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ABSTRACT

Graph representations of data have emerged as powerful

tools in the classification of partially labeled data. We give

a new algorithm for graph based semi supervised learning

which is based on a probabilistic model of the process which

assigns labels to vertices. The main novelty is a non para-

metric mixture of graph diffusions, which we combine with

aMarkov random field potential. Markov chainMonte Carlo

is used for the inference, which we demonstrate to be sig-

nificantly better in terms of predictive power than the max-

imum a posteriori estimate. Experiments on bench-mark

data demonstrate that while computationally expensive our

approach can provide significantly improved predictions in

comparison with previous approaches.

1. INTRODUCTION

In transductive semi-supervised learning (s.s.l.) we are given

examples x1,x2, . . . ,xm, only some of which (the labeled

examples) come with corresponding categorical class labels

yi, and we wish to infer the class labels of the unlabeled ex-
amples. A large amount of work has been done here, for

a survey of the different methods we recommend [1, 2],

as well as the nice basic discussion of the problem in [3].

Due to space limitations we can only summarize here the

insights in the existing literature which are most relevant in

motivating our algorithm.

Discriminative models are not applicable to the s.s.l. set-

ting, since if we model the conditional p(y|x) directly then

each yi is independent of the other xj given xi. Even com-

plete knowledge of the marginal p(x) is irrelevant when

inferring the label of a given point. Hence, for s.s.l. it is

necessary to employ generative models [3], i.e. those which

model class conditional densities. Existing discriminative

models need to be modified to benefit from unlabeled data,

for example by including new likelihood or loss terms for

the unlabeled examples. The transductive support vector

machine (s.v.m.) [4] is an algorithm which can be seen from

this perspective, since it equivalent to a normal s.v.m. with

additional loss terms for the unlabeled examples. The popu-

larity of the s.v.m. is widely attributed in part to the convex-

ity of the formulation. The transductive s.v.m. does not have

this advantage however, since the unlabeled loss term must

favor classifying the unlabeled points with a large margin

on either one of two disjoint sides of the decision boundary.

The inevitability of this type of non-convexity has lead to

the development of various dedicated non-convex optimiza-

tion strategies for s.s.l., as reviewed by [5].

We propose an algorithm which represents the data as

a graph and models the class conditional densities over the

vertices. Our approach is most closely related to the method

of [6], which samples from a discrete Markov random field

distribution over the labels. We essentially combine that

idea with a model of the class conditional densities as a

Dirichlet mixture of probability mass functions derived from

a Laplacian graph diffusion. This diffusion mixture model

could also be used to model probabilities on any graph, in-

cluding the hyper-link graph of the world wide web.

The paper is organized as follows. We review graph

based regularization in section 2, including graph construc-

tion, the graph Laplacian, and the diffusion process we use

to construct generic mixture components for our mixture

model. In section 3 we introduce our probabilistic model for

the labeling of graph vertices based on these components,

first as an analogous continuous model in subsection 3.1,

then in the discrete form in subsection 3.2. In section 4 we

describe our sampling algorithm, before providing results in

section 5 and concluding in section 6.

2. GRAPHS AND AN ANALOGY WITH R
N

We define a graph G = (V,E) to be a finite set of ver-

tices V := v1, v2, . . . , vm and a set E ⊆ V × V of edges.

We consider weighted graphs, so that there is a function w
which takes an e ∈ E and maps it to an associated edge

weight w(e) ≥ 0, and restrict to the case of symmetric

weights, so that w([v, u]) = w([u, v]), ∀ [u, v] ∈ E. w may

be interpreted as measuring the strength of the connection

or similarity between the vertices constituting an edge. For

convenience we define the degree of a vertex by d(v) =
∑

u:[u,v]∈E w([u, v]). Given data points x1,x2, . . . ,xm ⊆

R
d, a typical method of constructing a graph for s.s.l. is



the following. Associate the xi one to one with the ver-

tices vi. Connect two vertices by an edge e iff the data

point associated with either one is a k-nearest neighbor of
that associated with the other. Define w([vi, vj ]) = (1 −
δi,j) exp(−ω‖xi−xj‖

2),for all [vi, vj ] ∈ E, where δ is the
Kronecker delta, and both k and ω are parameters which we

discuss in section 5. Such a graph is effectively free of self

connections, since w([v, v]) = 0, ∀u ∈ V .

