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ABSTRACT

One of the problems arising in radiotherapy planning is the

quality of CT planning data. In the following attention is giv-

ing to the cone-beam scanning geometry where reconstruc-

tion of a 3D volume based on 2D projections, using the clas-

sic Feldkamp-Davis-Kress (FDK) algorithm requires a large

number of projections to be adequate. Since the patients are

breathing freely during a scan, the number of projections with

similar respiration may be to low. In the following we use an

iterative reconstruction combined with the simultaneous esti-

mation of the motion field, to improve reconstruction in these

situations. Using a simulated dataset we demonstrate that this

combination outperforms the FDK but due to ill possessed-

ness of the motion estimation it is only on par with the sole

iterative method.

Index Terms— Image reconstruction, Image registration,

Motion modelling, Cone-beam, Optimization

1. INTRODUCTION

The Feldkamp-Davis-Kress algorithm [1] remains the method

of choice for 3D CT reconstruction from 2D cone-beam pro-

jections due to its highly efficient implementation. The prob-

lem with the FDK algorithm is the degradation of the recon-

structions when the numbers of projections decrease.

Using all projections from a scan rotation, for imaging of

the thorax region, yields enough projections for reconstruc-

tion but will result in blurred reconstructions caused by respi-

ration motion. A classic solution is to sort the projections ac-

cording to respiratory phase and reconstruct several volumes

with limited motion artefacts based on fewer projections.

In recent years people have attempted to model the respi-

ration motion of the patient [2], and others have attempted

to include this into the reconstruction framework. For in-

stance [3] and [4], both estimate the 4D motion model from

the CT planning data and include this into the FDK algo-

rithm, allowing for motion correction and usage of all pro-

jection data. As the authors note such a model is problematic

since patients breathing patterns may change over time. This

observation promotes the idea of learning the motion model

from the 2D projections. The approach of estimating motion

and reconstructing was recently investigated in [5] by Zhang

et al. who used it to reconstruct the vascular heart morphol-

ogy with a mutual information similarity measure. Prior to

this work Zeng et al. had suggested in [6] how to estimate

the motion from the projections. They examined the different

image similarity metrics of sums of squared differences and

image cross correlation.

Like in [6] we estimate the motion but do not assume a

static CT prior which is forward projected in order to estimate

motion. Instead we attempt to reconstruct both the volume

and motion simultaneously. This is achieved using a maxi-

mum likelihood cost function for the simultaneous estimation

of motion and attenuation coefficients. An L-BFGS-B opti-

mizer [7] is used to iteratively fit the attenuation parameters

as well as the deformable model parameters.

We investigate how the reconstruction of cone-beam CT

benefits from the simultaneous estimation of a motion model

and compare this to the phase sorted iterative reconstruction.

Furthermore these reconstructions are compared to a basic

implementation of the phase sorted FDK approach [1]. In-

cluding motion into the iterative reconstruction framework

shows promising results.

2. THE CONE-BEAM GEOMETRY AND MODEL

Knowledge of the x-ray geometry is essential to the recon-

struction problem. Cone-beam projections are acquired by

emitting x-rays from a point source towards a 2D detector

plate consisting of smaller sensor pixels, which measures the

dampened x-rays. The source and detector rotates while ac-

quiring projection images at different angular positions. Us-

ing the knowledge of the rotation angles, the source to axis

distance (SAD) and the source to detector distance (SDD), it

is possible to calculate the x-ray lines trajectory and recon-

struct the attenuation of the subject. The expected number of

recorded photons [8] by the ith sensor is given by

E[Pi] = ci · e−
∫

Li(ϕ) μ(�x)∂�x + ri, (1)
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where E[Pi] is the estimate given by the forward projection

model and the ri component is system depend noise and since

we are working with simulated data we can assume this to be

zero. The ci parameter is a detector depend parameter of the

ith sensor.

