
LOCAL SEGMENTATION BY LARGE SCALE HYPOTHESIS
TESTING

Segmentation as outlier detection

Sune Darkner, Anders B. Dahl, Rasmus Larsen
DTU Informatics, Technical University of Denmark, RichardPetersens plads, Kgs. Lyngby, Denmark

sda@imm.dtu.dk, abd@imm.dtu.dk,rl@imm.dtu.dk

Arnold Skimminge, Ellen Garde, Gunhild Waldemar
Danish Research Center for Magnetic Resonance, CopenhagenUniversity Hospital Hvidovre, Kettegaard All 30 Hvidovre Denmark DK-2650

arnolds@drcmr.dk,elleng@drcmr.dk,Gunhild.Waldemar@rh.regionh.dk

Keywords: Segmentation, outlier detection, large scale hypothesis testing, locally adjusted threshold

Abstract: We propose a novel and efficient way of performing local imagesegmentation. For many applications a thresh-
old of pixel intensities is sufficient but determine the appropriate threshold value can be difficult. In cases with
large global intensity variation the threshold value has tobe adapted locally. We propose a method based on
large scale hypothesis testing with a consistent method forselecting an appropriate threshold for the given
data. By estimating the background distribution we characterize the segment of interest as a set of outliers
with a certain probability based on the estimated densitiesthus with what certainty the segmented object is
not a part of the background. Because the method relies on local information it is very robust to changes in
lighting conditions and shadowing effects. The method is applied to endoscopic images of small particles sub-
merged in fluid captured through a microscope and we show how the method can handle transparent particles
with significant glare point. The method generalizes to other problems. THis is illustrated by applying the
method to camera calibration images and MRI of the midsagittal plane for gray and white matter separation
and segmentation of the corpus callosum. Comparing the methods corpus callosum segmentation to manual
segmentation an average dice score of 0.86 is obtained over 40 images.

1 INTRODUCTION

We present a novel way of performing binary seg-
mentation of images with large global variations. In
many segmentation problems a global threshold will
not be appropriate, e.g. global changes in illumina-
tion, shadows, or background variations. These vari-
ations in pixel intensities can result in large segmen-
tation errors if one threshold value is applied. As a
consequence the threshold has to be locally adapted.
Another problem is the dominating background inten-
sities, which makes typical histogram based methods
like histogram clustering (Otsu, 1975) inappropriate.

We propose a method based on the assumption
that a local threshold exists, which will separate the
segment of interest from the background. We present
a well defined way of selecting the appropriate thresh-
old value given the observations based on a large scale
hypothesis test and experimentally show that this as-
sumption is appropriate for many real segmentation
problems.

2 PREVIOUS WORK

There exist a huge array of methods for classification
and segmentation ranging from thresholds, classifica-
tion, supervised like support vector machines (Boser
et al., 1992), the Potts model (Potts, 1952), linear and
quadratic discriminant analysis, regression and boost-
ing and unsupervised methods such as mixture of
gaussian. (Hastie et al., 2001) gives a good overview
of these methods. More advanced methods such as
level sets (Osher and Sethian, 1988), active shape and
appearance models (Cootes and Taylor, 1994) and
image registration (Modersitski, 2004). The method
presented here is basically an image based thresh-
old selection with the possibility to select a range
rather than a just a threshold. An exhaustive review
of threshold methods can be found in (Sezgin and
Sankur, 2004).
Efron proposed in (Efron, 2004) to estimate the em-
pirical null density function from the data and use this
to identify cases of interest. The approach has been



used for genome responses in drug therapy and for
identifying changes in shape (Darkner et al., 2007).
the

3 LARGE SCALE HYPOTHESIS
TESTING

The usual point of large-scale testing is to identify
a small percentage of interesting cases that deserve
further investigation using parametric modeling. The
problem is that a part of the interesting cases may be
extracted, but if more are wanted then also an unac-
ceptably many false discoveries are identified (Efron,
2004). A major point of employing large-scale esti-
mation methods is that they facilitate the estimation
of the empirical null density rather than using the the-
oretical density. The empirical null may be consid-
erably more dispersed than the usual theoretical null
distribution. Besides from the selection of the non-
null cases (the selection problem) large-scale testing
also provides information of measuring the effective-
ness of the test procedure (estimation problem). In
this paper we employ both measures to separate the
particles from the background transform calibration
images into binary images, segment the corpus callo-
sum and separate white and gray matter. Simultane-
ous hypothesis testing is founded on a set of N null
hypotheses{Hi}

N
i=1 and test statistics which are pos-

sibly not independent.{Yi}
N
i=1 and their associated

p-values{Pi}
N
i=1 defining how strongly the observed

value ofYi contradictsHi .

