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ABSTRACT

In this paper, we represent a new approach for robust speaker
independent ASR using binary masks as feature vectors. This
method is evaluated on an isolated digit database, TIDIGIT in three
noisy environments (car,bottle and cafe noise types taken from
DRCD Sound Effects Library). Discrete Hidden Markov Model is
used for the recognition and the observation vectors are quantized
with the K-means algorithm using Hamming distance. It is found
that a recognition rate as high as 92% for clean speech is achievable
using Ideal Binary Masks (IBM) where we assume priori target
and noise information is available. We propose that using a
Target Binary Mask (TBM) where only priori target information
is needed performs as good as using IBMs. We also propose a
TBM estimation method based on target sound estimation using
non-negative sparse coding (NNSC). The recognition results for
TBMs with and without the estimation method for noisy conditions
are evaluated and compared with those of using Mel Frequency
Ceptsral Coefficients (MFCC). It is observed that binary mask
feature vectors are robust to noisy conditions.

1. INTRODUCTION

Automatic Speech Recognition (ASR) systems have been improv-
ing significantly since the 50’s. However, there are still many chal-
lenges to be surpassed to reach the human performance or beyond.
It is well known that one of the key challenges is the robustness un-
der noisy conditions. Another challenge is the need for innovative
modeling frameworks. Most of the work has been focusing on the
successful representations such as mel frequency cepstral coeffients
(MFCC). However, because of a long history of research within the
current ASR paradigm, the performance enhancement usually re-
ported is very little. We will suggest a new approach which gives
the state of the art performance that is robust to noisy environments.

Since the human auditory system has a great performance, it is
tempting to use the human auditory system as an inspiration for an
efficient ASR system. Auditory Scene Analysis(ASA) studies per-
ceptual audition and describes the process how the human auditory
system organizes sound into meaningful segments[1]. Computa-
tional ASA (CASA) makes use of some of the ASA principles and
it is claimed that the goal of CASA is the ideal binary mask (IBM)
[2]. IBM is a binary pattern obtained with the comparison of the
target and the noise signal energies with priori information of tar-
get and noise signals separately.IBMs have been shown to improve
speech intelligibility when applied to noisy speech signals. The lis-
teners have been imposed to the resynthesized speech signals from
the IBM-gated signal and almost perfect recognition results have
been obtained even for a signal-to-noise-ratio (SNR) as low as -60
dB which corresponds to pure noise [3, 4]. Having proven to make
improvements on speech intelligibility of humans, it is inevitable
not to make the use of CASA and thusIBMs for machine recog-
nition systems. Green et. al. have studied this in [5]. They used
CASA as a preprocessor to ASR and used only the time-frequency
regions of the noisy speech which are dominated by the target sig-
nal to obtain the recognition features. Therefore, they concluded

that occluded (incomplete) speech might contain enough informa-
tion for the recognition.

In this work we go one step further and explore the possibility
that not only the occluded speech but the mask itself might carry
sufficient information for ASR. The most obvious benefit of this
new approach is the simplicity with the use of the binary informa-
tion on the mask. The difficulty about using this method would be
the need for the priori information of the target and noise signals to
estimate theIBM. However, we minimize this need by using Target
Binary Mask(TBM) where only target information is needed and
compared to a speech shaped noise (SSN) matching the long term
spectrum of a large collection of speakers. UsingTBMs has also
been proven to give high human speech intelligibility [4]. In addi-
tion, we propose aTBM estimation method based on non-negative
sparse coding (NNSC)[6].

This paper will focus on a speaker-independent isolated digit
recognizer with hidden Markov model (HMM) using the binary
masks as the feature vectors. In Section 2 we give the modeling
framework. The experiments and results are explained in Section 3.
Finally Section 4 states the conclusion.

