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a b s t r a c t

The internet and a growing number of increasingly sophisticated measuring devices make vast amounts
of data available in many applications. However, the dimensionality is often high, and the time available
for manual labelling scarce. Methods for unsupervised novelty detection are a great step towards meeting
these challenges, and the support vector domain description has already shown its worth in this field. The
method has recently received more attention, since it has been shown that the regularization path is
piece-wise linear, and can be calculated efficiently. The presented work restates the new findings in a
manner which permits the calculation with Oðn � nBÞ complexity in each iteration step instead of
O n2 þ n3

B
� �

, where n is the number of data points and nB is the number of boundary points. This is
achieved by updating and downdating the system matrix to avoid redundant calculations. We believe
this will further promote the use of this method.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

We are often faced with data of high-dimensionality. Imaging
devices with an intrinsic high number of variables are emerging
for more and more applications, and in order to deal with this class
of data, a whole series of data analysis tools have emerged. Many of
these use the kernel trick to create efficient algorithms dealing
seamlessly with the high number of dimensions through inner
products, while keeping flexibility for modelling distributions
(Vapnik, 1995). The support vector domain description (SVDD),
introduced by Tax and Duin (1999), is a method for one-class label-
ling, which also falls into the aforementioned category. SVDD may
be used for novelty detection, clustering or outlier detection
(Zhang et al., 2006; Ben-Hur et al., 2001; Guo et al., 2009). The data
is classified as either inliers or outliers through the introduction of
a minimal containing sphere. The description has strong ties to the
one-class version of the two-class method support vector ma-
chines (SVM) (Schölkopf et al., 2001).

The basic goal of SVDD is to find a minimal sphere containing
inliers while minimizing the distance from the boundary to the
outliers. More formally it can be stated as the following optimiza-
tion problem

min
R2 ;a;ni

X
i

niþ kR2 where ðxi�aÞðxi�aÞT 6 R2þ ni; ni P 0 8i; ð1Þ

where X = [x1, . . . ,xn] is the data matrix with each point xi 2 Rp, a is
the center and R is the radius of the sphere, and ni are the slack vari-
ables, allowing some points, the outliers, to lie outside the sphere,
ll rights reserved.
while still satisfying the constraints, i.e. (1) states that the squared
distance from the center of the hypersphere should be no more than
the squared radius plus slack. The regularization is governed by the
parameter k. This formulation is equivalent to the one by Tax and
Duin (1999), but we use k = 1/C for regularization for simplicity of
presentation. A large value of k puts a high penalty on the radius
and results in a small sphere, whereas a small k lets the radius grow
to include more points as inliers.

Originally, the optimization problem as posed in Section 2, is
transformed into the dual problem using the Lagrange multipliers
with the Karush–Kuhn–Tucker conditions, and is solved as a qua-
dratic optimization problem. Recently, it was shown by Sjöstrand
et al. (2007) that the regularization path of the parameter k is
piece-wise linear, and can be calculated with an O n3

B þ n2
� �

com-
plexity for each iteration step, where nB � n is the number of points
on the boundary of the sphere and n is the total number of points.
This result has been used to construct a generalized distance by
Hansen et al. (2007). In Section 3, a more efficient approach reduc-
ing the complexity to Oðn � nBÞ in each iteration step is derived.

2. The support vector domain description

A Lagrangian operator can be used to solve the problem of find-
ing the optimum sphere, posed in (1). The Lagrangian is given by

