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Abstract 
 

Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air 

temperature from four different loading conditions, together with hind cast data of wind and sea 

properties; and noon report data has been used to train an Artificial Neural Network for prediction of 

propulsion power. The model was optimized using a double cross validation procedure. The network 

was able to predict the propulsion power with accuracy between 0.8-1.7% using onboard 

measurement system data and 7% from manually acquired noon reports. 

 

1.  Introduction  
 

As part of the Industrial PhD project ''Ship Performance Monitoring'' automatic data sampling 

equipment was installed on the tanker ''Torm Marie'' in January 2008 and presently data from four 

different loading conditions are available. By considering the ship as a dynamical system which can 

be modelled as a general nonlinear state-space model, the ship propulsion performance (referred to as 

the performance) is a measure of energy consumption which depends on the current state of the ship 

and a large number of external factors/variables such as speed, loading conditions, ship conditions, 

weather and sea conditions. Fig.1 shows some factors influencing propulsion performance. 

 

 

Fig.1: Variables influencing propulsion performance 

 

The variables have different properties. Some of the variables are observable (and measurable with 

high reliability) whereas others are difficult to observe, e.g. the fouling. Some variables are largely 

controllable, whereas others are almost incontrollable. For instance, heading is controllable whereas 

wind conditions and fouling are almost incontrollable. The first goal  in performance measurement is 

to provide a reliable estimation of performance as a function of the state and external variables. The 

second goal is to optimize performance by manipulating the controllable variables. This paper will 

focus on the first goal. 

 

 

Fig.2: Increase in fuel consumption as consequence of fouling 
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During the lifetime of the ship the performance will decrease. As an example the fuel consumption 

will increase at a certain state, or the ship speed will decrease at a certain power setting. This is 

mainly due to fouling of the hull and propeller. Fig.2 shows a typical trend of the speed reduction. 

 

This work will not consider a full dynamical model of the ship but merely focus on a model which 

predicts propulsion power in a specific state based on the measurements of a set of significant input 

variables, which are: 

• Ship speed through the water 

• Wind speed and direction 

• Seawater temperature 

• Air temperature 

• Water depth 

• Wave height and direction 

 

The model can be based on a classical physical/empirical model, e.g. Harvald (1983) or Holtrop 

(1984), or a data-driven (non-parametric) approach, e.g. an artificial neural network. Previous work 

suggests that a data-driven approach is preferable, e.g. Pedersen and Larsen (2009). The empirical 

methods are derived from model tests and sea trials, and since most model tests are carried out in the 

design condition (even keel) and speed, this is the region where it should be applied. In operation the 

ship will travel in many other conditions i.e., ballast draught and trimmed conditions. Consequently, 

these methods give a rough estimate of the propulsion power rather than an accurate reference point. 

If measured values from model tests or sea trials are available, they can be used to adjust the empirical 

data and thus give a more accurate result. Fig.3 shows the measured power together with estimated 

power using respectively Harvald (1983) and Holtrop (1984), with a standard setup i.e., without any 

adjustment. It is obvious that a change in a few percent, which is realistic performance deterioration 

over a year, is impossible to detect. 

 

Furthermore the traditional methods are based on “Noon Reports” data, which are reports containing 

information of the ship speed, travelled distance, position, heading, and a number of other 

measurements and readings. One problem with noon reports are that only one sample is collected per 

day, excluding days in harbour and e.g. travelling in areas with limited water depth. This might leave 

out 200 observations per year. Many noon reports data are mean values over time from the last noon 

report, e.g. average logged ship speed, and others are observations at the report time, e.g. current wind 

speed. This makes it difficult to analyse relations e.g., between the average ship speed and the 

instantaneous wind speed. 