3.1 False discovery rate

In this paper we assume theN cases are divided into
two classes, Null (background) and non-null (the par-
ticle) occurring with prior probabilitiesp0 and p1 =
1− p0. We denote the density of the test statistics
given its classf0(z) and f1(z) (null or non-null re-
spectively). False discovery rate methods are central
to some large scale method and is employed here. It
is typical to consider the actual distribution as a mix-
ture of outcomes under the null and alternative hy-
potheses. Assumptions about the alternative hypothe-
sis may be required. The sub-densities

f +
0 (z) = p0 f0(z) , f +

1 (z) = p1 f1(z) (1)

and mixture density

f (z) = f +
0 (z)+ f +

1 (z) (2)

leads directly to the local false discovery rate:

f dr(z) ≡ P(null|zi = z)

= p0 f0(z)/ f (z) = f +
0 (z)/ f (z) (3)

The false discovery rate describes the expected pro-
portion of false positive results among all rejected
null hypotheses and guarantees that the fraction of the
number of false positives over the number of tests in
which the null hypothesis was rejected (Efron, 2004).
Figure 1 illustrates the fundamentals of the approach.

Figure 1: The graphical presentation of large scale hypoth-
esis test. The red and blue curve isf (z), the green is the
pdf of the estimated null hypothesisf +

0 (z) where the yello
is the mean and the purple is the half width half maximum.
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Figure 2: The corresponding logarithm of FDR for fig. 1.

For segmentation the hypothesis test is used to
find pixels that are a part of a particle i.e. observa-
tions that deviates significantly from the average lo-
cal background. We use large-scale testing to esti-
mate the empirical null hypothesis for a given region
assuming the pixel values follows some normal distri-
bution.It is convenient to considerzi = Φ−1(Pi), i =
1. . .N where Φ is the standard normal c.d.f and
zi |hi ∼ N(0,1). Estimates of the pixel error and confi-
dence bounds can be mapped back to the distribution
of deformation vectors throughΦ. Additional infor-



mation is that the background has higher pixel inten-
sities than the particles. The background will therefor
be the highest and largest distribution. This can be
used to get a better empirical estimate of of the null
hypothesis.

3.2 Estimation of H0

Assuming that the intensities of the background fol-
lows a normal distribution and that it the background
is brighter than the object of interest, due to the back
lighting we are able to estimateH0. Thus for the esti-
mation we choose an appropriate resolution and map
all value into the histogram. This forms our joint dis-
tribution f (z) to which we then fit a spline with appro-
priate smoothness for an approximation of the joint
distribution. We can then identify the first large peak
as the mean value off +

0 (z) and use half width, half
maximum to estimate the standard deviation. Now the
obvious choice would be full width half maximum,
however there is a blending of in the joint distribution
of f +

0 (z) and f +
1 (z) which gives a thicker tail towards

lower intensity values and a much more conservative
estimate of the standard deviation. se figure 1.

3.3 Parameters and Their
Interpretation

In practice there are several parameters to be selected.
The first is the level at which we are willing to accept
false positives which is the an expression of the cer-
tainty that a given observation is really different and
not just a part ofH0. This does not in anyway tell
us that the class is a certain kind of tissue or particle,
just that this is with a certainty of say 99.9% different
from the null distribution thus the observation is an
outlier. The testing area has to be select. This crite-
ria is mainly driven by the object in question and the
background. Sufficient information about the distri-
bution of the object and background must be present
and on the other hand non-important features should
be minimized. The spatial sampling density has to be
selected as well. In all experiments in this paper we
have up-sampled the image image by a factor of 10-
100 which also yields an equal sub-pixel resolution
of the method. Usually the test is based on 105−106

samples and in a 100 bin histogram which ensures
smooth nest off (z) and enough resolution for gray
values. In practicef (z) is approximated by a spline
thus the smoothness has to be selected for good esti-
mation of f +

0 (z) and can compensate for low number
of sample.

