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Abstract

I review methods and tools for visualizations in neu-
roimaging as well as point to some of the problems
with interpreting such visualizations. I furthermore
describe Internet-based visualization and informa-
tion visualization. I focus on workflows associated
with the Brede Toolbox for display of data mining
results. A few neuroinformatics databases now ex-
ist that record results from neuroimaging studies in
the form of brain coordinates in stereotaxic space.
The Brede Toolbox was originally developed to ex-
tract, analyze and visualize data from one of them
— the BrainMap database. Since then the Brede
Toolbox has expanded and now includes its own
database with coordinates along with ontologies for
brain regions and functions: The Brede Database.
With Brede Toolbox and Database combined we
setup automated workflows for extraction of data,
mass meta-analytic data mining and visualizations.
Most of the Web presence of the Brede Database is
established by a single script executing a workflow
involving these steps together with a final gener-
ation of Web pages with embedded visualizations
and links to interactive three-dimensional models
in the Virtual Reality Modeling Language.

1 Introduction

In a narrow sense neuroimaging workflows involve
neuroimaging image processing and analysis. In a
more broader sense the workflow in a neuroimaging
study involves a number of other processes: gath-
ering information, designing the experiment, brain
scanning, interpretation of the study, relating it to
other studies and communicating the study. Data
mining in neuroimaging may not only be applied as
the standard neuroimaging analysis but also set to
work on other components in workflow, and visual-
ization of the data mining results may help the in-
dividual researcher in understanding his or her data

as well as in communication with other researchers.

A number of tools exists for visualizing neu-
roimaging data mining results when the result is a
volumetric neuroimage. There are, however, also
visualization tools for other aspects of the neu-
roimaging process, and one example is our Brede
Toolbox (Nielsen and Hansen, 2000a). Starting out
as a program for handling and visualization of data
from the BrainMap database of Fox et al. (1994)
the Brede Toolbox now includes its own database
of results from neuroimaging—the Brede Database
(Nielsen, 2003)—as well as analysis and visualiza-
tion functions for a range of tasks. Below I will
describe some of the tools for neuroimaging visual-
ization, and as our experience has been mostly with
the Brede Database and Toolbox I will take a par-
ticular focus on workflows and visualizations with
these tools. We have setup an automated work-
flow involving a few non-interactive batch scripts
that construct practically the entire Web presence
of the Brede Database with static Web pages and
visualizations. Furthermore, automated workflows
using the ontologies of the Brede Database can per-
form mass meta-analysis across brain functions or
brain regions (Nielsen, 2005; Nielsen et al., 2006a).

2 Visualization tools

The abundance of tools for visualization as well
as for other aspects of the neuroimaging process
has spawned an interest in generating overviews
for these tools, and now there exist several Web-
based directories: Neuroscience Database Gate-
way (NDG) (Gardner and Shepherd, 2004), Neu-
roscience Information Framework (NIF) (Gard-
ner et al., 2008), Neuroimaging Informatics Tools
and Resources Clearinghouse (NITRC) (Bucci-
grossi et al., 2008), I Do Imaging and Internet
Analysis Tools Registry (IATR), see also (Dinov
et al., 2008). Some of these have an API so
that HTML or XML for a specific tool can be re-



quested. The NIF resource may be downloaded as
an XML file. NITRC, IATR and I Do Imaging
have Web 2.0 components with user-provided tool
ratings and NITRC has an associated wiki. Since
2001 I have updated the Bibliography on Neuroin-
formatics which also lists numerous tools. Recently
I began the Brede Wiki with structured information
about neuroscience including neuroimaging visual-
ization tools. Anyone can ‘micro-publish’ relevant
information, and the structured content allows for
off-wiki database queries (Nielsen, 2009).

Among the visualization tools are, e.g., MRIcron
(Rorden and Brett, 2000), MindSeer (Moore et al.,
2007), iiV (Lee et al., 2008), DataViewer3D (Gouws
et al.,, 2009), MIPAV (Bazin et al., 2007). Sev-
eral workflow management systems exists (Fissell,
2007) and they often have associated visualization
programs for the neuroimaging data. Presently NI-
TRC has 35 tools listed under visualization, and
IATR returns 48 on a query on visualization.

