
A Generic Solution Approach to Nurse Rostering

Anders Dohn
adohn@man.dtu.dk

Department of Management Engineering, Technical University of Denmark

Andrew Mason, David Ryan
Department of Engineering Science, University of Auckland

February 26, 2010

Abstract

In this report, we present a solution approach to the nurse rostering problem. The
problem is defined by a generic model that is able to capture close to all of the prob-
lem characteristics that we have seen in the literature and in the realistic problems at
hand. The model is used directly in the solution algorithm which gives a very versatile
solution method. The method at the same time is constructed to exploit a number of
problem specific features and thereby we have a both versatile and efficient solution
method. The approach presented uses a set partitioning model of the rostering prob-
lem, which is solved in a branch-and-price framework. Columns of the set partitioning
problem are generated dynamically and branch-and-bound is used to enforce integrality.
The column generating subproblem is modeled in three stages that utilize the inherent
structure of roster-lines. Some important features of the implementation are described.
The implementation builds on the generic model and hence the program can be setup
for any problem that fits the model. The adaption to a new problem is simple, as it
requires only the input of a new problem definition. The solution method is internally
adjusted according to the new definition. In this report, we present two different practi-
cal problems along with corresponding solutions. The approach captures all features of
each problem and is efficient enough to provide optimal solutions. The solution time is
still too large for the method to be immediately applicable in practice, but we suggest
a number of ways to improve the method further.

Keywords: generalized rostering problem, nurse rostering, nurse scheduling, column
generation, branch-and-price, set partitioning problem, set covering problem, integer
programming, linear programming, shortest path problem with resource constraints,
dynamic programming, label setting.

1 Introduction

1.1 General introduction

This paper presents a solution approach to the generalized rostering problem with special
emphasis on nurse rostering. In the generalized rostering problem the aim is to generate a
feasible roster of high quality for a specified unit, section, department, or similar. Rosters
typically have a large number of shift coverage constraints that have to be met. Coverage
constraints may express an overall minimum staffing requirement for individual shifts or
may more specifically represent needs for staff with certain skills or with particular contract
conditions. Furthermore, the individual roster-lines are typically strictly governed by laws,
union regulations and internal agreements. Altogether, this usually makes it hard to create
feasible rosters, let alone high quality ones.

Historically, rosters were created manually by the head of the section or by an experienced
member of the staff. Usually, the rosters were made by modifying former rosters or by putting
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together roster-lines and parts of roster-lines which were known to be good. It takes a lot
of experience to build good rosters and even with experience, the process of building the
rosters is very time consuming. Therefore, there has been and still is a large demand for
automated rostering tools. Within the last decade the supply of software products has
increased significantly to meet this demand.

The airline industry is an area with many rules and regulations on rosters and with
an inherent geographical dimension, which make rostering even harder. Staff expenses at
the same time constitute a significant part of the airline budgets. For these reasons the
airline industry was also the first industry to truly adapt computer aided rostering in the
daily operation and are now fully dependent on scheduling and rostering software. Other
industries with complicated rostering rules and requirements are following the example of
the airline industry, and a lot of time and money can evidently be saved by restructuring the
rostering process and by using automated tools where possible. Some desired properties of
rosters are very hard to express explicitly and hence a human planner will always be a part of
the rostering process. There are, however, many hard rules and easily assessable objectives,
for which a computer based tool is perfectly suited. In such a tool it is possible to examine
more solutions than what would ever be possible by hand. It is also possible to switch to
mathematically based techniques, altogether. This requires a large number of calculations
and is only achievable because of the calculation power of modern computers. In this paper,
we present one such technique based on the idea of column generation.

One of the major obstacles in developing rostering software has been the varying require-
ments from one application to another. Most systems have been custom made to match the
exact requirements of a particular company or institution as this is this only way to produce
truly applicable rosters. The main problem with this approach is the time and money needed
to develop the system. For the same reason, automated scheduling systems have in the past
been reserved for institutions with a large and very apparent need for automation. The un-
derlying basis of the algorithm presented here is very general and can hence be applied to a
large variety of rostering problems. The setup still has to be adapted to a given application,
but this adaption is easy and fast and hence a tailor made product can be made at signifi-
cantly lower costs than before. This opens up a market of smaller customers with the same
need for automated scheduling software, but with smaller budgets. These customers have
previously been inaccessible because of the usual cost of customized software.

1.2 Problem specification

The objective in this project is to create a rostering tool, which is practically applicable and
which complies with the requirements of realistic settings in a company. Several literature
reviews have addressed the lack of broadly applicable approaches:

• However, one key point that can be drawn from an analysis of the literature over the
years is that very few of the developed approaches are suitable for directly solving difficult
real world problems. - Burke et al. (2004)

• It is hard to avoid the conclusion that, in the United States at least, practitioners do
not accept academically produced management and computer science solutions to the
nurse-scheduling problem. - Kellogg and Walczak (2007)

This project is an attempt to deal with the gap between the research and the actual
requirements of hospitals. This means that the approach has to accommodate for the re-
quirements of real-world problems. We list below, some of the important statements from
the recent literature. These quote are from broad literature surveys, as we expect these not
to be biased towards certain methods or application.

• Another important area requiring further work is generalisation of models and methods.
Currently, models and algorithms often require significant modification when they are
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to be transferred to a different application area, or to accommodate changes within an
organisation. - Ernst et al. (2004b)

• In other words, roster algorithms and rostering applications will need to involve individual-
centric work constraints, preferences and business rules. - Ernst et al. (2004b)

• Models should be rich enough to capture the caregiving environment. Nurse X is not
the same as Nurse Y; a scheduling model that considers them as interchangeable may
not be solving the correct problem. - Kellogg and Walczak (2007)

• If this is our goal [to solve real nurse scheduling problems in real hospitals], then we
must address the full range of requirements and demands that are presented by modern
hospital workplaces. - Burke et al. (2004)

• Optimal solutions derived from techniques with high computing times are usually less
valuable than one that is based on an flexible algorithm or user intuitive application. -
Cheang et al. (2003)

The method presented in the report, has been designed to comply with the described
needs of the real-world. The last point has not yet been accommodated, but is one of the
main concerns in the subsequent development of this project.

The work presented here is based mainly on academic projects from The University of
Auckland, New Zealand. At the university, work on the nurse rostering problem was initi-
ated by Smith (1995). Smith presents a column generation setup to solve a nurse rostering
problem from Middlemore Hospital in Auckland. Following the promising results on a single
application, two projects followed, with the aim of building a generalized rostering framework,
which would be able to solve various rostering problems. In his PhD Thesis, Nielsen (2003)
describes a general modeling framework for rostering problems. Roster-lines are generated by
solving a subproblem using constraint programming techniques. Nielsen uses experimental
data from Auckland Healthcare. The most recent of the projects is described in a Master’s
Thesis by Engineer (2003). Column generation is used to generate rosters for various prob-
lems. Engineer formulates the pricing problem as a three stage shortest path problem with
resource constraints and solves it using label setting. The algorithm developed proves to
be efficient and at the same time general enough to allow solution of applications with very
different characteristics.

In our work, we also use two student projects from Danish universities. These describe
other solution approaches, but we use the projects mainly for their specifications of nurse
rostering problems in Danish hospitals. Poulsen (2004) describes a hybrid solution method,
where a standard IP-solver is used to solve a set partitioning problem to generate anony-
mous weekly schedules. These are combined in a simulated annealing based meta-heuristic.
Poulsen uses three different wards for experimental testing: Two from the National Hospital
of Denmark and one from Odense Universitets Hospital. In the other project, Bliddal and
Tranberg (2002) describe a constraint programming approach. Interviews are conducted at
five different hospital wards and the individual properties of each are reported.

Together, the former projects describe 10 different realistic settings. From these we are
able to list a number of general roster characteristics:

• Fixed planning period.

• Fixed number of shifts.

• Time norm for each employee.

• Maximum number of days on in a week / on-stretch.

• Some combinations of on/off days prohibited.

• A minimum rest period after a shift is required.
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• Specific shift transitions are not allowed.

• Single days-on / days-off are undesirable.

• Each nurse has individual preferences.

• May have shift assignments which are fixed in advance.

We, at the same time, find a number of individual rules and agreements which are very
specific and only apply to few of the problems. We must be able to cater for these individual
rules, as well as we cater for the general ones listed above.

• On all days: at least one of the nurses was also there the day before (Bliddal and
Tranberg, 2002, A2 / Holbæk sygehus).

• A nurse cannot work two consecutive weekends (Poulsen, 2004, Anæstesi- og opera-
tionsklinik / Rigshospital).

• Minimize the number of different shifts in a stretch (Poulsen, 2004, Obstetrisk klinik /
Rigshospital).

• One week with 60 hours allows only 16 hours the following week (Poulsen, 2004, Gy-
nækologisk og obstetrisk operationsafdeling / Odense Universitets Hospital).

• If working night shifts, at least to consecutive night shifts must be scheduled (Nielsen,
2003).

• If a set of days on ends with a night shift, then the following on-stretch must not begin
early, unless there is a ’long’ off-stretch in-between (Nielsen, 2003).

• Some nurses have a weekly off day called a zero-day. For each nurse, it is preferred
that zero-days are always on the same day of the week (Poulsen, 2004, Anæstesi- og
operationsklinik / Rigshospital).

• A special shift type must be covered by the same employee for a whole week (Poulsen,
2004, Gynækologisk og obstetrisk operationsafdeling / Odense Universitets Hospital).

In a bibliographic survey by Cheang et al. (2003) a list of commonly occurring constraints
in the literature is presented, where the constraints are grouped into 16 different categories.
Burke et al. (2009) in a similar way lists 26 sets of constraints that occur in practical nurse
rostering problems. The list is a slight revision of a list originally formulated by Berghe
(2002). Our algorithm should also be able to deal with all constraints of these types.

1.3 Literature

Staff rostering has already received a lot of attention in the literature. We refer to the
extensive literate reviews of Burke et al. (2004), Ernst et al. (2004b), and Cheang et al.
(2003). Ernst et al. (2004a) present a massive collection of references to papers on rostering.
For an updated overview of available literature, the EURO Working Group on Automated
Timetabling (Curtois, 2009) is a good resource.

The solution method presented here builds on the idea of column generation. For an
introduction to column generation, see Desrosiers and Lübbecke (2005). The literature on
column generation for rostering problems are, naturally, of special interest to us.

Jaumard et al. (1998) solve the nurse rostering problem using column generation. The
subproblem is formulated as a shortest path problem with resource constraints, where each
possible shift is represented by a node. It is solved by a two-stage algorithm proposed by
the authors. Bard and Purnomo (2005b) solve a nurse rostering problem with individual
preferences for the nurses. Columns are generated by a, so called, double swapping heuristic.
High-quality solutions are found within minutes. In Bard and Purnomo (2005a) the model
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is extended to allow downgrading of workers with higher level skills. Beliën and Demeule-
meester (2006) schedule trainees in a hospital using branch-and-price. Interestingly, columns
are generated for activities instead of the conventional employee roster-line columns. The
problem of scheduling trainees is somewhat simpler than the rostering problem we consider,
and only for this reason, is it possible to use the alternative column generation model. In a
succeeding paper (Beliën and Demeulemeester, 2007) it is also concluded that the activity-
decomposed approach does not have the same modeling power. However, if the problem
allows this model to be used, the performance may be enhanced by doing so.