2. MODELING FRAMEWORK

2.1 Ideal Binary Masks

The computational goal of CASA, theIBM, is obtained by keeping
the time-frequency regions of a target sound which have more en-
ergy than the interference and discarding the other regions. More
specifically, it is one when the target is stronger than the noise for
a local criteria (LC), and zero elsewhere. The time-frequency (T-F)
representation is obtained by using the model of the human cochlea
as the basis for data representation [7]. IfT(t, f ) andN(t, f ) de-
note the target and noise time-frequency magnitude, then theIBM
is defined as

IBM(t, f ) =

{

1, if T(t, f )−N(t, f )> LC
0, otherwise

(1)

Figure 1 shows time-frequency representations of the target,
noise and mixture signals. The target is digit six by a male speaker
while the noise isSSNwith 0dB of SNR. The correspondingIBM
with LC of 0dB is also seen in Figure 1. Calculating anIBM re-
quires that the target and the noise are available separately. One of
the other properties of anIBM is that it sets the ceiling performance
for all binary masks. Therefore, it is crucial that we know the results
with IBMs before exploring any alternative mask definitions.

LC andSNRvalues in Equation 1 are two important parameters
in our system. IfLC is kept constant, increasing or decreasing the
SNRmakes the mask get closer to all-ones mask or all-zeros mask
respectively. The change inIBMs for a fixedLC with differentSNR
values is shown in Figure 2 for a digit sample. As also seen from this
figure, with fixed threshold, low or highSNRvalues result in masks
with little or redundant information respectively. Meanwhile, in-
creasing theSNRvalue is identical to decreasing theLC value and
vice versa. Therefore, the relative criterionRC= LC−SNRwas de-
fined in [4] and the effect ofRCof anIBM on speech perception was



Figure 1: llustration of T-F representations of a target, noise (SSN)
and mixture signals with the resultant IBM ( 0dB of SNR, 32 fre-
quency channels and window length of 20ms)red regions: highest
energy,blue regions: lowest energy.

studied. They calculatedIBMs with priori target and noise informa-
tion and multiplied the mixture signal with the correspondingIBMs.
They,exposed human subjects to resynthesized IBM-gated mixtures
and found high human speech intelligibility (over 95%) for theRC
range of [-17dB,5dB]. We took thisRCrange as a reference and the
results of our ASR system coincided with human speech perception
results in terms ofRC range which is shown in section 3.
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Figure 2: IBMs of digit three with SSN for a fixed LC at 0dB and
for different SNR values .

2.2 Target Binary Masks

The binary mask calculated based on only the target signal was stud-
ied and is called Target Binary Mask (TBM) [8]. TBMs were further
investigated in [4] in terms of speech intelligibility and the results
were comparable to those ofIBMs. The definition ofTBM as seen
in equation 2 is very similar to that ofIBM except that while obtain-
ing TBM the target T-F regions are compared to a reference SSN
matching the long-term spectrum of the target speaker. (It is also
possible to compare the target to a frequency dependent threshold
corresponding to the long term spectrum of SSN)

TBM(t, f ) =

{

1, if T(t, f )−SSN(t, f )> LC
0, otherwise

(2)

Figure 3 illustrates the T-F representation of a target signal and
the mixture signal with cafe noise at 0dB SNR. That figure also
shows the resultantIBM andTBM patterns withLC of 0dB, and the
difference between them is discernible. TheTBM mimics the target
pattern better, whereas theIBM pattern depends on the noise type.

Some of the properties ofTBM can be very practicable. First of
all, acquiring aTBM needs only the priori information of the target.
Therefore, estimating theTBM can be much more convenient in
some applications, especially if speech enhancement techniques are
used. In the case of an ASR system that is robust to noise types, use
of TBMs in the training stage require less computational effort as

Figure 3: llustration of T-F representations of a target (digit six),
mixture (target+cafe noise) and mixture signals with the resultant
IBM and TBM red regions: highest energy,blue regions: lowest
energy.

Figure 4: IBMs for different digits for the same speaker

opposed to the use ofIBMs where it is needed to include allIBMs
for all different noise types in the training stage.

