
Projection is memory-based due to                                                    , i.e. 

dependence on training dataset.

Gaussian kernel is given by                                     .
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Applying the kernel trick consist of mapping xi into a higher dimensional 

feature space via the non-linear function φ(x), i.e. xi −> φ(xi).

The autocorrelation ρ can be found as

Maximise autocorrelation ρ of linear combinations aTx(r) of zero-mean 

spatial variables x(r) at location r. The difference x∆(r) = x(r) – x(r+∆)

has a covariance matrix Σ∆, where ∆ is a displacement vector.

The dual formulation

The orthonormal projection eigenvectors are expressed as U = [u1 u2 … ur]

where r = min(n,p). The subspace projection becomes               .

Eigenvalue problem formulation maximizing the variance
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In hyperspectral image analysis an exploratory approach to analyse 

the image data is to conduct subspace projections.
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A collection of 8 maize grains, front and backside, are used to 

generate a single hyperspectral image of 153 bands.

Principal Components, PC1-PC3.

Kernel Based Subspace Projection Kernel Based Subspace Projection 
of Hyperspectral Imagesof Hyperspectral Images
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INTRODUCTIONINTRODUCTION

Kernel PCA

The analysis is based on near-

infrared hyperspectral images 

of maize grains demonstrating 

the superiority of the kernel-

based MAF method.

Maize grain kernel

Pseudo RGB of maize grains.

Pre-Processing

• Light source and dark current compensation.

• Remove 900-950nm (poor SNR).

• No spectral scatter correction.

Maize grain spectra (typical). Background spectra (typical).

Endosperm

• Horny starch

• Floury starch

Pedicel

Germ
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� Image size:

370 x 149 x 153

� Spectral range:

950 - 1700nm.

Principal Components, PC4-PC6.

MAF Components, MAF1-MAF3. MAF Components, MAF4-MAF6.
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The hyperspectral image tensor is unfolded and represented as a 

n x p matrix X, where each row represents an observed pixel, i.e. 

X is a 55130 x 153 matrix.

Linear Principal Component Analysis (PCA)

Linear Maximum Autocorrelation Factor (MAF)
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Principal Components, PC1-PC3. Principal Components, PC4-PC6.

MAF Components, MAF1-MAF3. MAF Components, MAF4-MAF6.

Subsampling

Appr. n = 3000 random samples are used for extracting the 

projection vectors applied to all data pixels.

Kernel MAF
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By exploiting the dual formulation the subspace projection can be found as

Properties

• Assumes 2nd order stationarity.

• Invariant to linear matrix transformation Txi, i.e. spectral scatter 

correction is not necessary.
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The eigenvalue problem becomes

, where
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As for kernel PCA a similar framework can be derived for the kernel MAF 

method using the same Gaussian kernel.

As linear projections often fail to capture the underlying structure of 

the data, we present kernel based subspace projections of PCA and 

Maximum Autocorrelation Factors (MAF). The MAF projection 

exploits the fact that interesting phenomena in images typically

exhibit spatial autocorrelation.

We have demonstrated how the kernel-based projections outperform the linear variants 

by their ability to suppress background noise, illumination and shadow effects.

The kernel MAF transform further provides a superior projection in terms of labelling 

different maize kernels parts with same colour.
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