 

 

Fig.3: Example of empirical power prediction using Harvald (1983) and Holtrop (1984), compared 

with measure values for a single loading condition (Mean draught: 12.0m, even keel). 
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If sufficient data is available it is possible to make a partial or fully data driven model. The first step 

of such a model is to capture the dynamics of the fastest changing variables, e.g. ship speed, wind 

speed, etc. where the slowest changing variables are draught and trim. Initially, this leads to a 

prediction model for data sets where draught and trim are kept constant. 

 

Adequate quality of input data is fundamental to get reliable results from the prediction model. This is 

a problem for sea and weather information data due to the difficulty of measuring these quantities, but 

especially to noon report data which are collected manually hence human factors and errors can play a 

significant role. 

 

2.  Data sources 

 

Three data input sources have been used to train and predict the propulsive power: 

1. Onboard measured data (4 conditions) 

2. Noon report data 

3. Hind cast weather and sea information 

 
An overview of all the relevant data set variables is listed in Table 4. 

 
Onboard measured data: The data was collected onboard the 110,000 dwt tanker “Torm Marie” where 

a number of measurements were continuously logged. Only the relevant data for this problem has 

been taken. The sampling was split into time series of 10 min with 10 min intervals. The sampling 

frequency of the time series was 1 second, but many of the measurements had inconsistent and 

missing signal values. Power and speed were updated consistently, every 13 s. Four independent data 

sets, with different loading conditions have been sampled so far. The data include samples from non-

stationary situations as well as situations with zero forward speed, which are deleted. The variance of 

the heading is one of the governing figures on the variation of  the propulsion power in particular. 

Even small changes (less than 1°) in the heading, had significant influence on the measured 

propulsion power. Samples with excessive variance in the heading have thus been excluded. During 

each data sampling period factors related to the ship performance including the hull and propeller 

fouling, were assumed to be constant, consequently this effect will not be accounted for in the 

analysis 

 

Noon report data: The noon reports contain a long array of data and basically the same variables as 

the measured ones, but with differences in quality and resolution.  Due to their nature, noon reports 

are usually only collected once a day, which gives a smaller resolution and a mix of data with 

different origins, e.g. logged average speed over ~24 hours and one weather observation at the report 

time. Noon reports are usually filled in manually and are thus also subject to human factors and errors. 

In this analysis the noon reports are important for obtaining the draught and seawater temperature. 

 

Hind cast data: Hind cast data has been received from a tool developed for SeaTrend®1 at FORCE 

Technology based on weather information from NOAAH2. For a given position and time this tool 

returns wind speed and direction, significant wave height, peak period and direction. Some areas, e.g. 

the Mediterranean are not included in this database. 

 

Dataset for training and test: Two different configurations of the dataset were used for the analysis. 

One based on the measured values and one based on noon report data. 

 

Onboard measured  dataset: The dataset based on measured values has a high density of data (approx. 

72 per day), but there is only a limited amount of this data available: in total 27 days,  Table 1. 

                                                      
1
 Performance Monitoring tool developed at FORCE Technology, www.force.dk 

2
 National Oceanic and Atmospheric Administration, United States Department of Commerce 

http://www.noaa.gov/ 
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Table 1: Onboard measured data sets. N represents the number of 10 minute recording windows 

Data set Number of 

Samples 

Start date 

End date 

Number of 

valid noon 

reports 

Mean 

draught, 

Tm 

Trim  

Ta-Tf 

Umin-Umax Pmin-Pmax 

M N   [m] [m] [knots] [kW] 

1 236 
09-02-2008 

14-02-2008  
3 7.4 2.4 14.2- 16.2 

7573- 

11283 

2 109 
22-03-2008  

27-03-2008  
4 7.85 2.7 13.6- 15.1 

7750- 

9248 

3 301 
30-01-2008 

06-02-2008  
7 12.15 0 13.4- 16.0 

8138- 

11216 

4 555 
01-03-2008  

11-03-2008 
9 13.0 0 13.0- 15.9 

9741- 

12096 

 

