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ABSTRACT

We propose the infinite non-negative matrix factorization
(1nMF) which assumes a potentially unbounded number of
components in the Bayesian NMF model. We devise an infer-
ence scheme based on Gibbs sampling in conjunction with
Metropolis-Hastings moves that admits cross-dimensional
exploration of the posterior density. The approach can ef-
fectively establish the model order for NMF at a less com-
putational cost than existing approaches such as thermody-
namic integration and existing reversible jump Markov chain
Monte Carlo sampling schemes. On synthetic and real data
we demonstrate the success of (INMF).

1. INTRODUCTION

Non-negative matrix factorization NMF has become an im-
portant tool for unsupervised, exploratory data analysis due
to its easily interpretable parts-based representation of data
[16). NMF decomposes a non-negative matrix V' € R’ into
a positive low rank approximation (p-rank) given by

V=W H + E, (1)
IxJ IXxD DxJ IxJ

where the dimensions are indicated below each matrix, and
wig > 0, hg; > 0 and eq; is residual noise. Non-negative
matrix factorization is also named positive matrix factoriza-
tion |25] but was popularized by Lee and Seung due to a
simple algorithmic model fitting procedure based on multi-
plicative updates [17]. The NMF decomposition has proven
useful for a wide range of data where non-negativity is a nat-
ural constraint. Applications include text-mining based on
word counts [16, [5], image analysis [16], neuro-informatics
[22], bio-informatics [I], chemometrics |7], astronomy [26],
and audio processing |31] to mention but a few. For a recent
overview of NMF see also [3].

While NmF has found widespread use, an important open
problem remains to efficiently determine the number of com-
ponents D. Contrary to singular value decomposition (SvD)
in which models with different number of components are
nested, the components of the NMF decomposition change
when D changes. Consequently, the interpretation of the de-
composition relies on the number of extracted components
and determining the model order is thus crucial in order to
reliably interpret the components. Choosing the NMF model
order amounts to estimating the posterior distribution of D
(also denoted the marginal likelihood or evidence). Using
Bayes’ theorem, this is given by

p(V|D)p(D)

p(ov) = B

< p(VID)p(D). ()
This, however, requires the computation of the quantity
»(vID) = [ p(vie.Dip(elD)de, (3)

where ® denotes the parameters of the NMF model. In gen-
eral, this integral is analytically intractable and can be ap-
proximated using Markov chain Monte Carlo (McMC).

Previous approaches to model order selection have con-
sidered a fixed range of model orders and carried out separate
analyses for each D. This, however, might be a computation-
ally wasteful approach: If the posterior in Eq. (2) is highly
peaked it is not sensible to spend computational resources
evaluating a possibly large range of very improbable model
orders. In this paper we will make a first attempt to over-
come these limitations by considering a non-parametric in-
finite non-negative matrix factorization (INMF) model where
a potentially unbounded number of components can be con-
sidered without having to exhaustively evaluate all potential
model orders in separate analyses.

1.1 MAP estimation of NMF

Traditionally, the NMF model has been fitted by various algo-
rithms based on optimizing some error measure or computing
maximum likelihood (ML) or maximum a posteriori (MAP)
estimates of W and H. In many of these approaches, the
(non-convex) joint problem of estimating W and H is split
into two (convex) sub-problems estimating W for fixed H
and vice versa. Each sub-problem is commonly solved either
by second order approaches such as the active set procedure

,[13] or first order methods such as multiplicative updates

| or projected gradient methods@ﬂﬁ]. For an overview of
estimation approaches see also [3, 12]

Several approaches to establish the model order based on
MAP-parameter estimates have been proposed. The Bayesian
information criteria (BIC) is an asymptotic expansion of the
likelihood given in Eq. (@) such that the number of com-
ponents are selected by minimizing the following quantity,
BIC = —2log L + Klog N, where L = p(V|®Y*" D) is the
likelihood, ®"*" is the MAP estimate of the parameters, K
is the number of parameters, and N is the number of data
points. For least squares estimation this reduces to BIC =

EMAP

Nlog 25— + Klog N where ssg™* = |V — W™ H"**||%,
is the residual sum of squared error of the MAP parameter
estimates. Thus, the BIC criteria defines a tradeoff between
model fit and complexity.

