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ABSTRACT

The iteratively re-weighted multivariate alteration detection (IR-MAD) algorithm may be used both for unsuper-
vised change detection in multi- and hyperspectral remote sensing imagery as well as for automatic radiometric
normalization of multi- or hypervariate multitemporal image sequences. Principal component analysis (PCA) as
well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images,
both linear and kernel-based (which are nonlinear), may further enhance change signals relative to no-change
background. The kernel versions are based on a dual formulation, also termed Q-mode analysis, in which the
data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products
of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature
space. Via kernel substitution, also known as the kernel trick, these inner products between the mappings are in
turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of the kernel
function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component
analysis (PCA), kernel MAF and kernel MNF analyses handle nonlinearities by implicitly transforming data into
high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in
that space.

In image analysis the Gram matrix is often prohibitively large (its size is the number of pixels in the image
squared). In this case we may sub-sample the image and carry out the kernel eigenvalue analysis on a set of
training data samples only. To obtain a transformed version of the entire image we then project all pixels, which
we call the test data, mapped nonlinearly onto the primal eigenvectors.

IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric normalization and
kernel PCA/MAF/MNF transformations have been written which function as transparent and fully integrated
extensions of the ENVI remote sensing image analysis environment. Also, Matlab code exists which allows for
fast data exploration and experimentation with smaller datasets. Computationally demanding kernelization of
test data with training data and kernel image projections have been programmed to run on massively parallel
CUDA-enabled graphics processors, when available, giving a tenfold speed enhancement. The software will be
available from the authors’ websites in the near future.

A data example shows the application to bi-temporal RapidEye data covering the Garzweiler open pit mine
in the Ruhr area in Germany.
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1. METHODS

The presentation will give an overview of unsupervised, automatic change detection methods based on an iterated
version of canonical correlation analysis with subsequent post-processing by means of linear and kernel versions
of principal component analysis, maximum autocorrelation factor analysis, and minimum noise fraction analysis.
These methods are described in detail in several of the publications in the literature list.

In the kernel MAF transformation the differencing to estimate the autocorrelation may be carried out in
the original feature space followed by a kernelization of that difference. Alternatively, the differencing may take
place in the enhanced feature space after the nonlinear mapping. The same applies to the noise modelling in the
kernel MNF transformation.

The centering of the test data for kernelization with the training data may be carried out by means of the
test data mean or by means of the training data mean. The latter seems more correct and it also saves a
computationally costly run through the test data.

Below, results are shown for differencing in extended feature space and centering of the test data with the
training data mean.

2. RAPIDEYE DATA EXAMPLE

The study site is located in the Ruhr area west of Köln/Cologne, Germany and comprises the Rhenish lignite
district, the largest open-cast mining site in Germany. With an annual excavation of 300 million cubic me-
ters (Hambach), 140 million (Garzweiler) and 80 million cubic meters (Inden), respectively, and a total lignite
extraction of about 100 million metric tons per year, this area is highly dynamic and fast changing.

Two RapidEye images acquired on 24 May and 1 June 2009 were selected to illustrate the IR-MAD and
subsequent kernel MAF analyses for change detection purposes. The subsets used here cover a region of 2,000
by 2,000 pixels centered on the Garzweiler site, where accurate GPS data were available for orthorectification,
see Figures 1 and 2.

RapidEye is a constellation of five identical satellites operating in the same sun-synchronous orbit. Each of
them has five spectral bands which cover the blue (440-510 nm), the green (520-590 nm), the red (630-685 nm),
the red edge (690-730 nm), and the near infrared region (760-850 nm). Ground sampling distance is 6.5 m. Due
to its off-nadir capabilities RapidEye is in principle able to achieve daily coverage.

3. CONCLUSIONS

In both change images (Figures 3 and 4) saturated colours (including black and white) indicate change, gray
indicates no-change.

The IR-MAD variates corresponding to the highest canonical correlations, Figure 3, neatly pick up changes
in the mine and in the agricultural regions surrounding it. Also, two clouds and their shadows (top-right in the
image and in the bottom-left of the mine, 1 June 2009) are conspicuous. Even subtleties as cars present on the
motor way in one time point only can be seen.

The kernel MAF transformation is based on a Gaussian kernel with a width equal to the mean value of all
pairwise distances beetween observations in the original feature space. The first three kernel MAF variates shown
in Figure 4 focus on the extreme changes (the clouds, the mine and a few of the agricultural fields surrounding
it; the cars are even more conspicuous here than in Figure 3). The no-change background appears completely
noise free.

This focus on extreme observations and adaption to the varying multi- or hypervariate background non-
linearly mapped into high dimensional (in the case of the Gaussian kernel in principle infinite) feature space
is characteristic for the kernel MAF/MNF transformations in other applications also including other change
detection studies, food inspection, and irregularly spaced geochemical (geological) data.



Figure 1. Orthorectified RapidEye 2,0002,000 5 m pixels subsets, infrared/red edge/red as RGB, 24 May 2009. Includes
material (2009) RapidEye AG, Germany. All rights reserved.



Figure 2. Orthorectified RapidEye 2,0002,000 5 m pixels subsets, infrared/red edge/red as RGB, 1 June 2009. Includes
material (2009) RapidEye AG, Germany. All rights reserved.



Figure 3. IR-MADs 5, 4 and 3 corresponding to the highest canonical correlations as RGB.



Figure 4. Kernel MAFs 1, 2 and 3 of all IR-MADs as RGB.
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