All the measured input data are the mean values over 10 minutes of the time series. In order to justify 

this, variance of the signal has been analyzed for the ship speed, U, propulsion power, P and apparent 

wind speed, VR. The air temperature has been neglected since it is very stable. For every 10 minute 

period the relative standard deviation, (σx,n,/µx,n) has been found and for every dataset the average of 

the relative standard deviation Mx,µ ,  has been determined:  

∑
=

=
N

n nx

nx

Mx
N 1 ,

,

,

1

µ

σ
µ ,      (1) 

σx,n is the standard deviation for the n’th time series, µx,n is the mean value for the n’th time series, and 

x indicates the input/output variables (U, P, VR, γR) 

 

The relative standard deviation of both the measured power and ship speeds are all less than 1, 

whereas the wind speed has a significantly high variance. 

Table 2: Average of the relative standard deviation 

M N 
Uµ  

Pµ  
RVµ  

1 236 0.6% 0.7% 18.0% 

2 109 0.6% 0.5% 9.1% 

3 301 0.6% 0.9% 9.5% 

4 555 0.6% 0.6% 11.4% 

 

The ship speed intervals are approximately in the same region for each sample, Table 2. However 

inspecting the distributions of the ship and true wind speed, Figs.4 to 7, the actually ship speed range 

is different. Especially for dataset #2 where most of the ship speeds is in a band of around 14.7 knots. 

The Beaufort wind force (BF) 5 starts at approximately 16 knots wind speed. In this condition the 

wind driven waves are around 2 m high, which is when the sea state starts to influence the power 

increase in waves. Only a few occurrences are above this level and thus datasets #1 and #2 can be 

regarded as calm water conditions, Figs.4 and 5. Datasets #3 and #4 on the other hand have a more 

significant contribution of measurements above BF 5 and the power increase in waves must be 

regarded as an extra contribution. 

 

The sea state has a significant influence on the ship resistance and hence the propulsion power. No 

direct measurements of the sea state have been made, but the wind driven waves can be represented 

by the true wind speed to a certain extent. Making this assumption the swell is not accounted for. 

 

Hind cast information gives an estimate of the sea state, including significant wave heights, peak 

period and direction, at the specific position and time, and has been found for all the relevant data. 

Furthermore the hind casts also give the true wind speed and direction. 
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Fig.4: Ship speed and true wind speed  

distribution of dataset #1 

Fig.5: Ship speed and true wind speed  

distribution of dataset #2 

 

 

Fig.6: Ship speed and true wind speed 

 distribution of dataset #3 

Fig.7: Ship speed and true wind speed 

distribution of dataset #4 

 

Noon report dataset: The time density of the dataset based on noon reports is much less than for the 

measure based dataset. There is a maximum of one sample per day and many are invalid due to e.g. 

anchoring, alongside in harbour. But the time span is much longer, approximately 2 years and the 

variation in draught and trim has to be taken into account, and possibly also the time, Table 3. In order 

to give a more representative value of the sea state and wind condition for the noon report data, hind 

cast has been made for every hour in between each noon report. Afterwards the mean value and 

variance of the time series (approximately 24 hours) prior to the report time, has been found and are 

thus ready to use for the analysis. 

Table 3: Noon report dataset for analysis 

Date UTC 

Number of 

valid 

samples 

Mean 

draught 

[m] 

Trim, Ta-Tf 

[m] 

Ship 

speed 

[knots] 

Seawater 

temp [°C] 

Specific HFO 

[tons/day] 

09-12-2006 - 

05-12-2008 
323 7.35-15.35 0-3.4 9.9-17.5 12-32 1.1-3.9 
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Table 4: Propulsion performance variables 

Data  Unit Data source 

Speed through water U [knots] Measured onboard 

Relative wind velocity Vrel [knots] Measured onboard 

Relative wind direction grel [deg] Measured onboard 

Air temperature Tair [degC] Measured onboard 

Propulsion power P [kW] Measured onboard 

    