A branch-and-price approach to the nurse rostering problem is also described in Maen-
hout and Vanhoucke (2008). The approach has a number of features in common with our
approach. The authors describe different pruning and branching strategies, e.g. lagrangian
dual pruning and branching on the residual problem. Beliën and Demeulemeester (2008)
extend the usual nurse rostering model to also include scheduling of the operating room and
show that considerable savings can be made by integrating the two scheduling problems.

Eitzen et al. (2004) present a set covering model for crew scheduling problem at a power
station. Three column generation based solution methods are proposed to solve the set
covering model: the column expansion method, the reduced column subset method, and
branch and price. Al-Yakoob and Sherali (2008) solve a crew rostering problem for a large
number of gas stations using a column generation approach. The model takes into account
the individual preferences of the employees. A heuristic founded on the column generation
algorithm is able to solve realistic problems.

In the column generating subproblem presented in this report, two shortest path problems
with resource constraints are solved. Much literature has been published on shortest path
problems with resource constraints. See Irnich and Desaulniers (2005) for a literature review.
Desrosiers et al. (1984) present an early version of the algorithm with time as the only
resource, which is generalized by Desrochers (1988). Lübbecke (2005) suggests discarding all
labels that cannot lead to a column with negative reduced cost. Righini and Salani (2006)
present a significant improvement in performance by using bidirectional search. Chabrier
(2006) utilize an idea on the potential value of each node to improve performance further.

1.4 Problem definition

The generation of nurse rosters is typically a complex process which requires a deep insight
into the particular problem at hand. Even though most nurse rostering problems may appear
to be similar, they usually differ on a few crucial points, so that a setup for one application
cannot be directly adapted to another application. In the following, we describe a generalized
rostering problem that captures the settings of most realistic nurse rostering problems.

A typical rostering problem is characterized by having a number of employees for which
individual roster-lines are generated in order to satisfy certain coverage requests. Coverage
request can be on segments, shifts, days or even weeks and are typically combined with
demands for particular skills. Roster-lines have to comply with a number of laws, rules,
and internal negotiations in order to be valid. The generalized rostering problem consists
of putting together feasible roster-lines for all employees in order to satisfy all demands.
Usually, the difficulty when modeling rostering problems lies in the validation and assessment
of roster-lines. The rules usually vary a lot from one problem to another.

In the following, we introduce the main concepts in rostering that will be used throughout
this report. These concepts at the same time define the rostering problems that we are trying
to solve. The goal is to be able to solve any practical problem that fits this definition. Below
we introduce the basic entities of a roster. The association between shifts, on-stretches,
off-stretches, work-stretches and roster-lines is also illustrated in Figure 1.

Shift Defines a period of time where an employee is working. A predefined set of the shifts
exists and a solution specifies which shifts an employee is working.

On-stretch A series of shifts is put together to form an on-stretch. The definition of the
on-stretch is very loose. Usually, the shifts in an on-stretch are on consecutive days,
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but it is not required to be so. The length of on-stretches may be constrained in terms
of minimum and maximum number of hours, shifts, days or similar.

Off-stretch A period of time where the employee is not working.

Work-stretch An on-stretch and an off-stretch are joined together in a work-stretch. There
is often a restriction on how on-stretches and off-stretches can be combined.

Roster-line A roster-line consists of a sequence of work-stretches. A roster-line spans the
full scheduling horizon. We say that the entities introduced above are components of
roster-lines. A roster-line typically has to respect constraints on total amount of hours
worked, number of weekends worked, etc.

On-stretchOn-stretch Off-stretch Off-stretch

Work-stretch

Roster-line

Work-stretch

Shift Shift Shift Shift Shift

Figure 1: The entities of a roster and their internal association.

We refer to shifts and off-stretches as simple entities and to on-stretches, work-stretches
and roster-lines as composite entities. On top of the entities introduced, we define a few more
concepts.

Attribute An attribute belongs to one or more of the entities and is tracked as these are
constructed and extended. Attributes of shifts and off-stretches are typically part of
the input data. Attributes of composite entities are typically calculated from attribute
values of their respective components.

Rule Rules define the validity of roster-lines, and their components. Rules are stated as
constraints on attribute values. Attributes are introduced when needed to describe all
applicable rules.

Cost Rules may be defined as soft constraints. Instead of declaring the entity infeasible,
when a violation occurs, a certain cost is applied. Again, attributes are used to describe
costs for a particular problem.

Demand A rostering problem consists of a number of demands that have to be met. A
predefined set of shifts may contribute to each demand. Each demand may have a
number of skill requirements, as well. All demands together define the validity of the
roster. If a roster consists of only feasible roster-lines and all demands are met, the
roster itself is feasible. Demands may be defined as soft and a penalty applies, if the
demand is not met.

If a rostering problem fits these definitions, it is possible to solve it using the approach
presented in this report. Engineer (2003) shows that this does indeed include a great variety
of problems.

Example. Throughout this report, an example will be used to illustrate ideas and concepts.
The example used origins from Middlemore Hospital and is the same as was used by Smith
(1995) and Engineer (2003). A roster must be made for 86 nurses spanning a four week
period. The problem has five different shift types:
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M Morning shift (7:00 a.m. - 3:30 p.m.).
8 Short morning shift (8:00 a.m. - 1:00 p.m.).
A Afternoon shift (2:30 p.m. - 11:00 p.m.).
6 Short afternoon shift (6:00 p.m. - 11:00 p.m.).
N Night shift (10:45 p.m. - 7:15 a.m.).

Below is an example of a simple roster-line with four work-stretches covering four weeks
in total. The roster-line contains two types of shifts, namely regular morning shifts and short
morning shifts.

Days
0 1 2 3 4 5 6 7 8 9 1011 1213 1415161718 1920 2122232425 2627
M M M M M - - 8 8 8 8 - - - - 8 8 8 8 - - M M M M M - -

Roster-lines, like the one shown here, are combined to meet all demands. Demands may
be defined for any combination of shifts, but in this example, demands involve only one or two
shifts and only for shifts on the same day. This makes it possible to visualize the demands
nicely in a table as seen below.

Days
Shifts Skills Type 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

6A 0 ≥ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6A 2 ≥ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
6A 3 = 1313131313 8 8 1313131313 8 8 1313131313 8 8 1313131313 8 8
6A 5 ≥ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6A 6 ≥ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
8M 1 ≥ 1212121212 1212121211 1212121212 1212121211
8M 3 ≥ 4242424242 4242424241 4242424242 4242424241
8M 6 ≥ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
A 3 ≥ 9 9 9 9 9 6 6 9 9 9 9 9 6 6 9 9 9 9 9 6 6 9 9 9 9 9 6 6
M 0 ≥ 1 1 1 1 1 1 1 1
M 2 ≥ 7 7 7 7 7 7 7 7
M 3 = 1010 1010 1010 1010
M 6 ≥ 1 1 1 1 1 1 1 1
N 0 ≥ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N 2 ≥ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N 3 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

An optimal roster for this instance is found in Appendix A. A nurse rostering problem
from the National Hospital of Denmark (Poulsen, 2004) is modeled and solved in Appendix
B.

2 Model

The generalized rostering problem is modeled as a generalized set partitioning problem and
columns are generated dynamically as a part of the solution process. The problem is split in
a master problem and a column generating subproblem. The master problem combines the
roster-lines in order to meet all demands, while the subproblem provides feasible roster-lines.
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2.1 Master problem

Given is a set of all employees, E , and a set of demands D. The goal is to find a combination
of roster-lines, one for each employee, such that all demands are met at the lowest possible
cost. The set Re holds all feasible roster-lines for employee e. Because of the vast number
of feasible roster-lines, it is not possible to generate all of these a priori. Instead, columns
are generated iteratively. The set R′e contains the roster-lines, of employee e, that have been
generated so far. Three sets of decision variables are used:

λre =

{
1, if roster-line r is chosen for employee e.
0, otherwise.

s−d = Amount of under-coverage (slack) for demand d.
s+d = Amount of over-coverage (surplus) for demand d.

λre is a binary variable, while s−d and s+d are continuous variables. The amount of permitted
under- and over-coverage is regulated by imposing bounds on s−d and s+d , respectively.

Three sets of costs apply to the master problem. cre gives the cost of roster-line r for
employee e. c−d and c+d specify the cost of under- and over-coverage for demand d, respec-
tively. The parameter ared describes the roster-lines. ared = 1, if roster-line r for employee e
contributes to demand d, and ared = 0 otherwise. The master problem can now be formulated
as:

min
∑
e∈E

∑
r∈R′

e

creλ
r
e +

∑
d∈D

(
c−d s
−
d + c+d s

+
d

)
(1)

∑
r∈R′

e

λre = 1 ∀e ∈ E (2)

∑
e∈E

∑
r∈R′

e

aredλ
r
e + s−d − s

+
d = bd ∀d ∈ D (3)

λre ∈ {0, 1} ∀e ∈ E ,∀r ∈ R′e (4)

s−d ≥ 0, s+d ≥ 0 ∀d ∈ D (5)

The objective (1) is to minimize the total cost of all roster-lines while also minimizing
penalties from under- and over-coverage. A feasible solution contains one roster-line for
each employee (2). All demands must be met or the appropriate slack and surplus variables
are adjusted accordingly (3). (4) and (5) set the domains of the decision variables. The
LP-relaxation of (1)-(5) is denoted the Restricted Master Problem.

For any solution of the master problem given by λre, s−d , and s+d , we also have a dual
solution. Let τe be the dual variables of constraints (2) and similarly, let πd be the dual
variables of constraints (3). If a primal solution does not exist, the dual problem is unbounded
and no meaningful dual values can be found. Instead a dual ray is send to the subproblem
to restore primal feasibility.

2.2 Subproblem

The subproblem, also referred to as the pricing problem, is responsible for generating new
columns to the master problem. Given a vector of dual values, the subproblem returns a
column with negative reduced cost, if one exists. Such a column will enter the basis in the
master problem and dual values are updated. If no additional columns exist, the master
problem solution is optimal.

The subproblem is formulated as a three stage model and follows the setup described
in Mason and Smith (1998). Different rules and preferences may apply to each employee,
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therefore a separate subproblem exists for each of the employees. Given is a set of legal shifts
for employee e, Se, and a set of legal off-stretches, Fe. From Se a set of feasible on-stretches
can be found Oe. The set of legal work-stretches, We, is created by checking legality for
all feasible combinations of on-stretches in Oe and off-stretches in Fe. By sequencing legal
work-stretches, all roster-lines are generated and together defines the set R̄e. All entities have
a reduced cost and the objective of the subproblem is to find the feasible roster-line with
the most negative reduced cost or to prove that no roster-lines with negative reduced cost
exist. The reduced cost of a shift is calculated as the sum of all dual values of demands to
which the shift contributes, plus any fixed cost of the shift. The fixed cost may be employee
dependent, e.g. to represent individual shift preferences. Off-stretches have fixed costs only.
The reduced cost of an on-stretch or a work-stretch is the sum of the costs of its components
plus the cost imposed by attributes. The cost of a roster-line is equal to the dual value of
the corresponding employee constraint, τe, plus the sum of work-stretch reduced costs plus
additional attributes costs.