3. METHOD

We reconstruct an attenuation volume and possible motion

field by solving

max
ϕ,μ

C =
∑

i

d(pi, E[Pi]) , (2)

where we are looking for the attenuation volume μ and the

deformation ϕ that optimises the criteria d. When deforma-

tion is neglected the projection model is evaluated by integrat-

ing along a straight line Li from the x-ray source to the ith
sensor and exponentiating. Inclusion of deformation allows

to use projections from all respiratory phases in the recon-

struction of each individual phase. In practice using deforma-

tion corresponds to integrating along curves, denoted Li(ϕ).
Throughout the subsections 3.1-3.4, specific choices of μ, ϕ,

d are given and the optimization scheme for solving Eq.(2) is

presented.

3.1. The image attenuation model

The simplest way of representing attenuation is with a voxel

based grid. A model that is better suited than a simple voxel

representation is the spline function μ : �3 → �1

μ(�x) = μ(x, y, z) =
∑ ∑ ∑

bμ
i (x)bμ

j (y)bμ
k(z)wμ

ijk.

(3)

Each attenuation coefficient μ is modelled as the product of

several basis functions. With this representation the problem

of finding μ has been transformed into the problem of esti-

mating the parameters wμ. The superscript μ is used to dis-

tinguish the attenuation parameters from deformation param-

eters.

3.2. The deformation model

The free form deformable model as presented by Rueckert [9]

takes the same form as Eq. (3) but with the purpose of displac-

ing voxels. The deformable model is based on a cubic spline

and can be written as the function mapping ϕ : �3 → �3

which takes in 3 coordinates (x, y, z) and outputs 3 trans-

formed coordinates

(x′, y′, z′) = (x, y, z) + (�x,�y,�z) (4)

�x =
∑ ∑ ∑

bϕ
i (x)bϕ

j (y)bϕ
k (z)wϕ

ijk . (5)

The displacement in Eq. (4) is only given for the x direction,

however y and z take exactly the same spline form but obvi-

ously with different parameters.

3.3. Error model

To determine the parameters of the attenuation and deforma-

tion models, an optimality criteria is needed. The observed

data pi corresponds to photon count data which leads to the

reasonably assumption that they can be modelled as Pois-

son distributed random variables. Thus, we apply the like-

lihood function for Poisson statistics for computing similar-

ity between observed and simulated data and hereby driving

the estimation of the attenuation and deformation parameters,

i.e.(assuming ri = 0)

d(pi, E[Pi]) = pi · ln(E[Pi]) − E[Pi]. (6)

Optimization of Eq. 2 requires the derivative of the cost

function with respect to both the attenuation and motion pa-

rameters. These are found using the generalized chain rule.

Let l =
∫

Li(ϕ)
μ(�x)∂�x, then the derivatives are

Derivative with respect to attenuation

∂C

∂wμ
ijk

=
Np∑

i=1

(1 − Pi

bie−l
)bi · e−l · bμ

i (x)bμ
j (y)bμ

k(z) , (7)

Derivative with respect to motion

∂C

∂wϕ
ijk

=
Np∑

i=1

(1− Pi

bie−l
)bi ·e−l · ∂μ

∂ϕ
·bϕ

i (x)bϕ
j (y)bϕ

k (z) . (8)

The terms look similar but one notices that the first derivative

expression only involves basis functions of the image attenu-

ation model while the second includes the the spatial deriva-

tives ∂μ/∂ϕ of the image function and the basis functions of

the deformation model.

3.4. Implementation details

We solve Eq. 2 by negating the cost function and derivatives

and applying an L-BFGS-B minimization routine. Estimation

of the two models is performed by two separate minimizations

within the outer while loop. This essentially fixes one model

while the other is being optimized. The procedure is outlined

below,

1. Obtain start guess for attenuation

2. while (not converged)

(a) Optimize C as function of the deformation model

parameters.