3 Visualizing neuroimages

In the published literature the most used visualiza-
tion is the display of summary statistics. For ex-
ample, in the Neurolmage issue volume 21 number
1 of May 2006, practically all articles display func-
tional neuroimaging data mining results as slices
with a thresholded and color-coded summary statis-
tics image (e.g., the ¢-value map from statistical
parametric mapping) on top of a grey-scale back-
ground of an anatomical magnetic resonance im-
age. There are a few other types of visualization
present: Projection of the activations on the corti-
cal surface visualized in three dimensions (3D), ei-
ther with the method implemented in the SPM tool
(Frackowiak et al., 2003) or with the more elabo-
rate approach involving cortical surface extraction,
that may be further turned into two dimensional
(2D) flat-maps where the sulcal and gyral curva-
ture is indicated with a gray-scale, for a recent ex-
ample see Van Essen and Dierker (2007). This type
of visualization is also used for results on cortical
thickness analysis. Other types are ‘glass-brain’ vi-
sualizations with maximum intensity projection on
three orthogonal planes. The few EEG studies in
this Neurolmage issue use their specialized visual-
ization, and a meta-analysis plot activation coor-
dinates from the literature in 2D and 3D as well
as plot showing the ranges of x, y and z coordi-
nates. Other forms of visualization that appear in
the literature are, e.g., volume rendering and cor-
ner cube visualization. Corner cube visualization
combines a 3D rendering with 2D tri-planar plots,
where, e.g., thresholded summary statistics appear

as 3D objects with their projection on surrounding
2D ‘walls’ (Rehm et al., 1998). Other more special-
ized renderings are associated with diffusion tension
imaging and tractography and visualization for es-
timated EEG dipoles that require glyphs with di-
rectionality. Results reported with respect to brain
regions—not volumes or coordinates—may be dis-
played by color-coding a segmented brain.

The typical visualization displays areas that sur-
vive a threshold and usually color-codes the area
above threshold according to t-value or F-value.
There are, however, other elements from the data
mining result that may be visualized. What they
are can be revealed by what has been termed in the
‘only’ statistical formula by Sackett (2001):

Confidence = ?\;g?al X y/Sample size

o1se

(1)

Thresholding at a certain t-value will, e.g., be based
on the ‘confidence’ part of the equation, and that
is depended on the signal, the noise and the sample
size. In certain situations a researcher is actually
interested in the ‘signal’ or the signal to noise ra-
tio. It is possible to plot estimates of these terms.
In the General Linear Model the so-called contrast
image relates to the signal, while the residual is the
noise. The correlation coefficient is a kind of signal
to noise ratio. That the issue of what is plotted is
not entirely unimportant is seen with the Reimold-
effect (Reimold et al., 2005): The combination of
spatially varying signal and noise patterns together
with spatial smoothing as a step in the image pro-
cessing may conspire to make it seem as if the ‘ac-
tivations’ in the t-map area moved to areas of no
signal, e.g., white matter. Reimold et al. (2005)
suggest viewing the contrast image instead of the
t-map.

When viewing the thresholded ¢t-maps or corre-
lation visualizations one should remember that the
thresholded voxels are selected in a multiple com-
parison procedure and the values are no longer un-
biased estimates, — unless corrected for. If a scat-
ter plot is made with values of a thresholded voxel
across time or subject as a function of a design vari-
able of interest, then the scatter plot and its associ-
ated correlation may give the naive reader the im-
pression of a stronger association than actual. This
will also be the case for, e.g., a bar plot of percent
signal changes for a peak voxel.