In the case where the subproblem is used to restore primal feasibility in the master
problem, all entity costs are based solely on the values of the dual ray. All fixed costs and
attribute costs are disregarded.

In order to have a fully descriptive subproblem model, we need to specify which entities
of each type are feasible. As the model deals with each entity separately, we define feasibility
for each entity separately. This means, e.g. that we specify what an on-stretch must respect
to be feasible. When defining work-stretches, we may then assume that they are built from
feasible on-stretches only. In the same way, roster-lines are always a sequence of feasible work-
stretches. Shifts and off-stretches are part of the input and hence assumed to be legal. Skills
and other employee dependent properties may, however, still disallow shifts and off-stretches.

For a compact description of on-stretches and roster-lines, we introduce a recursive defini-
tion of these two entities. Instead of describing an on-stretch by all the shifts it contains, we
describe it by its latest shifts and a parent on-stretch, which contains exactly the remaining
shifts. Note that the parent on-stretch may be an infeasible on-stretch. Also, an on-stretch
may not have a parent on-stretch, if it contains only one shift. Figure 2 visualizes the re-
cursive definition. Roster-lines are analogously defined recursively from work-stretches and
other roster-lines. In the recursive formulation, we differentiate between accumulated cost
and total reduced cost. The accumulated cost is solely calculated from the cost of compo-
nents. The attribute costs are added to get the total reduced cost. This division is necessary
in a recursive definition, to avoid adding attribute costs multiple times.

O1 := S1

S1 S2 S3

O2 := (O1, S2) := S1 → S2

O3 := (O2, S3) := S1 → S2 → S3

Figure 2: Recursive formulation of on-stretch.

Attributes are used to quantitatively ensure feasibility and to specify costs. All entities
hold the two attributes: start time and end time. Each entity also has a number of individual
attributes. These attributes are problem specific and are hence not specified in the generic
model here. Some properties of a feasible entity are ensured already in the construction of
the entity and a few designated parameters are used to construct only entities which are
feasible in the problem considered. These parameters are described below.

Max days in an on-stretch There is always an upper limit on the number of days in an
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on-stretch. In the extreme case, this bound is equal to the length of the horizon,
but in most cases it is much lower and this limits the number of feasible on-stretches
significantly.

Min/max time between shifts On-stretches are chronological sequences of shifts, and
hence one shift will inherently stop before the next one in the on-stretch starts and
the minimum time between shifts is 0. In many practical problems a rest period is
required on top of that and can be enforced by setting this parameter larger than 0.
Such rest periods are then enforced in the construction of the entities and no additional
attributes are required for this purpose.

There is a significant difference between the attributes of simple entities versus attributes
of composite entities. For simple entities, attributes merely hold a value which is given as
a part of the input to the subproblem. Attributes of composite entities are calculated as a
part of the solution procedure. Hence, a part of their definition is a description of how to
calculate their value. For on-stretches and roster-lines, there are two scenarios: The entity
may have only one entity component and in this case the attribute value is inferred directly
from the attribute values of the component. We refer to this as value initialization. If, on the
other hand, the entity has both a component and a parent of its own type, the new attribute
values are calculated from attributes of both the parent and the component. We say that the
attribute values are accumulated. Work-stretch attributes are always initialized. As opposed
to simple entities, the attributes of composite entities may be restricted by bounds and costs
may be imposed for certain values of the attribute. Figure 3 depicts the definition of the
entities.

CompShiftParentOn

OnStretch

Feasibility Cost Initialization Accumulation

AccuCost - - - -

StartTime Always feas 0 StartTime
(CompShift)

StartTime
(ParentOn)

EndTime Always feas 0 EndTime
(CompShift)

EndTime
(CompShift)

Attribute1

Attribute2

… …
CompOffCompOn

WorkStretch

Feasibility Cost Initialization

AccuCost - - -

StartTime Always feas 0 StartTime
(CompOn)

EndTime Always feas 0 EndTime
(CompOff)

Attribute1

Attribute2

… …

CompWorkParentRos

RosterLine

Feasibility Cost Initialization Accumulation

AccuCost - - - -

StartTime Always feas 0 StartTime
(CompWork)

StartTime
(ParentRos)

EndTime Always feas 0 EndTime
(CompWork)

EndTime
(CompWork)

Attribute1

Attribute2

… …

Shift

ReducedCost

StartTime

EndTime

Attribute1

Attribute2

…

OffStretch

FixedCost

StartTime

EndTime

Attribute1

Attribute2

…

Figure 3: Recursive definition of entities.

For a specific problem, attributes are added to the problem definition as needed and the
initialization and accumulation functions are given as part of their definition. By leaving the
definition of attributes to the user, the model is kept generic enough to capture the settings
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of most practical problems. It is challenging to design the subproblem solution algorithm,
so that it can solve any problem that falls under this broad definition without compromising
efficiency. The approach that we have taken to achieve this, is described in more detail
in Section 4. First, to make it more clear how the attributes are defined in an individual
problem, we go back to the example from Middlemore Hospital.

Example (continued). The problem from Middlemore Hospital is modelled as follows:

Shift

ReducedCost
StartTime
EndTime
PaidHours
DaysOn

OffStretch

FixedCost
StartTime
EndTime
DaysOff
WeekendsOff
SingleDaysOff

OnStretch

Feasibility Cost Initialization Accumulation

AccuCost - - - -
StartTime Always feas None StartTime(ParentOn) StartTime(CompShift)
EndTime Always feas None EndTime(CompShift) EndTime(CompShift)

PaidH1-2 Always feas None PaidHours(CompShift)1
PaidH1-2(ParentOn)
+ PaidHours(CompShift)1

PaidH3-4 Always feas None PaidHours(CompShift)2
PaidH3-4(ParentOn)
+ PaidHours(CompShift)2

DaysOn LB Table DaysOn(CompShift)
DaysOn(ParentOn)
+ DaysOn(CompShift)

PShiftSTime Always feas None StartTime(CompShift) StartTime(CompShift)
MornToAft Always feas Linear 0 MornToAft(ParentOn) + 13

1 If CompShift is in week 1-2, =0 otherwise.
2 If CompShift is in week 3-4, =0 otherwise.
3 If the difference between StartTime(CompShift) and PShiftSTime(ParentOn) shows that this is a
Morning-To-Afternoon transition, =0 otherwise.

WorkStretch

Feasibility Cost Initialization

AccuCost - - -
StartTime Always feas None StartTime(CompOn)
EndTime Always feas None EndTime(CompOff)
PaidH1-2 Always feas None PaidH1-2(CompOn)
PaidH3-4 Always feas None PaidH3-4(CompOn)
DaysOn Always feas None DaysOn(CompOn)
DaysOff Always feas Table DaysOff(CompOff)
SingleDaysOff Always feas None SingleDaysOff(CompOff)
FeasibleOnOff Must be 1 None 11

1 If the values of DaysOn(CompOn) and SingleDaysOff(CompOff) are compatible, =0 otherwise.

11



RosterLine

Feasibility Cost Initialization Accumulation

AccuCost - - - -
StartTime Always feas None StartTime(CompWork) StartTime(ParentRos)
EndTime Always feas None EndTime(CompWork) EndTime(CompWork)

PaidH1-2 LB and UB None PaidH1-2(CompWork)
PaidH1-2(ParentRos)
+ PaidH1-2(CompWork)

PaidH3-4 LB and UB None PaidH3-4(CompWork)
PaidH3-4(ParentRos)
+ PaidH3-4(CompWork)

DaysOn UB None DaysOn(CompWork)
DaysOn(ParentRos)
+ DaysOn(CompWork)

DaysOff UB None DaysOff(CompWork)
DaysOff(ParentRos)
+ DaysOff(CompWork)

SingleDaysOff UB None SingleDaysOff(CompWork)
SingleDaysOff(ParentRos)
+ SingleDaysOff(CompWork)

The actual bounds and costs are read as a part of the data input and can be varied for
each employee. The on-stretch attribute DaysOn is only restricted by a lower bound as the
upper bound is enforced by a parameter, as described earlier.

3 Solution method: Master problem

The problem is solved in a branch-and-price framework. The master problem is solved with a
standard LP-solver and columns are generated iteratively in the subproblem. If the optimal
master problem solution is not integer, branching is used to cut off the fractional solution.

3.1 Master problem

The master problem as defined in Section 2.1 is an LP-problem and we apply a standard
solution tool (like CPLEX) to solve it. Preliminary tests show that the main part of the
solution time is used in the subproblem solver, so the LP-solver is instructed to always find
the optimal solution, as this does not affect the overall solution time notably.

3.2 Branching

Branching is used to remove fractional solution from the solution space of the LP-relaxed
master problem. In regular Branch-and-Bound algorithms, variable branching is the method
of choice. It is, however, very complex and in most cases highly inefficient to apply variable
branching in a Branch-and-Price algorithm. Instead, we use constraint branching where
certain constraints are (implicitly) introduced in the current restricted master problem.

Here, we use a specialization of the constraint branching method proposed by Ryan and
Foster (1981). If the solution of the restricted master problem is fractional, the columns/roster-
lines of one or more employees are in the solution with a fractional value. As two columns of
an employee are never identical, two fractionally selected columns will differ in at least one
of the included shifts. This in turn means that the employee is not assigned to that shift
with a value of 1. In a feasible integer solution, employees are always assigned to shifts (with
a value of 1) or not assigned to them at all. We may therefore branch on the employee/shift
assignment.

When branching on an employee/shift assignment the set of feasible roster-lines for the
employee is split into two subsets: A subset of all roster-lines containing the shift and a subset
with the remaining roster-lines. The two branches are created by removing all roster-lines
from the first or the second subset, respectively.

In a branch-and-price setup, the columns that have already been added to the restricted
master problem are removed as described. The remaining columns are removed implicitly by
forcing the subproblem of the particular employee to include or exclude the particular shift.
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4 Solution method: Subproblem

The subproblem solution methodology follows directly from the problem definition. The
solution process consists of three stages:

1. Shifts are combined into on-stretches.

2. On-stretches and off-stretches are paired to form work-stretches.

3. Roster-lines are generated by sequencing work-stretches.

Feasibility is verified in all three stages. Only feasible on-stretches advance to the following
stage, where they are combined with off-stretches. Again, the generated work-stretches are
checked and the feasible work-stretches are sequenced in the third stage. A feasible roster-line
starting on the first day and spanning the whole horizon is a subproblem solution. If such a
roster-line has a negative reduced cost, it may be returned to the master problem.

The three stages are solved separately and in the following, the three solution algorithms
are described in detail. On-stretch generation and roster-line generation can be formulated
as shortest path problems with resource constraints. Such shortest path problems can be
solved with a label setting algorithm, which builds on the concepts of the well-known Di-
jkstra’s algorithm for shortest path problems without resource constraints. An initial label
representing a (partial) entity is set in the start node. Following, the label is extended to
all succeeding nodes. Before extending labels from a new node, the labels of that node are
compared against each other to see if any of them are dominated by others. If a label is
dominated, it means that there is another label with less cost, where any extension of the
dominating label is as good as or better than the same extension of the dominated label.
The attribute values are compared to ensure this.