2.1. Regularisation on Graphs

We provide a brief motivating overview of discrete regular-

ization, for a more precise and detailed exposition we rec-

ommend [7]. Typically in graph based s.s.l. one defines a

function spaceH(V ) along with an inner product 〈f, g〉H(V ) :=
∑

v∈V f(v)g(v). Many supervised learning algorithms can

now be applied to the semi-supervised case by replacing

their usual function space with H(V ). For example a com-

mon approach solves for

f⋆ = arg min
f∈H(V )

λΩ(f) +
∑

i∈L

(f(vi)− yi)
2
, (1)

where L is the labeled set and Ω is defined via the graph

Laplacian. This least-squares approach is already rather ef-

fective given an appropriate graph based regularizerΩ. This
idea has been extended in a number of ways, see e.g. [1, 2].

2.2. A Discrete/Continuous Analogy

It turns our that many typical choices of regularization op-

erator Ω permit direct analogies to the continuous case, in

which H(V ) is identified with R
n. In particular, letting the

i-th element of f be f(vi), and letting L stand for both

the operator H(V ) → H(V ) and the m × m matrix, the

commonly used normalized graph Laplacian L is defined

by 〈f, Lf〉H(V ) = f⊤Lf , which by definition equals

∑

[u,v]∈E

w([u, v]) (f(u)− f(v))
2
/
(

√

d(u)d(v)
)

,

implying L = diag (Se) − S and, forW composed of ele-

mentsw([u, v]), S = diag (We)
− 1

2 Wdiag (We)
− 1

2 . Mul-

tiplication by L is the graph analogy of applying the usual

continuous Laplacian operator onRn, with the two formally

coinciding point-wise in the limit under certain conditions

[8]. This connection is well known, and motivates two key

components of our model as analogies of standard tech-

niques used in R
n. One of these is the choice of discrete

mixture components, discussed separately in the following

subsection 2.4. The other more immediate one which we

discuss in the following subsection 2.3 is the function regu-

larizer, which we use to define a prior over functions on the

graph.

2.3. Priors Over Functions on the Graph

A classic regularizers in the continuous case the second or-

der thin plate energy given by
〈

f,∇2f
〉

. By our analogy,

this leads naturally to a prior distribution over functions on

the graph defined by the density p(f |L) ∝ exp(−γf⊤Lf),
which is Gaussian in f and may be thought of as the graph

analogy of a Gaussian process prior over continuous func-

tions, with inverse covariance matrix L.

2.4. Diffusions as Mixture Components

As discussed in section 1, s.s.l. cannot occur in discrimina-

tive models, so we choose to model the class conditional

densities over the vertices of the graph. Generic mixture

components are appropriate for this, and since a Gaussian

density on R
n can be defined in terms of the continuous

Laplacian operator via the heat equation ∂
∂τ
ψ = µ∇2ψ,

as our discrete mixture components we replace the Lapla-

cian in this definition with the graph Laplacian, to obtain the

graph heat kernel Kτ := exp(−τL/2), where exp(A) :=
lims→∞ (I +A/s)

s
is the matrix exponential, and the sym-

metric matrix K contains the values of the heat kernel be-

tween all pairs of vertices [9]. This is the result of a dif-

fusion process defined by applying the discrete analog of

the (continuous) heat equation ∂
∂t
Kτ = LKτ to a function

which at τ = 0 vanishes on all but one vertex. Hence, as our
m discrete probability mass function (p.m.f.)’s we choose

the normalized columns of Kτ , so that for ξ distributed ac-

cording to the j-th such p.m.f., p(ξ = i) := (Dτ )i,j where

Dτ := diag (Kτ1)
−1
K, and 1 is a vector of ones.