Lp :
X

i

aiððxi � aÞðxi � aÞT � R2 � niÞ þ
X

i

ni þ kR2 �
X

i

cini; ð2Þ

where ai and ci are the Lagrange multipliers. The Karush–Kuhn–
Tucker complimentary conditions hold since the optimization prob-
lem is convex, and they are given by
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ai xixT
i � 2axT

i þ aaT � R2 � ni

� �
¼ 0; ð3Þ

cini ¼ 0: ð4Þ

The optimum is given where the derivatives of the variables are
zero

dLp

dR2 ¼ 0 () k ¼
X

i

ai; ð5Þ

dLP

da
¼ 0 () a ¼

P
iaixiP

iai
; ð6Þ

dLP

dni
¼ 0 () ki ¼ 1� ai: ð7Þ

From Eqs. (7), (3) and (4), it is seen that ai = 1 for outliers (since
ci = 0) and ai = 0 for inliers. On the boundary, ai can take any value
in [0; 1]. Inserting Eqs. (5)–(7) in (2), the minimization problem is
transformed to the problem of maximizing the Wolfe dual form

max
a

X
i

aixixT
i �

1
k

X
i

X
j

aiajxixT
j ; 0 6 ai 6 1;

X
i

ai ¼ k;

The dimensionality of the input vectors xi can be increased using a
basis expansion and the dot-product substituted by an inner prod-
uct. The inner products can then be replaced by Ki, j = K(xi, xj), where
K is a positive definite kernel function satisfying Mercer’s theorem.

The Gaussian kernel Ki;j ¼ Kðxi; xjÞ ¼ exp� kxi�xjk2

c is a popular exam-

ple of such a kernel function. The optimization problem may then
be stated as

Wd ¼ max
a

X
i

aiKi;i �
1
k

X
o

X
j

aiajKi;j; ð8Þ

0 6 ai 6 1;
X

i

ai ¼ k: ð9Þ

For a given k, the squared distance from the center of the sphere to a
point x is

f ðx; kÞ ¼ Kðx; xÞ � 2
k

X
i

aiKðx; xiÞ þ
1
k2

X
i

X
j

aiajKi;j; ð10Þ

where the decision boundary is not necessarily a sphere in the
space of the input points, although it is, in the space of the basis
of the kernel function used. For the derivation the following sets
are defined; the set A contains all the input points, B denotes the
set of points on the boundary, O is the set of outliers, and let I be
the set of inliers.

3. Calculating the regularization path of the SVDD

This derivation is the main contribution of the current work,
and differs from the derivation by Sjöstrand et al. to provide the
basis for a more efficient calculation of the parameters using
updating and downdating of a matrix inverse. Two well known
theorems, showing that the Lagrange multipliers are continuous
for a convex problem, are stated in Appendix A. In Section 3.1 an
expression for the piece-wise linear relation between a and k is de-
rived along with a scheme for fast calculation. Finally the algorithm
is outlined in Section 3.2.

3.1. Piece-wise linear regularization path

Let the generalized radius be denoted by R, then a boundary
point xh, where h 2 B must satisfy

f ðxh; kÞ ¼ Kh;h �
2
k

X
i

aiKh;i þ
1
k2

X
i

X
j

aiajKi;j ¼ R2; h 2 B:

ð11Þ
The first sum can be split in terms depending on k and constant
terms (always 1 or 0 for points on the outside and inside). This givesP

iaiKh;i ¼
P

i2BaiKh;i þ
P

i2OaiKh;i. Only the first term depends on k
while the boundary set, B, stays fixed, since ai is always 1 on the
outside. Let ki = Ki,i and define

R0 ¼ R2 � 1
k2

X
i

X
j

aiajKi;j;

and notice that R0 takes the same value for all h 2 B. Let KB;B denote
the matrix containing the inner products of the boundary points,
KB;O denote the matrix with inner products of the boundary points
and outliers, and let kB be a vector with elements ki; i 2 B. Let aB be
a vector with the Lagrange multipliers ai on the boundary, and let 1j

be a column vector of length j, with all elements equal to 1. Let nB
denote the number of points in B, then the set of Eq. (11) can be
rewritten in matrix form as

2
k

KB;B1nB

� �
aB
R0

� �
¼ kB �

2
k

KB;O1nO : ð12Þ

This system of equations consists of nB equations and nB þ 1 un-
known variables. The constraint from (5) is included in the linear
system, and

