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Abstract

This paper introduces a new orthogonal transfonn the multivariate change
detection (MeD) transfonn based on an established multivariate statistical tech
nique canonical correlation analysis. The theory for canonical correlation anal
ysis is sketched and modified to be more directly applicable in our context. As
opposed to traditional univariate change detection schemes our scheme transforms
two sets of multivariate observations (e.g. two multispectral satellite images aquired
at different points in time) into a difference between two linear combinations of the
original variables explaining maximal change (Le. the difference explaining maximal
variance) in all variables simultaneously. A case study using multispectral SPOT
data from 1987 and 1989 covering coffee and pineapple plantations near Thika,
Kiamhu District, Kenya, shows the usefulness of this new concept.

1 Introduction

When analyzing changes in panchromatic imagery taken at different points in time it is
customary to analyze the difference between two images.

If we have multivariate images with outeornes at a given pixel



then a naive change deteetion transform would be

[ Xl ~ Yi ]

X-Y= : .
X1c - Yi.

If we have seasonal changes in say vegetation cover this would cause shifts of "energy"
from one wavelength to others and the changes may therefore be "smeared" out. This
would make it difficult to aetually see the changes in all the channels. The problem
is obviously that the channels are correlated. We shall therefore try to overcome this
problem by looking at linear combinations

b'Y = blYi + ... + b1cYi.

and then consider the difference between these, i.e.

a'X - b'Y.

For any choice of a and b this will give a measure of change. One could use pricipal
components analysis on X to find an optimal a and on Y to find an optimal b (indepen
dent of a). An improvement of this technique is to use principal components analysis on
X and Y considered as one variable, cf. Fung and LeDrew (1987). This approach does
not, however, guarantee a separation of X and Y. It might as well give, say, differences
between shortwave and longwave image bands. A better approach is to define an opti
mal set of a and b simultaneously. Emphasizing changes is the same as saying we want
the difference to show a great variation or in other words that we want to maximize the
variance V(a'X - b'Y). Now, trivially a multiplication of a and b with a constant c will
multiply the vananee with c2• Therefore we must put some restrictions on a and b, and
natural restrietions are requesting unit variance of a'X and b'Y.

The criterion would thus be

maximize V(a'X - b'Y)

subjeet to the constraints

V(a'X) = 1 and V(b'Y) = 1.

Under these constraints we have

I

I

V(a'X - b'Y) V(a'X) + V(b'Y) - 2Cov(a'X,b'Y)

2(1- Corre(a'X,b'Y)).

Therefore, determining the combinations with maximum variance corresponds to having
minimum correlation.

In the sequel we shall assume that a and b are chosen 50 that the correlation between a' X
and b'Y is positive. Positive correlation may simply be abtained by a change af sign if
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necessary. Determining linear combinations with extreme correlations brings the theory of
canonical correlation analysis into mind. Canonical correlation analysis investigates
the relationship between two groups of variables. It finds two sets of linear combinations
of the original variables, one for each group. The first two linear combinations are the
ones with the largest correlation. This correlation is called the first canonie:al correlation
and the the two linear combinations are called the first canonical variates. The second
two linear combinations are the ones with the second largest correlation subject to the
condition that they are orthogonal to the fust canonical variates. Trus correlation is
called the second canonical correlation and the the two linear combinations are called the

second canonical vanates. Higher order canonical correlations and canonical variates are
defined similarly. The technique is described in most standard textbooks on multivariate
statistics, cf. e.g. Anderson (1984).

The main idea presented in trus paper is now to try to modify the theory used in defining
canonical variates. This could be viewed upon as a time analogue to the introduetion of
minimumjmaximum autocorrelation factors in the spatial domain. MinimumjMaximum
autocorrelation factor (MAF) analysis was first described by Switzer and Green, 1984.
We shall therefore summanze the theory of canonical correlations and then modify the
theorems so that they are more directly applicable in our context.

2 Canonical Correlation Analysis

We consider a p+q dimensional random variabel (p ~ q) following a Gaussian distribution
split into two groups of dimensions p and q respectively

and we assume that 1711 and 1722 (and 17) are non-singular.

We consider the conjugate eigenvectors all' .. ,ap corresponding to the eigenvalues Al 2:

... 2: Ap of 1712172211721 with respect to 1711, i.e.

Tfwe put

we have
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i.e. bi is an eigenveetor of :E2I:E1II:El2 with respect to :E22 corresponding to eigenvalue
.Ai. If P = q this will be all the eigenvalues and -vectors of :E2I :E1II:El2. If q > p then then
last eigenvalue will be Owith multiplicity q-p.

Theorem. Letting Sij be the Kronecker delta (Sij = 1 for i = j, Sij = Ootherwise) we
have

a~:El1aj = b~:E22bj = Sij

a~:E12bj = ~Sij.

Proof. The result for ai follows by definition. We then obtain

Similarly we obtain

o

We are now able to introduce the canonical variates

Vi=b~Y, i=l, ... ,p

and with an obvious choice of notation

where

U=A'X and v - B'Y- l

We then have

A = (al, ... l ap) is p x P

B = (bIl'" , bp) is q x p.