3. DIRICHLET MIXTURE OF DIFFUSIONS

3.1. Analogous Continuous Model

To motivate our model we start with an analogous but more

familiar one in which the data generating distribution is sup-

ported on Rn rather than V , the vertices of our graph. In re-

cent years infinite mixtures models have become a popular

choice for flexible density modeling from generic mixture

components. For example we may build a class conditional

infinite Gaussian mixture model including the labeling pro-

cess yi for k classes by

yi|η1, η2, · · · , ηk ∼ Discrete(η1, η2, · · · , ηk)

Gi ∼ DP(α,H)

mi|yi, G1, G2, . . . , Gk ∼ Gyi

xi|mi, σ ∼ Normal(xi|mi, σ), (2)

where DP(α,H) denotes the Dirichlet process with concen-
tration parameter α and base measure H . We use the nota-

tion Normal(xi|mi, σ) for the normal or Gaussian distri-

bution in xi with mean mi and isotropic variance σ, and



Discrete(η1, η2, · · · , ηk) for the discrete distribution with

probability masses η1, η2, . . . , ηk. Hence each class con-

ditional density is given by an infinite Gaussian mixture

model with its own parameters.

3.2. Discrete Model

To model the labelling process of a fixed graph, we pro-

pose a graph analog of (2) based on the analogy developed

in subsection 2.2. This means we identify R
n with the ver-

tices of the graph, so that rather than sampling points xi ∈
R

n from an infinite mixture of Gaussian probability density

functions, we generate vertex indices ξi ∈ {1, 2, . . . ,m} of
the graph by sampling from a finite mixture of the diffu-

sion p.m.f.’s defined in subsection 2.4. Further identifying

the meansmi with vertex indices βi (indexing the diffusion
p.m.f.’s which generated the ξi) leads to

yi|η1, . . . , ηk ∼ Discrete(η1, · · · , ηk)

Gi ∼ Dirichlet(α/m, . . . , α/m)

βi|yi, G1, . . . , Gk ∼ Gyi

ξi|βi, τ ∼ Discrete((Dτ )1,βi
, . . . , (Dτ )m,βi

).

(3)

The above finite Dirichlet-Multinomial is known to con-

verge to the DP of (2) under an infinite limit [10]. Instead

of the infinite mixture as in subsection 3.1, this class condi-

tional density is a finite mixture of the m p.m.f.’s stored in

the columns ofDτ . This is a generative model for the label-

ing of a given graph. If the graph itself is constructed from

the (labeled and unlabeled) data however, then the overall

inference procedure should be considered transductive, and

since the graph grows with the data, non parametric.

3.3. Markov Random Field Potential

In s.s.l. problems where most yi are unobserved, this model

may lead to undesirably large overlap in the class condi-

tional densities. The model discourages only by way of

the clustering tendency of the Dirichlet process, which fa-

vors fewer components and hence non-overlapping distri-

butions. In this section we propose a modification of the

model which is designed to reduce this problem. The prob-

lem is a typical failure mode of mis-matched generative

models, and has been encountered before in the literature.

The difficulty appears to be especially acute in s.s.l. prob-

lems where the majority of the yi are unobserved, exacerbat-
ing the problem of a poorly modeled predictive distribution

p(yi|xi,Θ). This is ironic given that purely discriminative

models (which may model the predictive distribution more

reliably) do not apply to the semi-supervised case.

A natural prior to discourage this in the continuous case

is the Gaussian process. Let us define k binary class indica-

tor variables b(1), b(2), . . . b(k) by b
(j)
i := I(yi = j), where

I is the zero/one indicator function. We take the simple ap-

proach of introducing a new factor in the (continuous anal-

ogy of the) joint likelihood, namely
∏k

i=1 pbi∼GP(Γ)(bi).
Following subsection 3.3 the graph analogy is

pMRF(y|L, γ) ∝

k
∏

i=1

exp(−γb(i)⊤Lb(i)), (4)

where the b(i) are similarly defined binary class indicator

vectors, and L is the graph Laplacian matrix.

3.4. Class Balancing Potential

Another particularly important issue in s.s.l. is class balanc-

ing as it is possible for most yi to take on the same value

in cases with very few labeled examples. This is especially

dangerous after the inclusion of (4), which encourages such

behavior. Hence we incorporate the further clique potential

pBAL(y|η) ∝
k
∏

j=1

η
cj
j

cj !
, (5)

which is the p.m.f. of Multinomial(η1, η2, . . . , ηk,m) eval-
uated at c1, c2, . . . , ck, where cj is the class count: the num-

ber of distinct i for which yi = j. Since the cj are a (de-

terministic) function of the y, this implies a density over y.

