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Abstract

In this paper we describe an open framework utilizing sensors and application data on the Maemo
mobile platform enabling rapid prototyping of context-aware mobile applications. The framework
has an extensible layered architecture allowing new hardware and software sensors and features to
be added to the context framework. We present initial results from in-the-wild experiments where
contextual data was acquired using the tool. In the experiments 6 participants were using a Nokia
N900 mobile phone continuously with a logger application for an average of 33 days. The study
has provided valuable insights into human behavior in terms of places visited, people met, etc.
Moreover, it has provided useful insights into platform issues of the system deployed in real-life
usage situations, including the stability and power consumption.

Index Terms: context, context-awareness, mobile, framework, toolbox, application
prototyping, Maemo

I. INTRODUCTION

With the recent increase in their popularity and features offered mobile phones have become
ubiquitous devices, following their users during everyday activities. Due to embedded sensors
becoming an integral part of modern smart phones, context-awareness has gotten increased
attention. Standard off-the-shelf mobile phones have several embedded sensors, such as GPS,
accelerometer, light sensor, proximity sensor, microphone, camera, as well as multiple network
connectivity options, such as GSM, WLAN, and Bluetooth. However, utilizing these sensor
inputs for developing context-aware mobile applications is a complex task. The complexity
of development include accessing all of the available sensors in a simple, unified way and
translation of low-level raw data into a meaningful description.

A variety of different applications utilize sensors and context-awareness, including novel
games [1], tourist guides [2] and augmented reality applications [3]. Building such rich
applications is however difficult, as it usually requires direct interfacing with various sensors
and APIs. This raises the need for software tools and frameworks simplifying access to the data
and shifting the attention from how to get to how to use. Not only access to raw sensors data
must be easily obtained, it is also necessary to map it out to a contextual information capturing
human behaviour. GPS coordinates are usually not suitable for direct context-oriented usage,
but must be first translated into human readable labels or visual representations. Both access
to the raw data and translation to high-order information has to be done in a similar way in



many applications. We propose a flexible context framework with a set of components that
can infer such information and make it available across various applications on the platform.

The framework has a layered architecture, which abstracts the complexity of multiple low-
level sensors from the application programmer. Sensors is interpreted broad, as it includes
embedded sensors such as accelerometer, microphone, camera, etc, as well as networking
components, phone application data (calendar, address book, phone log, etc), and phone state
(profile, charge level, etc). Our current implementation exploits the potential of using such
sensors in modern off-the-shelf Maemo-based mobile phones for novel applications. The focus
has been on the assessment of the potential for such a framework taking into consideration
the increased performance requirements in such systems due to the additional CPU, memory
and power consumption introduced.

The framework presented in this paper is suitable for usage not only in the context-
aware end-user applications but also in the experiments involving context-logging. Such
experiments carried over extended periods of time (days or weeks) can provide a valuable
insight into human behavior. Gathered data from such experiment, with context-logger build
using Mobile Context Toolbox is presented in this paper. We report from initial deployment of
the system that included continuous use by 6 participants, who were provided with a standard
mobile phone (Nokia N900) with Mobile Context Toolbox installed along with an application
that would continuously log the data acquired from all sensors currently supported by our
framework. The experimental results from real-life use of the device for a period 33 days
on average have provided interesting insights into the potential of such system for obtaining
behavioral data.

II. RELATED WORK

The idea of a context framework for mobile devices has so far been implemented in
several projects on a variety of mobile platforms [4][5][6][7][8]. Previously we have created
and experimented with the Mobile Context Toolbox for the S60 platform (Python-based),
as described in [9]. This implementation presents a layered approach to data gathering and
processing and features a widget layer where data from various sensors is gathered and
translated into meaningful labels. A related project on the Maemo platform is ContextKit, a
framework for collecting contextual information from the bowels of the system, cleaning them
up and offering them through a simple API.1 This framework is multi-platform (including
Maemo/MeeGo) and provides a unified access to many embedded sensors. It is however
complex to deploy and use, not suitable for rapid prototyping, providing only bottom layer
of the architecture, namely access to the raw/filtered data.