An alternative approach based on automatic relevance
determination (ARD) has recently been applied in conjunc-
tion with MAP estimation of the NMF model [33, 21]. Here,
priors on the model parameters are given hyper-parameters
that represents the scale of each component by defining its
range of variation. By optimizing these hyper-parameters,
components can be removed if their scale goes below some
threshold. This results in an estimate of the model order
when the model is initialized with “too many” components.

Although MAP based approaches in general are very effi-
cient they do not take parameter uncertainty into account,
and as such only form an approximation to Eq. (2)).

1.2 Bayesian NMF

To evaluate the integral in Eq. ([B) Markov chain sampling
approaches can be used to obtain a Monte Carlo estimate
of the posterior distribution of the parameters, p(®|V, D).
In [23, [32, [34] Gibbs sampling is used to obtain estimates
of the joint posterior distribution of the NMF parameters ©.
In Gibbs sampling it is assumed that © can be partitioned



into N groups, ® = {01,...,0x}, such that it is possible
to generate samples from the posterior conditional densities,
p(0,|©®\8,,), for each of these groups. For the NMF model
each element of a column of W and a row of H are condition-
ally independent such that the columns of W and rows of H
can be sampled independently resulting in N = 2D groups.
In addition, parameters of the noise distribution and possible
hyper-parameters must be sampled as well. Given some ini-
tial value of the parameters, each 6,, is iteratively sampled
while keeping all other parameters fixed. This procedure
forms a homogeneous Markov chain that can be shown to
sample from the full posterior distribution.

In our infinite NMF we use Gibbs sampling in conjunc-
tion with cross-dimensional Metropolis-Hasting moves. In
the following, we consider an NMF model based on a Gaus-
sian likelihood and rectified Gaussian priors,

Vi~ N('U»L‘j Zwidhdj,az), (4)
d
wiqg ~ RG(Wsalhid, 7'7,‘2d)7 (5)
haj ~ RG(hajlmaj, 535), (6)
0® ~IG(0”|B,7), (7)
where N (|u,0%) denotes the Gaussian  density,

RG(|p,0°) = WN(M,UQ)I(J denotes the rec-
tified Gaussian density where 1(-) is a unit step function
(see also [30]), and ZG(+|3,v) denotes the inverse Gamma
density. We note that the ideas presented here can be
similarly applied to other NMF parameterizations such as
23, 32, 30, [34]. Our parameterization, ® = {W, H, 0%},
results in the following posterior conditional distributions
required for the Gibbs sampler

w;ia|V, ®\wiq ~ RG(wid|fid, 7_'51)7 (8)
i‘zd = (2_:’133‘072 +Ti7i2)717 9)
j

fiia = Tig (22 3" haj (vig — 3 winhay) + L2, (10)
j k#d id

hai |V, ©\hgj ~ Rg(hdj|mdj7§3j)v (11)

533 = (sz'zd0-72+sc;j2)717 (12)
_ =2 1 md;

Maj = 5a; (Fz 2 wia(vij — X hejwir) + =L), (13)
7 k2d dj

|V, 0\ ~IG(c®|8 + &, v+ 3|V - WH|%). (14)
By iteratively sampling each parameter from their respective
posterior conditional distributions, samples from the joint
posterior distribution p(®|V, D) are obtained. Using this
sample estimate, several approaches have been proposed to
evaluate the NMF model order.

1.2.1 Chib’s method

In [32] Chib’s method [2] for model order estimation is ap-

plied to NMF. Here the marginal likelihood p(V'|D) is ob-

tained through the relation

p(V|®, D)p(®|D)
p(OV,D)

p(VID) = (15)
where © is some high posterior density value of the parame-
ters. The numerator can be directly evaluated while the de-
nominator is approximated through N successive runs of the
Gibbs sampler. As such the model requires the evaluation of
all possible model orders in some set D = { Dmin, - - ., Dmax },

D = |D|, resulting in a total of N.D posteriors densities to
be estimated through Gibbs sampling.

