
INFINITE NON-NEGATIVE MATRIX FACTORIZATIONMikkel N. S
hmidt and Morten MørupTe
hni
al University of Denmark, Ri
hard Petersens Plads, DTU Bldg. 321, 2800 Kgs. Lyngby, DenmarkABSTRACTWe propose the in�nite non-negative matrix fa
torization(inmf) whi
h assumes a potentially unbounded number of
omponents in the Bayesian nmf model. We devise an infer-en
e s
heme based on Gibbs sampling in 
onjun
tion withMetropolis-Hastings moves that admits 
ross-dimensionalexploration of the posterior density. The approa
h 
an ef-fe
tively establish the model order for nmf at a less 
om-putational 
ost than existing approa
hes su
h as thermody-nami
 integration and existing reversible jump Markov 
hainMonte Carlo sampling s
hemes. On syntheti
 and real datawe demonstrate the su

ess of (inmf).1. INTRODUCTIONNon-negative matrix fa
torization nmf has be
ome an im-portant tool for unsupervised, exploratory data analysis dueto its easily interpretable parts-based representation of data[16℄. nmf de
omposes a non-negative matrix V ∈ R
I×J intoa positive low rank approximation (p-rank) given by

V
I×J

= W
I×D

H
D×J

+ E
I×J

, (1)where the dimensions are indi
ated below ea
h matrix, and
wid ≥ 0, hdj ≥ 0 and eij is residual noise. Non-negativematrix fa
torization is also named positive matrix fa
toriza-tion [25℄ but was popularized by Lee and Seung due to asimple algorithmi
 model �tting pro
edure based on multi-pli
ative updates [17℄. The nmf de
omposition has provenuseful for a wide range of data where non-negativity is a nat-ural 
onstraint. Appli
ations in
lude text-mining based onword 
ounts [16, 5℄, image analysis [16℄, neuro-informati
s[22℄, bio-informati
s [1℄, 
hemometri
s [7℄, astronomy [26℄,and audio pro
essing [31℄ to mention but a few. For a re
entoverview of nmf see also [3℄.While nmf has found widespread use, an important openproblem remains to e�
iently determine the number of 
om-ponents D. Contrary to singular value de
omposition (svd)in whi
h models with di�erent number of 
omponents arenested, the 
omponents of the nmf de
omposition 
hangewhen D 
hanges. Consequently, the interpretation of the de-
omposition relies on the number of extra
ted 
omponentsand determining the model order is thus 
ru
ial in order toreliably interpret the 
omponents. Choosing the nmf modelorder amounts to estimating the posterior distribution of D(also denoted the marginal likelihood or eviden
e). UsingBayes' theorem, this is given by

p(D|V ) =
p(V |D)p(D)

p(V )
∝ p(V |D)p(D). (2)This, however, requires the 
omputation of the quantity

p(V |D) =

∫

p(V |Θ, D)p(Θ|D)dΘ, (3)where Θ denotes the parameters of the nmf model. In gen-eral, this integral is analyti
ally intra
table and 
an be ap-proximated using Markov 
hain Monte Carlo (m
m
).

Previous approa
hes to model order sele
tion have 
on-sidered a �xed range of model orders and 
arried out separateanalyses for ea
h D. This, however, might be a 
omputation-ally wasteful approa
h: If the posterior in Eq. (2) is highlypeaked it is not sensible to spend 
omputational resour
esevaluating a possibly large range of very improbable modelorders. In this paper we will make a �rst attempt to over-
ome these limitations by 
onsidering a non-parametri
 in-�nite non-negative matrix fa
torization (inmf) model wherea potentially unbounded number of 
omponents 
an be 
on-sidered without having to exhaustively evaluate all potentialmodel orders in separate analyses.1.1 MAP estimation of NMFTraditionally, the nmf model has been �tted by various algo-rithms based on optimizing some error measure or 
omputingmaximum likelihood (ml) or maximum a posteriori (map)estimates of W and H. In many of these approa
hes, the(non-
onvex) joint problem of estimating W and H is splitinto two (
onvex) sub-problems estimating W for �xed Hand vi
e versa. Ea
h sub-problem is 
ommonly solved eitherby se
ond order approa
hes su
h as the a
tive set pro
edure[15, 13℄ or �rst order methods su
h as multipli
ative updates[17℄ or proje
ted gradient methods [18℄. For an overview ofestimation approa
hes see also [3, 12℄.Several approa
hes to establish the model order based onmap-parameter estimates have been proposed. The Bayesianinformation 
riteria (bi
) is an asymptoti
 expansion of thelikelihood given in Eq. (3) su
h that the number of 
om-ponents are sele
ted by minimizing the following quantity,bi
 = −2 logL + K logN , where L = p(V |Θmap, D) is thelikelihood, Θmap is the map estimate of the parameters, Kis the number of parameters, and N is the number of datapoints. For least squares estimation this redu
es to bi
 =