Roto and Olasvirta [10] have studied mobile users on the move while they were using web-
browsers on mobile phones, by employing multiple cameras worn by the test participants. A
shorter attention span when using applications on the move compared to use in laboratory
settings were reported [11]. However, as such methods are resource demanding several have
experimented with the use of automatically logging embedded sensor data in order to study
human behaviour [12] or predictability [13][14][15] or to obtain insights into the use of mobile
applications in context. One example of the latter is Froehlich et al. [16] having created a
mobile tool capable of reading data from multiple embedded sensor similar to our approach,
including device logging of application use and context using embedded sensors. However,

1http://maemo.gitorious.org/maemo-af/contextkit/blobs/master/README



their aim was to combine quantitative and qualitative methods for in-the-wild collection of
data about usage. Recently, we have used the approach to study mobile use in context of
the media player application for music playback [17]. Boehm et al. [18] describe the mobile
application IYOUIT that collects contextual data, but aims to appeal to the end-user of the
application with a mobile user interface that allow them to actively see the contextual data,
as well as to share it in a social network. CenceMe also emphasize the social aspects [19].

III. MOBILE CONTEXT TOOLBOX

The Mobile Context Toolbox is build for the Maemo platform running on Nokia N900
smart-phones. The reason for choosing this platform is the wide array of embedded sensors as
well as relatively easy and unrestricted access to them. As such N900 constitutes an interesting
research platform in the context-awareness and cognitive domain mentioned above.

A. Mobile Phone Sensors as Context Sources
In principle, mobile devices can acquire context data through a large variety of sensors

embedded in the device and in the surrounding environment, as well as from online sources.

• GPS provides an absolute localization system which was designed for surveying tools
and navigation aids with global coverage.

• GSM/UMTS provides country and area code as well as cell ID, uniquely identifying
base station.

• Bluetooth can be used for scanning for neighbouring devices, providing information
about location and people around.

• WLAN can be used for scanning for neighbouring networks, providing information about
location and movement.

• Correspondence logs are used to monitor users activity.
• Audio, pictures, and video can be used for discovering context of the user, including

such abstract concepts as mood or emotions.
• System state (profile, battery, network) is useful for enriching the context and smart

approach to phone behavior.
• Explicit user entry (application data and prompts for tags) is possibly a very useful

source of information, however very intrusive.

Context-awareness originated from ubiquitous computing and has been introduced by Schilit
in 1994 [20]. When the term context is considered, there are several aspects which have to
be taken into account, including:

• Location – information concerning the current users position or his perceived path of
interest.

• Time – interpretation of current time or time interval in relation to users current activities.
• Activity – what is being done by the user.
• People – determining presence of other people in the neighborhood.
• Reason – reasons of current users behavior.
Figure 1 depicts the layered architecture of the Mobile Context Toolbox for the Maemo

platform. At the bottom we have the operating system that delivers certain services, mostly
through the D-Bus system. On top of that, is the layer of Adapters, providing programmatic



Figure 1. Overview of the Mobile Context Toolbox system architecture and components. Raw sensor data originates at the
bottom and is collected in the Support and Widgets layers to provide more descriptive information to the Application

access to single sensors in a unified way. Information from single sensors can be managed and
joined in the layer of Support Modules. Those modules deliver extra functionalities for the
toolbox, mainly simplifying common tasks. Context Widgets is the layer using both Support
Modules and single Adapters to create a more complex context. Applications can use all the
below layers in a unified way, so they are provided with different levels of the information
granularity (from raw data to complex contextual states).

B. General architecture
The layered structure allows easy adding, replacing or removing of modules. The general

assumption is that data flows only upwards, which makes the modules dependencies very
simple: it is possible to deploy only the necessary adapters as there are no horizontal depen-
dencies. The modules communicate using unified and well defined interfaces, which makes
it easy to introduce new adapters, support modules or widgets as they are developed. It is an
important property, as similar frameworks tend to break quickly once more components are
introduced.