1.2.2 Thermodynamic Integration

In [34] an NMF model order selection method based on ther-
modynamic integration [4] is proposed. Here, estimates
of the marginal likelihood are derived through the use of
power posteriors based on ideas from path sampling [6]
from the prior to the posterior. A temperature parameter
t € [0,1] is imposed forming power posterior, p:(®|V, D) =
p(V]©, D)'p(®), which is equal to the posterior for ¢ = 1
and the prior for ¢ = 0. The thermodynamic integral is then
given by [4]

10gp(V|D):/(;/(;)log p(V]O©,D)]p:(®|V,D)dtd®. (16)

The integral over ® can be approximated by Gibbs sampling
while the integral over ¢ is carried out by considering a finite
discretization of ¢ € [0; 1]. Thus, thermodynamic integration
requires the estimation of the joint posterior for each model
order D € D and for each discretized temperature. For T
temperatures and D considered model orders, a total of 7D
joint posteriors must then be estimated through Gibbs sam-

pling.
1.2.3 RIMCMC

To overcome the high computational cost of Chib’s
method and thermodynamic integration, [34] proposes to
use reversible jump Markov chain Monte Carlo sampling
(RIMCMC) to obtain an estimate of Eq. (2)). RIMCMC was first
proposed by [§] and is a Metropolis-Hastings sampling ap-
proach that can perform cross-dimensional moves. Based on
ideas from [19], [34] use independent proposal distributions
based on approximations of the posterior for each model
order. A drawback of this approach is thus that a sepa-
rate Gibbs sampling run for each potential model order is
required to obtain the proposal densities before the actual
cross-dimensional sampling is used to estimate Eq ([2)). It is
noted in [34] that

“...it would be possible to add or remove some
rows and columns of [H| and [W] and sample from
some proposal distributions to jump between sub-
spaces. However, this would not work as the samples
would continually run out of mass of the extremely
complex posterior distributions, and thus jumping
from one subspace to another would never happen.”

In the following, we present such an RIMCMC approach that
jumps between subspaces based on adding or removing some
rows and columns of W and H, and demonstrate that by
choosing good proposal densities cross-dimensional jumps
are accepted with high probability. This allows for sampling
all parameters as well as the model order jointly, eliminating
the need for initially sampling from the posteriors of each
possible model order. The inference scheme automatically
infers the posterior distribution over the model order, and
because the potential number of components is unbounded
a priori we denote this method the infinite non-negative ma-
trix factorization (INMF).

1.3 Existing infinite matrix factorization methods

Related to INMF, there exists a class of infinite matrix factor-
ization approaches, including infinite binary matrix factor-
ization (1BMF) |20], infinite sparse coding (1sc) and infinite
independent component analysis (11cA) |[14], that are based
on the Indian buffet process (18r) [d] which is a distribution
over unbounded binary matrices. The IBMF model is given by
V =UQV "+E, where U and V are binary matrices with a
potentially infinite number of columns. Although attractive
for its non-parametric representation, the binary constraints
imposed on U and V make the model unable to account



well for general non-negative features as in NMF. The 1sC
and 11CA models are given by V = A(S ® Z) + E, where A
and S are general unbounded matrices, Z is an unbounded
binary matrix, and ® denotes element-wise product. The
model results in a sparse feature representation, where A
are the extracted features, the binary matrix Z indicates
which features are present for each data point, and S holds
the real-valued coefficients of these features. In [14], a Gibbs
sampling inference procedure is proposed, and with suitable
prior densities a benefit of this model is that when estimat-
ing a given element of Z the corresponding element of S can
be marginalized out analytically. By constraining A and S
to be non-negative, the model corresponds to a sparse NMF
representation [10]; however, the sparsity imposed through
the binary activation pattern Z may not always comply well
with the structure of the data if the assumption in NMF is
true that all features are partially expressed to some degree
in every data point.

2. INFINITE NMF

Rather than forming an infinite NMF model through the bi-
nary IBP representation we device a RIMCMC sampling pro-
cedure that can perform general cross-dimensional jumps ef-
ficiently. Cross-dimensional jumps from a model of order D
with parameters © to a model of order D* with parameters
©" is accepted with probability given by the reversible jump
Metropolis-Hastings ratio

p(©,D|V)q(U|®,D,V, I)q(I*|D*) [’

where U and U™ are auxiliary variables such that ne +nu =
ne+ + nu+ where ne denotes the number of elements in ©.
For ease of notation we have further included auxiliary vari-
ables I and I", which are index sets that point to a number
of features, i.e., columns of W and the corresponding rows
of H. Given I, the cross-dimensional jump proposal is de-
terministic given by (@*,U*,I") = g(®,U,I) where g is a
bijective function with a Jacobian determinant of 1. (For
that reason the Jacobian determinant term that usually oc-
curs in the expression for the RIMCOMC acceptance ratio is
omitted.) The function g removes the features indexed by I
from © and places them into U™ and then appends the fea-
tures in U to © forming the new feature ®*, and I™ points
to the indexes of the appended features. Finally, ¢(I|D) de-
notes the probability of selecting a given feature index set
for removal.