N log ssemap
N

+ K logN where ssemap = ‖V − W mapHmap‖2Fis the residual sum of squared error of the map parameterestimates. Thus, the bi
 
riteria de�nes a tradeo� betweenmodel �t and 
omplexity.An alternative approa
h based on automati
 relevan
edetermination (ard) has re
ently been applied in 
onjun
-tion with map estimation of the nmf model [33, 21℄. Here,priors on the model parameters are given hyper-parametersthat represents the s
ale of ea
h 
omponent by de�ning itsrange of variation. By optimizing these hyper-parameters,
omponents 
an be removed if their s
ale goes below somethreshold. This results in an estimate of the model orderwhen the model is initialized with �too many� 
omponents.Although map based approa
hes in general are very e�-
ient they do not take parameter un
ertainty into a

ount,and as su
h only form an approximation to Eq. (2).1.2 Bayesian NMFTo evaluate the integral in Eq. (3) Markov 
hain samplingapproa
hes 
an be used to obtain a Monte Carlo estimateof the posterior distribution of the parameters, p(Θ|V , D).In [23, 32, 34℄ Gibbs sampling is used to obtain estimatesof the joint posterior distribution of the nmf parameters Θ.In Gibbs sampling it is assumed that Θ 
an be partitioned



into N groups, Θ = {θ1, . . . ,θN}, su
h that it is possibleto generate samples from the posterior 
onditional densities,
p(θn|Θ\θn), for ea
h of these groups. For the nmf modelea
h element of a 
olumn ofW and a row ofH are 
ondition-ally independent su
h that the 
olumns of W and rows of H
an be sampled independently resulting in N = 2D groups.In addition, parameters of the noise distribution and possiblehyper-parameters must be sampled as well. Given some ini-tial value of the parameters, ea
h θn is iteratively sampledwhile keeping all other parameters �xed. This pro
edureforms a homogeneous Markov 
hain that 
an be shown tosample from the full posterior distribution.In our in�nite nmf we use Gibbs sampling in 
onjun
-tion with 
ross-dimensional Metropolis-Hasting moves. Inthe following, we 
onsider an nmf model based on a Gaus-sian likelihood and re
ti�ed Gaussian priors,

vij ∼ N
(

vij

∣

∣

∣

∑

d

widhdj , σ
2
)

, (4)
wid ∼ RG(wid|µid, τ

2
id), (5)

hdj ∼ RG(hdj |mdj , s
2
dj), (6)

σ2 ∼ IG(σ2|β, γ), (7)where N (·|µ, σ2) denotes the Gaussian density,
RG(·|µ, σ2) = 2

1+erf(−µ/σ)
N (µ, σ2)1(·) denotes the re
-ti�ed Gaussian density where 1(·) is a unit step fun
tion(see also [30℄), and IG(·|β, γ) denotes the inverse Gammadensity. We note that the ideas presented here 
an besimilarly applied to other nmf parameterizations su
h as[23, 32, 30, 34℄. Our parameterization, Θ = {W ,H, σ2},results in the following posterior 
onditional distributionsrequired for the Gibbs sampler

wid|V ,Θ\wid ∼ RG(wid|µ̄id, τ̄
2
id), (8)

τ̄ 2
id =

(
∑

j

h2
djσ

−2 + τ−2
id

)−1
, (9)

µ̄id = τ̄ 2
id

(

1
σ2

∑

j

hdj(vij −
∑

k 6=d

wikhkj) +
µid

τ2

id

)