The implementation is based on system-level multi-threading (POSIX threads) which makes
it framework agnostic. Written in C++ it can be used with GTK+, Qt, wrapped for Python or
in any other C++ based framework. Using pthreads for multithreading is sub-optimal in most
of the applications, where the reading code could be smartly placed in any of the loops (e.g.
using GTK+ main loop). This is however the cost of a generic approach, where our libraries
do not depend on Qt/GTK+ or any other framework.

C. Sensor adapters
The first layer in the architecture consists of simple wrappers over single sensors. There is

currently no global system for sharing the results of readings, meaning that if two separate
applications use for example WLAN scanning, it will be performed twice.



1) Bluetooth module: The libmctbluetooth library is responsible for retrieving a list of
bluetooth devices present in the devices range. The discovery process starts by getting adapters
power state, recording it, and powering on if necessary. The loop begins when a request for
a discovery session is sent through the DBus system and then signals from the adapter are
being caught.

2) Accelerometer module: This library provides methods for accessing accelerometer data.
There are three main modes of the accelerometer operation: real-time, single and burst
readings. The first mode is useful for applications that use the accelerometer for the real
time controls. Single readings can be performed in a scheduled way, in a loop with a large
sleep interval, or without using a loop. The burst mode is suitable for many context-aware
applications, as it can be used to identify various states of the device (e.g. detecting states
such as walking or running).

3) Location module: This library is responsible for providing information about the current
location. It is a simple wrapper over liblocation module, already available in the Maemo
platform. It preserves all the possibilities of liblocation, simply hiding the complexity of setting
up a connection, adding callbacks etc. Our wrapper provides access to all the information
available in liblocation, i.e.: latitude, longitude, timestamp, altitude, speed, track, climb, and
accuracy of those fields.

4) Cell ID module: This library provides methods for reading GSM/UMTS cell ID. There
are four main fields available on the Phone.Net.get registration status interface: Mobile Coun-
try Code, Mobile Network Code, Location Area Code, and cell ID. The combination of those
four values can be used to uniquely identify location of the base station/device.

5) WLAN module: The primary function of this library is to provide methods for scanning
for available WLAN networks. The properties of the network include: essid, bssid, type,
encryption, channel, quality. Scanning can be performed in a loop in a non-blocking way or
on-demand, in a blocking way.

D. Support modules
1) Events module: The function of this library is to provide methods for events scheduling.

It is a common situation in context-aware applications, that it is required for one event to
act as a trigger for another, for example discovering a new cell ID may trigger GPS to get
more accurate location. This support library provides method for setting up a trigger-event
pair. Checking of the trigger value is done in a loop, in a separate thread for every event.
The Event class represents such a pair, together with information about how often the trigger
should be checked and how many times this should be done (an infinite loop or a limited
number of checks).

2) Label storage module: This module is currently in implementation. It will eliminate
the necessity to set up and manage contextual data storage. Since the module will provide
a uniform way of storing contextual information, it will also be possible to share the data
among different applications on the device.

The layered and modular architecture of the module is depicted in Figure 2 having three
levels with different functional blocks. The top layer represents the interface which is exposed
by the module to the user. The second layer is responsible for implementation of internal
functionalities and data structures. The functionalities implemented here are responsible for
mapping the data types given by the public interface to internal data structure representation.
In order to provide flexibility the internal data structure is represented by several embedded
containers which keep different sensors data, as shown in Figure 3.