2.3 ASR Using Binary Masks

As mentioned previously, we investigate if the mask itself can be
used to recognize different words. The distinctivity of the masks
can be observed easily in Figure 4 in whichIBMs for four different
digits with SNRof -6dB using SSN as interference are shown. (
Note thatIBM is identical toTBM when the noise type is SSN)
Moreover, as seen in Figure 5 , the masks for different speakers for
the same digit are very similar. Thus, the patterns in every mask are
characteristic for each digit which concludes that these patterns are
promising representations for speech recognition.

Figure 5: IBMs for digit three for different speakers.

We use a discrete Hidden Markov Model (HMM) as the recog-
nition engine [9]. As the vector quantization method before HMM,
we choose to use K-means algorithm which has been shown to per-
form as well as many other clustering algorithms and is compu-
tationally efficient [10] and proven to be succesfully applicable to
classify binary data [11]. Figure 6 illustrates the acquisition of the
feature vectors to be classified by K-means. We stack the columns
of the IBM into a vector. The number of columns to be stacked



is a parameter that has been optimized for this work (it is 3 for
this study) as well as other parameters: the codebook size, the state
number of the HMM, the number of frequency bands, and the win-
dow length of theIBM. The optimization process can be found in
detail in [12].

Figure 6: Acquistion of the feature vectors to be clustered by K-
means.

The whole system is summarized in Figure 7. First, the masks
for training and test data are calculated. The feature vectors ob-
tained fromIBMs are quantized with K-means to acquire the ob-
served outputs for discrete HMM. One HMM for each digit is
trained with the corresponding data. Finally, the test masks are
input to each HMM and the test digit is assigned to the one with
the highest likelihood. We use only clean data for training. How-
ever, for testing we use clean data to see the best performance that
can be obtained with our system, unprocessed mixture signal to see
the worst case performances under noisy conditions and finally es-
timated target signal from the mixture to see the improved results
under noisy conditions.

Figure 7: The schematics representation of the system used.

2.4 Estimation of TBMs

Estimation ofTBM is simpler compared to that of anIBM as men-
tioned previously. Once the target signal is estimated, it is com-
pared to a referenceSSNsignal in T-F domain. For speech and
noise separation, non-negative sparse coding (NNSC), combination
of sparse coding and non-negative matrix factorization, is used [6].
This method was proven to be successful for wind noise reduction
in [13], and we took this work as reference for our method.

The principle in NNSC is to factorize the non-negative signal,
X into a dictionary,W and a code,H:

X ≈WH. (3)

The columns of the dictionary can be considered as the basis
and the code matrix can be considered to have the weights for each
of the basis vectors constituting the signalX. In our caseX is the T-
F representation of a signal which is non-negative (Details about the
acquisition of T-F spectrogram is in section 3). We use the method
described in [13] that is based on the algorithm in [14].W andH are
initialized randomly, and updated according to the equations below
until convergence:

H←− H×
WT .X

WT .W.H +λ
, (4)

W←−W×
X.HT +W× (1.(W.H.HT ×W))

W.H.HT +W× (1.(X.HT ×W)))
. (5)

Here, (.) indicate direct multiplication, while others indicate
point wise multiplication and division. 1 is a square matrix of ones
of suitable size.

When the speech signal is noisy, and if the noise signal is as-
sumed to be additive, then

X = Xs+Xn≈ [WsWn]

[

Hs
Hn

]

, (6)

whereXs andXn denote the speech and noise. We precompute
the noise dictionaryWn using noise recordings and using equations
4 and 5. We keep this precomputedWn fixed and learn speechXs
using the following iterative algorithm,

Hs←− Hs×
WT

s .X
WT

s .W.H + ls
, (7)

Hn←− Hn×
WT

n .X
WT

n .W.H + ln
, (8)

Ws←−Ws×
X.HT

s +Ws× (1.(W.H.HT
s ×Ws))

W.H.HT
s +Ws× (1.(X.HT

s ×Ws)))
, (9)