, (10)
hdj |V ,Θ\hdj ∼ RG(hdj |m̄dj , s̄

2
dj), (11)

s̄2dj =
(
∑

i

w2
idσ

−2 + s−2
dj

)−1
, (12)

m̄dj = s̄2dj
(

1
σ2

∑

i

wid(vij −
∑

k 6=d

hkjwik) +
mdj

s2
dj

)

, (13)
σ2|V ,Θ\σ2 ∼ IG

(

σ2|β + IJ
2
, γ + 1

2
‖V −WH‖2F

)

. (14)By iteratively sampling ea
h parameter from their respe
tiveposterior 
onditional distributions, samples from the jointposterior distribution p(Θ|V , D) are obtained. Using thissample estimate, several approa
hes have been proposed toevaluate the nmf model order.1.2.1 Chib's methodIn [32℄ Chib's method [2℄ for model order estimation is ap-plied to nmf. Here the marginal likelihood p(V |D) is ob-tained through the relation
p(V |D) =

p(V |Θ̄, D)p(Θ̄|D)

p(Θ̄|V , D)
, (15)where Θ̄ is some high posterior density value of the parame-ters. The numerator 
an be dire
tly evaluated while the de-nominator is approximated through N su

essive runs of theGibbs sampler. As su
h the model requires the evaluation ofall possible model orders in some set D = {Dmin, . . . , Dmax},

D̃ = |D|, resulting in a total of ND̃ posteriors densities tobe estimated through Gibbs sampling.

1.2.2 Thermodynami
 IntegrationIn [34℄ an nmf model order sele
tion method based on ther-modynami
 integration [4℄ is proposed. Here, estimatesof the marginal likelihood are derived through the use ofpower posteriors based on ideas from path sampling [6℄from the prior to the posterior. A temperature parameter
t ∈ [0, 1] is imposed forming power posterior, pt(Θ|V , D) =
p(V |Θ, D)tp(Θ), whi
h is equal to the posterior for t = 1and the prior for t = 0. The thermodynami
 integral is thengiven by [4℄
log p(V |D) =

∫ 1

0

∫

Θ

log [p(V |Θ, D)]pt(Θ|V , D)dtdΘ. (16)The integral over Θ 
an be approximated by Gibbs samplingwhile the integral over t is 
arried out by 
onsidering a �nitedis
retization of t ∈ [0; 1]. Thus, thermodynami
 integrationrequires the estimation of the joint posterior for ea
h modelorder D ∈ D and for ea
h dis
retized temperature. For Ttemperatures and D̃ 
onsidered model orders, a total of TD̃joint posteriors must then be estimated through Gibbs sam-pling.1.2.3 RJMCMCTo over
ome the high 
omputational 
ost of Chib'smethod and thermodynami
 integration, [34℄ proposes touse reversible jump Markov 
hain Monte Carlo sampling(rjm
m
) to obtain an estimate of Eq. (2). rjm
m
 was �rstproposed by [8℄ and is a Metropolis-Hastings sampling ap-proa
h that 
an perform 
ross-dimensional moves. Based onideas from [19℄, [34℄ use independent proposal distributionsbased on approximations of the posterior for ea
h modelorder. A drawba
k of this approa
h is thus that a sepa-rate Gibbs sampling run for ea
h potential model order isrequired to obtain the proposal densities before the a
tual
ross-dimensional sampling is used to estimate Eq (2). It isnoted in [34℄ that�. . . it would be possible to add or remove somerows and 
olumns of [H℄ and [W℄ and sample fromsome proposal distributions to jump between sub-spa
es. However, this would not work as the sampleswould 
ontinually run out of mass of the extremely
omplex posterior distributions, and thus jumpingfrom one subspa
e to another would never happen.�In the following, we present su
h an rjm
m
 approa
h thatjumps between subspa
es based on adding or removing somerows and 
olumns of W and H, and demonstrate that by
hoosing good proposal densities 
ross-dimensional jumpsare a