The yi are no longer independent, but exchangeable. Al-

though this distribution has presumably been studied, we

are not aware of any such work. The prior over y it induces

in our setting encodes a greater certainty about the class pro-

portions cj . It is easy to see that the implied distribution for

y satisfies p(yi|y⋆\i) ∝
ηyi

c′yi
+1where y\i is y without yi and

c′yi
is the number of times yi occurs in y\i. Hence this dis-

tribution renders already seen events (realizations of the yi)
less likely to be seen in the future, in loosely speaking the

opposite manner to the Dirichlet process, for example.

3.5. Final Model

The modifications (4) and (5) lead the final model we pro-

pose for s.s.l. which we now summarize for the sake of clar-

ity. The variables are α, the Dirichlet parameter, L, the
graph Laplacian and sufficient statistics for the graph, τ ,
the graph diffusion constant, y, the vertex class labeling, ξ,

the observed (arbitrary, unique and categorical) vertex in-

dices, β, the vertex to mixture component assignments, γ,
the parameter in (4), and η, the class frequency proportions.

Hence p(y,β|ξ,η, α, γ, L,Dτ ) is proportional to the fol-

lowing product of un-normalised clique potentials:

pBAL(y|η) pMRF(y|L, γ)
∏

j

pDM

(

β(j)|α
)

∏

i

p(ξi|βi, τ),



where we recall p(ξi|βi, τ) = (Dτ )i,βi
is the likelihood

term for the graph diffusion mixture components (defined

in subsection 3.2). pBAL(y|η) and pMRF(y|L, γ) are defined
in (4) and (5) respectively. By β(j) we mean the sub-vector

formed by restricting β to those indices i for which yi = j.
Finally, pDM is the p.m.f. of an m-dimensional Dirichlet-

Multinomial implied by (3). Since the length of β(j) is cj ,
one can show that

pDM

(

β(j)|α
)

=

∏m
i=1 Γ(cj,i +

α
m
)

Γ( α
m
)m

Γ(α)

Γ(cj + α)
, (6)

where cj,i is the number of distinct indices i′ for which

yi′ = j and βi′ = i. Hence our definition of β(j) is pre-

cise enough since as sufficient statistics we need only the

frequencies of the values represented in each of the β(j),

as we can see above and in (7). The βi will tend to take

on a relatively small number of distinct values, just like the

Gaussian means mi of subsection 3.1.

4. INFERENCE ALGORITHM

To perform inference we sample the βi and the unobserved

yi, treating all other variables as observed or fixed. The

method we propose is a straightforward application of the

Markov chain Monte Carlo (m.c.m.c.) idea, employing both

Gibbs samples and Metropolis-Hastings moves. In particu-

lar, in each iteration of the sampler we Gibbs sample each

yi and βi as described next, and then propose two differ-

ent types of Metropolis-Hastings moves. Sampling each yi
and βi individually leads to slow convergence so we block

sample each (yi, βi) pair for the unlabeled data, sampling

the βi individually only for the labeled data for which yi is
observed. It is easy to check that the required conditional

p (yi, βi| ∗ \ {yi, βi}) proportional to

ηy
c′y + 1

exp
(

−2γb(y)⊤L:,i

) c′y,β + α/m

c′y + α
(Dτ )i,β , (7)

where on the right hand side all of the y and β are shorthand

for yi and βi. The c
′
j above is as in subsection 3.4, while c′j,l

is the number of distinct indices for which the entry in y\i

(defined in 3.4) is j and the corresponding entry in the sim-

ilarly defined β\i is l. The conditional in βi for the labeled
set is given by substituting the observed yi in (7), computed

efficiently by doing book-keeping on the term Lb(i).
In addition to Gibbs sampling each of the βi and unob-

served yi, we employ two different m.c.m.c. moves, which

we describe in the two following sub-sections. Recall that

m is the number of points and k the number of classes, while

cy and cy,β are the class and mixture component counts (as

defined after (5) and (6), respectively). We introduce the

notation Y = {1, 2, . . . , k}, B := {1, 2, . . . ,m}, and de-

note by Cj,l := {i ∈ B : yi = j ∧ βi = l} what we refer to
throughout as a mixture component.