Logged mean speed NR.U [knots] Noon report 

Sea water temperature NR.Tsw [degC] Noon report 

Air temperature NR.Tair [degC] Noon report 

Arrival draught fore Tf [m] Noon report 

Arrival draught aft Ta [m] Noon report 

Specific fuel consumption SpHFO [ton/hour] Noon report 

Report time, UTC NR.UTC [hh:mm:ss] Noon report 

    

True wind speed HC.Ws [m/s] Hind cast 

True wind direction HC.g [deg] Hind cast 

Significant wave height HC.Hs [m] Hind cast 

Wave period HC.Tp [s] Hind cast 

True wave direction HC.Td [deg] Hind cast 

    

Mean arrival draught Tm [m] Derived from noon reports 

Arrival trim, Ta-Tf Trim [m] Derived from noon reports 

Relative wind speed HC.Vrel [knots] Derived from hind casts 

Relative wind direction HC.grel [deg] Derived from hind casts 

 

3. Regression models for propulsion power prediction 
 

Three different regression models have been tested and evaluated: a linear model, a (custom) non-

linear model and a Artificial Neural Network model 

 

3.1. Linear and Non-linear models 

 

Both a linear and non-linear method based on the general assumption of relation between the ship 

speed, wind speed and power was developed and presented in Pedersen and Larsen (2009). In short 

the methods are based on Eq.(2) which can be developed to Eqs.(3) and (4) where ∆ηD
-1

, ∆K and ∆L 

are adjustable parameters optimized using a “Levenberg-Marquardt” optimization routine, Madsen et 

al. (2004), Nielsen (1999)). If ∆ηD
-1

 is zero the model is regarded as linear. 

 

( )windSWDD RRUP += −1η       (2) 

( )221

RDD LVKUUP += −η       (3) 

 

Is it now possible to adjust the three parameters, ηD
-1

 K and L, by introducing the additional weights, 

∆ηD
-1

, ∆K and ∆L. 
 

( ) ( ) ( )( )2211

RDDD VLLUKKUP ∆++∆+∆+= −− ηη
,         (4) 

where, 

SCK SWSW ρ2
1=        (5) 

TairX ACL ρ2
1=        (6) 
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Both the linear and non-linear methods resulted in a cross validation error, Eq.(9), of 3-12%. This 

could be improved a bit by using a “Leave One Out” (LOO) routine for training of the linear and non-

linear models and by subsequently using the mean of the N weights from the LOO training as the final 

weights. But in order to ensure consistency with the ANN models the data has been split into test and 

training sets as described in section 5. 

 

3.2.  Artificial Neural Network (ANN) 

 

After a brief test of regression with an ANN this method appeared superior to the previously 

described methods which lead to a thorough exploration of the ANN methods. An ANN is a non-

linear method where the so called hidden layer with hidden units is the non-linear link between input 

and output, Fig.8, as described in Eqs.(7) and (8). 

( ) ∑
=

=
M

j

jzwxy
kj

0

)2(
,     (7) 









= ∑
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i

ij xwgz
ji

0

)1(
,     (8) 

where x is the measured input data; y is the output, in this case the propulsion power; zj are the 

nonlinear basis functions; w are the weights for the hidden units and output. 

 

The network used for this analysis is a flexible non-linear regression model with additive Gaussian 

noise and is trained with a Bayesian learning scheme. It has a tangent hyperbolic sigmoidal function 

and is trained using a BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization algorithm with a soft 

line search to determine step lengths. The Hessian matrix is evaluated using the Gauss-Newton 

approximation. 

 

More details into the specific neural network used here can be found in the following references: DTU 

toolbox (2002), Larsen (1993), MacKay (1992), Pedersen (1997), Svarer et al.(1993). A basic 

description of neural networks can be found in Bishop (2006). 

