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ABSTRACT  
Dry friction dampers have been used in car constructions for several hundred years, and are still extensively used 

by the railways today. The main reason is that they are much cheaper than hydraulic dampers and more rugged. 

Their disadvantages are that their function is variable and depends on weather conditions and their state of 

contamination (dirt, oil) and last but not least the state of wear. The designers have used old empirical rules for 

the application of dry friction dampers in railway vehicles. This contribution will help to unveil the dynamics of 

a suspension system containing a coupling between a dry friction damper and the basic nonlinearity in railway 

dynamics - the rail-wheel contact forces, which act as a nonlinear softening restoring force.  
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1. INTRODUCTION 

In this work we consider a simple model of a wheel-set that supports one end of a 

railway freight wagon by springs with linear characteristics and dry friction dampers. 

A simpler model, in which the gravitational stiffness term was neglected, has been 

investigated earlier by True and Trzepacz [1] and True and Asmund [2]. 

The stick-slip of the dry friction action introduces a non-smoothness in the 

dynamical system, and it is expected that this non-smoothness will introduce a chaotic 

behaviour in the system. In the earlier works by True and Trzepacz [1] and True and 

Asmund [2] it was indeed found to be the case, but it was also found that the wagon 

would derail in large speed intervals. Both works used very simple models of the 

wheel-rail interaction and this simplicity might be a contributing factor to the 

derailments. In this article a more realistic and acknowledged wheel-rail interaction 

model is applied, and it is found that the wagon no longer will derail, but the dynamics 

is still chaotic in large speed intervals. 

 

2. THE DYNAMICAL MODEL 

The wagon runs on an ideal, straight and level track with constant speed. We want 

to investigate the lateral dynamics of the wheel-set in dependence on the speed, which 

is the bifurcation parameter in the problem. The equations of motion are formulated in 

a coordinate system that moves along centre line of a straight and horizontal track with 

the constant speed of the wagon. The wheels have the DSB97-1 profile. It is an S 1002 

profile, which is modified to run on gauges that might be slightly narrower than the 

standard 1435 mm. The track is a standard 1435 mm gauge with UIC60 rails inclined 

by 1/40, towards the centre of the track. We have included stick-slip and hysteresis in 

our model of the dry friction and assume that Coulomb’s friction law holds during the 

slip phase. 

The model system has three degrees of freedom: Translation of the car body and  
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Figure 1. The wheel set model. The wheel set is restrained laterally in the car body by a linear 

spring and a dry friction damper in parallel, and the yaw motion of the bogie frame is also 

restrained by a linear spring in parallel with a dry friction damper.  

 

translation of the single-axle bogie in the lateral (x-) direction and yaw of the bogie 

around the frictionless pivot in the bottom of the car body. A picture of the model is 

seen on figure 1. 

The dry friction action is modeled by a smoothed step function (see [2]), and the 

restoring force of the linear spring in combination with the dry friction damper is 

plotted on figure 2. It is shown how the contact force between two parts reacts to an 

applied external force. The contact force is constant until the 'tear-loose force' between 

the surfaces is reached. When the applied force grows further, the linear spring comes 

into action after a very short smoothed step. 

The wheel-rail contact parameters are calculated by Fujie Xia's program WRKIN, 

 
Figure 2. The action of the combined friction element and linear spring. 



 and the wheel-rail contact forces are calculated using the Shen-Hedrick-Elkins 

method. 

 

3. EQUATIONS OF MOTION 

The nonlinear dynamical system is formulated as a system of six first-order dif-

ferential equations in combination with the equations for the wheel-rail contact 

parameters. It is solved numerically using the SDIRK method with appropriate initial 

conditions for increasing values of the speed. SDIRK is a Runge-Kutta type  one-step 

solver with variable step-length and error control.  
 

4. SIMULATION RESULTS 

The dynamics of the wheel set is investigated in the speed range from 5 to 40 m/s. 

We have calculated time series of the components of the motion and the friction forces 

and two and three dimensional state space plots and in some cases the Lyapunov 

exponents. A few representative results will be shown next. 

 In the beginning the motion is periodic. Figure 3 illustrates the motion for V = 5 

m/s. After V = 5 m/s a sequence of period doubling sequences seems to start that 

results in a mildly chaotic motion around V = 8.75 m/s. The chaos is verified by an 

investigation of the sensitivity of the motion to initial conditions.  

 



 Figure 3. A few state space portraits at V = 5 m/s. The motion is periodic.  

 Figure 4. A few state space portraits at V = 8.75 m/s. The motion is 'mildly chaotic'. 

Figure 4  illustrates the chaotic motion for V = 8.75 m/s. 

