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Predictive modelling of cardiac real-time 2D images 
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INTRODUCTION: The ability to predict the respiratory and beating motion of the heart has several useful applications in cardiovascular MRI. Most importantly, such 
prediction schemes provide necessary input to several recent motion compensation techniques [1-3]. Despite its usefulness, there is currently no available technique that 
predicts both cardiac and respiratory 3D motion. In order to establish such a model, a calibration scan is required that acquires real-time 3D images of the heart along 
with motion sensory inputs, e.g., using a respiratory bellow and a vectorcardiogram (VEG), from which the motion of the heart can be predicted. However, the inherent 
slow nature of MRI prevents obtaining real-time 3D images of the heart with sufficient spatial and temporal resolution. This study presents a novel calibration scan that 
allows generating a 3D image of the heart in any respiratory and cardiac motion state based on separately acquired 2D slices. The method predicts motion and pixel 
intensity changes in 2D real-time images, which in turn allows predicting a complete 3D image of the heart in any motion state. 
 
METHODS: The fundamental assumption underlying our technique is that cardiac and respiratory motion are 
quasi-periodic, such that each individual image frame can be assigned a cardiac phase (φc) and a respiratory 
phase (φr). By registering the 2D real-time images (e.g., using optical flow) the motion of the heart in each 2D 
slice can be predicted as a function of φc and φr. Repeating this process for all 2D slices allows generating a 3D 
image of the heart for any combination of φc and φr. However, since the registration is limited to 2D, this 
approach fails to model motion perpendicular to the 2D imaging plane (i.e., through-plane motion). To model 
through-plane motion, we realize that for a given 2D slice, through-plane motion appears simply as pixel 
intensity changes that are also a function of φc and φr. Thus, having removed the predictable motion of the heart 
within each 2D slice, we predict the remaining pixel intensity changes as a function of φc and φr. 

Similar to the RETROICOR method [4], we define the cardiac and respiratory phases according to Eq. [1] 
and [2], where t denotes the time of the current frame, t1 and t2 denotes the time of the previous and next R- 
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peak, as detected by the VEG, R(t) is the respiratory bellow signal (in arbitrary units), and H is a histogram of R(t) consisting of 100 bins. Notice that the respiratory 
phase depends on the sign of the gradient of the respiratory bellow signal, implying that the model captures potential differences between inspiration and expiration. 
The motion parameters of the registration, as well as the pixel intensity changes, were modeled as a low-order Fourier series expanded in terms of the cardiac and 
respiratory phases, plus a constant offset k (see Eq. [3]). The unknown parameters k, am

c, bm
c, am

r, and bm
r can be estimated by linear regression. 

Real-time cardiac 2D images were acquired on a 3.0 Tesla MR system (Gyroscan Achieva, Philips Healthcare, Best, The Netherlands) using a matrix size of 
128x128 (spatial resolution of 3x3mm2) and a frame rate of approximately 10 frames per second. A total of 200 consecutive frames were acquired, but the first 20 
frames were excluded from further analysis in order for the magnetization to become properly saturated. The experiment was performed for a single 2D slice aligned 
through the centre of the left ventricle in the sagittal plane (thickness = 8 mm). With this imaging setup, the total examination time was 23 seconds. The images were 
registered using a standard optical flow technique. For comparison, we modelled the original time series by prediction of 1) motion only, 2) pixel intensity changes 
only, and 3) motion and pixel intensity changes. The second approach is essentially RETROICOR [4]. For the model fitting, we used Mr = 2 and Mc = 4 (see Eq. [3]). 
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FIG 1. True images for nine selected 
combinations of respiratory and 
cardiac phase. The overlaid green dots 
indicate all sampled motion states. 
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FIG 2. Images predicted by motion 
and pixel intensity changes. Although 
some blurring occurs, these images are 
fairly comparable to the true images. 
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FIG 3. Images predicted by motion 
only. These images resemble the true 
images poorly, reflecting primarily 
limitations of the registration method. 
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FIG 4. Images predicted by pixel 
intensity changes only. These images 
are more blurred than when combined 
with motion prediction (Fig. 2). 

 
RESULTS: Figure 1 shows nine frames from the true time series, spanning most of the variation within the data. The overlaid green dots indicate all 180 sampled 
motion states. The selected frames are connected to their corresponding motion state by a red line. Notice how the heart is displaced vertically as a function of 
respiratory phase and contracts as a function of cardiac phase. Figures 2-4 show the modelled images. Clearly, prediction by motion only (Fig. 3) fails to accurately 
reproduce the true images, although the images appear relatively sharp. In comparison, prediction by pixel intensities only (Fig. 4) resembles the true images more 
accurately, but the images are blurred particularly in cardiac systole (i.e., a cardiac phase of approximately three). Finally, combining prediction by motion and pixel 
intensities reduces the blurring, leading to more accurate prediction of the true images. 
 
CONCLUSIONS: This study has shown that is possible to predict 2D real-time images for any cardiac and respiratory phase by combining prediction of motion and 
pixel intensities. The advantage of this strategy is that it allows predicting 3D images of the heart for any motion state based on multiple, separate real-time 2D 
acquisitions (data not shown). This allows a dramatic increase in temporal and spatial resolution compared to 3D real-time acquisitions, which in turn may facilitate the 
establishment of 3D predictive models of cardiac and respiratory motion. With the current setup, the method suffers from spatial (and temporal) blurring. We are 
currently evaluating the extension to 3D imaging (i.e., 2D multi-slice) and plan to investigate strategies for improving temporal fidelity in more detail. 
 
REFERENCES: 1) Manke D et al. MRM 2003, 2) Pedersen H et al. ISMRM 2007, 3) Odille F et al. MRM 2008, 4) Glover et al. MRM 2000. 