The crux for the RIMCMC procedure to be efficient is to
achieve a reasonably high acceptance rate, which requires
forming highly probable proposals ¢(U|®, D,V ,I). In the
following, we consider two approaches for proposing cross-
dimensional jumps: A birth-death procedure, which adds
or removes one feature, and an split-merge procedure, which
splits one feature into two or merges two to one. Both proce-
dures are inspired by similar procedures for Dirichlet process
mixtures [11].

The proposals are based on the idea of a launch state:
Since q(U|®, D,V ,I) is allowed to depend on the existing
features ©, these can be used to deterministically compute
an initial highly probable launch value, U™"" for the new
features U. As shown in [11], the computation of the launch
state need not be deterministic: If the procedure is stochas-
tic, it simply corresponds to a mixture transition, where
a Markov chain transition is chosen randomly from a set
of valid transitions. Here, we use the following procedure:
We launch new features generated from the prior and refine
them through ¢ restricted Gibbs sweeps over the new fea-
tures conditioned on the existing features less the removed
features. Next, q(U|®,D,V,I) can be defined as a ran-

dom walk starting from UM Here, we use one final re-
stricted Gibbs sweep, q(U|®, D,V ,I) = ¢(U|®"™"" V),
where @'*"® = ¢(@, U™ [). The transition probabil-
ity for the restricted Gibbs sweep can be computed as the
product of the probabilities of each conditional parameter
update given in Eq. (8HI4).

2.1 Birth-death procedure

In the birth-death procedure we set the probability of gen-
erating a new component (birth) or removing a component
(death) to be equal except if D = 0 where a death move has
zero probability. As a result, we have the following contin-
gency table for ¢(I|D),

q(I|D) | D=0 D >0 | Move type
T=0 1 : Birth (18)
Ie{l1,...,D} 0 55 Death.

Consequently, for a death move we randomly select a fea-
ture to remove among the D active features with probability
1/D. For a birth move, we launch a new feature as explained
above. The motivation behind the birth-death proposal is
that it will allow the inclusion of extra features that model
the residual error if needed, and conversely allow the deletion
of unnecessary features.

2.2 Split-merge procedure

When inspecting the features of the NMF decompositions for
different model orders it is often observed that including ad-
ditional components has the effect that a previously observed
component splits into two new different components. As ob-
served by [16] NMF often results in parts-based representa-
tions, and adding additional components often results in ex-
isting parts being further atomized into smaller constituent
parts. Based on this observation, we device a split-merge
procedure that explicitly exploits this dynamic to generate
highly probable proposal distributions for cross-dimensional
jumps.

As for the birth-death approach we will assume that both
a split and a merge step has equal probability except when
D =1 where a merge move has zero probability. As a result
we have the following contingency table for ¢(I|D),

q(I|D) | D=1 D>1 | Move type
Ie{l,...,D} 1 5 Split (19)
I = (i1,12), i1 # i2,

( ) 0 72[)(})71) Merge.

i1,i2 € {1,...,D}

In a split move we randomly select an existing feature and
remove it. We then launch two new features using the launch
mechanism described above. In a merge move, we randomly
select two different exiting features and remove them. Then
we launch one new component with the slight modification
of the procedure that the initial value of the new feature is
taken as the average of the exiting features rather than gen-
erated from the prior before it is refined through ¢ restricted
Gibbs sweeps as before.

The birth-death procedure as well as the split-merge pro-
cedure are illustrated in Figure[Il

3. RESULTS

In the following we present simulations on toy examples as
well as a real chemical shift imaging data set.

