

Customised Column Generation for

Rostering Problems:
Using Compile-time Customisation to create a

Flexible C++ Engine for Staff Rostering

Andrew J Mason and David Ryan

Department of Engineering Science

School of Engineering

University of Auckland

New Zealand

a.mason@auckland.ac.nz

Anders Dohn

Department of Management Engineering

Technical University of Denmark

Abstract

This paper describes a new approach for easily creating customised staff rostering

column generation programs. In previous work, we have built a large very flexible

software system which is tailored at run time to meet the particular needs of a client.

This system has proven to be very capable, but is difficult to maintain, and incurs the

time penalties of run-time customisation. Our new approach is to customise the software

at compile time, allowing compiler optimisations to be fully exploited to give faster

code. The code has also proven to be easier to read and debug.

Keywords: Rostering, Column Generation

1 Introduction

For many years, staff in the Engineering Science department have been involved in

developing rostering software for organisations such as NZ Customs, TabCorp and Air

New Zealand (Mason, 1995; Mason, 2001). Each of these rostering problems has its

own characteristics and requirements, and so has required customised software

development. A long term goal has been to develop a flexible rostering engine that can

be applied to rostering problems from a wide range of problem domains.

In 1995, Andrew Mason and Mark Smith, a masters student at the University of

Auckland, developed a very fast column generation system in the Fortran programming

language to solve a particular nurse rostering problem (Smith 1995; Mason and Smith,

1998). This system used a nested column generation approach (described below) to

quickly construct entering columns for the underlying set partitioning problem. The

speed of this system is perhaps best illustrated by the experimental finding that

generating just one column at a time gave the best performance; we are unaware of any

mailto:a.mason@auckland.ac.nz

other system for which is the case. Although very fast, this system was difficult to

customise for different problems.

This project was followed by the work of PhD student David Nielsen, who in 2003

developed a software system whose capabilities were sufficiently general to solve a

range of staffing problems (Nielsen, 2003). This system was successfully implemented

by Mantrack for one of their clients, TabCorp. However, this system did not use column

generation which made it most suitable for problems such as those with flexible part

time staff where the rosters have little long term structure.

In 2002, Andrew Mason and masters student Faram Engineering developed a new C++

GENIE software system which generalised the key ideas in the earlier work (Engineer,

2003). This system was much more flexible, but this flexibility came at the cost of

increased run times arising from a flexible, fully object oriented design. For example,

the GENIE system must track „attributes‟ which are stored in C++ classes. These

classes, and their associated parameters, are generated when the software starts. This

means we must incur all the overheads associated with calling arbitrary class types, and

also that the compiler is very limited in the range of optimisations it can perform.

In 2009, Andrew Mason and Anders Dohn developed Genie
++

, a new software

framework in which the customer specific customisations are performed not at run time,

but instead at compile time. This has the advantage that the problem is fully specified at

compile time, and so the code optimisation techniques available in modern compilers

can be fully utilised. As we will show, it also produces code that is easier to read and

debug because it is written using the language of the specific rostering problem being

solved.

2 Modelling Framework

We formulate the staff rostering problem (SRP) as a generalised set partitioning

problem as follows. We assume there are s staff to be rostered, with these staff having

different skills. Conceptually, we assume that each of these staff has ni alternative

rosters, termed roster lines, that they may work during the next rostering period. (A

rostering period can range from one or two weeks up to five or six.) Each roster line

consists of sequences of shifts separated by time off. (It is often convenient to assume a

staff member works no more than one shift per day, but this is not required.) Because

we formulate this problem with a minimisation objective, we assume each of these

roster lines has some associated quality measure that measures the staff member‟s

dislike of that roster line.

To address the business needs, we assume that the requirement for staff can be specified

by lower and upper bounds on the numbers of staff present across the day with different

skill levels. For example, we may specify that we require “at least 5 staff of skill level 3

or higher between 10am and 2pm on Monday,” and “no more than 2 staff at skill level

6, between 10am and 2pm on Monday.” There is a set of p such requirements that

define the work requirement for the roster. The j‟th roster line for person i is modelled

as a column where the coefficient 𝑎𝑗
𝑖
[k] defines how this roster line contributes to the

k‟th work requirement. Thus, we can formulate our problem as a large generalised set

partitioning problem, as follows:

SRP: minimise 
i=1

s

 
j=1

n
i

 𝑐𝑗
𝑖
 𝑥𝑗

𝑖

s.t. 
j=1

n
i

 𝑥𝑗
𝑖 = 1  i=1, 2, …, s (1)

s.t. 
i=1

s

 
j=1

n
i

 
k=1

p

 𝑎𝑗
𝑖
[k] 𝑥𝑗

𝑖
≥
≤
=
 bk  k=1, 2, …, p (2)

 𝑥𝑗
𝑖  {0,1}  i=1, 2, …, s , j=1, 2, …, ni (3)

To complete the above formulation, we need to consider the construction of the columns

𝒂𝑗
𝑖
 for each staff member. These columns are generated during the solve process. The

code to perform this generation forms the bulk of the Genie
++

 system.

3. Column Generation

The goal of the column generator is to determine the best (or a set of good) entering

columns during the linear programming and branch and bound steps of the solution

process. This requires careful modelling of the quality (objective function coefficient) of

the roster line, as well as any rules that define legal and illegal roster lines. For example,

if we have morning “M” and night “N” shifts, then staff might prefer a sequence of four

day shifts “MMMM” over a more disruptive sequence such as “DDNN”; we need to be

able to reflect this in the objective function. Furthermore, union rules might make the

sequence “DNNN” illegal because it contains 3 (or more) consecutive night shifts, and

so such sequences need to be detected and banned during the column generation

process. Examples of other quality and legality issues might include:

• Maximum number of days on in a row / week.

• Some combinations of x-on followed by y-off days prohibited.

• A minimum rest period after a shift is required.

• Specific shift transitions are not allowed.

• Split weekends (one day worked and one day off) are undesirable.

• Single days-on / days-off are undesirable.

• Staff cannot work two consecutive weekends

• Night shifts must occur in sequences of two or more consecutive night shifts.

The key concepts underpinning the column generator that enable us to efficiently model

these quality and legality requirements are the ideas of entities and attributes. Figure 1

shows the relationship between these entities, while Table 1 describes the rules by

which our construction scheme builds up entities by combining and extending other

entities. The generator starts with shifts, each of which may have attributes such as

“number of hours worked”, “is a weekend shift” and so on. The generator combines

shifts together to give on-stretches, being sequences of days worked. For example, if we

have morning “M” and night “N” shifts, then we might form an on-stretch “MMNN”.

This on-stretch will also have attributes associated with it that are formed from simple

operations on the underlying shift attributes, such as “number of hours worked” and

“number of weekend shifts”. More complicated attributes can also be determined such

as “number of days on” (in this case 4), and “number of day-to-night transitions” (1 in

this case). The on-stretches are then combined with days off (off-stretches) to form

work-stretches, which in turn are combined to form roster-lines that specify the

sequence of activities for a staff member during the roster period.

on-stretch + shift  on-stretch

off-stretch + day-off  off-stretch

on-stretch + off-stretch  work-stretch

roster-line + work-stretch  roster-line

Table 1: Construction rules for the rostering entities

Figure 1: The entities that we use to describe a roster for a staff member.

The on-stretch, off-stretch, work-stretch and roster line entities are constructed during

the column generation phase in a nested fashion using a dynamic programming

approach. As in standard dynamic programming, only the best of any equivalent entities

are kept. This gives us a nested column generation system that best exploits the special

structure of our problem to efficiently solve the resource constrained shortest path

column generation sub-problem.

Whenever a new entity is constructed using this process, the attribute values associated

with that entity need to be calculated. These attribute values are then used to check

legality and calculate quality values. The rules for calculating an attribute depend both

on the entities being combined and the particular rules associated with that attribute. In

the original C++ code, this multiplicity of possibilities was handled with objects and

case statements, producing slow run times.

In our new design, the goal was to create customer-specific C++ code that would then

be compiled to form that customer‟s solver engine. It was originally expected that a

second program would be written to create this C++ code by interpreting some roster

problem description language that we would have to create. However, after some initial

experimentation, and thanks to recent advances in the C++ Boost Pre-processor Library

(Karvonen and Mensonides, 2001), we realised that we could describe our rostering

problems directly in the C++ pre-processor macro language. (This is the language that

programmers use when writing statements such as
 #define CURSOR(top, bottom) (((top) << 8) | (bottom))).

Although not a commonly used feature, C++ compilers allow the user to stop the

compilation process after the pre-processor directives have been expanded, but before

the code has been compiled. The output of this step is easy-to-read C++ code with

variable and field names that match those from the real problem, making the code very

easy to follow. The following code examples give an overview of the power of this

system.

