between the
errors of the filters, which results in a reduction of the error
variance by averaging the outputs of the component filters.
This can be the case for the proposed combination of RLS
and RSS, as we will see in the experiments section.
V. EXPERIMENTS
In this section, we will illustrate the performance of both
the RSS algorithm and the RLS-RSS combination in a plant
identification setup. For the experiments, the input regressors
\(u(n) \) are i.i.d. colored Gaussian vectors, with zero mean, and
variance adjusted so that \(\text{Tr} \{ R \} = M \). The output additive
noise \(e_o(n) \) is i.i.d. zero mean Gaussian, with variance \(\sigma_o^2 =
0.01 \). The optimal solution \(w_o \) is generated randomly, and its
norm adjusted so that at the output of the filter we get the
following signal-to-noise ratio:
\[\text{SNR} = \frac{w_o^T R w_o}{\sigma_o^2} = \frac{1}{M \sigma_o^2}. \]
Figure 2 shows the steady-state EMSE of all filters for
different values of \(M \) and \(\lambda \). For small \(M \), the RLS filter
systematically outperforms RSS, but the RLS-RSS combina-
tion remains robust in this situation, performing exactly like
the RLS filter in this case. For \(M = 128 \), however, the
performances of both component filters become very similar,
with RSS achieving a slightly smaller EMSE than RLS for
\(\lambda < 0.94 \). With respect to the combination, we see that it is
able to simultaneously outperform both component filters for
the whole explored range of \(\lambda \).
Figure 3 shows the EMSE time evolution for all studied
algorithms. After the initial convergence, the optimal solution
\(w_o \) is abruptly changed at \(n = 500 \) and \(n = 2500 \) to study
the ability of the algorithms to reconverge. The norm of \(w_o \) is
adjusted to get an initial SNR = 1/(\(\sqrt{4} M \sigma_o^2 \)), which is then
changed to \(\text{SNR} = 1/(4 M \sigma_o^2) \) and \(\text{SNR} = 4/(M \sigma_o^2) \) after
each of the changes.

With the goal of showing the validity of this expression, we
have carried out experiments for a wide range of forgetting fac-
tors, estimating the steady-state EMSE of the RSS algorithm
by averaging over 30000 iterations after filter convergence,
and over 100 independent realizations. Figure 1 represents
simulated and theoretical EMSE of the RSS algorithm for
\(R = I, \sigma_o^2 = 0.01 \), and for two different filter lengths, \(M = 32 \)
and \(M = 128 \). As it can be seen, (13) provides an appropriate
model for RSS steady-state performance for a wide range of
\(\lambda \) and \(M \).

IV. COMBINATION OF RLS AND RSS ALGORITHMS
When compared to the EMSE of an RLS filter, the RSS
algorithm is found to be superior only for large \(M \) and/or
small forgetting factors \(\lambda \). Thus, in many practical situations
RSS will actually degrade the performance with respect to the
application of standard RLS. In order to avoid this very unde-
sired behavior, one could opt to combine RLS and RSS filters
with a common forgetting factor \(\lambda \). By doing so, we could
obtain a superior performance from RSS whenever possible,
while using the standard RLS in the opposite situation.

3
As we can see in Subfigure 3(a), RLS outperforms RSS during the whole experiment. Nevertheless, the combination remains robust to this fact, and it follows the RLS component in this situation. Furthermore, after \(n = 2500 \) we can see that the combination slightly outperforms the RLS component, thus showing a better-than-universal behavior. As we have already stated, this effect can be explained by the ability of the combination to exploit the low cross-correlation between the component filters to reduce the variance of the estimated output.

When the optimum solution length is increased to \(M = 128 \) (Subfigure 3(b)), RSS performance becomes closer to that of the RLS algorithm, especially for low SNR (i.e., after \(n = 2500 \)). RLS-RSS combination in this case is able to switch between RLS and RSS as necessary, so that the combination outperforms both component filters when considering the whole experiment. Again, a better-than-universal behavior is observed during \(n < 2500 \).

VI. CONCLUSIONS

This paper presents a new algorithm for semisupervised adaptive filtering. The new algorithm is similar to standard RLS, but decouples the forgetting factors for the estimations of the inverse of \(R \) and for the cross-correlation \(z(n) \). This is especially convenient in situations where the optimum solution changes over time, but the input signal statistics remain unchanged. In such situations, one can keep a long (even infinite) window for a better estimation of the input signal autocorrelation, while using a faster adaptation for the cross-correlation term.

Steady-state performance of the RSS algorithm has been studied both theoretically and through several simulation examples. In order to avoid the possible performance degradation of RSS with respect to RLS, a combination of RLS and RSS can be used. It has been demonstrated empirically that the resulting combination scheme performs like the best component, and possibly better than any of them when certain conditions
are met.

Future work will include the study of these schemes when tracking time-varying w_o, and compare the performance of the proposed algorithms with a combination of two RLS filters with different forgetting factors.

ACKNOWLEDGMENT

The authors acknowledge support from the IST Programme of the European Community under the PASCAL2 Network of Excellence IST-2007-216886. The work of Arenas-García was also partly supported by MEC project TEC2008-02473.

REFERENCES