4 EXPERIMENTS

We have applied the method to 3 sets of data.
Small particles obtained with high magnification,
MRI of the brain for segmentation of the corpus cal-
losa and a standard checker board for image calibra-
tion with highly varying intensity values. These 3
diverse applications show the versatility of this very
simple but robust method. For all examples we have
shown the sampling area in the sampling resolution
for both segmentation and object.

4.1 Particles

For characterization of powders, droplets etc the size
and shape of the objects are very important. In or-
der to do a good classification the particles need to be
found and properly segmented. The method is well
suited for images where the light source changes in
intensity and distribution locally and globally from
frame to frame in a series of images, cases where ro-
bust estimate for background removal can be difficult
to obtain. In addition some particles may partially
shadow other particles thus making the global back-
ground removal incapable of segmenting the particle
in question. The method has been tested on 3 types of
particle images. A set of LED back lit particles sus-
pended between 2 sheets of glass with varying dis-
tance to the focus plane . A tracking scenario with
time series of calibrated particles suspended in wa-
ter and some laser back lit non-uniform particles sus-
pended in water.

4.1.1 Fixed Particle

We have applied the method to the 25µm particles
suspended in water between two sheets of glass in
with different distances to the focal plane. Figure
4 show a 25µm particle at 6 distances to the focal
plane. This experiment illustrates the sensitivity of
the method, where even vaguely visible particles can
be segmented without parameter tuning.

4.1.2 Shadowing effect

We have preprocessed all images with multi scale
blob detection such that we have rough estimate of the
size and location of the blobs. this is sufficient to per-
form the segmentation. The data consists of movie se-
quences obtained with 5 times magnification of semi
transparent particles of 100 50 25 and 5µmin a water
solution and used for illustration of handling of shad-
owing effects without change to the parameters of the
algorithm. Figure 5 show a segmentation performed
over several frames where a larger particle passes in



(a) The particle (b) The segmentation
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(c) The hypothesis test histogram

Figure 3: A typical segmentation and the corresponding his-
togram. The green line in the histogram is the estimated
H0 and the red line indicates outlier with the fdr=0.0001
The histogram clearly show how well our assumption of the
background following a normal distribution holds. The out-
lier are the particle we segmenting.

the background creating a shadowing effect. The ex-
ample illustrates how the methods can handle changes
in the illumination without failure.

4.1.3 Real Particles

To show how the method handles real world data we
have segmented some particles of some material sam-
ples from the industry. The chance of encountering
nice uniform spherical particles in the real world is
quite small except from droplets. Figure 6 and 7 show
two small examples of such particles. The segmenta-
tion is very good due to the locally very uniform back-
ground, making the distribution of peaked and narrow
i.e. a small standard deviation. Glare points are also
handled very well but there is naturally enough a band
around the glare point where the particle is misclassi-
fied. This is due to the fact that the method is just a
simple threshold without any spatial prior. These gaps
can be handled by applying morphological operations
such as closing.

Figure 4: The images show the particle at 6 different dis-
tances to the focal plane, with the las image being of the
particle in focus. Below are the segmentations of each od
the images in the same order. The images show that the par-
ticle can be segmented even if the signal is very vague and
the glare point is correctly classified as a part of the particle.

4.2 Calibration Images

We show some results here on calibration images.
When using a well known structure as the checker-
board for calibration it is important to exactly locate
the corner of the squares. This can be by morpholog-
ical operations on a segmented image. The proposed
method delivers very good segmentation that can eas-
ily be used to derive the exact sub-pixel position of
the corners creating a robust foundation for image cal-
ibration. The figures 8 and 9 below show the results
of the segmentation

4.3 MRI

To illustrate the method on another modality, we have
applied the method to MRI scans of the human head
the midsagittal plane that contain the subject corpus
callosum (se figure 10). This data is a part of the
LADIS study (Pantoni et al., 2005). The method have
applied to white matter gray matter segmentation and
segmentation of the corpus callosum. In the latter
case we have a manually segmented truth, thus we
can compute the segmentation error via the Dice co-
efficient (Sørensen, ).