 

Fig.8: Single hidden layer artificial neural network, with multiple outputs 

 

4. Training and testing  
 

In order to test and validate different variations of input variables and the number of hidden units and 

to select the best combination it is necessary to split the data set into three parts: a test set, validation 

set and a training set. A double cross validation method was used in order to find the best combination 

of number of hidden units and the input variable. Double cross validation consists of two steps. 

 

First training is performed on the training set and tested on the validation set, referred to as the inner-

loop, the optimum set input parameters and number of hidden units is decided from the cross 

validation error of the mean relative error mω , Eq.(9). Using the optimum setup training is performed 

on the validation set and training set, and then tested on the test set, referred to as the outer-loop. This 

procedure is called double cross validation. 
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From the dataset 20% was used for test data and 80% validation and training. The validation and 

training set was then split into 20% for validation and 80% training, corresponding to respectively 

(20%·80%) 16% and (80%·80%) 64% for validation and training of the entire dataset. This separation 

is illustrated in Table 5. The best combination of input parameters was selected manually. All the 

training of the ANN has been carried out using the above mentioned routine where training has been 

started 10 times to ensure capturing the best solution. 

Table 5: Double cross validation illustration 

Total data set 
Test set 20% Val set 20%· 80% Training set 80%· 80% 

Val set 20%· 80% Test set 20% Training set 80%· 80% 

Training set 80%· 80% / Val set 20%· 80% Test set 20% Training set 80%· 80% / Val set 20%· 80% 

Training set 80%· 80% Test set 20% Val set 20%· 80% 

Training set 80%· 80% Val set 20%· 80% Test set 20% 

 

Due to limited computational time, it was not possible to train and test all combinations of input 

variables. The selection was made manually based on initial testing and basic physical assumptions. 

Table 6 shows the different input combinations for the analysis of the measured dataset. Draught and 

trim are missing, as the analysis is performed for each loading condition separately. The output 

variable, propulsion power P, is naturally present in all combinations. 

Table 6: Input variable setup for the measurement based dataset 

ID U Vrel grel Tair NR.Tsw NR.Tair HC.Ws HC.g HC.Hs HC.Tp HC.Td HC.grel HC.Vrel P 

2 x x x x x         x 

8 x x x x x  x x x x x   x 

10 x    x x x x x x x   x 

11 x    x x      x x x 

12 x    x x   x x x x x x 

Table 7: Input variable setup for the noon report based dataset 

     Mean value of 1 hour intervals during steaming time    

ID NR.U 
NR.U

TC 

NR.

Tair 

NR.

Tsw 
HC.Ws HC.g 

HC.

Hs 

HC.

Tp 

HC.

Td 

HC. 

grel 

HC.

Vrel 
Tm Trim SpHFO 

2 x  x x x x      x x x 

3 x  x x x x x x x   x x x 

4 x  x x   x x x   x x x 

5* x  x x x x x x x   x x x 

6 x  x x      x x x x x 

7 x x x x      x x x x x 

8 x  x x   x x x x x x x x 

9 x x x x   x x x x x x x x 
* The variance of HC.Ws, HC.g, HC.Hs, HC.Tp and HC.Td over the steaming time has also been included as 

input variables. 

 

Table 7 shows the combination scheme of the input variables for noon report analysis. All the hind 

cast data are mean values of hind cast data produced for the last steaming time period with one hour 

intervals. That makes all the input data mean values of the steaming time period, instead of instant 

values at the report time. No propulsion power is available and thus the specific fuel consumption, 

SpHFO, is used as an output variable. 

 

5. Evaluation 

 

In order to make a consistent evaluation of the ANN training and testing two cross validation errors 

have been introduced: One for the inner-loop of the double cross validation, testing on the validation 

set, Kω Eq,(9) and one for the outer-loop of the double cross validation, testing on the test set, Mω . 
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∑
=

=
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ωω       (9) 

Where K is the number of cross validation set for the inner-loop and ωk is the mean of the relative 

error for each of the cross validation sets, Eq.(10). 
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,,
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ntestP ,
ˆ are the predicted values of the test data, ntestP ,

′ are the test samples from the validation set, and N 

is number of test data. The outer-loop cross validation Mω  error is equivalent to Kω  , Eq.(9), except 

that the test set has been used for the mean relative error opposed to the validation set. 