The biased correlation has recently been referred
to as ‘voodoo correlations’ by Vul et al. (2009) or
less colorful ‘biased post hoc correlations’ by Lieber-
mann et al. (2009). Methods exist that delivers
an unbiased scatter plot. In machine learning it is
common to split the data into two sets to get an un-
biased estimate of the model performance (Mgrch



et al., 1997). This may also be done in more stan-
dard neuroimaging analysis with one part of the
data acting as a hypothesis-generating data set to
determine the region above threshold and the other
part acting as the hypothesis-testing data set that
gives unbiased estimates within the thresholded re-
gion. This procedure is not widespread, but have
been applied in a few PET studies, see, e.g., Fiez
et al. (1996) and Law et al. (1998). Though these
two studies do not have unbiased statistical values
for other reasons: the split does not occur across
subjects or subjects are excluded in the hypothesis-
testing group if they do not survive the threshold.

Interpretation of a visualization with a threshold
should be done with caution. Such a visualization
may hide an area that did not survive the thres-
hold, and should, say, an activation appear in the
right hemisphere and not in the left hemisphere,
one is (usually) not allowed to conclude that there
is a statistical significant difference between the left
and right hemispheres: If the threshold is selected
on, say, t = 4 the right activation may be 4.1 while
the left 3.9, and given variation in the data the 0.2
difference may not be significant, see also the dis-
cussion by Jernigan et al. (2003). The phenomenon
is not limited to neuroimaging and statisticians has
discussed it in a paper with the telling title The
Difference Between “Significant” and “Not Signifi-
cant” is not Itself Statistically Significant (Gelman
and Stern, 2006), which also lists the standard is-
sues with thresholding, e.g., the arbitrariness with
the threshold on, e.g., 0.05.

There is a range of non-spatial visualization for
neuroimaging data. Some of these pertains to qual-
ity assurance, e.g., Keator et al. (2008) report the
computation of values such as center-of-mass, mean
intensity, per-slice spikiness and have displays of
‘mean of running difference’ and ‘per-slice varia-
tion’, and Luo and Nichols (2003) present plots with
several different statistical measures to characterize
signal and noise, see also Duff et al., this issue. Im-
age processing programs could generate these kinds
of visualization as part of a workflow.

Large-scale studies may process individual sub-
jects as they are scanned, and plots can render the
evolution of the statistical tests on the hypothesis
of interest as more and more subjects are added, see
Figure 1 and Frokjaer et al. (2008). In the Brede
Toolbox bootstrap resampling gives an indication of
the variation of the estimate as more subjects are
added. If the scanning of subjects is stopped based
on the statistical test it should be noted that mul-
tiple dependent comparisons have been performed
and the statistical threshold should be corrected.
The statistical area of sequential analysis deals with
this problem.
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Figure 1: Plot of the evolution of the partial cor-
relation coefficient as the number of subjects in-
cluded in the analysis is increased from 1 to 83. The
lines indicate maximum, 97.5% fraction, median,
2.5% fraction and minimum correlation among 1000
bootstrap samples. Original data from Frokjaer
et al. (2008).

Temporal signals, such as the fMRI time courses,
are often visualized with line plots. Duann et al.
(2002) suggest another way of revealing the time
course of fMRI data with the ‘BOLD image’ that
plots multiple time-series as an image with the am-
plitude color-coded. In the Brede Toolbox we also
use ‘image’ plots to visualize the data and results
in partial correlation analysis, see Figure 2. Kherif
et al. (2003) describe one example of visualiza-
tion with multidimensional scaling (MDS) plots of
spatial and temporal similarities between subjects.
Similarities are computed as model-based RV coef-
ficients between all pairs of subjects. The resulting
MDS shows subjects as individual points in the 2D
plots and makes it relatively easy to visually spot
temporal or spatial outliers. The ‘receptor finger-
prints’ of Zilles and Palomero-Gallagher (2001) dis-
play brain region results of multiple dimensions in
a polar plot.