   The motion regains periodicity for V > 9.5 m/s, but at still higher speeds several 

transitions between periodic and chaotic motion takes place. The results of the 

investigation is summarized in table 1 and illustrated on the bifurcation diagram figure 

5. We have found alternating small and large amplitude periodic motion, chaotic 

motion, mildly chaotic motion of two types, and what we call 'complete-stick motion'. 

   The chaotic attractors are characterized by erratic-looking time series. They are seen 

in figure 5 as dense clusters of extrema for approximately -4 mm < y < 4 mm. An 

example of chaotic motion is shown on the figures 6 and 7. We also found that the 

transients connected with the large amplitude periodic solutions are chaotic. It may 

indicate the existence of an attractor with smaller amplitude, which was not found. The 

'mildly chaotic attractor' is characterized by erratic looking phase portraits and occur in 

two varieties. The perturbed initial condition clearly experiences an interval of 

significant growth before it levels off at a value, which is not of the same order of 

magnitude as the size of the attractor. 

   Time series of the 'complete-stick motion' are shown on figure 8. The 'complete-stick 

motion' occurs only at V = 8.75 m/s and around V = 37 m/s. With our initial 

conditions it is seen that the motion starts with erratic oscillations as the transients of 

the large-amplitude attractors. As soon as the amplitude reaches -9 mm the motion 

turns into complete stick and a stationary state starts.    



   Figure 5. The complete bifurcation diagram showing max lateral displacement of the 

axle versus the speed. 

 

Table 1 

Speed intervals [-;-] m/s Attractor type 

[5; 8.71], [9.5; 11], [21.5; 24] Periodic, small amplitude 

[13; 19], [24.5; 28] Periodic, large amplitude 

[11.135; 12.765], [19.5; 21], [25; 36.5] Chaotic 

[8.72; 9.32] Mildly chaotic, Type 1 

Only for V = 32 and 37.5 Mildly chaotic, Type 2 

Only for V = 18.5 and 37 Complete stick 

     The figures 6 and 7 illustrate a chaotic motion. Figure 6 shows time series and 

figure 7 shows projections of the motion in state space. y1 is the lateral displacement 

[m] and y2 the lateral velocity [m/s],  y3 is the yaw angle [rad] and y4 the angular 

velocity [rad/s] – all of the wheel set.  y5 is the lateral displacement [m] and y6  the 

lateral velocity [m/s] of the car body. 



 Figure 6. Time  series at V = 20 m/s. Upper left: lateral displacement of the wheel set; 

lower left: lateral displacement of the car body; upper right: yaw of the wheel set; 

lower right: difference between the lateral displacements of the wheel set and the car 

body 



Figure 7. State space plots at V = 20 m/s. The motion is chaotic. For explanation see 

the text.    



   Figure 8. Time series that illustrate the complete-stick state 

    The existence of chaos in the problem is verified by calculations of the largest 

Lyapunov exponent. When chaos exists, the largest Lyapunov exponent is always 

larger than zero. The calculations are not presented in this article. They are the main 

topic of another article to be published later, because Gilles Brieuc developed a new 

method for the calculation of Lyapunov exponents in non-smooth dynamical 

problems, which was applied to the problem that is treated in this article.   

5. CONCLUSIONS 

    The works by True and Trzepacz [1] and True and Asmund [2] demonstrated that 

chaos develops in simple models of a single rolling wheel set on a straight track when 

the damping is caused by dry friction. The typical damping was chosen in such a way 

that the attenuation is of the same order of magnitude as that of an equivalent 

hydraulic damper. The results were not unexpected since non-smoothnesses in 

dynamical systems very often produce chaos. True and Asmund [2] also varied the 

damping of as well the lateral as a yaw damper and found that the yaw damper for 

almost all values of the damping had a decremental effect on the dynamics of the 

wheel set. In large speed intervals the wheel set would derail. The derailments were a 

surprise and they were conjectured to be related to the too simplified model of the 

wheel-rail contact in the dynamical problems. 

    In this article we have used realistic wheel-rail contact models and demonstrated 

that the conjecture is true: The wheel set no longer derails, when realistic wheel-rail 



profiles are used. There are however still large speed intervals with chaotic dynamics 

and very narrow speed intervals, where the wheel set locks in a large amplitude off-set 

stationary state. It is caused by the stick in the friction damper. It demonstrates that it 

is necessary to include stick-slip in all realistic models of a plane dry friction damper. 

    This may not be the last word in these problems. Piotrowski [3] has shown in a very 

recent article that medium frequency dither may have a not only quantitative but even 

a qualitative effect on dry friction characteristics. The dither may stem from rail 

irregularities or wheel-rail contact noise. Piotrowski [3] gives strong arguments for the 

necessity of including dither in all realistic dynamical models of vehicles with dry 

friction contacts.  
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