The code shown in Code Listing 1 demonstrates how the attributes are defined for a

shift object. Notice that each line specifies the actual variable name (in lowercase), the

variable type, and display name. The lowercase names will appear directly in the

resulting C++ code.

// SHIFT_ATTRIBUTES must contain: starttime and endtime

define SHIFT_ATTRIBUTES \

 ATT((starttime , int, "Starttime"), \

 ATT((endtime , int, "Endtime") , \

 ATT((shifttype , int, "ShiftType"), \

 ATT((paidhours , int, "PaidHours"), \

 ATT((dayson , int, "DaysOn") , \

 END)))))

Code Listing 1: Defining the attributes for a shift

The #define statement in Code Listing 1 is using a Boost pre-processor array structure

to store the attribute definitions. These then get expanded by the pre-processor into a set

of fields for the shift object. The code to perform this expansion, and the resulting C++

code that is generated, are shown below in Code Listing 2 and Code Listing 3. (Some

code has been deleted to improve the clarity of this.)

class Shift {

public:

define SATTR(_1, _2, i, elem) STYPE(elem, i)

BOOST_PP_TUPLE_ELEM(3,0,elem);;

 BOOST_PP_LIST_FOR_EACH_I(SATTR, _, SHIFT_ATTRIBUTES);

Code Listing 2: An example of Boost pre-processor code used to

expand a pre-processor array

class Shift {

public:

Attribute<10, int, ... > starttime;

Attribute<11, int, ... > endtime;

Attribute<12, int, ... > shifttype;

Attribute<13, int, ... > paidhours;

Attribute<14, int, ... > dayson;

}

Code Listing 3: The code produced when the rostering definition in Code Listing 1

is expanded using the Boost pre-processor code in Code Listing 2.

As detailed earlier, an on-stretch is created by appending a shift (with the attributes

given above) to another (possibly empty) on-stretch. The following code (Code Listing

4) illustrates how the attribute values are defined for the resulting on-stretch.

ATT((paidhours, int, "paidhours", feas_all, domi_exact, cost_none,

o.paidhours + s.paidhours, s.paidhours) \

Code Listing 4: Definition of the ‘paidhours’ attribute in an on-stretch, including

code for calculating the paidhours attribute value

Code Listing 4 defines a new on-stretch attribute with the name “paidhours.” This

parameter is tracked during the column generation so that it can be checked in the final

roster line against the target of 80 paid hours per fortnight for this staff member. The

most important entries in paidhours definition are the last two which are actual C++

statements that will be compiled. The first of these, o.paidhours + s.paidhours,

specifies that when an on-stretch „o‟ and a shift „s‟ are combined, the value for this

attribute is calculated as the sum of the on-stretch‟s paid hours (o.paidhours) and the

shift‟s paid hours (s.paidhours). The last entry handles the case when a blank on-stretch

has a shift added to it.

The o.paidhours + s.paidhours definition gets expanded to give code such as the

following (Code Listing 5):

T_value initialize (const Shift& s) const {

return (o.paidhours + s.paidhours);

}

Code Listing 5: The code produced when the rostering definition in Code Listing 4

is expanded using the Boost pre-processor. This code is executed when a new on-

stretch is formed by adding another shift to an existing on-stretch.

The other parameters in Code Listing 4 determine feasibility, dominance and cost

contribution rules for paidhours as follows. The feasibility rule is used to discard an

entity whenever it breaks some rostering rule; in this case „feas_all‟ mean that all values

are feasible. (This „rule‟ is in fact the name of a C++ class.) Most rules, when required,

can be expressed in terms of lower and upper bounds on the attribute value, and so

another feas_lbub class is provided to handle this.

The domi_exact parameter details the rule for dominance. During the column

generation, we can often determine that one entity dominates the other in the sense that

any roster line containing the dominating entity will be better than one containing the

dominated entity. (For example, an on-stretch “DND” might be dominated by “DDD”

as the latter is perhaps equivalent from a rules point of view but better from a quality

perspective as it avoids the day/night transitions.) The domi_exact term in this

example says that two on-stretches must have the same attribute value if one is to be

tested for dominance against the other.

Finally, the term cost_none describes how the value of this attribute is used to

determine an associated cost value that contributes to the quality of the roster line. In

this case, the paid hours of an on-stretch has no impact on the cost of a roster line.