4.1. Mixture Component Re-sampling

The idea is to select from and to vertices l and l′, as well as a
class j, and to propose re-assigning βi ← l′ for all i ∈ Cj,l.
The particular procedure we employ is as follows.

1. Choose a vertex l and class label j randomly from

B × Y with probability proportional to cj,l.

2. Define Ej = {l ∈ B : cj,l = 0}, the mixture compo-

nents explaining no points from class j. Choose a

new vertex l′ randomly from Ej ∪ l with probability

proportional to (Dτ )l′,l.

3. Choose a number uniformly at random from [0, 1]. If
it is less than the Kanji-like acceptance ratio

Amove(l, l
′, j) =

(Dτ )l,l′

(Dτ )l′,l

∏

i∈Cj,l

(Dτ )i,l′

(Dτ )i,l
,

then accept by re-assigning βi ← l′ for all i ∈ Cj,l.

4.2. Mixture Component Re-Labeling

Here we select a vertex l and a class j and propose to relabel
yi ← j′ for all i ∈ Cj,l. Since relabeling a single component

with large assignment count cj,l may be too unlikely due

to pBAL of (5), we propose to relabel up to R components

simultaneously:

1. Choose r uniformly at random from {1, 2, . . . , R}.

2. DefineR = {1, 2, . . . , r} and choose r (mixture com-

ponents, label) pairs (j′i, l
′
i), i ∈ R randomly without

replacement from B × Y with probability ∝ cj′
i
,l′
i
.

3. Repeat for all i ∈ R choosing y′i at random from Y
with probability proportional to ηy′

i
.

4. Construct the proposal y⋆ by initializing y⋆ ← y and

relabeling the r mixture components. That is, repeat-

ing y⋆
w ← y′i for all i ∈ R and for all w ∈ Cj′

i
,l′
i
.

5. Choose a number uniformly at random from [0, 1]. If
it is less than the acceptance ratio

Arelabel (y,y
⋆) = w ·

pBAL(y
∗|η) pMRF(y

∗|L, γ)

pBAL(y|η) pMRF(y|L, γ)
,

where w =
∏

i∈R

(

ηji

ηy′

i

)cji,li

is the ratio of proposal

densities, then accept by re-assigning y ← y⋆.
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(b) 100 labeled points

Fig. 1. Mean (colored bar height) and standard deviation (error bar width) percentage errors for (a) 10 and (b) 100 labeled

points out of 1500. A star in the legend indicates the m.a.p. estimates rather than means. mean and best are the mean and

best results of eleven other methods and Parzen is the graph Parzen window classifier.

5. EXPERIMENTS AND DISCUSSION

We provide results on the benchmark data, and investigate

the role of pBAL as well as the parameters γ and α.

Benchmark Test. We tested on the six two-class and

one six-class benchmark problems of [2] as follows. Each

bar in Figure 1 is a mean (standard deviation) over the twelve

test splits supplied with the data sets, for each of the two

supplied cases: 10 (top half of each table) and 100 (bot-

tom half) labeled points, out of a total of 1500 points. The

Dirichlet diffusion parameter α of (3) was set to 0.5, and
the values 0 and 0.8 were tried for the parameter γ of (4).

Note that for γ = 0 the Markov random field term plays no

role. The class proportions ηj were set to known values, i.e.
uniform for all but USPS which is imbalanced 4:1.

We used 105 iterations after 103 for burn in (one itera-

tion being a Gibbs sweep followed by one attempt at each

of the two Metropolis-Hastings moves), for a total com-

putation time of around ten hours per split. Omitting the

Metropolis-Hastings moves could lead to orders of magni-

tude degradations in convergence speed. We provide results

for both the sample posterior mean of the unobserved labels

yi, as well as an maximum a posteriori (m.a.p.) estimate of

them (denoted by a star in Figure 1). To compute the m.a.p.

estimate, we kept track of the most likely state visited by

the Markov chain, as a starting point for a final refinement

by sequentially optimizing each of the conditional distribu-

tions used for Gibbs sampling, with the unobserved (βi, yi)
pairs optimized jointly. We also include best and mean re-

sults reported by [2] for a pool of eleven different methods

implemented and tested by their respective authors as part

of that study. The sheer number of methods involved makes

the best figures extremely competitive. No single model is

expected to perform well on all data, so the relative aspects

of our results are perhaps most informative. Also note that

sets g241c and g241n are artificial and designed to test (and

break) certain reasonable assumptions.