The clean speech is estimated as

Xs =WsHs. (10)

Finally, the TBM is estimated by comparing the estimated
speech signalXs to the referenceSSNsignal spectrogram using
equation 2. As mentioned previously, differentRC values lead to
masks with different densities and only choosing the rightRC val-
ues leads high recognition results. However, we learn the rightRC
values for ASR after training and testing withIBMs, where we have
the pure target and noise signals.(The results can be seen in section
3 in figure 8). We assume that after NNSC we have the pure tar-
get spectrogram. Then, since we also have the referenceSSNsignal
spectrogram that is also used during training, we only need to adjust
SNRandLC values for the rightRC value. However, to obtain the
SNRbetween the estimated target and speech, we do not go back
to time domain which would be a waste of time and computational
power. Thus, we defined a newSNRin the T-F domain which is
calculated by the ratio between the sum of all T-F bins of the tar-
get signal to the sum of all T-F bins of the noise signal and will be
called asSNRTFD. We observed thatRCTFD = LCTFD−SNRTFD
range is similar toRC range found before( The results can be seen
in section 3 in figure 10).

3. EXPERIMENTAL EVALUATIONS

Through the experiments, data from TIDIGIT database were used.
The spoken utterances of 37 male and 50 female speakers for both
training and test data were taken from the database. There are
two examples from every speaker for each 11 digits (zero-nine,
oh) making 174 training, 87 test and 87 verification utterances for
each digit. The verification set has been used to obtain the opti-
mized parameters for HMM and for NNSC and the final results



are obtained using the test set. The experiments were carried out
in MATLAB and an HMM toolbox for MATLAB by Kevin Mur-
phy was used [15]. The experiments have also been verified us-
ing the HMMs in Statistical Toolbox of MATLAB. For NNSC the
NMF:DTU toolbox for MATLAB [16] has been adjusted for our
system and used. The time-frequency representations of the signals
sampled at 8kHz have been obtained using gammatone filter with
32 frequency channels equally distributed on ERB scale within the
range of [80Hz,4000Hz]. The output from each filterbank channel
was divided into 20 ms frames with 10 ms overlap. SSN, car, bottle
and cafe noise were used through the experiments [17]. A left-to-
right HMM with 10 states was used to model each digit. The binary
vectors were quantized into a codebook of size 256 with K-means.
The HMMs were trained withIBMs obtained withLC of 0 dB and
with different SNRvalues in the range of [-2dB,16dB] with 2dB
steps only usingSSNas the reference noise signal. We compare the
method with a standard approach using 20 static MFCC features.
All parameters used for the MFCC are the same except for the opti-
mized codeboook size of 32. The optimal codebook size is smaller
since we have less training data for MFCC. One minute of SSN, car,
bottle and cafe noise recordings were used to obtain the dictionar-
ies for NNSC. For train, verification or test noise samples different
parts of corresponding noise types were used.

Recognition results obtained for the test set forIBMs withSSN
for LC of 0 dB and differentSNRvalues are presented in Figure
8. As seen, the rate curve is bell-shaped, i.e. the rate does not
increase monotonously whileSNRincreases. This is because of
the previously mentioned fact that either increasing or decreasing
theSNRvalue results in masks closer to all-ones or all-zeros masks
and thus in the decrease of the recognizability of the masks. If we
look at the RC value, Figure 8 shows that 92% recogniton rate is
obtained forRC of -6 dB. Thus, the masks withRC of -6 dB gives
the maximum performance.
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Figure 8: The recognition rates with IBMs for LC=0dB and SNR=[-
2dB,16dB]