Figure 2. Proposed architecture of the Label Storage module

Figure 3. Internal data structure of the Label Storage module

E. Context Widgets
The Context Widgets layer contains modules collecting data from several adapters and

translating them into meaningful description. They can also provide extra functionalities to
be used by applications as building blocks. Examples of such widgets are Smart Location and
Labels Sharing. Smart Location is designed to use data from accelerometers, GPS, WLAN
and cellular network to provide information about location with best accuracy and power
efficiency. The mode of operation can be seen as a hierarchical sensor reading: movement
detected by accelerometer indicates that the position is changing, which can be later tracked
using WLAN or cellular network. If an application using this module requires better accuracy,
GPS will be eventually turned on to provide location with requested precision. Label Sharing
is a widget for a collaborative approach to context-awareness. Instead of trying to infer the
whole context separately on each device, they can create ad-hoc networks (using Bluetooth)
and share raw data and labels.

F. Context data logger application
The context logger application has been created for the purpose of collecting data from

phone sensors over long time periods. It utilizes the MCT sensor adapters layer for accessing
particular data from the phone wrapped using the Qt framework which has been used for
threading, process management, accessing the file system and user interface development. A
simplified structure of the application is presented in Figure 4.



Figure 4. Simplified structure of the DataCollector solution. MCT is used for accessing data from sensors

The entire solution consists of three separate applications:
• DataCollector – reading out sensors data and storing it in files on the device.
• ContextDataUploader – Qt based application allowing users to submit results stored on

the device to the server.
• ContextUserInput – a Qt based application allowing users to tag places, people and

activities.
The DataCollector application has to run reliably on the devices for longer time periods as

a background daemon, requiring no user interaction.

IV. EXPERIMENTS AND RESULTS

We have carried out initial experiments with our mobile context platform involving N=6 test
participants that carried a mobile phone (Nokia N900) for a duration of 33 days on average.
The purpose of the experiment was to collect a variety of data about everyday activities of
participants. Since the number of participants was limited by availability of devices it was
decided to create two sub-groups among them. Each group consisted of participants knowing
each other who were also meeting on a regular basis. Additionally one of the participants were
known by both groups. The members of the first group selected were students living in the
same dormitory. The second group consisted of three employees working in the same office.
Both groups were asked to carry the devices with them as much as possible and preferably to
use test devices as their primary phones. This was accomplished by four participants (having
SIM cards in the phones, as shown in Table I). Apart from keeping the devices charged all
of the participants were asked to use two additional applications. One application was used
for uploading the collected data to the server (for back-up purposes) once a day. The second
application was used for tagging the current location/activity/people around as often as they
would find it necessary. It was left to the participants to decide which situations they wanted
to tag.



The data collecting system was recording readouts from the available sensors all of the
time when the phone was switched on. The sampling rates used were:

• Wireless Networks scanning – every 10 minutes
• GSM cell readout – every 5 minutes
• Accelerometer – every 1 minute with burst of 10 readouts/sec
• GPS readout – every 2 minutes
• Bluetooth scanning – every 10 minutes scanning for 30 seconds
The sampling rates were chosen empirically – in order to provide as much data as possible

but also keep the battery life of the device at a reasonable level. The selected values provided
eight to twelve hours of devices battery life, which was acceptable for this experiment.

The survey started on 11-07-2010 and ended on 22-08-2010. Table I presents an overview
of the collected data from the 6 devices used.

TABLE I
OVERVIEW OF THE DATA ACQUIRED FROM THE 6 TEST PARTICIPANTS OVER A DURATION OF 5 WEEKS

Unique Unique Unique
Duration Acc. GSM cell GSM cell Wi-Fi Wi-Fi GPS Bluetooth bluetooth

User (days) readouts readouts readouts networks networks readouts devices devices
1 41 170721 10374 178 15272 1177 27067 10820 772
2 41 1757863 11732 83 83595 1013 26191 17046 1122
3 22 101576 2129 75 31511 556 13075 5137 258
4 32 131023 0 (no SIM) 0 39295 1662 20093 9031 632
5 42 257092 0 (no SIM) 0 28995 127 22346 358 15
6 22 1062945 13304 92 55473 854 14279 10731 494

