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ABSTRACT

A kernel version of maximum autocorrelation factor (MAF) analy-
sis is described very briefly, and applied to change detection in re-
motely sensed hyperspectral image (HyMap) data. The kernel ver-
sion is based on a dual formulation also termed Q-mode analysis
in which the data enter into the analysis via inner products in the
Gram matrix only. In the kernel version the inner products are re-
placed by inner products between nonlinear mappings into higher
dimensional feature space of the original data. Via kernel substitu-
tion also known as the kernel trick these inner products between the
mappings are in turn replaced by a kernel function and all quantities
needed in the analysis are expressed in terms of this kernel function.
This means that we need not know the nonlinear mappings explicitly.
Kernel PCA and MAF analyses handle nonlinearities by implicitly
transforming data into high (even infinite) dimensional feature space
via the kernel function and then performing a linear analysis in that
space. An example shows the successful application of kernel MAF
analysis to change detection in HyMap data covering a small agri-
cultural area near Lake Waging-Taching, Bavaria, Germany.

Index Terms— Orthogonal transformations, dual formulation,
Q-mode analysis, kernel trick, kernel MAF.

1. INTRODUCTION

Based on work by Pearson [1] in 1901, Hotelling [2] in 1933 intro-
duced principal component analysis (PCA). PCA is often used for
linear orthogonalization or compression by dimensionality reduction
of correlated multivariate data, see [3] for a comprehensive descrip-
tion of PCA and related techniques. An interesting dilemma in re-
duction of dimensionality of data is the desire to obtain simplicity
for better understanding, visualization and interpretation of the data
on the one hand, and the desire to retain sufficient detail for adequate
representation on the other hand.

[4] introduced maximum autocorrelation factor (MAF) analy-
sis. [5] used MAF analysis to detect change in images consisting of
simple differences between corresponding spectral bands acquired
at two points in time. [6] introduced the minimum noise fraction
(MNF) transformation. Both the MAF and the MNF transforma-
tions contain spatial elements and they are therefore (conceptually)
better suited for spatial data than PCA. Several other orthogonal-
ization techniques including canonical correlation analysis (CCA)
exist; these will not be dealt with in this paper.

[7] introduced kernel PCA. [8] described kernel CCA, and [9]
described kernel independent component analysis (ICA) based on

kernel CCA. [10, 11] are good references for kernel methods in gen-
eral. [12, 13] describe kernel methods among many other subjects.
[14] used kernel PCA for change detection in univariate image data.

In this paper we sketch a kernel version of MAF analysis (Sec-
tion 2). All orthogonalization techniques including PCA and MAF
can be used for different types of feature extraction in general. In this
paper we apply kernel PCA and MAF analysis to detect change over
time in remotely sensed images. This is done by finding the projec-
tions along the eigenvectors for data consisting of simple band-by-
band differences of coregistered, calibrated variables which repre-
sent the same spectral bands covering the same geographical region
acquired at two different time points (Sections 3 and 4).

In the dual formulation of PCA and MAF analysis the data enter
into the problem as inner products between the observations. These
inner products may be replaced by inner products between mappings
of the measured variables into higher order feature space. The idea in
kernel orthogonalization is to express the inner products between the
mappings in terms of a kernel function to avoid the explicit use of the
mappings. Both the eigenvalue problem, the centering to zero mean
and the projections onto eigenvectors to find kernel scores may be
expressed by means of the kernel function. Kernel orthogonalization
methods handle nonlinearities by implicitly transforming data into
high (even infinite) dimensional feature space via the kernel function
and then performing a linear analysis in that space.

2. MAXIMUM AUTOCORRELATION FACTOR ANALYSIS

In maximum autocorrelation factor (MAF) analysis first suggested
in [4], we maximize the autocorrelation of linear combinations,
aT x(r), of zero-mean original (spatial) variables, x(r), see also
[5, 15, 16]. x(r) is a multivariate observation at location r and
x(r +Δ) is an observation of the same variables at location r +Δ;
Δ is a spatial displacement vector.

2.1. Primal Formulation

The autocovariance R of a linear combination aT x(r) of zero-mean
x(r) is

R = Cov{aT x(r), aT x(r +Δ)} (1)

= aTCov{x(r), x(r +Δ)}a (2)

= aT CΔa (3)

where CΔ is the covariance between x(r) and x(r+Δ). Assuming
or imposing second order stationarity of x(r), CΔ is independent of
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location, r. Introduce the multivariate difference xΔ(r) = x(r) −
x(r+Δ) with variance-covariance matrix SΔ = 2 S− (CΔ+CT

Δ)
where S is the variance-covariance matrix of x. Since

aT CΔa = (aT CΔa)T (4)

= aT CT
Δa (5)

= aT (CΔ + CT
Δ)a/2 (6)

we obtain

R = aT (S − SΔ/2)a. (7)

To get the autocorrelation ρ of the linear combination we divide the
covariance by its variance aT Sa

ρ = 1− 1
2

aT SΔa

aT Sa
(8)

= 1− 1
2

aT XT
ΔXΔa

aT XT Xa
(9)

where X is the n by p data matrix with columns xT
i and XΔ is a

similarly defined matrix for xΔ with zero-mean columns. CΔ above
equals XT XΔ/(n − 1). To maximize ρ we must minimize the
Rayleigh coefficient aT XT

ΔXΔa/(aT XT Xa) or maximize its in-
verse. This is done by solving a symmetric generalized eigenvalue
problem.