 

6. Results 

 

6.1.  Results from measured input/output data 

 

Due to lack of computation time the ANN was only trained for 5 and 20 hidden as these are the 

extremes. This can be justified by Pedersen and Larsen (2009), where training/test were performed 

with 5,10,15 and 20 hidden units, it was concluded than the number of hidden units are not critical to 

the solution, although in general 5 hidden units were too little. Table 8 shows the cross validation 

errors of the inner-loop Kω for the input variable combinations defined in Table 6 and 5 and 20 

hidden units.  

 

Looking at all the cross validation errors for each of the datasets in Table 8 it is clear that some 

datasets in general have smaller errors. Particularly in dataset #2 and to some extent #4 it is noted that 

the cross validation errors do not vary no matter what input data variables or number of hidden units 

are used. In these datasets it is thus difficult to detect what input variables have the most influence on 

the solutions. 

Table 8: Inner-loop cross validation errors, Kω  

 Dataset #1  Dataset #2  Dataset #3  Dataset #4 

Number of hidden 

units 
5 20  5 20  5 20  5 20 

Input variable 

combination Kω  Kω   Kω  Kω   Kω  Kω   Kω  Kω  

2 3.93% 2.92%  1.07% 0.81%  3.07% 2.37%  1.72% 1.30% 

8 2.63% 1.97%  0.97% 0.89%  2.21% 1.65%  1.49% 1.04% 

10 2.14% 1.65%  0.99% 0.95%  2.17% 1.65%  1.52% 0.94% 

11 3.77% 2.79%  1.10% 0.90%  2.45% 1.88%  1.42% 1.02% 

12 2.25% 1.65%  0.99% 0.94%  1.75% 1.40%  1.28% 0.90% 

 

The cross validation errors of the outer-loop are presented in Table 9, together with respectively the 

best combination of hidden units and input variable combinations. Datasets #2 and #4 have rather low 

cross validation errors, which must be due to the nature of the dataset. What is more interesting is to 

see how the error drops by introducing hind cast sea state information and the best solutions in general 

are where only the hind cast information has been used for the sea and wind property inputs. 

Table 9: Table of outer-loop cross validation errors Mω  

 Dataset #1 Dataset #2 Dataset #3 Dataset #4 

Optimum number of hidden units 20 20 20 20 

Optimum input variable combination 10 / 12 2 12 12 

Mω  1.63%/1.74% 0.83% 1.46% 0.80% 
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Figs.9 to 16 show the test errors for the best combination of the number of hidden units and input 

variables. The plots on the left show the test errors as a function of the ship speed; there is no apparent 

correlation between ship speed and the error, which indicates that the ship speed has integrated 

properly into the model. The plots on the right are a relative histogram of the errors together with a 

normal distribution based on the mean and the variance of the test errors. Except for dataset #2, all the 

error distributions are centered approximately around 0 and have a nice distribution. Dataset #2 is a 

sparser dataset so each bar represents 1-4 counts, but the errors are relatively small. 

 

  
Fig.9: Prediction errors for dataset #1 Fig.10: Relative distribution of the predicted 

errors for dataset #1 

 

  
Fig.11: Prediction errors for dataset #2 Fig.12: Relative distribution of the predicted 

errors for dataset #2 

 

  
Fig.13: Prediction errors for dataset #3 Fig.14: Relative distribution of the predicted 

errors for dataset #3 
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Fig.15: Prediction errors for dataset #4 Fig.16: Relative distribution of the predicted 

errors for dataset #4 

 
Training and testing was performed as described above using a similar cross validation although not 

double since the input variables are specified by the model. 