However, a commonly used option for this is to look up a table that translates the

attribute value into a contribution to the objective. For example, an attribute might track

the number of shift changes in an on-stretch, and penalise these in the objective

(perhaps in some non-linear fashion) once each on-stretch is embedded within a work-

stretch.

4. Results and Conclusions

The new GENIE
++

 framework has been implemented in C++ using the branch-and-cut-

and-price framework of COIN-OR (Lougee-Heimer, 2003). We use constraint

branching (Ryan and Foster 1981) where branches assign a shift to a staff member; this

branch is then enforced both within the masters and within the column generator for that

person.

The original system developed by Faram Engineer was successfully tested on four

problems including a nursing example from Middlemore Hospital, scheduling for the

United States postal service, scheduling shift work at an Australian energy power plant,

and rostering helicopter pilots. These tests demonstrated the ability of the system to

accurately model the variety of rules found in these different examples. The new system

follows the design approach of this original system, and so shares its capabilities to

solve problems of this diverse nature.

The new code has proven to be much faster to both develop and debug. The new system

uses the COIN-OR framework unlike the old which used the ZIP software developed by

Professor David Ryan (Ryan 1980). Combined with the rapid advancement of hardware,

these multiple changes make comparisons of run times difficult. However, one

indication of the improvements achieved is the finding of a better solution for the

Middlemore nurse rostering problem using the new system. Experiments with this

Middlemore nursing instance show that on a typical desktop PC, we can prove

optimality in 224 seconds (but note that this required a careful choice of branching

order). A near optimal solution is found after 97 sec. The system spends 23 seconds in

the root node. (The old code took 357 seconds (15.5 times longer) to solve the root

node, and 1617 seconds (16.6 times longer) to find the first integer solution. Optimality

was never proven.) The run times from another problem, the Rigshospitalet in

Copenhagen, are not as promising, due to more flexibility in each subproblem. This

flexibility means that each subproblem takes much longer to solve as there are many

more possible roster lines to consider. We cannot prove optimality for this instance

within 10 hours. However, we can find a solution within 1.4% of the lower bound after

15777 seconds (4 hours, 23 minutes). A better solution (gap 0.4%) is found after 23350

seconds (6 hours, 29 minutes). The root node takes 6169 seconds (1 hour, 43 minutes)

to solve.

These rostering problems often have very large integrality gaps, and so, as shown in the

previous results, the branch and bound process can be very time consuming. To reduce

these potentially long run times, we are working on the development of heuristic

techniques that can be embedded within both the column generation and the branch and

bound processes. For problems such as the Rigshospitalet instance, the sub-problem is

very flexible in the sense that there are many feasible columns, which should mean that

heuristics can easily find good (but not necessarily optimal) entering columns, thereby

significantly reducing the times to find near optimal solutions. We are confident that

these improvements will, eventually, produce a system that is sufficiently flexible and

reliable to meet the rigorous requirements of commercial application. We look forward

to reporting results on this in the future.

Acknowledgements

The authors Andrew Mason and Anders Dohn wish to acknowledge the contribution of

Professor David Ryan to this project. Not only did Professor Ryan inspire the two

authors to look at complex rostering problems, but he also made it possible for Anders

Dohn to visit Auckland in 2009.

References

Engineer, Faramroze G., 2003. A solution approach to optimally solve the generalized

rostering problem, Masters thesis, University of Auckland, 2003

Karvonen, V., P. Mensonides. 2001. Preprocessor metaprogramming. C++ library.

Http://www.boost.org/ (Boost 1.36.0: 14/08/2008).

Lougee-Heimer, R., 2003. The Common Optimization INterface for operations

research: Promoting open-source software in the operations research community. IBM

Journal of Research and Development 47(1) 57-66. Http://www.coin-or.org/

(23/01/2009).

Mason, Andrew J., David M. Ryan, David M. Panton, 1998. Integrated Simulation,

Heuristic and Optimisation Approaches to Staff Scheduling, Operations Research, Vol

46, Number 2, pp161-175

Mason, Andrew J., Mark C Smith, 1998. A Nested Column Generator for solving

Rostering Problems with Integer Programming in International Conference on

Optimisation : Techniques and Applications, L. Caccetta; K. L. Teo; P. F. Siew; Y. H.