epted with high probability. This allows for samplingall parameters as well as the model order jointly, eliminatingthe need for initially sampling from the posteriors of ea
hpossible model order. The inferen
e s
heme automati
allyinfers the posterior distribution over the model order, andbe
ause the potential number of 
omponents is unboundeda priori we denote this method the in�nite non-negative ma-trix fa
torization (inmf).1.3 Existing in�nite matrix fa
torization methodsRelated to inmf, there exists a 
lass of in�nite matrix fa
tor-ization approa
hes, in
luding in�nite binary matrix fa
tor-ization (ibmf) [20℄, in�nite sparse 
oding (is
) and in�niteindependent 
omponent analysis (ii
a) [14℄, that are basedon the Indian bu�et pro
ess (ibp) [9℄ whi
h is a distributionover unbounded binary matri
es. The ibmfmodel is given by
V = UQV ⊤+E, where U and V are binary matri
es with apotentially in�nite number of 
olumns. Although attra
tivefor its non-parametri
 representation, the binary 
onstraintsimposed on U and V make the model unable to a

ount



well for general non-negative features as in nmf. The is
and ii
a models are given by V = A(S ⊙Z) +E, where Aand S are general unbounded matri
es, Z is an unboundedbinary matrix, and ⊙ denotes element-wise produ
t. Themodel results in a sparse feature representation, where Aare the extra
ted features, the binary matrix Z indi
ateswhi
h features are present for ea
h data point, and S holdsthe real-valued 
oe�
ients of these features. In [14℄, a Gibbssampling inferen
e pro
edure is proposed, and with suitableprior densities a bene�t of this model is that when estimat-ing a given element of Z the 
orresponding element of S 
anbe marginalized out analyti
ally. By 
onstraining A and Sto be non-negative, the model 
orresponds to a sparse nmfrepresentation [10℄; however, the sparsity imposed throughthe binary a
tivation pattern Z may not always 
omply wellwith the stru
ture of the data if the assumption in nmf istrue that all features are partially expressed to some degreein every data point.2. INFINITE NMFRather than forming an in�nite nmf model through the bi-nary ibp representation we devi
e a rjm
m
 sampling pro-
edure that 
an perform general 
ross-dimensional jumps ef-�
iently. Cross-dimensional jumps from a model of order Dwith parameters Θ to a model of order D∗ with parameters
Θ

∗ is a

epted with probability given by the reversible jumpMetropolis-Hastings ratio
min

{

p(Θ∗, D∗|V )q(U∗|Θ∗, D∗,V , I∗)q(I |D)

p(Θ, D|V )q(U |Θ, D,V , I)q(I∗|D∗)
, 1

}

, (17)where U and U∗ are auxiliary variables su
h that nΘ+nU =
nΘ∗ + nU∗ where nΘ denotes the number of elements in Θ.For ease of notation we have further in
luded auxiliary vari-ables I and I∗, whi
h are index sets that point to a numberof features, i.e., 
olumns of W and the 
orresponding rowsof H. Given I , the 
ross-dimensional jump proposal is de-terministi
 given by (Θ∗,U∗, I∗) = g(Θ,U , I) where g is abije
tive fun
tion with a Ja
obian determinant of 1. (Forthat reason the Ja
obian determinant term that usually o
-
urs in the expression for the rjm
m
 a

eptan
e ratio isomitted.) The fun
tion g removes the features indexed by Ifrom Θ and pla
es them into U∗ and then appends the fea-tures in U to Θ forming the new feature Θ

∗, and I∗ pointsto the indexes of the appended features. Finally, q(I |D) de-notes the probability of sele
ting a given feature index setfor removal.The 
rux for the rjm
m
 pro
edure to be e�
ient is toa
hieve a reasonably high a

eptan
e rate, whi
h requiresforming highly probable proposals q(U |Θ, D,V , I). In thefollowing, we 
onsider two approa
hes for proposing 
ross-dimensional jumps: A birth-death pro
edure, whi
h addsor removes one feature, and an split-merge pro
edure, whi
hsplits one feature into two or merges two to one. Both pro
e-dures are inspired by similar pro
edures for Diri
hlet pro
essmixtures [11℄.The proposals are based on the idea of a laun
h state:Sin
e q(U |Θ, D,V , I) is allowed to depend on the existingfeatures Θ, these 
an be used to deterministi
ally 
omputean initial highly probable laun
h value, U launch, for the newfeatures U . As shown in [11℄, the 
omputation of the laun
hstate need not be deterministi
: If the pro
edure is sto
has-ti
, it simply 
orresponds to a mixture transition, wherea Markov 
hain transition is 
hosen randomly from a setof valid transitions. Here, we use the following pro
edure:We laun
h new features generated from the prior and re�nethem through t restri
ted Gibbs sweeps over the new fea-tures 
onditioned on the existing features less the removedfeatures. Next, q(U |Θ, D,V , I) 
an be de�ned as a ran-