Total 200 3481220 37539 395 254141 4640 123051 53123 3151

Figure 5 is an example of analysis of collected data. It depicts an overview of the registered
wireless networks registered by one selected device in the course of 40 days. Each readout
is represented by a block of a color generated based on the networks BSSID thus the same
network can be identified in different time sections. The blank spots in the diagram represent
the point when the device has either been turned-off or no networks have been registered. It
is clear from the figure that the uptime is over 95%, giving almost full overview of person’s
locations in 40 days. When coupled with user-generated tags, visible networks can be used
to accurately pinpoint location of the user, as well as transitions between those.
Such location data from several participants can be also used to generate clusters of networks
seen by participants, revealing how often they have been meeting. This reveals social relations
of users and can be coupled with data collected from additional sensors, notably from
bluetooth scanning.

V. DISCUSSION

Mobile phones carried by users throughout the day enable a unique opportunity to capture
life data from a wide range of sensors through long periods of time. Together these sensors
provide an interesting source of information about activities, people, places and other entities.
As such, the mobile phone serves as a proxy in terms of providing information about the
context of the human user. With mobile phones being ubiquitous devices, context frameworks
like ours have interesting potential within several application areas. Continuous logging of



Figure 5. Wireless networks readouts for a selected participant. The white areas denote periods where the phone was
switched off or no WiFi access points were available. Each color denotes one WiFi network

sensor data allow detailed information about our lives (private, work and social context) to be
discovered. This could be used for instance in health applications for self monitoring with the
purpose of self-reflection. Another area is information retrieval and information management,
where the logs could allow context-based retrieval of information.

The presented experiment demonstrates that the implemented framework simplifies de-
velopment of context-aware applications and loggers. It also shows that the architecture is
stable enough to run for several days with numerous sensors being read continuously. With
the DataCollector process running, the devices could operate for about 10 hours without
charging. For comparison, the same device without the logger running, lasted for 72 hours.
Significant power drain was to be expected with all the sensors running constantly. It is
however important to note that even with such heavy usage, the device could last through the
typical days of the participants.

The presented data, although not yet analyzed in details, show the potential of obtaining
interesting insights into participants everyday life. The domains covered include places, people
and activities and form a basis for analysis of behavioral patterns.



VI. FUTURE WORK AND CONCLUSIONS

We plan to continue the work on the Mobile Context Toolbox and to make it available as
open source in order to allow others to utilize the framework for further field studies like the
one presented here and to contribute to the further development of the MCT itself. Obvious
extensions include additional adapters providing more phone information, status, application
events and data, and access to additional embedded sensors. Additional sets of context widgets
can be developed utilizing information aggregation to infer more precise context information
based on multiple sensors. Thereby, the Mobile Context Toolbox can become an even more
useful tool in terms of lowering the barrier to the development of and experiments with
context-aware mobile applications. In the near future, we plan to adapt the toolbox to the
MeeGo platform. Due to the layered design, this will require only changes and adjustments
in the Adapters layer, as the system APIs providing raw data are changed. The other parts of
the toolbox can be directly deployed on MeeGo.

We have demonstrated the Mobile Context Toolbox for the Maemo platform as a framework
for prototyping context-aware mobile applications and carrying out context-oriented experi-
ments. It is our finding that the Maemo platform is suitable for deploying such experiments.
The operating system stacks are stable and can handle the requests and make data available in
a reliable way. It is an advantage that applications can run with user privileges, not requiring
certificates or root access, which means that applications built using our framework are fully
native applications, which makes them easy to develop, install and manage. The presented
framework offers not only simple adapters for single sensors, but also more advanced modules
for gathering and translating data from multiple sources in the widgets layer, which distin-
guishes it from other context-based solutions available.

Our experiments gathering behavioral data through context-logging have demonstrated the
stability and flexibility of the current prototype implementation. The results are yet to be
analyzed in more details, but our initial analysis of the data collected has shown the potential
of using smartphones as a research instrument for obtaining insights on human bahaviour.
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