4.1 On-stretch generation

In the first stage of the algorithm, on-stretches are generated. An on-stretch can start at any
given shift and any later shift may be the last shift of the on-stretch. The problem is modeled
as a shortest path problem with resource constraints in a graph where nodes represent shifts.
Shortest paths are defined with respect to cost, i.e. the ”shortest” path in the graph is
the least cost path. The attributes make up the resources of the graph, which may restrict
feasibility and introduce additional costs. An example of such a graph is shown in Figure 4.
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Figure 4: Graph representation of the on-stretch generation problem.

The graph consists of a node for each shift. Arcs between nodes exist when the two shifts
are allowed to be consecutive in an on-stretch, i.e. they can be neither too close nor to far
in time.

Generating all on-stretches corresponds to finding the all-to-all shortest paths of the
graph. We do this by solving a one-to-all shortest path problem from each of the nodes in
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the graph. For each of these problems, the start node is selected and the remaining graph is
reduced to only allow on-stretches up to the maximum length. Figure 4 shows the shortest
path problem with Node 1 as start node. If the maximum on-stretch length is 4 days, all arcs
out of nodes 16-20 are removed. Node 2-5 are unreachable from Node 1 and will therefore
never hold any labels.

To generate only roster-lines without certain shifts, some nodes may be excluded in the
graph of a particular employee. In Figure 4, Shift 2 and Shift 10 have been excluded. Shifts
may be disallowed if the employee does not have the appropriate skills and employees may
simply be restricted from certain shifts as part of the input data for the problem, e.g. it is
common to have employees that can never work night shifts or that have days off on particular
days.

The shortest path problems are solved with a label setting algorithm. The graph is acyclic
and the nodes can hence be sorted topologically and be treated in that order. All on-stretches
are validated by checking the attribute values against the feasibility criterion given in the
problem definition. All feasible on-stretches are sent to stage two.

4.2 Work-stretch generation

The second stage is the simplest of the three stages. On-stretches from stage one are combined
with off-stretches to form work-stretches. All compatible pairs are examined. Work-stretch
attribute values are checked for feasibility and the principle of domination described in Section
4.5 is used to remove unpromising work-stretches before proceeding to the third stage. The
second stage is visualized in Figure 5.
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Figure 5: Visualization of the work-stretch generation problem.

4.3 Roster-line generation

The roster-line generation problem is another shortest path problem with resource con-
straints. The problem has a node for each day in the horizon. The work-stretches generated
in stage two are the transitions between days and therefore become the arcs of the graph.

In the generalized rostering problem, we have a predetermined start and end day, and this
transfers to a source node and a sink node in the graph. The problem becomes a one-to-one
shortest path problem.

The problem is solved using a label setting algorithm. Labels are set for all work-stretches
starting on day 0 in the respective end nodes. Work-stretches starting on day 0 may be
continuations of work-stretches that started in the previous scheduling horizon. See Engineer
(2003) for details.

The labels of the end node represent complete roster-lines. Again, roster-line attributes
of these roster-lines have to respect the feasibility criterion given in the problem definition.
The best feasible roster-line is also the optimal solution to the subproblem.

The major part of the subproblem solution time is used in the third stage and it is
therefore worthwhile to improve the algorithm for this stage as much as possible.
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Figure 6: Graph representation of the roster-line generation problem.

4.3.1 Propagating attribute bounds from the end node

For a special type of attributes, it is possible to predict infeasibility previously to reaching
the end node. Labels that can never lead to a feasible roster-line should be removed, as this
results in fever labels and thereby a more efficient algorithm.

In the general case, the feasibility of an attribute can be described by an arbitrary set
of values. To move the feasibility criterion from the end node to previous nodes, an inverse
accumulation function is required. All arcs of the graph are given, so we know which tran-
sitions can be taken between nodes. Initially, the feasible attribute values of the end node
are given. To propagate the feasible attribute values to a preceding node, we need a function
that given a set of feasible values outputs a set of all values that can possibly accumulate to
those values.

This is easy, if all attributes are additive. The inverse function is subtraction. For a
particular attribute, each outgoing arc of a node will add a certain amount to the value
of this attribute. The arc leads to a succeeding node, and feasible values of the current
node are found by subtracting the accumulation value from each of the feasible values of the
succeeding node. The complete set of feasible values of the current node is the union of the
feasible value sets of all the outgoing arcs. As the graph is acyclic, the feasible values of all
nodes are found by running through the nodes in a reversed topological order.

If the feasibility of an attribute is defined by bounds on the attribute value, the calcu-
lations are similar. We are still considering a set of feasible values, now defined by bounds.
The lower bound of a node is set to the minimum of all successor lower bounds minus the
respective accumulation value of the arc. Analogously, the upper bound is the maximum of
succeeding upper bounds minus accumulation value. An example is shown in Figure 7.

Instead of requiring additivity for all attributes, we divide the attributes into two cate-
gories: attributes with bounds that can be propagated and attributes for which we will not
propagate the feasibility criterion. For simplicity, we have chosen to limit propagation to
bounded attributes. The feasibility criterion of all attributes that we have seen in practice
can be expressed by bounds. To propagate bounds in the recursive formulation, we use the
initialization function of the roster-line entity and assume that the initialization function for
the attributes gives exactly the accumulation factor. In this case, bounds are propagated as
described above. If this is not the case, the bounds are not propagated.

The immediate advantage of using the initialization function to propagate bounds is
that no problem specific knowledge is required. The attribute values are not required to be
monotone (e.g. non-decreasing), and the user does not have to specify additional properties
of the attribute values. In the former projects, knowledge of e.g. maximum number of paid
hours per day has been used to propagate bounds. These bounds are weaker and require
more information from the user.
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Figure 7: Example of attribute bound propagation. lb1 and ub1 are calculated as:
lb1 = min{13− 2, 12− 5, 14− 5, 16− 8, 16− 10, 20− 13, 20− 14} = 6,
ub1 = max{16− 2, 14− 5, 14− 5, 18− 8, 18− 10, 24− 13, 24− 14} = 14.

4.3.2 Propagating attribute value domains from the start node

In the same way as bounds can be propagated backward from the end node, we can also
propagate the value domain of attributes forward from the start node. In this way, for each
node, we get a set of possible attribute values. Any value in the domain which is not in the
set of feasible values can be removed.

The value domains can be used to eliminate arcs from the graph. We check all arcs against
the value domain of their start node combined with the feasibility set of the end node. If
none of the values of the domain are accumulate to values of the feasibility set using that
arc, it can be eliminated from the graph. This check is only valid for additive attributes, but
the arc is eliminated if the condition is violated for one or more of the attributes. Figure 8
visualizes the idea.

See Appendix D for some general thoughts on bound propagation and for more ideas on
improving the shortest path algorithm.

4.4 Applying branching decisions

There are two ways that branching decisions can change the subproblem as described in
Section 3.2. A branching decision may enforce or prohibit a shift.

If a shift is prohibited, the appropriate node is excluded from the graph of the on-stretch
generation stage. This means that no on-stretches will contain the shift and therefore no
roster-lines contain the shift.

Enforcing a shift requires modifications in both the on-stretch generation and in the work-
stretch generation. In the graph of stage one, all shifts on the same day as the enforced shift,
are excluded from the graph (See Figure 9). In stage two, all off-stretches that overlap in
time with the enforced shift are excluded.

4.5 Domination

Domination is an important concept in all three stages of the subproblem solution algorithm.
So far we have not discussed how labels are actually compared in order to find the dominated
ones. The work-stretch generating stage described is not truly a label-setting algorithm, but
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Bounds:

Domains:

Figure 8: Example of attribute domain propagation. dl7 and du7 are calculated as:
dl7 = max(min{7 + 13, 7 + 14, 7 + 5, 7 + 12, 10 + 7, 10 + 3, 11 + 3}, 20) = max(12, 20) = 20,
du7 = min(max{10+13, 10+14, 11+5, 11+12, 17+7, 17+3, 18+3}, 24) = min(24, 24) = 24.
To eliminate arcs, the lower bound of the start node plus the accumulation value is compared
with the upper bound of the end node:
7 + 13 ≤ 24,7 + 14 ≤ 24, 7 + 5 ≤ 24, 7 + 12 ≤ 24, 10 + 7 ≤ 24, 10 + 3 ≤ 24, 11 + 3 ≤ 24.
Also, the upper bound of the start node plus the accumulation value is compared with the
lower bound of the end node:
10 + 13 ≥ 20, 10 + 14 ≥ 20, 9 + 5 ≥ 20, 9 + 12 ≥ 20, 15 + 7 ≥ 20, 14 + 3 ≥ 20, 14 + 3 ≥ 20.
This check eliminates the three arcs which have been crossed out in the figure.
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Figure 9: The graph of Figure 4 when shift 14 has been enforced by a branching decision.

the work-stretches generated can still be considered as labels and domination is applied as
in the shortest path problems.

A label la may be dominated if another label lb exists, where the cost of lb is less than or
equal to the cost of la. Any feasible extension of la must also be a feasible extension of lb,
and with the extension, lb must still cost no more than la. The values of the attributes are
compared to ensure that the extension of lb is always better than the extension of la.

It depends on the attribute, what a better value is and this must therefore be specified
as a part of the problem definition. A very strict requirement that is always valid is to
allow domination only when the values of the attribute are equal. If this is required for
all attributes, a feasible extension of la is always a feasible extension of lb and the cost
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of the labels are affected equally. Problem insight may relax the requirement for some
attributes. E.g., for some attributes a lower value is always to prefer. This happens if there
is no (effective) lower bound on the attribute value and if costs related to that attribute
are non-decreasing. There may even be attributes where the value can be ignored when
checking dominance. This would typically be attributes that only have an immediate effect
on the cost or the feasibility of the label and where the attribute value is not used in further
accumulations.

An important aspect of dominance is that we must always remember to account for indi-
rect effects. An attribute may be unbounded and with no related costs, but if it contributes
to the calculation of another attribute value, it may indirectly affect cost and feasibility. In-
direct effects may go across the stages of the subproblem solution algorithm. For this reason,
it is very hard, to infer dominance requirements of attributes automatically. We therefore
leave it to the user to specify those requirements. A safe setting is to only allow dominance
for equal attribute values. However, the algorithm is more efficient, the more relaxed the
domination requirements are.

5 Implementation

A major focus of this project has been on the implementation. From the beginning the goal
was to make an implementation, which can capture the generic problem definition given in
Section 1.4. At the same time it must be as efficient as a tailored implementation. This rather
ambitious goal was reached by creating an adjustable implementation, where the problem
definition is part of the input to the compiler, and the code implicitly includes the problem
definition. For a given problem, the definition is integrated in the rest of the code. The
generated compilation will behave as if the code was purpose built for that problem. That
said, there may naturally be problem specific properties that are not exploited, as we are
still building on a very general model. This setup requires the code to be recompiled when
it has been adapted to a new problem. It is thereafter possible to solve multiple instances of
the same problem with the executable program.

The implementation has been coded in C++ using the branch-and-cut-and-price framework
of COIN-OR (Lougee-Heimer, 2003) and the Preprocessor Library of Boost (Karvonen and
Mensonides, 2001). The code was continuously checked for memory leaks using the memory
checking tool of Valgrind (Seward and Nethercote, 2005). The implementation has been
optimized using the program profiler GProf (Graham et al., 1982). The subproblem solver is
implemented as a stand alone module and can therefore be compiled and tested independently.
This was very useful for debugging.