P
iai ¼

P
i2Bai þ nO, where nO is the number of outliers

2
k KB;B 1nB

1T
nB

0

" #
aB
R0

� �
¼ kB � 2

k KB;O1nO
k� nO

� �

¼
1
k InB�nB 0nB

0T
nB

1

" #
k

kB
1

� �
þ �2KB;O1nO

�nO

� �� 	
:

This may be rewritten

2KB;B 1nB

1T
nB

0

" #
InB�nB 0nB

0T
nB

k

" #
aB
R0

� �
¼ k

kB
1

� �
þ
�2KB;O1nO

�nO

� �
:

Define

K 0 ¼
2KB;B 1nB

1T
nB

0

" #
:

Assuming the points are in general position in the expanded basis,
such that the circle center is determined by at most the expanded
plus one points, then K0 can be inverted to obtain an expression
for aB

InB�nB 0nB

0T
nB

k

" #
aB
R0

� �
¼ K 0�1 k

kB
1

� �
þ
�2KB;O1nO

�nO

� �� 	
: ð13Þ

From this we learn that aB is piece-wise linear in k, while none of
the constraints given in (9) are violated.

3.2. The algorithm

Since ai, by Theorem 2, is continuous as a function of k, this may
be applied in finding the regularization path. Notice that if k = n, it
is easily seen that ai = 1, i = 1, . . .,n. Therefore the algorithm is
started in a state, where k = n, and from this starting point k can
be decreased, and the two events that happen while decreasing k
are:

� A point from either the inside or the outside enters the
boundary.
� A point exits the boundary to either the inside or the outside.

In between any of these events, the regularization path is piece-
wise linear, as shown in Section 3.1, and the parameters can be cal-
culated from (13).
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In the following, let l be the last event that occurred and l + 1 be
the next event, so that kl was the previous and bigger value of the
regularization parameter. Let al be the value of all ai at the event l
and al+1 at the following event l + 1. Then using that a is continuous

alþ1 ¼ al þ ðklþ1 � klÞpl; ð14Þ

where only the points ai on the boundary need to be updated. Let
xe 2 A be any point, and ke be the value of k for which the event fol-
lowing event l would happen, if everything except k was fixed. In
Section 3.2.1 ke is found for all points outside the boundary, i.e.
I [ O, and in Section 3.2.2 ke is found for points on the boundary B.

3.2.1. Boundary entry event
This event happens at a point where the distance to one of the

non-boundary points equals the radius of the (generalized) sphere.
This condition can be formulated as

f ðxe; kÞ � R2 ¼ Ke;e �
2
ke

X
i

aiKe;i þ
1
k2

e

X
i

X
j

aiajKi;j � R2 ¼ 0:

Using that R2 is given by Eq. (11) we find that

0 ¼ Ke;e �
2
ke

X
i

aiKe;i � Kh;h þ
2
ke

X
i

aiKh;i

¼ Ke;e � Kh;h þ
2
ke
ðKh;A � Ke;AÞðal þ ðke � klÞplÞ

() ke � kl ¼ �
ðKh;A � Ke;AÞal þ kl

2 ðKe;e � Kh;hÞ
ðKh;A � Ke;AÞpl þ 1

2 ðKe;e � Kh;hÞ
; ð15Þ

where the sums have been replaced by matrix products, and a has
been substituted using (14). As we are decreasing the value of k, we
are only interested in values of ke � kl smaller than 0. The biggest
value, smaller than zero, of ke � kl therefore marks the first entry
event to occur. Since the complexity of calculating KA;Aal is O(n2),
this calculation should be done iteratively, updating KA;Aal in each
step, by noting KA;Aalþ1 ¼ KA;Aal þ ðklþ1 � klÞKA;Bp, it can be calcu-
lated with complexity Oðn � nBÞ.