dom walk starting from U launch. Here, we use one �nal re-stri
ted Gibbs sweep, q(U |Θ, D,V , I) = q(U |Θlaunch,V ),where Θ
launch = g(Θ,U launch, I). The transition probabil-ity for the restri
ted Gibbs sweep 
an be 
omputed as theprodu
t of the probabilities of ea
h 
onditional parameterupdate given in Eq. (8�14).2.1 Birth-death pro
edureIn the birth-death pro
edure we set the probability of gen-erating a new 
omponent (birth) or removing a 
omponent(death) to be equal ex
ept if D = 0 where a death move haszero probability. As a result, we have the following 
ontin-gen
y table for q(I |D),

q(I |D) D = 0 D > 0 Move type
I = ∅ 1 1

2
Birth

I ∈ {1, . . . , D} 0 1
2D

Death .
(18)Consequently, for a death move we randomly sele
t a fea-ture to remove among the D a
tive features with probability

1/D. For a birth move, we laun
h a new feature as explainedabove. The motivation behind the birth-death proposal isthat it will allow the in
lusion of extra features that modelthe residual error if needed, and 
onversely allow the deletionof unne
essary features.2.2 Split-merge pro
edureWhen inspe
ting the features of the nmf de
ompositions fordi�erent model orders it is often observed that in
luding ad-ditional 
omponents has the e�e
t that a previously observed
omponent splits into two new di�erent 
omponents. As ob-served by [16℄ nmf often results in parts-based representa-tions, and adding additional 
omponents often results in ex-isting parts being further atomized into smaller 
onstituentparts. Based on this observation, we devi
e a split-mergepro
edure that expli
itly exploits this dynami
 to generatehighly probable proposal distributions for 
ross-dimensionaljumps.As for the birth-death approa
h we will assume that botha split and a merge step has equal probability ex
ept when
D = 1 where a merge move has zero probability. As a resultwe have the following 
ontingen
y table for q(I |D),

q(I |D) D = 1 D > 1 Move type

I ∈ {1, . . . , D} 1 1
2D

Split

I = (i1, i2), i1 6= i2,
i1, i2 ∈ {1, . . . , D} 0 1

2D(D−1)
Merge.

(19)In a split move we randomly sele
t an existing feature andremove it. We then laun
h two new features using the laun
hme
hanism des
ribed above. In a merge move, we randomlysele
t two di�erent exiting features and remove them. Thenwe laun
h one new 
omponent with the slight modi�
ationof the pro
edure that the initial value of the new feature istaken as the average of the exiting features rather than gen-erated from the prior before it is re�ned through t restri
tedGibbs sweeps as before.The birth-death pro
edure as well as the split-merge pro-
edure are illustrated in Figure 1.3. RESULTSIn the following we present simulations on toy examples aswell as a real 
hemi
al shift imaging data set.We generated four simple data sets by drawing from theprior: We generated two small 10× 10 matri
es with 3 
om-ponents and two 100 × 100 matri
es with 6 
omponents atdi�erent noise levels (see Table 3). The priors were 
hosen
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HFigure 1: Illustration of the generated proposal densities forthe birth-death (top) and split-merge (bottom) pro
edures.The features U∗ indexed by I (red) are removed from Θ.New features are generated and re�ned through t restri
tedGibbs sampling sweeps forming U launch (blue). The �nalnew features, U , indexed by I∗, are generated through one�nal restri
ted Gibbs sweep, and the proposal density is 
om-puted by keeping tra
k of all transition probabilities in the�nal Gibbs sweep.as µid = mdj = 0, τid = sdj = 1, β = 1, γ = σ2. We as-sumed a �at improper prior over the number of 
omponents,
p(D) ∝ 1. Initializing with D = 0, we then 
omputed 106posterior samples using the proposed inferen
e pro
edure forinmf. In our experiments we interleaved one birth-death andsplit-merge proposal with �ve Gibbs sweeps, and used t = 10restri
ted Gibbs sweeps to generate the laun
h states. Theposterior probability of D for ea
h data set is given in Fig-ure 3. The results are as would be expe
ted: For the twolow noise data sets, A and C, the posterior is highly peakedaround the 
orre
t number of 
omponents, whereas for thehigh noise data sets, B and D, the posterior is less peakedand skewed towards fewer 
omponents. In all examples themaximum posterior probability is at the 
orre
t model or-der. For 
omparison we implemented a naive version of therjm
m
 method in [34℄. We 
omputed a proposal densityfor ea
h value of D ∈ {1, . . . , 10} based on �tting a re
ti-�ed Gaussian to 106 posterior samples generated by Gibbssampling from the model. Although we were able to obtainresults similar to the ones obtained using inmf, we expe-rien
ed that our naive implementation had severe di�
ul-ties mixing a
ross dimensionalities. The nmf model has theinherent permutation ambiguity that any two features 
anbe permuted resulting in the same posterior density. Thus,when the posterior samples re�e
t this, it should be takeninto a