5.1 The user-file

All the user has to change to solve a new problem is the so called user-file. The user-file
contains the problem definition and the definition is parsed into the code where needed.
A design decision had to be made on the format to be used for formulating the problem
definition. In the current version, this format is build to fit the Boost Preprocessor Library.
This has the immediate advantage of not requiring an external parser. The Boost commands
are build on regular C++ syntax and hence any standard C++ compiler will parse the problem
definition in this format. This format may, however, not be completely intuitive. In a future
version it may be an idea to change to a more readable format, like e.g. xml, and develop a
dedicated model parser.

The user-file follows the problem definition presented in Section 1.4 closely. To solve
a given instance of a problem, it is, obviously, necessary to read the instance data from
somewhere. Therefore, in practice, the problem definition contains string names for things
that have to be read from an external source.

We illustrate the usage of the user-file by the example from before.

Example (continued). First, a few parameters are defined as described in Section 2.2.
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#define MAX_DAYS_IN_ONSTRETCH 6
#define MIN_MINUTES_BETWEEN_SHIFTS_END_TO_START 480
#define MIN_MINUTES_BETWEEN_SHIFTS_START_TO_START 1435
#define MAX_MINUTES_BETWEEN_SHIFTS_START_TO_START 2050
#define MAX_MINUTES_BETWEEN_SHIFT_OFFSTRETCH_END_TO_START 720

The definitions of shifts and off-stretches are straight forward. The keyword ATT is short
for the Boost command BOOST PP LIST CONS and similarly END is short for BOOST PP LIST NIL.
It is not essential to know these Boost commands to understand the definitions. The at-
tributes are defined as lists of single attribute definitions. In the definition, components/-
parents are referred to with a single letter identifying their type: shift (s), off-stretch(f),
on-stretch(o), work-stretch(w), roster-line(r). Below, we show the definition of shifts and off-
stretches. The attribute definitions have three arguments: internal attribute name, attribute
value type, and string name.

# define SHIFT_ATTRIBUTES \
ATT( (starttime , int, "Starttime"), \
ATT( (endtime , int, "Endtime") , \
ATT( (paidhours , int, "PaidHours"), \
ATT( (dayson , int, "DaysOn") , \
END )))))

#define SHIFT_NAME_TITLE "ShiftName"
#define SHIFT_COST_TITLE "Cost"
#define SHIFT_CONSTRAINTS_TITLE "Constrain Indices"

# define OFFSTRETCH_ATTRIBUTES \
ATT( (starttime , int, "Start Time"), \
ATT( (endtime , int, "End Time") , \
ATT( (daysoff , int, "DaysOff"), \
ATT( (weekendsoff , int, "WeekendsOff"), \
ATT( (singlesoff , int, "Single Days off"), \
END )))))

#define OFFSTRETCH_COST_TITLE "Cost"

The definitions of composite entities are not as simple, but they still follow the definition
presented in Section 1.4 strictly. As described in Section 4.5 it has been necessary to add
the domination criterion to the definition. The on-stretch is defined with 8 arguments:
internal attribute name, attribute value type, string name, feasibility type, domination type,
cost type, accumulation function, and initialization function. Additional parameter values
needed for the feasibility type or the cost type are read from the data input using the string
name of the attribute.

# define ONSTRETCH_ATTRIBUTES \
ATT( (paidhours12 , int, "" , feas_all , domi_exact , cost_none , \

o.paidhours12 + ((s.starttime < 20160)? s.paidhours : 0) , \
(s.starttime < 20160)? s.paidhours : 0 ) , \

ATT( (paidhours34 , int, "" , feas_all , domi_exact , cost_none , \
o.paidhours34 + ((s.starttime >= 20160)? s.paidhours : 0) , \
(s.starttime >= 20160)? s.paidhours : 0 ) , \

ATT( (starttime , int, "" , feas_all , domi_exact , cost_none , \
o.starttime , \
s.starttime ) , \

ATT( (endtime , int, "" , feas_all , domi_exact , cost_none , \
s.endtime , \
s.endtime ) , \

ATT( (dayson , int, "odayson" , feas_lbub , domi_exact , cost_lookup , \
o.dayson + s.dayson , \
s.dayson ) , \

ATT( (morntoaft , int, "morntoaft" , feas_all , domi_preferlow , cost_linear , \
o.morntoaft + ((s.starttime - o.prevsstarttime > 1445 \

&& s.starttime - o.prevsstarttime <= 1890) ? 1 : 0) , \
0 ) , \

ATT( (prevsstarttime , int, "" , feas_all , domi_none , cost_none , \
s.starttime , \
s.starttime ) , \

END )))))))

The work-stretch is defined similarly to the on-stretch, but has no accumulation function,
and hence takes the arguments: internal attribute name, attribute value type, string name,
feasibility type, domination type, cost type, and initialization function.

# define WORKSTRETCH_ATTRIBUTES \
ATT( (paidhours12 , int, "" , feas_all , domi_exact , cost_none , \

o.paidhours12 ), \
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ATT( (paidhours34 , int, "" , feas_all , domi_exact , cost_none , \
o.paidhours34 ), \

ATT( (starttime , int, "" , feas_all , domi_exact , cost_none , \
o.starttime ), \

ATT( (endtime , int, "" , feas_all , domi_exact , cost_none , \
f.endtime ), \

ATT( (dayson , int, "" , feas_all , domi_preferlow , cost_none , \
o.dayson ), \

ATT( (daysoff , int, "wdaysoff" , feas_all , domi_preferlow , cost_lookup , \
f.daysoff ), \

ATT( (singledaysoff , int, "" , feas_all , domi_preferlow , cost_none , \
f.singlesoff ), \

ATT( (feasonoff , int, "fe" , feas_lbub , domi_none , cost_none , \
(int)(o.dayson < 5 || !f.singlesoff) ), \

END ))))))))

Finally, the definition of roster-lines takes the same arguments as the definition of on-
stretches: internal attribute name, attribute value type, string name, feasibility type, domi-
nation type, cost type, accumulation function, and initialization function.

# define ROSTERLINE_ATTRIBUTES \
ATT( (paidhours12 , int, "2a" , feas_lbub , domi_exact , cost_none , \

r.paidhours12 + w.paidhours12 , w.paidhours12 ), \
ATT( (paidhours34 , int, "2b" , feas_lbub , domi_exact , cost_none , \

r.paidhours34 + w.paidhours34 , w.paidhours34 ), \
ATT( (dayson , int, "4" , feas_lbub , domi_preferlow , cost_none , \

r.dayson + w.dayson , w.dayson ), \
ATT( (daysoff , int, "5" , feas_lbub , domi_preferlow , cost_none , \

r.daysoff + w.daysoff , w.daysoff ), \
ATT( (singledaysoff , int, "16" , feas_lbub , domi_preferlow , cost_none , \

r.singledaysoff + w.singledaysoff , w.singledaysoff ), \
ATT( (endtime , int, "" , feas_all , domi_preferlow , cost_none , \

w.endtime , w.endtime ), \
END ))))))

In this way, the problem definition is formulated in a syntax that can be parsed by any
C++ compiler. It would be stretching it very far, to say that this is C++ code, but in the
following section, we show how the definition is converted to real code in the appropriate
parts of the code.

5.2 Code preprocessing

We are not going to present all the code for the entities, but in the following, we will present
the most important ideas that have enabled us to integrate the specific problem definition in
a generic solution algorithm. An essential part of the code is the definition of the attribute
object. The code for this is found in Appendix C.

We illustrate the idea by example.

Example (continued). The shift class contains a number of variables and functions, but
most importantly it has a field for each of the attributes, defined by:

#define STYPE(elem , n) Attribute <BOOST_PP_CAT (1, n), BOOST_PP_TUPLE_ELEM (3,1,elem), \
accu_none , init_none , feas_all , domi_exact , cost_none >

#define SATTR(_1, _2 , i, elem) STYPE(elem , i) BOOST_PP_TUPLE_ELEM (3,0,elem );;
BOOST_PP_LIST_FOR_EACH_I(SATTR , _, SHIFT_ATTRIBUTES );

In this example, the code above unrolls to the following:

Attribute <10, int, accu_none , init_none , feas_all , domi_exact , cost_none > starttime;
Attribute <11, int, accu_none , init_none , feas_all , domi_exact , cost_none > endtime;
Attribute <12, int, accu_none , init_none , feas_all , domi_exact , cost_none > shifttype;
Attribute <13, int, accu_none , init_none , feas_all , domi_exact , cost_none > paidhours;
Attribute <14, int, accu_none , init_none , feas_all , domi_exact , cost_none > dayson;

The remaining part of the class is mainly used to accommodate data input and output.
The off-stretch class is designed similarly to the shift class.

For the composite entities, more functionality is needed in the classes. We must be able
to initialize and accumulated entities correctly. Also, these entities must be checked for
feasibility and compared in domination checks. This is implemented by letting the attributes
themselves know how to initialize, accumulate, and check feasibility and domination. E.g. an
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on-stretch attribute knows, by calling its initialize-function, how to initialize its own value.
All it needs is a shift-object to initialize from.

The on-stretch class has the following fields and sub-classes related to its attributes:

#define OTYPE(elem , n) Attribute <BOOST_PP_CAT (2, n), BOOST_PP_TUPLE_ELEM (8,1,elem), \
BOOST_PP_CAT(accu_ , BOOST_PP_CAT (2, n)), BOOST_PP_CAT(init_ , BOOST_PP_CAT (2, n)), \
BOOST_PP_TUPLE_ELEM (8,3,elem), BOOST_PP_TUPLE_ELEM (8,4,elem), \
BOOST_PP_TUPLE_ELEM (8,5,elem)>

#define OACCU(_1, _2, i, elem) \
template <class T_value > class BOOST_PP_CAT(accu_ , BOOST_PP_CAT (2, i)) { \

public: T_value accumulate (const OnStretch& o, const Shift& s) const { \
return (BOOST_PP_TUPLE_ELEM (8,6,elem )); \

} \
};;

BOOST_PP_LIST_FOR_EACH_I(OACCU , _, ONSTRETCH_ATTRIBUTES );

#define OINIT(_1, _2 , i, elem) \
template <class T_value > class BOOST_PP_CAT(init_ , BOOST_PP_CAT (2, i)) { \

public: T_value initialize (const Shift& s) const { \
return (BOOST_PP_TUPLE_ELEM (8,7,elem )); \

} \
};;

BOOST_PP_LIST_FOR_EACH_I(OINIT , _, ONSTRETCH_ATTRIBUTES );

#define OATTR(_1, _2 , i, elem) OTYPE(elem , i) BOOST_PP_TUPLE_ELEM (8,0,elem );;
BOOST_PP_LIST_FOR_EACH_I(OATTR , _, ONSTRETCH_ATTRIBUTES );

This unroll to the following for paidhours12:

template <class T_value > class accu_20 {
public:

T_value accumulate (const OnStretch& o, const Shift& s) const {
return (o.paidhours12 + ((s.starttime < 20160)? s.paidhours : 0));

}
};

template <class T_value > class init_20 {
public:

T_value initialize (const Shift& s) const {
return ((s.starttime < 20160)? s.paidhours : 0);

}
};

Attribute <20, int, accu_20 , init_20 , feas_all , domi_exact , cost_none > paidhours12;

The attribute values are initialized in the constructor. The constructor calls the con-
structors of each of the attributes and these will in turn call the appropriate initialization
or accumulation functions. The on-stretch constructor makes the following initializations
(among other things that are not shown here):

OnStretch(const Shift& s) :
// ... lines omitted ...