Leung; L. S. Jennings, and V. Rehbock (eds.), Curtin University of Technology, Perth,

Australia, p827-834, April 1998

Mason, Andrew J., David Nielsen, 1999. PETRA : A Programmable Optimisation

Engine and Toolbox for Personnel Rostering Applications presented at the 15th

Triennial International Federation of Operational Research Societies (IFORS)

Conference IFORS 99, August 16-20, 1999, Beijing, China; available as School of

Engineering Technical Report 593, University of Auckland

Mason, Andrew J., 2001. Elastic Constraint Branching, the Wedelin/Carmen

Lagrangian Heuristic and Integer Programming for Personnel Scheduling" in Annals of

Operations Research, 108(1), pp239-276

Nielsen, D., 2003. A broad application optimisation-based rostering model, PhD thesis,

University of Auckland, 2003

Nielsen, D., Andrew Mason, 1998. Commercial development of a general application

optimisation-based rostering engine, Proceedings of the 33
rd

 Annual Conference of the

Operational Research Society of NZ, pp10

Ryan, D. M. (1980) ZIP - A Zero-One Integer Programming Package for Scheduling,

Report C.S.S. 85, A.E.R.E., Harwell, Oxfordshire.

Ryan, D.M. & Foster, B.A. (1981). An integer programming approach to scheduling. In

A. Wren (ed.), Computer scheduling of public transport urban passenger vehicle and

crew scheduling, North Holland, Amsterdam, 1981, pp. 268-280.

Smith, Mark C., 1995. Optimal nurse scheduling using column generation, Masters

thesis, University of Auckland

	Norske Skog Improves GlobalProfitability Using O.R.
	Faster Ambulance Simulation Runsusing Artificial Call Sampling
	Catch-up Scheduling for ChildhoodVaccination
	Making Smarter TransportationInvestments
	A Rostering Integer Programming Model forAmbulance Staffing
	Optimisation of Mould Filling Parametersduring Compression Resin TransferMoulding Process
	Capacity Planning For Process Industries
	Trim Loss and Inventory Optimisation inPaper Mills
	Optimisation Models and Methods forthe Container Positioning Problem inPort Terminals
	An Integrated Collaboration Platform forSustainable Development: Project Proposaland Initial Exploration
	A Simulation of the Student Health Centreat the University of Auckland
	Improve Efficiency of OR Applicationswith ILOG CPLEX
	Operating Theatre Optimisation
	MIP-based Heuristics for the CapacitatedLot-Sizing Problem with Startup Times
	Area restricted forest harvesting with adjacencybranches
	Initial use of discrete event simulation for New Zealand military workforce analysis
	MIP Models for Scheduling theOperations for a Coal Loading Facility
	Optimal Pricing Decision for a DynamicInventory Problem with Constant PriceElasticity of Demand
	Modelling Values of Lake Ellesmere
	New models and methodologies forgroup decision making, rank aggregation,clustering and data mining
	Approximation Algorithmfor Firefighter Problem on Trees
	Approximation Algorithmfor Multi-Dimensional Assignment ProblemArising from Multitarget Tracking
	Solving the Airline Crew Pairing Problem using Subsequence Generation
	Customised Column Generation forRostering Problems:Using Compile-time Customisation to create aFlexible C++ Engine for Staff Rostering
	On Asset Reallocation in the New Zealand Electricity Market
	Can Markets in Agricultural Discharge Permits be Competitive?
	A proposed smart market for imperviouscover runoff under rainfall uncertainty
	Shaping More Sustainable Communities:a Case Study in Urban Water Management
	Supply chain based agent simulation:Towards a normative approach
	Some thoughts on model use in OR/MS
	Commuter Cyclist Route Choice and the Bi-Objective Shortest Path Problem
	Optimization of a Single AmbulanceMove up
	Trip Assignment under Energyand Environmental Constraints
	The Performance Evaluation of Turkey’s Export to Ireland
	Improving research students’ performance by two contrasting methodologies: Theory of Constraints (TOC) and Appreciative Inquiry (AI)
	Using phone logs to analyse call centre performance
	A Multi-plan Method for Radiotherapy Treatment Design via Finite Representation of the Non-dominated Set of Multi-objective Linear Programmes
	A simulated annealing approach to the inventory routing problem
	Discovering Relationships between Scheduling Problem Structure and Heuristic Performance
	Educating the world about OR with viewer-paced videos on Youtube
	Eating the Elephant! Applying Theory of Constraints in Assurance of Learning
	Standardising spreadsheet LP: Do textbooks make learning LP easier?