4 Visualizing predictors

Standard neuroimaging data mining results in a
volume, — often termed a statistical parametric
map. In this mode of analysis design variables
can be regarded as predictors and the neuroimaging
data as response variables. Another mode of data
mining uses the neuroimage data to predict the ex-
perimental variables (Lautrup et al., 1995). Stan-
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Figure 2: Partial correlation analysis data and re-
sults presented in the Brede Toolbox. Multiple per-
sonality trait scores, multiple brain regional values
from positron emission tomography and nuisance
variables (sex and age) for 83 subjects are displayed
in the upper row. The lower row presents the re-
sults of partial correlation analysis: the correlation
matrix and matrices of corrected and uncorrected
P-values. Data from Frokjaer et al. (2008)

dard statistics, such as multiple regression, cannot
do statistical inference in this case as the predic-
tors form a massively ill-posed problem, and the
problem is often recast as a machine learning task.
As such the constructed machine learning algo-
rithms can classify patients from healthy controls
(Lautrup et al., 1995) or classify fMRI and PET
scans with brain activation induced by tasks and
stimuli (Mgrch et al., 1995, 1997). The approach
usually splits the data into a training and a test
set. First the model parameters of the machine
learning algorithm are estimated on the training
set, and then the classification or regression per-
formance of the model is evaluated on the test set.
The primary result is not an image that may be
visualized, but ‘just’ the prediction model and its
performance. However with further computation,
images can be formed that tell how much voxels
are involved in the prediction. For linear mod-
els a weight vector is usually associated with the
prediction, and this can be visualized, for a recent
example see, e.g., (Mourdo-Miranda et al., 2007).
For non-linear models, such as multilayer sigmoidal
neural networks and non-linear support vector ma-
chines, the visualization is not straightforward, but
some approaches have been suggested. The saliency
map technique, inspired from the method of Opti-
mal Brain Damage of Le Cun et al. (1990), esti-
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Figure 3: Meta-analytic forest plot as a Web ser-
vice with studies on personality genetics. Compo-
nents in the Scalable Vector Graphics image file are
hyperlinked and the content may be controlled in-
teractively through a HTML form.

mates how much the elimination of a voxel affects
the prediction performance. A closed-form approx-
imation for the effect exists for a trained multilayer
neural network and the resulting map can be visu-
alized in 3D brain space (Mgrch et al., 1995). The
sensitivity map asks a related question: What is
the effect of a small perturbation of a voxel (Kjems
et al., 2002). Both the saliency and sensitivity map
can also be applied with linear models. Although
linear weight vectors, saliency and sensitivity maps
may be compared to results from standard statis-
tical analysis, e.g., by Receiver Operating Charac-
teristics curves and histogram equalization (Lange
et al., 1999; Hansen et al., 2001), the values of
their individual elements are not directly ‘statis-
tically’ interpretable. For gaining a further statis-
tical interpretation of the magnitude of the individ-
ual elements of a linear weight vector, a saliency or
sensitivity map these multidimensional results may
be compared to results from resampling. One ap-
proach, the NPAIRS framework of Strother et al.
(2002), uses split-half resampling. Such methods
lead to statistically justifiable thresholds for use in
visualization of neuroimaging predictors.

5 Meta-analytic visualization

Many meta-analyses use so-called forest plots and
funnel plots, where scatter plots with whiskers dis-
play effect sizes and estimators of their variations in
two dimensions (Lewis and Clark, 2001), see Fig-
ure 3. These meta-analyses typically investigate



a single variable—continuous or dichotomous—and
its relation to another variable, e.g., a personal-
ity trait and its association with a genetic poly-
morphism. In neuroimaging meta-analysis we have
a quite different situation: The neuroimage result
contains not just one variable but many variables,
i.e., voxels. One would need thousands of standard
meta-analysis plots to capture the result across
studies. Another much more fundamental problem
stems from the fact that neuroimaging researchers
typically only report the positive results, e.g., ar-
eas with activation to a given task, — not signal
changes for brain regions that did not survive the
statistical threshold selected. Meta-analysts usu-
ally regard the discarding of negative results as a
heresy, referring to it as the file drawer problem
or with the term publication bias. All the standard
statistical meta-analysis technique require that also
negative results are reported, — at least to some ex-
tent (Hedges and Olkin, 1985). So we may ask if it
is at all possible to make appropriate analyses and
visualizations across studies in neuroimaging?