# define OCONS1(_1, _2, elem) , BOOST_PP_TUPLE_ELEM (8,0,elem)(s)
BOOST_PP_LIST_FOR_EACH(OCONS1 , _, ONSTRETCH_ATTRIBUTES)

{}

This unrolls to:

OnStretch(const Shift& s) :
// ... lines omitted ...
paidhours12(s),
paidhours34(s),
starttime(s),
endtime(s),
dayson(s),
morntoaft(s),
prevsstarttime(s)

{}

As shown above, the on-stretch constructor passes the shift to the attribute constructors.
They will in turn pass it to the initialization function, which knows what information to
extract from the shift, as it was illustrated for paidhours12.

In the same way, the on-stretch also has a function to check feasibility. An on-stretch is
feasible only if all attributes have feasible values. Therefore, the feasibility check is imple-
mented as:
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inline bool OnStretch :: checkFeasibility () const {
# define OCHKF(_1, _2 , elem) \

if(!( BOOST_PP_TUPLE_ELEM (8,0,elem). checkFeasibility ())) return false;;
BOOST_PP_LIST_FOR_EACH(OCHKF , _, ONSTRETCH_ATTRIBUTES );

return true;
}

This unrolls to:

inline bool OnStretch :: checkFeasibility () const {
if(!( paidhours12.checkFeasibility ())) return false;
if(!( paidhours34.checkFeasibility ())) return false;
if(!( starttime.checkFeasibility ())) return false;
if(!( endtime.checkFeasibility ())) return false;
if(!( dayson.checkFeasibility ())) return false;
if(!( morntoaft.checkFeasibility ())) return false;
if(!( prevsstarttime.checkFeasibility ())) return false;

return true;
}

The checkFeasibility()-function of the attributes is identified by the feasibility type
in the attribute definition. For example, an attribute with the feas all feasibility type has
the following function:

bool checkFeasibility () const {
return true;

}

The function is obviously redundant, but this format makes the setup very versatile.
We make sure that functions are declared inline and that the compiler is set to optimize
the program. Compiler optimization will remove the overhead introduced by the redundant
functions.

Feasibility type feas lbub introduces the following function, where the bound values have
been initialized appropriately:

bool checkFeasibility () const {
return (this ->value >= lb && this ->value <= ub);

}

The implementation of domination is similar to the implementation presented for feasi-
bility check.

6 Conclusions and future work

In this project, we have successfully implemented a Branch-and-Price algorithm to solve the
generalized rostering problem. The solution approach builds on a generic model and hence
allows solution of problems with varying characteristics. A literature study indicated that
there is a gap between the current rostering research and the requirements from the end users.
From the literature and by looking at the rostering problems at hand, it was clear that a
solution approach to the generalized rostering problem must be very flexible. At the same
time, rostering problems are typically highly constrained and it is often a demanding task to
even find feasible solutions. Therefore the solutions approach must not only be flexible, but
also very efficient.

To meet these requirements, the problem was modeled as a generalized set partitioning
problem and a branch-and-price algorithm was built to solve the problem. The column gener-
ating subproblem is modeled in three stages which is essential to make the problem tractable
in realistic settings. A number of improvements of the subproblem solution algorithm were
also discussed.

To give maximum flexibility and maximum performance, the problem definition was in-
cluded implicitly in the implementation. This allows the user to specify rules and constraints
which are special for a particular problem. The code is recompiled when a new problem
definition is given, and this ensures a high efficiency throughout the algorithm. Using the
approach presented here, it is possible to model all constraints seen in the 10 application
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found in former projects as well as all commonly occurring constraints listed by Cheang
et al. (2003) and all but one of the constraints in Burke et al. (2009). The last constraint
models tutorship, and it is not straight forward to introduce a dependency between employ-
ees in the model, as this cannot be dealt with in the subproblem. It would, naturally, be
very interesting to extend the model to also capture this last constraint type.

The value of the algorithm was illustrated for two different nurse rostering applications.
It was possible to find optimal solutions for both applications. The solution time is, however,
still too high for the algorithm to be directly applicable in practice.

Future work should, in our opinion, primarily be focus on algorithmic improvements and
on extending the number of applications.

Algorithmic improvements could be in the master problem, where e.g. dual stabilization
has been employed with success in similar problems. It would also be interesting to run
experiments, where parts of the master problem are locked while the remaining problem is
solved.

The algorithm has so far been able to prove optimality of found solutions. In practice, this
is very seldom a desired feature, and future work on the algorithm should try to incorporate
heuristic choices, wherever possible, to make the algorithm faster. It would be very nice, if
such improvements could be turned on and off as desired. This would mean that optimal
solutions could still be found for testing and benchmarking purposes. Even when proving
optimality, most columns can still be generated with heuristics. In the best case, an exact
pricing problem is only used to verify optimality.

Including the setup for new problems is hopefully relatively uncomplicated. On the way, it
may uncover required features that are not currently supported in the algorithm. Hopefully,
it will be easier and easier to adapt to new problems as new modeling features are made
available. It is certainly our belief that it is possible to capture all important features in this
framework. This would be verified by modeling new rostering problems from the real-world
as well as problems from the literature. A good place to start may be with the datasets
collected by the EURO Working Group on Automated Timetabling (Curtois, 2009).

When building decision support software, it is important to involve the industrial partners
early in the process. The algorithm developed here is founded in work which has been carried
out in close cooperation with the industry. However, the model presented has not been
evaluated by industrial partners yet, and hence this should be given high priority in the work
that follows.

To complete the work on this project there are a few other things that have to be done
as well. The whole setup should be tested algorithmically. It would be very nice to get a
detailed overview of how time is spent and how the proposed improvements affect solution
time. As different settings are tested for new problems, it should also be assessed how the
new settings affect solution time. This would eventually put our approach into a greater
context. A number of questions should be answered in the work that follows: Can we solve
all problems? Which problems can we not solve, and why? How long time does it take to
change the setup to a new problem? How long time would we expect it to take, to solve the
new problem? What are the limitations with respect to the size of the problems?

Burke et al. state that:

The current state of the art is represented by interactive approaches which in-
corporate problem specific methods and heuristics (that are derived from specific
knowledge of the problem and the required constraints) with powerful modern meta-
heuristics, constraint based approaches and other search methods. - Burke et al.
(2004)

We believe that we have provided a viable alternative to those methods.
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A Optimal solution of the Middlemore test instance

Total obj = 23

Days
Nurse Cost 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

0 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
1 0 M M M - - - - M M M M M - - M M M M M - - - - M M M - -
2 0 M M M M M - - M M M M M - - A A A A A - - M M M M M - -
3 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
4 0 - - M M M M M - - M M M M M - - M M M M M - - M M M MM
5 0 N - - N N N N - - N N N N N - - N N N N N - - N N N N N
6 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
7 0 M M M M M - - M M M M M - - M M M M M - - M M M M - - -
8 0 A A A - - M M M - - - M M M M M - - - A A A A - - M MM
9 0 N N - M M - - M M M M M - - - M M M M - - M M M M M - -
10 0 M M M - - - - M M M M M - - M M M M M - - M M M - - - -
11 0 M M M M M - - M M - - - - - M M M M M - - - - - M M - -
12 0 6 6 6 - - - - 6 6 6 6 6 - - 6 6 6 6 6 - - - - 6 6 6 - -
13 0 8 6 6 6 - - - 8 6 - - - - - 8 6 6 6 - - - 8 6 - - - - -
14 0 - 6 6 6 6 - - - - - 6 6 - - 6 6 6 - - 6 6 6 - - - - - -
15 0 6 6 - - - - - 6 6 - - - M M - - - - - - - 6 6 6 6 - - -
16 0 M M - - - - - - M M - - - - - - - - - - - M M M M - - -
17 0 M M M M M - - M M M M - - - M M M M M - - M M M M - - -
18 0 A - - - M M M M M - - A A A A A - - - A A A A A - - A A
19 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
20 0 M M - - M M M M M - - M M M M M - - M M M M M - - M MM
21 10 - - A A A A A - - A A A A A - - A A A A A - - A A A A A
22 0 M M - - M M M - - M M M - - M M M M M - - - M M M - - -
23 0 M M M M M - - - - M M M - - M M M M M - - - - M M M - -
24 0 - - - - - - - 6 6 6 - - - - - - - 6 6 6 6 - - - 6 6 - -
25 0 - - M M M M M - - M M M M M - - M M M M M - - M M M MM
26 0 M M M M M - - M M M M M - - M M - - M M M M M - - A A A
27 0 M M - - A A A A A - - A A A A A - - A A A - - M M M MM
28 0 A - - M M M M M - - M M M M M - - M M M M M - - A A A A
29 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
30 0 M M M - - A A A - - - A A A - - - M M M M - - A A A A A
31 0 - - A A A A A - - - M M M M M - - - A A A A - - A A A A
32 0 M M M M M - - - A A A A - - M M M M - - - M M M M M - -
33 0 A A A A - - - M M M M M - - M M M M M - - M M M M - - -
34 0 M M M M M - - - M M M M - - - M M M M - - M M M M M - -
35 0 - - - - - - - A A A A - - - M M M M M - - - - M M M - -
36 0 M M M M M - - - 8 8 8 8 - - - 8 8 8 8 - - N N N N N - -
37 0 - - - - - N N - - - M M - - N - M - - - - N N - - - - -
38 0 - - 6 6 6 - - - - 6 6 6 - - - 6 6 6 6 - - 6 6 - - - - -
39 0 - M M M M - - M M M M M - - M M M M - - - M M M M M - -
40 0 A A - - A A A - - - - - - - - - - - - - - M M M M M - -
41 0 M M M M - - - M M M M M - - - M M M M - - M M M M M - -
42 0 M M M M M - - M M M M - - - M M M M M - - - M M M M - -
43 0 M M M M M - - M M M M - - - M M M M - - - M M M M M - -
44 2 - - 8 8 - - - M 8 8 - - - - M 8 8 - - - - - 8 8 - - - -
45 0 A A A A A - - A A A A A - - A A A A - - - A A - - A A A
46 0 M M M M M - - M M M M M - - A A - - M M M M - - A A A A
47 0 M M M M M - - M M M M M - - - N N N - M M - - M M M MM
48 0 A A A A - - - A A A A - - - M M M M M - - M M M M M - -
49 0 M M M M M - - - M M M M - - M M M M M - - M M M M - - -
50 0 M M M M M - - M M M M - - - M M M M - - - M M M M M - -
51 0 M M M M M - - M M M M - - - - M M M M - - M M M M M - -
52 0 - - - - - - - - - - - - - - A A A A A - - M M M M - - -
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53 0 - - - M M M M M - - A A A A A - - - A A A A A - - M MM
54 0 N N N - - N N N N - - - N N N N - - N N N - M M - - N N
55 0 M - - A A - - M M M M M - - M M M M M - - - - A A A - -
56 0 - - - - A A A A - - M M M M M - - A A - - M M M M M - -
57 0 A A - - - - - - - - - - - - - M M M - - - A A A - - - -
58 1 - - - - - - - A A A - - A 6 6 - - M M - - - - - - - MM
59 0 - - - - - - - - A A A - - - - - - - - - - - - A A A - -
60 0 - - A A A - - - - - - - - - - - A A A - - - - - - - - -
61 0 - M M M M - - M M M M M - - M M M M - - - M M M M M - -
62 0 M M M M M - - M M M M - - - - M M M M - - M M M M M - -
63 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
64 0 - M M M M - - M M M M M - - M M M M - - - M M M M M - -
65 0 M - - M M M M M - - - M M M M - - M M M M M - - - M MM
66 0 A A A A A - - M M M M M - - M M M M M - - M M M M M - -
67 0 - - N N N N N - - N N N N N - - N N N N N - - N N N N N
68 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
69 0 - M M M M - - M M M M M - - M M M M - - - M M M M M - -
70 0 - - - - - 6 6 6 - - - 6 6 6 6 - - - - - - 6 6 6 6 6 - -
71 0 M M M M M - - M M M M M - - M M M M M - - M M M M M - -
72 0 - N N N N - - N N N N N - - N N N N - - - M M M M M - -
73 0 8 8 8 - - - - 8 8 8 - - - - 8 8 - - - - - 8 8 8 8 - - -
74 10 - 8 8 8 8 - - N N N N - - - - 8 8 8 8 - - N N N N - - -
75 0 M M M M M - - - M M M M - - M M M M M - - A A A A - - -
76 0 A A A A A - - M M M M - - - A A A A A - - M M M M - - -
77 0 A A - - - - - - M M M M - - - A A - - - - M M M M - - -
78 0 M M M M M - - - - A A A - - M M M M M - - A A A - - - -
79 0 N N N N N - - N N - - N N N N N - - N N N N N - - N N N
80 0 - - - A A - - A A - - - - - A A A A - - - - - - - - - -
81 0 M M - - - M M - - A A - - - M M M M - - - - A A - - - -
82 0 M M M - - A A A - - A A A A - - M M M M M - - M M M MM
83 0 M - - M M - - M M M M M - - - - M M M - - M M M M M - -
84 0 M M M M - - - - A A - - M M - - A A A - - A A A A A - -
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Overview of demands with (number of employees assigned) / (demand):