Theorem. We consider the random variable Z = U - Vand have that the dispersion
matrix is

[l-AD(Z) = D(U - V) = 2 ~
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Proof. Straightforward

D(U - V) - D(U) + D(V) - 2Cov(U, V)
A'.EllA + B'.E22B - 2A'.E12B

11+1 -2A2.

3 A Minimizing Propert y of Canonical Variates

o

Normally thestepwise definition of canonical variates starts at the set with maximal
correlation as mentioned in the introduetion. From our point of vlew it will be more
natural to start with the component of Z yielding the largest variance i.e. the canonical
variates with the smallest correlation.

We assume that c' X is independent of Uj+l' ... ,Up' We have

Cov(c'X,a~X) = c'.Ellalc = O, k = j + 1, ... ,p.

Now, c may be written as /lal + ... + /pap and this implies

C'.Ellak=/Ic=O, k=j+1, ... ,p

i.e. c' X may be written as

Similarly, if d'Y is independent of Vj+l,'" , ~ we may write

d'y = Vl V1 + ... + VjVi·

We now want to minimize the absolute value of the correlation between c' X and d'Y i.e.
IDllliIDlze

or equivalently minimize

c'.E12d

c'.Elld.E22d
(1)

subjeet to the constraints

1
I -= I.A: v.

'V' 'V = 1 and v'.v. = l.I. I.
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We introduce the Lagrange expression

and have at optimum

aF ! !.

-a = A.~i. - {3v.= o {:}{3v.= A.~i.·v.

We insert this in Equation 1 and obtain the expression

The square of this expression is

All? + . o o + An}
l? + 000 +I}

and this has a minimum for 11 = o o o = Ij-l = O and Ij - 1, which corresponds to
choosing e/X as Uj• We have now proven the following

Theorem. The canonical variates have the propert y that the j'th canonical variate shows
minimal correlation amongst linear combinations independent of the previous p - j least
correlated canonical variates. In the case q > p correlations between any of the U's and
the projeetion on the eigenveetors of :E2l:E~11:El2 with respeet to :E 22 corresponding to
the eigenvalue Oare exaetly equal to o.

4 The Multivariate Change Detection (MeD) Trans
form

Having established this result we are now ready to define the multivariate change
deteetion (MCD) transform as

where A and B etc. are defined as above i.e. A and Bare the defining coefficients
from a standard canonical correlation analysis. The MCD transform has the very
important propert y that if we consider linear combinations of the two sets
of variables that are positively correlated then the p'th difference will show
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maximum variance among such variables. The (p - j)'th difference will show
maximum variance subjeet to the constraint that it should be uncorrelated
with the previous j ones etc. In this way we may sequentially extraet uncorrelated
difference images where each new image shows maximum change under the constraint of
being uncorrelated with the previous ones.

If p < q then the projeetion of Y on the eigenveetors corresponding to the eigenva.lues
O will be independent of X. That part may of course be considered the extreme case of
multivariate change deteetion.

5 Case Study - SPOT XS Data, Kenya

A 512x512 sub-scene from multispeetra.l1987 and 1989 SPOT XS data is used as a pilot
area. This area contains economically important eoffee and pineapple fieids near Thika,
Kiambu Distriet, Kenya. In Plate 1 we show fa.lse colour composites of multispectra.l
SPOT scenes from 1987 and 1989. The area is dominated by large pineapple fieids to the
northeast and coffee fieIds to the northwest. To the south is Thika town. We a.lsoshow

the naive change deteetion image. The major differenees are due to the changes primarily
in the pineapple fields. Pineapple is a triennia.l erop and therefore we observe changes
from one year to another. Since the ehanges are eonnected to change in vegetation it
seems natura.l to study the change in the normalized difference vegetation index

NDVI= NIR-R
NIR+R+ 1

where NIR is the near-infrared channel (XS3) and R is the red channel (XS2). The
philosophy behind the NDVI is that hea.lthy green matter refleets the near-infrared light
strongly and absorbs the red light. Therefore the NDVI will be large in vegetated areas
and sma.ll in non-vegetated areas. An interesting study on NDVI ehange detection based
on NOAA AVHRR decade (10 day) GAC data from Sudan covering a period of nearly 7
years the result of which was presented as a video was made by Stem (1989). In Plate 1
we fina.lly show the 1989 NDVI as red and 1987 NDVI as cyan (causing no change to
be represented by a grey sca.le). This image enhances the differenees between fields in a
much clearer way than the naive change deteetion image. However, this enhancement of
differences may a.lsobe due to differences between fields in the same season. In Plate 2 we
show the canonica.l variates for the 1987 and the 1989 data. Enhancing many interesting
features it readily follows that these images are useful by themselves. We a.lso show the
MCD3 variable, i.e. the difference between linear combinations from the two years showing
maxima.l difference. In Plate 2 we fina.lly show all three MCDs. An inspeetion of these
images and a comparison with the naive change detection image show that there is a much
better distinetion between different types of changes. In the naive change detection image
cyan is dominating but in the MCD image we see that a much better discrimination has
been achieved. We therefore conclude that the MeD transformation is a useful extension

of more naive multivariate ehange detection. schemes.
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6 Annex