(b) Optimize C as a function of the attenuation model

parameters.
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(a) Slice in volume at phase 1 (b) Slice in volume at phase 5

(c) Projection of phase 1, 0◦ (d) Projection of phase 1, 60◦

Fig. 1. Shows phantom data and simulated projections. In the

projections a dark pixel means high attenuation

An advantage of using an L-BFGS-B is that it allows for

bound constrained optimization which is used when estimat-

ing the attenuation coefficients, since by definition these are

non-negative, however the bound constraint have no influence

on the deformation model. The start guess came from the pure

iterative method and the deformation model starts out with the

identity transformation.

4. EXPERIMENTS

4.1. Cone-beam data

The data used for experimentation is based on simulated cone-

beam projections. The benefit of doing this is twofold. First

the knowledge of ground truth data may be useful for method

validation, second noise and scattering problems are avoided.

The projections are made from a phantom emulating 5 res-

piratory phases where each phase volume has two cylinders

shaped objects that dilate with the phase number, hereby sim-

ulating motion. The point source and 2D detector are moved

around the volume and a set of phase varying projections are

made using the forward projection model of Eq. 2. The pro-

jection angle distribution was chosen at random. The detector

was chosen to be 85 × 85 with a SDD of 200 mm and SAD

of 150 mm.

An illustration of the raw data at phase 1 and 5, as well as

simulated projections are shown in Fig 1.

4.2. Results

Seven reconstruction experiments were conducted to investi-

gate the three methods of FDK with hamming filter, the it-

erative method and the iterative method with motion. These

Fig. 2. Shows the cross correlation between reconstructions

and the true volume for 7 experiments with a decreasing num-

ber of projections, using three different types of methods.

experiments are aimed at reconstructing phase 5 as shown in

Fig 1(b). The base number of projections for each experi-

ments is 55, 45, 35, 25, 15, 10 and 5. Since there are 5 phases,

the reconstruction experiments with motion uses five times

the number of projections. To compare the methods, we es-

timate the cross correlation between the ground truth and the

estimated reconstructions.

A plot of the correlations for the seven test cases is shown

in Fig. 2. It shows the lowest reconstruction error using the

iterative method and (iterative + motion), however the differ-

ence is small and the results favour the iterative method since

it use 5 times less projections.

Fig. 3 shows the same slice reconstructed using 55 and 10

projections with each of the three methods. These examples

confirm what was observed from the error plot. At 5 projec-

tions the problem is highly under-constrained and the meth-

ods fail at supplying a satisfying solution. At 10 projections,

the 2 iterative methods are becoming acceptable although they

still show some artefacts. Even using 55 projections with

FDK, the iterative solutions using only 10 projection looks

visually more appealing emphasizing iterative methods abil-

ity to reconstruct using a low number of projections.

An important feature of the method including motion is

the availability of the motion field which in the context of

patient scenario could be used to track tumours across respi-

ratory phases. No prior model assumption have been made

about the deformation field but we are currently trying to find

the most optimal choice and expect this will improve the re-

sults in favour of the iterative method with motion compensa-

tion.
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(a) FDK, 55 projections (b) Iterative, 55 projections (c) Iterative+motion, 55 projections

(d) FDK, 10 projections (e) Iterative, 10 projections (f) Iterative+motion, 10 projections

Fig. 3. Shows reconstruction experiments for tree different methods.

5. CONCLUSION

We have investigated the possibility of including a paramet-

ric motion model into a maximum likelihood reconstruction

framework. Reconstruction errors with a known ground

truth volume showed that the method clearly outperformed

the FDK approach and in general performed similar to the

pure iterative method. We believe the main reason for this

results is the ill possessedness of the optimization problem

requiring additional prior information to obtain a reasonable

motion model. Inclusion of the best motion for constraining

the problem is currently being investigated. In addition it is

also being examined how the method could be accelerated

through multi resolution schemes and the inclusion of mask

containing information about object placements. Using such

mask could speed up the runtime by limiting the regions over

which to integrate lines.
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