ount in 
onstru
ting a good proposal density, e.g.

I J D σ2A 10 10 3 1B 10 10 3 10C 100 100 6 1D 100 100 6 103Table 1: Toy example data sets.
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Figure 2: Results on toy data sets A-D: Posterior distribu-tion of D. In the two low noise data sets (left) inmf �nds the
orre
t number of 
omponents with relatively high posteriorprobability. In the two high noise data sets (right) the pos-terior is less peaked and slightly skewed towards a smallernumber of 
omponents.by �tting a mixture model or by permuting the posteriorsamples.Next, we analyzed a 369×256 
hemi
al shift imaging dataset [24℄ that has previously been analyzed using several nmfrelated methods [27, 28, 32, 29℄ and is known to 
ontain two
omponents. To mat
h the noise level and s
ale of the datain line with [32℄, we 
hose the prior as µid = −10, mdj =
−106, τid = 10, sdj = 1011, β = 1, γ = 108. Initializingwith D = 0, we 
omputed 106 posterior samples using theinmf inferen
e pro
edure similar as above. The estimated
omponents mat
hed the ones 
omputed using other nmfrelated methods, and the posterior distribution of D hadalmost all of its mass at D = 2.4. DISCUSSIONWe proposed the in�nite non-negative matrix fa
torization(inmf) model whi
h has a potential unbounded number offeatures. We devised an e�
ient sampling s
heme that wereable to perform 
ross-dimensional jumps using Metropolis-Hastings moves. To avoid extreme low-probability proposalswe derived high-probability 
on�gurations based on the 
al-
ulation of an intermediate laun
h state as proposed for theDiri
hlet pro
ess mixture in [11℄. On syntheti
 and real datawe demonstrated how the proposed approa
h was able toextra
t the underlying model order reliably at a lower 
om-putational 
ost than 
ompeting approa
hes su
h as Chib'smethod, thermodynami
 integration, and the rjm
m
 ap-proa
h given in [34℄.One might suspe
t that the presented pro
edure is nearlyas 
omputationally expensive as [34℄ due to the intermittentGibbs sampling steps used to derive the laun
h states; how-ever, these steps are only 
arried out on a small number ofpossible 
omponents, sin
e the Markov 
hain predominantlyexplores the high probability region of the posterior. We donote, however, that the pro
edure is sensitive to the numberof restri
ted Gibbs sweeps, t, and that we observed better




ross-dimensional mixing as t was in
reased, thus automati-
ally sele
ting t remains as an important issue.Although the method performed well we believe mixing
an be further improved: If two 
omponents are (almost)identi
al and should be merged, there is a s
ale ambiguitybetween the 
omponents. Furthermore, there is an inherents
ale ambiguity between W and H whi
h is only partly re-solved by the prior spe
i�
ation. We expe
t that extendingthe method to take these ambiguities into a

ount, e.g. byin
luding a s
ale 
onstraint in the prior, might lead to betterperforman
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