In this annex we show the numerical results from the canonical correlation analysis of the
two scenes. We first report the basic statistics

Means and Standard Deviations

1987 1989
Mean

Std DevMeanStd Dev
XS1

45.005.4032.274.79
XS2

36.867.1222.884.87
XS3

74.1512.5562.3310.66

Correlations Affiong the Original Variables

19871989
XS1

XS2XS3XS1XS2XS3
XS1

1.00000.9057-0.33360.51160.3955-0.0082
1987 XS2

0.90571.0000-0.41960.43520.4140-0.0381
XS3

-0.3336-0.41961.0000-0.3477-0.26440.2492
XS1

0.51160.4352-0.34771.00000.8866-0.2609
1989 XS2

0.39550.4140-0.26440.88661.0000-0.4191
XS3

-0.0082-0.03810.2492-0.2609-0.41911.0000

It is noted that the correlation strueture is basically the same in the two years considered.

Canonical Correlation Analysis

ApproxSquared
Canonical

StandardCanonical
Correlation

ErrorCorrelation
1

0.6505 0.00110.4232
2

0.4024 0.00160.1619
3

0.2403 0.00180.0577

Test of Ho: The canonical correlations in the current row and all that follow are zero

Likelihood NumeratorDenominator
Ratio

Approx FDFDFPr> F
1

0.4555 2703996379750.0
2

0.7897 1642545242780.0
3

0.9423 1605812621400.0
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Standardized canonical coefficients

1987 1989
CAN1

CAN2CAN3CAN1CAN2CAN3
XS1

-1.8816-0.68621.2787-2.0441-0.81510.424-7
XS2

1.53281.6894-0.94171.51201.7877-0.4430
XS3

0.59380.40810.84410.26160.64310.9063

Canonical Strueture
Correlations between original variables and canonical varlables

19871989
CAN1

CAN2CAN3CAN1CAN2CAN3
XS1

-0.69150.70780.1442-0.44990.28480.0347
1987 XS2

-0.42060.8967-0.1377-0.27360.3609-0.0331
XS3

0.5784-0.07190.81260.3763-0.02890.1952
XS1

-0.50210.2423-0.0491-0.77180.6021-0.2045
1989 XS2

-0.26670.3201-0.1072-0.40990.7955-0.4462
XS3

0.10500.04290.23570.16130.10670.9811

Canonical Redundancy Analysis
Standardized variance of 1987 XS

Explained by
Their Own

The Opposite
Canonical Variables

Canonical Variables
Cumulative

Canoni cal Cumulative

Proportion
ProportionR2ProportionProportion

1
0.3299 0.32990.42320.13960.1396

2
0.4368 0.76670.16190.07070.2103

3
0.2333 1.00000.05770.01350.2238

Standardized variance of 1989 XS

Explained by
Their Own

The Opposite
Canonical Variables

Canonical Variables
Curnulative

Canomcal Curnulative

Proportion
ProportionR2ProportionProportion

1
0.2632 0.26320.42320.11140.1114

2
0.3356 0.59880.16190.05430.1658

3
0.4012 1.00000.05770.02320.1889
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Squared multiple correlations (R2) between 1987 XS and the first M canonical variates L
of 1989 XS, and squared multiple correlations (R2) between 1989 XS and the first M
canonical variates of 1987 XS

i
lo.-

R2(1987 XS, 1989 CAN)R2(1989 XS, 1987 CAN)
M

123123
XS1

0.20240.28350.28470.25210.31080.3132
XS2

0.07490.20510.20620.07110.1736 . 0.1851
XS3

0.14160.14240.18050.01100.01290.0684

Thus the canonical variates for the 1987 XS data are

[ CAN1 ] [ -1.8816 1.5238 0.5938] [ (XS1 - 45.QO)/5.40 ]
CAN2 = -0.6862 1.6894 0.4081 (XS2 - 36.86)/7.12
CAN3 1.2787 -0.9417 0.8441 (XS3 - 74.15)/12.6

and the canonical variates for the 1989 XS data are

[ CAN1 ] [ -2.0441 1.5120 0.2616] [ (XS1 - 32.27)/4.79 ]
CAN2 = -0.8151 1.7877 0.6431 (XS2 - 22.88)/4.87 .
CAN3 0.4247 -0.4430 0.9063 (XS3 - 62.33)/10.7
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Plate 1 (left-to-right top-to-bottom): (a) 1987 SPOT XS, (b) 1989 SPOT XS, (c)
Nai·ve Change SPOT XS, (cl) Change SPOT NDVI.
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Plate 2 (right-to-left top-to-bottom): (a) 1987 SPOT Can. Var., (b) 1989 SPOT Can,
Var., (c) SPOT MCD3, (cl) SPOT MCD
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