Table 10: Cross validation errors ω  for the dataset, based on measurement using a linear and non-

linear method 

 Cross validation error  Dataset #1 Dataset #2 Dataset #3 Dataset #4 

Linear method ω   11.58% 3.63% 12.04% 5.98% 

Non-linear method ω   11.36% 3.58% 10.79% 5.98% 

 

6.2.  Results from noon report data 
 

From the inner-loop cross validation errors listed in Table 10 it is noted that the model in general is 

less sensitive to the number of hidden units. The dependency on certain variables seems not very 

strong since most errors are in the same region. The error drops significantly when the time is 

introduced as a variable for input variable combination 7 and 9. Furthermore combination 5 might 

have been over trained since it has the highest number of input variables but one of the highest errors. 

 

The outer-loop cross validation error is presented in Table 12 and is based on the input variable 

combination 7 which does not even take into account the sea state. 

Table 11: Inner-loop cross validation errors, mω for the noon report dataset 

 

 

Table 12: Table of outer-loop cross validation errors, Mω  for the noon report dataset 

Optimum number of hidden units  5 

Optimum input variable combination  7 

Mω   7.02% 

Number of hidden units  5 10 15 20 

Input variable combination  
Kω  Kω  Kω  Kω  

2  9.05% 9.57% 8.91% 9.13% 

3  8.84% 9.91% 10.26% 10.82% 

4  8.70% 10.00% 11.22% 13.78% 

5*  9.79% 11.13% 8.95% 8.38% 

6  8.18% 8.50% 9.07% 9.05% 

7  7.18% 7.74% 9.28% 10.06% 

8  8.46% 9.06% 9.60% 9.18% 

9  7.26% 8.47% 10.58% 9.25% 
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Fig.17: Prediction errors of noon report analysis Fig.18: Relative distribution of the predicted 

errors from noon report analysis 

 

Cross validation errors of the measured dataset
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Fig.19: Comparison of different prediction methods 

 

6.3.  Comparison of the results 
 

It is only possible to compare the dataset based on measured values, since it is the only one tested by 

other methods. Fig.19 shows the cross validation error for every condition and predicted by a linear, 

non-linear or ANN method. As previously mentioned dataset #2 gives significantly lower prediction 

errors for all methods due to the rather narrow ship speed band, the low wind speed and low number 

of samples. 

 

7. Conclusion 
 

Artificial Neural Networks (ANNs) can successfully be used to predict propulsion power, given that 

sufficient data are available. They have a significantly better performance than the linear and non-

linear models tested. The propulsion power was predicted with an accuracy of less than 2% for the 

measured dataset. This accuracy is although of the same order of magnitude as the standard deviation 

of the propulsion power, so if a confidence interval analysis is introduced it is questionable if the 

method can get better. 

 

ANNs can also be used with noon report data to predict the specific fuel consumption with an 

accuracy of about 7%, which is a bit surprising considering the rather rough input/output data. It is 
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noted that this accuracy was obtained using “time” as an input variable, this indicates that it is 

possible to detect a trend of the fuel consumption over time. 

 

It is shown that by introducing sea states and wind property information from the hind cast, the ANN 

solutions can be improved significantly, in the best case, from 2.97% to 1.65%. This eliminates the 

need for onboard measured wind speed and direction. 

 

Unfortunately it was not possible to compare the solutions of the four different measured datasets with 

a solution using the noon report data from the same time, simply because of the lack of a sufficient 

number of noon reports for each dataset (there is only 3,4,7 and 9, see Table 1). Since the ship is not 

usually sailing in a single loading condition more that three weeks (21 noon reports), it will always be 

a problem to acquire enough data for making a reliable comparison  of manual data acquisition (noon 

report) and automatic. If measured data for more loading conditions were available it would be 

possible to make an analysis similar to the one made for the noon reports. 
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