Days

Shifts Skills Type Cost 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

6A 0 ≥ 0 3
1

3
1

2
1

2
1

3
1

1
1

1
1

4
1

4
1

2
1

2
1

2
1

1
1

1
1

2
1

2
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

1
1

1
1

2
1

2
1

2
1

6A 2 ≥ 0 12
9

12
9

12
9

11
9

10
9

10
9

10
9

9
9

10
9

11
9

12
9

12
9

10
9

9
9

10
9

12
9

11
9

10
9

10
9

10
9

6A 3 = 0 13
13

13
13

13
13

13
13

13
13

8
8

8
8

13
13

13
13

13
13

13
13

13
13

8
8

8
8

13
13

13
13

13
13

13
13

13
13

8
8

8
8

13
13

13
13

13
13

13
13

13
13

8
8

8
8

6A 5 ≥ 0 2
2

2
2

2
2

3
2

5
2

4
2

4
2

3
2

2
2

2
2

5
2

4
2

3
2

4
2

4
2

2
2

2
2

3
2

3
2

4
2

6A 6 ≥ 0 3
3

3
3

3
3

4
3

5
3

5
3

5
3

4
3

4
3

3
3

6
3

4
3

3
3

4
3

5
3

3
3

3
3

3
3

3
3

4
3

8M 1 ≥ 0 20
12

17
12

16
12

16
12

17
12

18
12

20
12

19
12

20
12

21
11

18
12

18
12

19
12

20
12

21
12

18
12

16
12

20
12

19
12

16
11

8M 3 ≥ 0 43
42

44
42

42
42

42
42

42
42

42
42

43
42

44
42

45
42

41
41

42
42

45
42

46
42

48
42

42
42

43
42

43
42

49
42

47
42

41
41

8M 6 ≥ 0 10
5

11
5

10
5

11
5

11
5

11
5

11
5

10
5

11
5

8
5

9
5

11
5

11
5

12
5

9
5

11
5

11
5

13
5

13
5

12
5

A 3 ≥ 0 11
9

9
9

9
9

10
9

11
9

7
6

7
6

9
9

9
9

10
9

10
9

9
9

7
6

6
6

9
9

9
9

9
9

9
9

10
9

6
6

6
6

9
9

9
9

10
9

9
9

10
9

8
6

8
6

M 0 ≥ 0 1
1

1
1

2
1

2
1

3
1

3
1

3
1

3
1

M 2 ≥ 0 7
7

7
7

8
7

8
7

8
7

8
7

8
7

8
7

M 3 = 0 10
10

10
10

10
10

10
10

10
10

10
10

10
10

10
10

M 6 ≥ 0 1
1

1
1

1
1

1
1

2
1

2
1

4
1

4
1

N 0 ≥ 0 2
1

2
1

2
1

1
1

1
1

2
1

2
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

1
1

2
1

2
1

2
1

2
1

2
1

2
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

N 2 ≥ 0 3
3

3
3

3
3

3
3

3
3

4
3

4
3

3
3

3
3

4
3

4
3

3
3

3
3

3
3

3
3

3
3

4
3

4
3

3
3

3
3

3
3

3
3

3
3

4
3

4
3

3
3

3
3

3
3

N 3 = 0 4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

Overview of demands showing surplus for each demand:

Days

Shifts Skills Type Cost 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

6A 0 ≥ 0 2 2 1 1 2 - - 3 3 1 1 1 - - 1 1 - - - - - 1 1 - - 1 1 1

6A 2 ≥ 0 3 3 3 2 1 1 1 - 1 2 3 3 1 - 1 3 2 1 1 1

6A 3 = 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

6A 5 ≥ 0 - - - 1 3 2 2 1 - - 3 2 1 2 2 - - 1 1 2

6A 6 ≥ 0 - - - 1 2 2 2 1 1 - 3 1 - 1 2 - - - - 1

8M 1 ≥ 0 8 5 4 4 5 6 8 7 8 10 6 6 7 8 9 6 4 8 7 5

8M 3 ≥ 0 1 2 - - - - 1 2 3 - - 3 4 6 - 1 1 7 5 -

8M 6 ≥ 0 5 6 5 6 6 6 6 5 6 3 4 6 6 7 4 6 6 8 8 7

A 3 ≥ 0 2 - - 1 2 1 1 - - 1 1 - 1 - - - - - 1 - - - - 1 - 1 2 2

M 0 ≥ 0 - - 1 1 2 2 2 2

M 2 ≥ 0 - - 1 1 1 1 1 1

M 3 = 0 - - - - - - - -

M 6 ≥ 0 - - - - 1 1 3 3

N 0 ≥ 0 1 1 1 - - 1 1 - - - - - 1 1 - 1 1 1 1 1 1 - - 1 1 1 1 1

N 2 ≥ 0 - - - - - 1 1 - - 1 1 - - - - - 1 1 - - - - - 1 1 - - -

N 3 = 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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B Rigshospitalet - Anæstesi- og operationsklinik

B.1 Problem definition

Shift

ReducedCost
StartTime
EndTime
PaidHours
WeekendsOn
WeekendPenalty

OffStretch

FixedCost
StartTime
EndTime
BFEven
BFOdd
DaysOff

OnStretch

Feasibility Cost Initialization Accumulation

AccuCost - - - -
StartTime Always feas None StartTime(ParentOn) StartTime(CompShift)
EndTime Always feas None EndTime(CompShift) EndTime(CompShift)

PaidHours Always feas None PaidHours(CompShift)
PaidHours(ParentOn)
+ PaidHours(CompShift)

WeekendsOn UB None WeekendsOn(CompShift)
WeekendsOn(ParentOn)
+ WeekendsOn(CompShift)

WeekendPenalty Always feas None WeekendPenalty(CompShift)
WeekendPenalty(ParentOn)
+ WeekendPenalty(CompShift)

WorkStretch

Feasibility Cost Initialization

AccuCost - - -
StartTime Always feas None StartTime(CompOn)
EndTime Always feas None EndTime(CompOff)
PaidHours Always feas None PaidHours(CompOn)
BFEven Always feas None BFEven(CompOff)
BFOdd Always feas None BFOdd(CompOff)
WeekendsOn Always feas None WeekendsOn(CompOn)
WeekendPenalty Always feas None WeekendPenalty(CompOn)

RosterLine

Feasibility Cost Initialization Accumulation

AccuCost - - - -
StartTime Always feas None StartTime(CompWork) StartTime(ParentRos)
EndTime Always feas None EndTime(CompWork) EndTime(CompWork)

PaidHours LB and UB None PaidHours(CompWork)
PaidHours(ParentRos)
+ PaidHours(CompWork)

InfeasWeekend UB None 0 11

LastWeekendOn Always feas None WeekendsOn(CompWork) WeekendsOn(CompWork)2

BFEven Always feas None BFEven(CompWork)
BFEven(ParentRos)3

+ BFEven(CompWork)

BFOdd Always feas None BFOdd(CompWork)
BFOdd(ParentRos)4

+ BFOdd(CompWork)

BFCost Always feas Linear 0
(2 - BFEven(ParentRos))3

+ (2 - BFOdd(ParentRos))4

+ BFCost(ParentRos)

BFCostPartTime Always feas Linear 0
(3 - BFEven(ParentRos))3

+ (3 - BFOdd(ParentRos))4

+ BFCost(ParentRos)

WkdPenalty Always feas LinearCap WkdPenalty(CompWork)
WkdPenalty(ParentRos)
+ WkdPenalty(CompWork)

1 If LastWeekendOn(ParentRos) = 1 ∧ WeekendsOn(CompWork) = 1, =0 otherwise.
2 If CompWork starts in one week and ends in another, =LastWeekendOn(ParentRos) otherwise.
3 If CompWork does not start in an odd week and end in an even week, =0 otherwise.
4 If CompWork does not start in an even week and end in an odd week, =0 otherwise.
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B.2 Optimal solution