We generated four simple data sets by drawing from the
prior: We generated two small 10 x 10 matrices with 3 com-
ponents and two 100 x 100 matrices with 6 components at
different noise levels (see Table B). The priors were chosen
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Figure 1: Illustration of the generated proposal densities for
the birth-death (top) and split-merge (bottom) procedures.
The features U* indexed by I (red) are removed from ©.
New features are generated and refined through ¢ restricted
Gibbs sampling sweeps forming U"*""" (blue). The final
new features, U, indexed by I*, are generated through one
final restricted Gibbs sweep, and the proposal density is com-
puted by keeping track of all transition probabilities in the
final Gibbs sweep.

asu,—d:mdj:O,Tid:sdj:1,6:1,7202. We as-
sumed a flat improper prior over the number of componentsd
p(D) o 1. Initializing with D = 0, we then computed 10
posterior samples using the proposed inference procedure for
INMF. In our experiments we interleaved one birth-death and
split-merge proposal with five Gibbs sweeps, and used ¢t = 10
restricted Gibbs sweeps to generate the launch states. The
posterior probability of D for each data set is given in Fig-
ure [3] The results are as would be expected: For the two
low noise data sets, A and C, the posterior is highly peaked
around the correct number of components, whereas for the
high noise data sets, B and D, the posterior is less peaked
and skewed towards fewer components. In all examples the
maximum posterior probability is at the correct model or-
der. For comparison we implemented a naive version of the
rJMCMC method in [34]. We computed a proposal density
for each value of D € {1,...,10} based on fitting a recti-
fied Gaussian to 10° posterior samples generated by Gibbs
sampling from the model. Although we were able to obtain
results similar to the ones obtained using INMF, we expe-
rienced that our naive implementation had severe difficul-
ties mixing across dimensionalities. The NMF model has the
inherent permutation ambiguity that any two features can
be permuted resulting in the same posterior density. Thus,
when the posterior samples reflect this, it should be taken
into account in constructing a good proposal density, e.g.

2

| I J D o
A 10 10 3 1
B| 10 10 3 10
C|100 100 6 1
D | 100 100 6 10°

Table 1: Toy example data sets.

0.5 0.5
123456738 123456738
A B
1 1
0.5 0.5 Il
0 0
123 45678 12345678
C D

Figure 2: Results on toy data sets A-D: Posterior distribu-
tion of D. In the two low noise data sets (left) iNmMF finds the
correct number of components with relatively high posterior
probability. In the two high noise data sets (right) the pos-
terior is less peaked and slightly skewed towards a smaller
number of components.

by fitting a mixture model or by permuting the posterior
samples.

Next, we analyzed a 369x256 chemical shift imaging data
set [24] that has previously been analyzed using several NMF
related methods [27, 2§, [32, 29] and is known to contain two
components. To match the noise level and scale of the data
in line with m], we chose the prior as piq = —10, mg; =
—10°%, Tiq = 10, sq; = 10'1, B = 1, v = 10%. Initializing
with D = 0, we computed 10° posterior samples using the
INMF inference procedure similar as above. The estimated
components matched the ones computed using other NMF
related methods, and the posterior distribution of D had
almost all of its mass at D = 2.

4. DISCUSSION

We proposed the infinite non-negative matrix factorization
(INMF) model which has a potential unbounded number of
features. We devised an efficient sampling scheme that were
able to perform cross-dimensional jumps using Metropolis-
Hastings moves. To avoid extreme low-probability proposals
we derived high-probability configurations based on the cal-
culation of an intermediate launch state as proposed for the
Dirichlet process mixture in [I1]. On synthetic and real data
we demonstrated how the proposed approach was able to
extract the underlying model order reliably at a lower com-
putational cost than competing approaches such as Chib’s
method, thermodynamic integration, and the riMCMC ap-
proach given in [34].

One might suspect that the presented procedure is nearly
as computationally expensive as [34] due to the intermittent
Gibbs sampling steps used to derive the launch states; how-
ever, these steps are only carried out on a small number of
possible components, since the Markov chain predominantly
explores the high probability region of the posterior. We do
note, however, that the procedure is sensitive to the number
of restricted Gibbs sweeps, ¢, and that we observed better



cross-dimensional mixing as ¢ was increased, thus automati-
cally selecting ¢ remains as an important issue.

Although the method performed well we believe mixing

can be further improved: If two components are (almost)
identical and should be merged, there is a scale ambiguity
between the components. Furthermore, there is an inherent
scale ambiguity between W and H which is only partly re-
solved by the prior specification. We expect that extending
the method to take these ambiguities into account, e.g. by
including a scale constraint in the prior, might lead to better
performance.
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