One simple visualization simply plots the posi-
tive results—the reported coordinates—in stereo-
taxic space. The program associated with the orig-
inal BrainMap database displayed coordinates in
2D tri-planar plot (Fox et al., 1994). This type
of visualization is maintained in a newer version
of the database with the program Sleuth (Laird
et al., 2005). WebCaret may display coordinates
in 3D as colored spheres together with an inflated
cortical surface (Van Essen and Dierker, 2007), see
Figure 4. The Brede Toolbox can generate 3D vi-
sualizations in the corner cube style of Rehm et al.
(1998). Plotting points in 3D is not straightfor-
ward, — simple ‘zero’ dimensional graphics do not
give an important perception of depth, therefore
we use 3D glyphs of different color and shape. To
help the viewer in spatial localizing the coordinates
we can add components in a configurable workflow
such as AC/PC axes, stalks for the glyphs, glyph
shadows on the tri-planar walls, contour and cere-
bral cortex outlines from the atlas of Talairach and
Tournoux (1988). Figure 5 shows two visualiza-
tions of this kind with Figure 5(a) displaying all
coordinates in the Brede Database from papers au-
thored by Edward T. Bullmore and Figure 5(b) dis-
playing cingulate coordinates colored according re-
sults from a text mining of the associated abstracts
(Nielsen et al., 2005, 2006a). The batch script setup
for the Brede Database will automatically generate
a plot like Figure 5(a) for each author mentioned in
the author ontology. Sometimes these simple plots
reveal interesting features: The Bullmore coordi-
nates appear somewhat limited to the middle of the
inferior-superior axis perhaps reflecting a restricted
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Figure 4: WebCaret server-side display of returned
coordinates from the Surface Management Sys-
tem Database (SumsDB) with a query on 'middle
frontal gyrus’. The right window offers some con-
trol over the rendering and the buttons in the left
window may rotate the cortical surface. SumsDB
allows the query on a neuroanatomical label to be
invoked from another program or Web site by sim-
ple Web linking, and the Brede Wiki automatically
constructs such links.

field of view selected for some of the studies. The
elaborate and automated workflow for generating a
plot like Figure 5(b) involves

1. Select a brain region and from the Brede
Database brain region ontology get all nam-
ing variation of the brain regions and its sub-
areas. With these names extract coordinates
from papers recorded in the database, model
their spatial distribution and include extra
non-matched coordinates that lies within the
region.

2. Get abstracts from the Brede Database that—
for the brain region in question—have one or
more coordinates and perform text mining,
which results in clusters of themes, such as
‘pain’ and ‘memory’ and documents belonging
to these clusters.

3. Perform statistical tests on the spatial distri-
bution of the coordinates grouped according
to the text mining clusters to determine if the
text mining has discovered functions that are
segregated in the region.

The procedure is done for all brain regions in the
Brede Database brain region ontology and Fig-
ure 5(b) shows one of the regions that listed high
after sorting brain regions according to statistical
significance in the spatial distribution test.

Data mining directly with the coordinates
has been termed coordinate-based meta-analysis
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(a) Coordinates from the five studies in the Brede Database authored by Edward T. Bullmore.
The 3D glyphs have type and color according to paper.

(b) Cingulate coordinates colored according to the clustering results after a text mining of
abstracts in the Brede Database. Dark magenta glyphs are from the ‘memory’ cluster while
the light yellow are from the ‘pain’ cluster. From Nielsen et al. (2006a).

Figure 5: Two examples of coordinates in a 3D corner cube visualization.



(a) Gaussian mixture model of the three main behavioral
domains in BrainMap: Perception (red wireframe), cog-
nition (green surface) and motion (‘M’-textured surface).
From Nielsen and Hansen (1999).

(b) Kernel density modeling of auditory (red wireframe)
and vision (green) studies. From Nielsen and Hansen
(2000b).

Figure 6: VRML visualizations with coordinate-based meta-analysis of data from BrainMap with iso-

surfaces in conditional probability densities.