Total obj = 286

Days
Nurse Skills Cost 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

0 0, 1 0 D D D D D - - D D D D D - - D D D D D - - D D D D D - - -
1 0, 2 13 N - D N - - - D N - N - - - D D D D L - - N - D D D - N -
2 0, 3 2 - D D L N - - D D D D L - - D D D D D - - D D D D D - - -
3 0, 4 2 D D D D D - - D D N - D - - L A L D D - - D D - L N - - -
4 0, 1 0 D D D D D - - D D D D D - - D D D D D - - D D D D D - - -
5 0, 2 0 D D D D D - - D D D D D - - D D D D D - - D D D D D - - -
6 0, 3 2 D D D D D - - D L D D L - - D - D D N - - D D D D D - - -
7 0, 4 0 D D D D D - - D D D D D - - D D D D D - - D D D D D - - -
8 0, 1 0 D D D D D - - D D D D D - - D D D D D - - D D D D D - - -
9 0, 2 2 - D D D N - - D D D D D - - D D L D D - - D D D D L - - -
10 0, 3 15 D D D D D - - D D D A D - N - D - D D - - D D D D D - - -
11 0, 4 2 D D D A L - - D D D D D - - D D D - N - - L D D D D - - -
12 0, 1 2 D D D D D - - D D D D D - - D D D D L - - - L D D N - - -
13 0, 2 2 D D A D D - - L D D - N - - D D D D D - - D D D D L - - -
14 0, 3 13 D N - L D - - N - D N - - - N - D D D - - N - L N - - N -
15 0, 4 12 D L N - D - - A D D D D - - D D N - D - - D N - - D N - -
16 0, 1 2 A D D D L - - L D - D N - - D D D D A - - D D D D D - - -
17 0, 2 12 D N - D D - - D N - D D - - A D D N - - - D L D D - N - -
18 0, 3 28 L D N - - - - N - L L - N - D - N - D - - D D N - - - - -
19 0, 4 25 D A D - - - N - D L - D - - D L - L - - N - D - L D - - -
20 0, 1 25 - D D D - - N - D - L D - - L L D - - - N - - L D D - - -
21 0, 2 39 D D - - A N - D - D D D - - - N - A - N - A N - - D - - -
22 0, 3 36 N - D N - - - D D - - A N - N - - D D - - D D D N - - - -
23 0, 4 31 - L L - - N - - L N - D - - - N - L - N - L - N - D - - -
24 0, 1 21 L - L D D - - D A D D - - N - - A N - - - D A - A A - - -
25 2 0 D D D D D - - D D D D D - - D D D D D - - D D D D D - - -
26 3 0 D D D D D - - D D D D D - - D D D D D - - D D A D D - - -
27 4 0 D D D D D - - D D A D D - - D D D D D - - D D D D D - - -
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Days
Shifts Skills Cost 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

A 0 - - - - - - - - - - - - - - - - - - - -
D 0 4 5 5 3 5 4 4 2 2 6 4 3 3 4 5 4 3 2 3 6
D 1 0 3 5 5 6 4 4 5 4 5 4 4 4 5 4 2 4 3 4 5 4
D 2 0 4 4 3 4 3 5 3 4 4 4 4 5 4 4 3 4 3 5 5 3
D 3 0 3 4 4 2 3 4 3 4 2 1 3 2 3 5 5 5 5 3 3 3
D 4 0 5 3 4 2 3 3 5 2 3 6 4 3 2 2 3 3 4 2 2 5
L 0 - - - - - - - - - - - -
L 0 0 - - 1 1 1 - - 1 1 1 - - 1 1 1 - - 1 1 1
N 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Days

Shifts Skills Cost 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

A 0 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

D 0 19
15

20
15

20
15

18
15

17
12

20
16

20
16

18
16

18
16

19
13

19
15

18
15

18
15

19
15

17
12

20
16

19
16

18
16

19
16

19
13

D 1 0 4
1

6
1

6
1

7
1

5
1

5
1

6
1

5
1

6
1

5
1

5
1

5
1

6
1

5
1

3
1

5
1

4
1

5
1

6
1

5
1

D 2 0 5
1

5
1

4
1

5
1

4
1

6
1

4
1

5
1

5
1

5
1

5
1

6
1

5
1

5
1

4
1

5
1

4
1

6
1

6
1

4
1

D 3 0 4
1

5
1

5
1

3
1

4
1

5
1

4
1

5
1

3
1

2
1

4
1

3
1

4
1

6
1

6
1

6
1

6
1

4
1

4
1

4
1

D 4 0 6
1

4
1

5
1

3
1

4
1

4
1

6
1

3
1

4
1

7
1

5
1

4
1

3
1

3
1

4
1

4
1

5
1

3
1

3
1

6
1

L 0 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

L 0 0 2
2

2
2

2
1

2
1

2
1

2
2

2
2

2
1

2
1

2
1

2
2

2
2

2
1

2
1

2
1

2
2

2
2

2
1

2
1

2
1

N 0 0 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2
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C Attribute.hpp

template <int id, class T_value ,
template <class >class T_accum ,
template <class >class T_init ,
template <int,class > class T_feas ,
template <class > class T_domi ,
template <int,class > class T_cost >
class Attribute :

public T_accum <T_value >,
public T_init <T_value >,
public T_domi <T_cost <id,T_value > >,
public T_feas <id,T_value >

{
public:

Attribute () {}
Attribute(T_value value_) {

this ->value = value_;
}
template <class Component2 > Attribute(const Component2& c2) {

this ->value = this ->initialize(c2);
}
template <class Component1 , class Component2 >
Attribute(const Component1& c1, const Component2& c2) {

this ->value = this ->accumulate(c1, c2);
}

bool non_dominating(
const Attribute <id, T_value , T_accum , T_init , T_feas , T_domi , T_cost > &a,
double& rcdiff) const {

return this ->non_dominating_base(this ->value , a.value , rcdiff );
}

operator T_value () const {return this ->value;}
Attribute <id , T_value , T_accum , T_init , T_feas , T_domi , T_cost >&

operator= (const T_value value_) {
this ->value = value_;
return *this;

}
};
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D Improving the shortest path algorithm

In the following, we describe some ideas to further improve the shortest path algorithm of
stage three in the subproblem solver. Most of the improvements suggested here are still of the
exact algorithm, and hence give an enhanced performance without compromising optimality.
Optimality is, however, not required and much more can be gained by switching to a heuristic
approach. In the last subsection we sketch a few ideas on how to do this.

D.1 Bounding the reduced cost

As we are only creating columns with negative reduced cost, we implicitly have a upper
bound on the reduced cost of the end node labels (equal to 0). As the reduced costs are
added together, this bound may be propagated just as the attributes are. This will remove
labels which can never expand to columns with negative reduced cost.

D.2 Safe bounds

As well as propagating bounds and value domains in the graph, we may also calculate safe
bounds. The intention of a safe bound is to identify attribute values which are so far from
their bounds that they will never be able to introduce additional cost and will never lead
to infeasible labels. This can be used to dominate more labels. Let us illustrate the idea
by a small example. We have two labels la and lb, which only differ in attribute values on
attribute a1. lb has a lower reduced cost than la. If the domination criterion of a1 requires
the values to be equal to allow domination, la cannot be dominated. However, we may be
able to deduce that the value of a1 for e.g. lb is so small that it will never be able to reach
its upper bound, but at the same time the value is so large that it is always above the lower
bound. In that case, la may be removed, as any feasible extension of la is also a feasible
extension of lb. We must of course remember to account for indirect effects as well.

It may not seem like a very useful improvement of the algorithm. There are however
some cases, where many attribute values fall within the safe bounds. In some cases, the safe
bounds even coincide with the propagated feasibility bounds. In such a case, the attribute
can be disregarded, altogether, when checking domination. This special case occurs, when an
attribute is not changed in the last part of the graph. If, for example, we have an attribute
that counts the number of hours worked in the first week, then after the first week, we should
be able to evaluate the value of the attribute and thereafter disregard it. The safe bound
will capture this without any problem specific knowledge, i.e. it is not necessary to specify a
point in time after which the attribute is not changed.

D.3 Bidirectional search

If all attributes are additive, we may solve the shortest path problem with a bidirectional
search as described by Righini and Salani (2006) for the vehicle routing problem with time
windows. As we are solving a one-to-one shortest path problem, instead of creating all labels
from the start node, we can also expand labels backwards from the end node. This requires
the definition of an inverse accumulation function for all attributes, which is of course easy,
if they are all additive. Requiring additivity for all attributes limits the model significantly,
which is against the basic idea of our setup. It may, however, give a significant speed up, so
it may be worth considering as a functionality that can be switched on and off depending on
the problem definition.

D.4 Faster dominance check for attributes with ”equal” require-
ment

In the domination check, instead of checking labels for attribute values which have to be
equal, we may store the labels in a way, so the check is unnecessary. If we store each label in

34



a set where all other labels of the set hold exactly the same values of the ”must-be-equal”-
attributes, then we only need to check domination between the labels of this set and the
attributes used for storing do not have to be checked. In the implementation, a Map or a
HashTable could be used to store the sets.

D.5 Generalization of bound propagation

So far, we have assumed that attributes are additive when bounds are propagated. This
assumption may be relaxed slightly. If an attribute is not additive bounds can still be
propagated if:

Non-decreasing value If the value of the attribute is guaranteed to be non-decreasing the
upper bound of the end node may be copied to all other nodes. If the value of the
attribute ever exceeds the upper bound, it will not be able to decrease below that
bound.

Non-increasing value As for a non-decreasing value, a non-increasing value allows us to
copy the lower bound of the end node to all other nodes.

Initialization has least effect If the initial attribute value is equal to or less than any
effect that the accumulation function may have on the attribute value, then the upper
bound may be propagated back from the end node, using the initialization function.
As the accumulation function will always increase the value of the attribute with at
least the same amount, the bound may be lowered with the value of the initialization
function.

Initialization has most effect Similarly, the lower bound may be propagated back from
the end node, if the accumulation function always increases the value of the attribute
with at most the initialization value.

A special case is where the attribute is additive and the initialization value is equal to
the accumulation value. In this case, the initialization has both least effect and most effect
and hence both bounds are propagated.

D.6 Dominance by attribute valuation

For some attributes it is possible to put a price on the value difference for a certain attribute.
E.g. if we have two labels la and lb, which only differ in attribute values on attribute a1. If
la has a1 = 0 and lb has a1 = 1 and there is a linear cost on a1, then lb may still be able
to dominate la if the difference in reduced cost is already larger than the linear cost on a1.
This is a generalization of an idea described by Chabrier (2006) for node costs.

D.7 Collapse graph for roster-line generation

The graph for roster-line generation contains a very large number of arcs between few nodes.
We may be able to use arc aggregation to decrease the size of the network. See Engineer
et al. (2008) for more on this.

D.8 Solving the subproblem heuristically

The main time of the shortest path problem solution algorithm is spent creating and com-
paring labels. Hence, significant speedups can be achieved by reducing the number of labels.

One way of reducing the number of labels is to make the intermediate feasibility criterions
stricter, i.e. by imposing stricter bounds. It may sometimes be ”almost impossible” for labels
to extend to feasible roster-lines in the end node and we may chose to remove these labels.
Similarly, as we above described an upper bound on the reduced cost, this bound may be
lowered to remove unpromising labels.
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The domination criterion can also be heuristic. For attributes that require equal values,
we may introduce a tolerance, as describe by Engineer (2003). This could also be extended
to attribute values required to be ”less than” or ”greater than”, so they are instead required
to be ”almost less than” or ”almost greater than”. If we are using dominance by attribute
valuation as described above, the price of the attribute difference may be estimated to be
lower than what is theoretically possible. More labels are dominated if the price is lowered.
This was also proposed by Chabrier (2006) for node costs.

We may put a hard limit on the number of labels in each node. The smaller this limit
is, the faster the algorithm is. It takes careful considerations to choose the remaining labels
carefully. However, if chosen wisely, we may not sacrifice much on quality of the generated
columns, while the speedup may be substantial. This idea was also employed by Engineer
(2003).
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