If the LC value can be adjusted so that the mask is as close to the
maximum-performance mask as possible (RC is close to -6dB), we
can obtain high recognition results for differentSNRvalues. How-
ever, under noisy conditions choosing the correctLC value is a chal-
lenge since we do not know neither theSNRvalue nor the noise
spectrogram in real life applications. This problem will be solved
by using NNSC method assuming we have information about the
noise characteristics. However, it is reasonable to check the recogn-
tion results that can be obtained comparing unprocessed mixture
signals toSSNwith adjustedLC values (results are obtained with
differentLC values and the best result is recorded) before exploring
that method. Figure 9 shows the recognition rates obtained using
HMMs trained with IBMs obtained by clean data andSSN, with
test set added different noise types at anSNRrange of [0dB,20dB]
(with adjustedRCvalue for the best performance). In that figure, the
results obtained using static MFCC features is also shown. It can be
seen that usingIBM features yields more noise-robust recognition
rates than using MFCC features. We point out the fact that we used
only static MFCC features and did not use any of the improvement

methods suggested for MFCC that results in a better performance
[18]. Nevertheless, we did not use dynamical features that could be
obtained fromIBMs neither. In addition, we believe that the per-
formance ofIBMs for ASR can also be improved in various ways
such as mask estimation methods [19]. Moreover, if we consider
the ASR results obtained using MFCC within recent works, our re-
sults are comparable [18]. (We can not make a direct comparison
though, since they use a different system and database) In addition,
our method establishes a new route for robust ASR that is open for
further improvements. (Some additional results and figures of the
whole system can be found at [12]).
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Figure 9: The recognition rates for TBMs and MFCC features at
SNR range of [0dB,20dB]

As mentioned previously, for NNSC we needed to findRCTFD
range giving high recognition results. The corresponding results can
be seen in Figure 10 and -6dB ofRCTFD gives the maximum per-
formance and RC between -16dB and 2dB gives reasonable recog-
nition results (over 80%). The optimized parameters for NNSC for
this work is the size of the dictionary of noise and speech,Wn and
Ws. Other parametersλ ,ls and ln were just equaled to be a very
small number taking reference the results in [13]. To find the op-
timal parameters for the size ofWn andWs, we checked the recog-
nition results for different size numbers between 4 and 512 for all
noise types withSNRTFD of 10dB andLC of 0dB. We choose 64
for Wn and 128 forWs based on the results seen in Figure 11.
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Figure 10: The recognition rates with IBMs forLC=0dB and
SNRTFD=[-2dB,16dB]

In Figure 12, the recognition rates obtained with noisy mix-
tures before and after using NNSC is shown. (with referenceSSN
atSNRTFD of 0dB) As seen on the left of this figure, before NNSC,
different LC values within right RC range found before (-4 dB to
2dB), result in sparse recognition rates. For cafe noise at 10dBSNR,
it is seen that before NNSC the rates can change from 30% to 60%
for those differentLC values. However, after using NNSC to esti-
mate the masks as explained, it is seen that the rates for thoseLC
values gives the best performances solving the choice of the right
LC values for our ASR system. Using NNSC not only solves this
problem but also leads higher recognition results especially for low
SNRvalues at the price of a decrease in recognition results for high
SNRvalues. However, the decrease in highSNRvalues is not as
much as the increase in low ones. Finally, we obtain 60% to 70%,
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Figure 12: The recognition rates before and after NNSC

16% to 73% and 40% to 70% recognition rates forSNRvalues be-
tween 0dB and 20dB for car, bottle and cafe noises respectively
which are comparable to the state-of-the-art results [18, 20].

4. CONCLUSION

In this paper, we investigated a new feature extraction method
for ASR using ideal and target binary masks. It is found that
using binary information from the masks directly as feature
vectors results in high recognition performance. We constructed
a speaker-independent isolated digit recognition system. The
experiments were carried out with TIDIGIT database, using
discrete HMM as the recognition engine. The K-means algorithm
with hamming distance was used for vector quantization. The
maximum recognition rate achieved for clean speech is 92%. In
addition, the robustness of the binary mask features to different
noise types (car,bottle and cafe) was explored and the results were
compared to the MFCC features results. ATBM estimation method
using non-negative sparse coding has been demonstrated to give
state of the art performance. It is concluded that noise-robust ASR
systems can be built using binary masks.
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