3.2.2. Boundary exit event
Though Eq. (13) gives an explicit expression for ai, this is only

the case, when i denotes a point on the boundary. Otherwise ai is
limited by the constraints 0 6 a 6 1. As ai, for i on the boundary,
increases or decreases monotonically, only one of the two
constraints comes into effect. Let the effective constraint be given
by

Cexit;e ¼
0; if pe P 0;
1; if pe < 0;




then the boundary exit value for the eth point is given by

ke � kl ¼ Cexit;e � al;e

pe
:
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Fig. 1. Logarithmic plot of the complexities of the two different implementations.
3.2.3. Finding the next event l + 1
Having calculated the first entry event and the first exit event,

the only thing left is to choose which of the two events happens
first and let

klþ1 ¼ kl þ max
xe2A;ke�kl<0

fke � klg:

An issue that has to be dealt with is how to propagate a if the
boundary set is the empty set. This is done simply by adding the
closest outlier to the boundary set, which corresponds to making
a discontinuous change in R2, but not in f(x) or a.
4. Complexity

The slope of a with respect to k, given by p ¼ K 0�1½kB1�T in (13)
can be calculated using simple matrix multiplications of complex-
ity Oðn2

BÞ. K
0�1 can be calculated using updating and downdating,

also with complexity O n2
B

� �
, as is shown in Section 4.1. The com-

plexity of calculating pB is O n2
B

� �
, while the complexity of evaluat-

ing the boundary entry conditions is Oðn � nBÞ, which means that
the overall complexity in each iteration step is of the order of
Oðn � nBÞ, as n P nB . The regularization path of the SVM could be
found with the same complexity (Hastie et al., 2004), and the prob-
lems also show strong resemblance. Fig. 1 shows a graph of the cal-
culation time of the previous algorithm and the presented
implementation. Note that the computation time follows the theo-
retical complexity. For a population of 1000 points, the current
implementation can be more than 100-times faster, and for our
testing purposes this has been the limit for the length of the calcu-
lations we set up for the implementation presented in (Sjöstrand et
al., 2007). The stability of the calculations has also set a natural
limit, as discussed in Section 4.2. The method works on the covari-
ance matrix (the kernel values) alone, and dimensions and distri-
butions obviously have an impact on this matrix. However, the
algorithm only requires the matrix to result from a Mercer kernel.
The important data-dependent factors in the calculation workload
are the number of iteration steps, which in the real world experi-
ments we have made ranges between three and five times the
number of points, n, and the number of boundary points nB , which
usually is considerably smaller than the total number of points.
4.1. Calculation of K
0�1

The two events that may occur to the boundary set either re-
duce or augment B by one point. This allows for an efficient calcu-
lation of K

0�1, which is the purpose of the current section. Using the
following result by Strassen (1969), the updates and downdates of
the inverse can be calculated efficiently

A B
C D

� ��1

¼ A�1 þ A�1BSACA�1 �A�1BSA

�SACA�1 SA

" #
; ð16Þ

where the Schur complement of A is denoted SA = (D � CA�1B)�1.
The efficient calculation of K 0�1

lþ1, the inverse of matrix K0 after event
l, will be presented in the following two paragraphs.
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Updating: Suppose that the point b* has been added to Bl to form
Blþ1, then K 0lþ1 can be written as

K 0lþ1 ¼
K 0l KBl ;b

�

Kb� ;Bl
Kb� ;b�

" #
: ð17Þ

Here SA ¼ Kb� ;b� � Kb� ;Bl
K 0�1

l KBl ;b
�

� ��1
and define SC ¼ K 0�1

l KBl ;b
� ,

then the inverse can be calculated from
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Fig. 2. Logarithmic plot of the error of the implementation compared to the result
obtained using quadratic programming.
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Fig. 3. Decision boundaries f
K 0l KBl ;b
�

Kb� ;Bl
Kb� ;b�

" #�1

¼
K 0�1

l þ SCSAST
C �SCSA

�SAST
C SA

" #
; ð18Þ

which only requires a multiplication of a vector with a matrix of
size nB , and this multiplication has complexity O n2