As a baseline we also include results for, by our dis-

crete/continuous analogy, the graph analog of a Parzen win-

dow classifier. This models each class conditional density

by a sum of diffusion p.m.f.’s (as represented by the columns

ofDτ ), one centered on each data point from that class. For

a fair comparison we also re-weighted the densities accord-

ing to the mixing proportions ηj . This is already competi-

tive in terms of benchmark set performance, and is almost

identical to the discrete regularization method described in

[2] and equivalent to (1). Indeed, our Parzen results are all

within one standard deviation of theDiscrete Regularization

results given by [2].

To construct the graph from the vectorial data, we fol-

lowed the procedure outlined in section 2, with ω set to

the mean squared distance over all pairs of points. Model

and hyper-parameter selection can be problematic in s.s.l.

as there may be too few labeled points for simple valida-

tion set type procedures to be reliable. Hence, for the 10 la-

bels case we simply fixed the number k of nearest neighbors
connected in the graph to be 10, and fixed the diffusion co-

efficient τ to 5. For the 100 labels case we used a leave one

out estimate of the test error of the Parzen window method

to choose the k and τ by grid search.

An important comparison in Figure 1 is between the γ =
0 version of our method and the Parzen method, since this

most clearly isolates the strength of the latent Dirichlet-

Multinomial diffusion mixtures in comparison to a straight-

forward label diffusion with the same graph and diffusion

parameters. Our new method is equal or better on all but the

COIL 100 labels case. The γ = 0.8 results are overall better
still, and we obtain significantly best overall performance



on the Digit1 and Text data sets, compared with all methods

in the original study. Moreover our method is within a stan-

dard deviation of the best on many problems, and fails to

obtain average results (those within a standard deviation of

mean) only on the artificial data sets g241c and g241d and

the highly noisy BCI dataset. We also see that the m.a.p.

estimate is worse than or the same as the mean on all but

the COIL problem (for the case of 100 labels only). As

expected, even when the mean errors are close, the m.a.p.

estimate tends to have much higher variance than the mean.

Parameter Exploration. To better understand the pa-

rameters α and γ we computed mean test errors (on the

unlabeled points) for a grid of values of these parameters.

We repeated twenty times taking 100 points from the Digit1

data set, and randomly labeled five points per class. To

verify the importance of the class balancing prior pBAL of

subsection 3.4, we repeated the experiment with the term

replaced by the original one of the model of subsection 3.2,

namely p(y) =
∏m

j=1 ηyj
. The result in Figure 2 shows

a severe degradation in the performance of the unbalanced

model for large values of γ. We verified from the sam-

ples that this is due to the tendency of pMRF to cause many

of the unobserved yi to take on the same value. There is

also a tendency for smaller values of α (i.e. more parsi-

monious graph mixture models) to give rise to better per-

formance, demonstrating the effectiveness of the generative

model of subsection 3.2 in combination with the Markov

random field term pBAL. Finally, note that while in this ex-

ample a large value of γ is optimal, this was not always the

case on the benchmark sets as in Figure 1. In particular,

we see that for the USPS dataset with 10 labels, the γ = 0
setting results in a large improvement in predictive power.

6. CONCLUSIONS

We proposed an algorithm for s.s.l. which utilizes estab-

lished graph based regularization tools in a different manner

to previous approaches. We define a probabilistic model for

the labeling of the graph and perform inference using sam-

pling, thereby avoiding the non-convex optimization char-

acteristic of s.s.l. problems. In this way, at the cost of more

computation we are able to obtain significantly better pre-

dictions compared to a rather large pool of previous meth-

ods on a standardised benchmark set. Our approach is based

on a new model component, the non-parametric mixture

of graph diffusions with centers distributed according to a

Dirichlet-Multinomial distribution over the vertices of the

graph. This component is applicable to many other prob-

lems involved with modeling random quantities on the ver-

tices of a graph, as in world wide web hyper-link data, and

community detection problems.
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Fig. 2. Mean % error for a range of α (vertical axis) and

γ (horizontal axis) both with (right) and without (left) the

class balancing prior pBAL of subsection 3.4.
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