Across 40 subject with their Corpus Callosum
segmented with the AAM (Ryberg et al., 2006) and
manually corrected we found that local segmentation



Figure 5: The figure show a segmentation performed with
the same parameters on the same object subject to changing
shadowing effect caused by a large particle passing in the
background.

through large scale hypothesis testing gave an aver-
age Dice coefficient of 0.856 with std 0.034. The
Corpus Callosum was extracted in the same hypoth-
esis test, however if we use the local property and us
a smaller window, outliers become more significant
and we get better segmentation. By switching to a
more local neighborhood we get a improvement of al-
most 3% to 0.88 and the difference is very significant
(p << 0.01)

5 SUMMARY AND CONCLUSION

We have presented a local adaptive method for
binary segmentation. The methods has successfully
been tested on particle images for particle segmenta-
tion, calibration images for landmark extraction and
and midsagittal slices of MRI for segmentation of
corpus callosum and gray matter white matter seg-

(a) The original image

Figure 6: The figure show some real world samples. The
figure show that the segmentation the glare points is han-
dled very well. The small ’gap’ can be fixed by a simple
morphological operation

mentation. The method is very robust with respect
to changes in intensity across the image and statis-
tically characterizes the resulting segmentation. We
have shown that compared to manual segmentation of
the orpus callosum we can achieve a dice coefficient
of 0.86 on using a mosaik of 5 patches. The method is
directly extendable to 3D, other types of distribution
as shown in (?). The hypothesis test and FDR should
be extended to higher dimensions that the one dimen-
sional case discussed here and tested on several other
types of images. furthermore the algorithm should be
implemented such that it can handle multiple classes
and segment a whole image in one go.

REFERENCES

Boser, B., Guyon, I., and Vapnik, V. (1992). A training
algorithm for optimal margin classifiers.Fifth Annual
Workshop on Computational Learning Theory, pages
144–152.



(a) The original image

Figure 7: Some crystal like particles are shown in the figure.
In spite of the relative low difference between background
and object and the fact that the samples are semi transparant,
the segmentation is good. Even small ones are handled to-
gether with the large ones.

Figure 8: The original calibration image. As can be seen
the intensities varies significantly with the highest values at
the center and decaying radially.

Cootes, T. and Taylor, C. (1994). Using grey-level models
to improve active shape model search. InProceed-
ings of International Conference Pattern Recognition,

(a) The calibration image

(b) Image part segmented (c) Segmentation

Figure 9: The original calibration image. As can be seen
the intensities varies significantly with the highest values at
the center and decaying radially.

Figure 10: The midsagittal slice from an MRI of a head.

pages A:63–67.

Darkner, S., Paulsen, R. R., and Larsen, R. (2007). Analy-
sis of deformation of the human ear and canal caused
by mandibular movement. InMedical Image Com-
puting and Computer Assisted Intervention MICCAI
2007, pages 801–8, B. Brisbane, Australia, Springer
Lecture Notes.

Efron, B. (2004). Large-scale simultaneous hypothesis test-
ing: the choice of a null hypothesis.Journal of the
American Statistical Association, 99(465):96–104.

Hastie, T., Tibshirani, R., and Friedman, J. (2001).The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer-Verlag.



 

 
AAM
Manual

Figure 11: This figure show the result of the segmentation
of fig 10 using the method proposed in this paper. The red
dots are the segmentation achieved by the AAM and the
yellow the manual segmentation. The read part of the image
is the segmentation with the our method. This result show
how efficient this algorithm is for local segmentation

(a) Image part segmented (b) segmentation

(c) Image part segmented (d) segmentation

(e) Image part segmented (f) segmentation

Figure 12: The original calibration image. As can be seen
the intensities varies significantly with the highest values at
the center and decaying radially.

Modersitski, J. (2004).Numerical Methods for Image Reg-
istration. Oxford University Press.

Osher, S. and Sethian, J. (1988). Fronts propagating
with curvature dependent speed: Algorithms based on
hamilton-jacobi formulations.Journal of Computa-
tional Physics, 79:12–49.

Otsu, N. (1975). A threshold selection method from gray-
level histograms.Automatica, 11:285–296.

Pantoni, L., Basile, A., Pracucci, G., Asplund, K., Bogous-
slavsky, J., Chabriat, H., Erkinjuntti, T., Fazekas, F.,
Ferro, J., Hennerici, M., et al. (2005). Impact of age-
related cerebral white matter changes on the transition
to disability-the LADIS study: rationale, design and
methodology.Neuroepidemiology, 24(1-2):51–62.

Potts, R. (1952). Some generalized order-disorder transfor-
mations.Proceedings of the Cambridge Philosophical
Society, 48:106–109.

Ryberg, C., Stegmann, M. B., Sjöstrand, K., Rostrup, E.,
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