B
� �

.
Downdating: Suppose that the point b* has been removed from

Bl to form Blþ1. Then K 0�1
l can be written using Eq. (18), only here

b* is the point that was removed from the boundary

K 0�1
l ¼

AnBlþ1
�nBlþ1

BnBlþ1
�1

C1�nBlþ1
D1�1

" #
¼ K 0lþ1 KBlþ1 ;b

�

Kb� ;Blþ1
Kb� ;b�

� ��1

) K 0�1
lþ1 ¼ A� BCD�1: ð19Þ
4.2. Stability

As the currently derived fast path algorithm updates the param-
eters rather than recalculating them, as do all path algorithms, the
result will drift due to numeric instability caused by the double
precision used in the current implementation. This issue is investi-
gated by running the implementation on different data sets, while
testing the results for given values of the regularization parameter
k using an implementation of quadratic programming. The stability
was tested on data sets of dimension 2 and 3 with three clusters of
1000 points. Each cluster is having a Gaussian independent and
identical distribution with standard deviations sampled from a
uniform distribution on [.4;1.2] and with centers sampled uni-
formly from a cube of side length 8. In Fig. 3 the 2D data sets are
seen with similarly constructed distributions, but fewer points,
and the result of the stability test can be seen in Fig. 2. The result
can be seen to differ by no more than 0.5% even for 25,000 updates
and downdates of the inverse and the value of k. The relationship
appears to be linear, which can be attributed to the cumulative ef-
fect of rounding errors through the updates.
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or different values of k.
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For large numbers of samples, and thus updates, the method
presented in (Sjöstrand et al., 2007) suffers from imprecision in cal-
culating the next value kl+1 because the value was estimated
explicitly rather than estimating the difference kl+1 � kl, as in the
current work.

5. Demonstration

To demonstrate the method a small example is analyzed using
the implemented algorithm. From two sources with 2-dimensional
Gaussian distributions 100 points are sampled and they are ana-
lyzed with a Gaussian kernel function with a width of 1. The result
can be seen in Fig. 3. Note that this value of the kernel parameter
leaves room for a rather flexible decision boundary. In the Figure
it can be seen that some of the points, the support vectors, are out-
side and some are inside, corresponding to a ai of 0. In Fig. 4 the
entire regularization path of a, that is the ai corresponding to each
point, can be observed.

The calculation is performed in a fraction of a second for this
rather small sample size.

6. Conclusion

The support vector domain description (SVDD) is a new
and popular method. Recent work by Sjöstrand et al. (2007)
demonstrated that the regularization path of the weight coeffi-
cients depends piece-wise linearly on k. This allows for an efficient
calculation of the regularization path. The current work restates
new findings in a manner that permits the calculation with a com-
plexity of Oðn � nBÞ instead of O n2 þ n3

B
� �

in each iteration step. It
has been demonstrated that for n = 800 points, the calculation of
the regularization path could be performed up to 100-times faster.
The algorithm keeps the numeric error small for sample sizes up to
3000 points, smaller than 0.5% in the analyzed cases. We believe
that this contribution will allow for even more applications of
the method, either for choosing robust estimates of the distance,
or possibly in the area of support vector clustering.

Appendix A. Continuity of the Lagrange multipliers

Theorem 1. The Wolfe dual form Wd given by (8) is continuous with
respect to the regularization parameter, k.
Proof. Let a1 be a solution for a given set of points and regulariza-
tion parameter k1, and a2 a solution for regularization parameter
k2. It is seen that for any 0 6 s 6 1, a = sa1 + (1 � s)a2, satisfies
the conditions on a, and due to the polynomial form of Wd it can
be concluded that Wd is continuous. h
Theorem 2. The Lagrange multipliers a are continuous with respect
to k.
Proof. Follows directly from the fact that Wd is continuous and the
solution to a convex problem is unique. h
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