Unlike linear PCA, the result from linear MAF analysis is scale
invariant: if xi is replaced by some matrix transformation Txi

corrsponding to replacing X by XT , the result is the same.

As with kernel principal component analysis we use a re-
parameterisation a ∝ XT b and the kernel trick to obtain an implicit
nonlinear mapping for the MAF transform. A detailed account of
this is given in [20].

3. DATA

To illustrate the techniques we use all spectral bands of 400 rows by
270 columns 5 m pixels HyMap [21] data covering a small agricul-
tural area near Lake Waging-Taching in Bavaria, Germany. HyMap
is an airborne, hyperspectral instrument which records 126 spectral
bands covering most of the wavelength region from 438 to 2,483
nm with 15–20 nm spacing. Figure 1 shows HyMap bands 27 (828
nm), 81 (1,648 nm) and 16 (662 nm) as RGB, 30 June 2003 8:43
UTC (top) and 4 August 2003 10:23 UTC (bottom). The data at the
two time points are geometrically coregistered and radiometrically
calibrated. These data are dealt with in [22, 23] also.

4. RESULTS AND DISCUSSION

To be able to carry out kernel PCA and MAF/MNF analysis on the
large amounts of pixels typically present in Earth observation data,
we sub-sample the image and use a small portion termed the training
data only. We use typically in the order 103 randomly sampled train-
ing pixels to find the eigenvectors onto which we then project the
entire image termed the test data kernelized with the training data.
This sub-sampling potentially avoids problems that may arise from
the spatial autocorrelation inherent to image data. A Gaussian ker-
nel κ(xi, xj) = exp(−‖xi − xj‖2/2σ2) with σ equal to the mean
distance between the observations in feature space is used.

In the change detection analysis all band-wise differences of 126
spectral bands of the HyMap are included.

Fig. 1. HyMap bands 27 (828 nm), 81 (1,648 nm) and 16 (662 nm)
as RGB, 30 June 2003 8:43 UTC (top) and 4 August 2003 10:23
UTC (bottom).
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Fig. 2. Scatterplots and histograms of the first three kernel PCs (top)
and kernel MAFs (bottom).

Figure 2 shows scatterplots and histograms of the first three ker-
nel PCs (top) and kernel MAFs (bottom) for the ∼1,000 training
samples. We see that the histograms for the kernel MAFs are very
narrow and that many more samples are concentrated in the center of
the scatterplots for the kernel MAFs, i.e., we have a better isolation
of the no-change observations.

Figure 3 shows kernel principal components 1–3 (top) and ker-
nel maximum autocorrelation factors 1–3 (bottom) of simple band-
by-band difference images as RGB. All bands are stretched linearly
between mean minus and plus three standard deviations. In this rep-
resentation no-change areas will appear as grayish and change re-
gions will appear in saturated colours. The change detected over the
five weeks is due to growth of the main crop types such as maize,
barley and wheat. On pastures, which are constantly being grazed,
in forest stands and in the lake to the south, no change is observed.
Furthermore, solar effects give rise to edge effects where height dif-
ferences occur (both solar elevation and azimuth have changed). We
see that both types of kernel analysis emphasize change and that un-
like kernel PCA, kernel MAF analysis seems to focus on the most
conspicuous changes and that it gives a very strong discrimination
between change and no-change regions.

Ordinary linear PCA or MAF analysis (not shown) does not give
this beautiful discrimination between change and no-change regions.

The generation of three kernel MAFs for the entire image based
on ∼1,000 random samples calculated by Matlab code based on the
eigs function takes around 80 seconds on a 32 bit, 2.00 GHz Intel

Fig. 3. Kernel principal components 1–3 (top) and kernel maximum
autocorrelation factors 1–3 (bottom) of 126 simple difference images
as RGB. All bands are stretched linearly between mean (which is
zero) minus and plus three standard deviations.
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Core 2 CPU laptop with 2.00 GB, 998 MHz memory.

5. CONCLUSIONS

Kernel orthogonalization with a Gaussian kernel κ(xi, xj) =
exp(−‖xi − xj‖2/2σ2) is used for detecting change in coregis-
tered, calibrated simple band-by-band difference HyMap images.
Unlike ordinary linear PCA or MAF analysis, especially kernel
MAF analysis gives a strong discrimination between change and
no-change regions. This differencing is meaningful for calibrated
or normalized data only. If the data available is not of this nature,
generalized differences as described in [23, 24] may be applied.

Kernel PCA and kernel MAF analysis are so-called memory-
based methods: where ordinary PCA and MAF analysis handle new
observations by projecting them onto the eigenvectors found based
on the training data, because of the kernelization of the new obser-
vations with the training observations, kernel PCA and kernel MAF
analysis need the original data as well as the eigenvectors (and for
PCA the eigenvalues) to handle new data.

It’s important to realize that the information content in the origi-
nal data is conveyed to a kernel method through the choice of kernel
only (and possibly through a labeling of the data; this is not relevant
for kernel PCA and kernel MAF analysis). For example, since kernel
methods are implicitly based on inner products, any rotation by an
orthogonal matrix Q of the original coordinate system will not influ-
ence the result of the analysis, (Qxi)

T Qxj = xT
i QT Qxj = xT

i xj .
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