(CBMA) and several methods exists (Wager et al.,
2009), see also Laird et al., this issue. For the
most part they involve a form of estimation of a
conditional probability density p(v|c) in stereotaxic
space v. The conditioning, ¢, may be, e.g., for a
specific brain function or a specific anatomical la-
bel. Once the probability density is estimated it can
be converted to a volume by sampling the proba-
bility density in voxels and visualized in the same
way as standard neuroimages, or the density can
be used to color-code the cortical surfaces in a 3D
visualization, see Wager et al. (2009).

Fox et al. (1997) introduced the method to model
the probability density: A single confined area—the
primary motor area for the mouth—were examined
so only a model with mean and standard devia-
tion was devised, i.e., a simple Gaussian model.
As more complex brain functions are distributed in
brain space more flexible models are needed. Our
first effort in modeling the probability density was
by Gaussian mixture models (Nielsen and Hansen,
1999)

K.
p(vle) = p(vlk) P(kc),

k

(2)

where each p(v|k) estimates a 3D Gaussian prob-
ability density. Figure 6(a) shows the isosurfaces
in model of this type where the parameters have

been fitted to data from the BrainMap database.
Here each ellipsoids corresponds to a single Gaus-
sian p(v|k) and ¢ corresponds to three different
labels of ‘behavioral domain’ from the BrainMap
database that are associated with each coordinate.
Although the Gaussian mixture model may gen-
eralize, the ellipsoids do not look neuroanatomical
plausible and call for yet more flexible models. Fig-
ure 6(b) is generated with kernel density estima-
tion using a Gaussian kernel (Nielsen and Hansen,
2000b). Such models seems to generate probabili-
ties that are somewhat more neuroanatomical plau-
sible than the Gaussian mixture model.

The isosurfaces in the probability densities in
both subplots of Figure 6 has been set for display
purpose. More statistically grounded values can be
obtained with the methods by Turkeltaub et al.
(2002); Nielsen (2005); Costafreda et al. (2009).
The methods for probability density estimation of
coordinates are not limited to activations but may
be applied to any kind of coordinates in stereo-
taxic space from ‘deactivations’, cortical stimula-
tions, lesions or structural changes, e.g,. obtained
with voxel-based morphometry.

When a probability density estimate is con-
structed for a set of coordinates and it is converted
to a voxel-volume, then the volumes across mul-
tiple sets of coordinates may be aggregated into



a single data matrix X(sets x voxels). This data
matrix may then be decomposed with multivariate
analysis in a number of ways, e.g., with singular
value decomposition for principal component anal-
ysis, ULV’ = X, where the left factorization matrix
U(sets x components) contains loading over sets of
coordinates for each principal component and the
right factorization matrix V(voxel x components)
contains loadings over voxels. Other types of de-
composition for this matrix is independent compo-
nent analysis (MS = X, with M the mixing ma-
trix and S the source matrix), non-negative matrix
factorization (WH = X) and K-means clustering
(CA = X, with C a centroid matrix and A an
assignment matrix). The right decomposition ma-
trices, V, S, H and A all contain vectors that each
represents a volume. As part of the workflow for
presenting the information in the Brede Database
on the Web the decompositions work on data ma-
trices formed from sets of papers and sets of experi-
ments, and corner cube visualizations are automat-
ically constructed with isosurfaces in the volumes
contained in the right decomposition matrices. Fig-
ure 7 shows such a visualization for a component
from non-negative matrix factorization, i.e., a row
in the H matrix. Such visualizations may be useful
for navigating among the studies in the database,
and to a certain extent they reveal spatial distri-
butions of the ‘cognitive components’ of the brain.
Together with the visualization on the Web page
is listed the experiments that have high association
with the component, i.e., experiments associated
with large elements in a column of the left matrix
W. For the component in Figure 7 they are exper-
iments described as, e.g., ‘Visual object decision’,
‘Buildings visual objects’, ‘Color perception during
free viewing’ and ‘Passively viewed scenes’.

Before putting too much trust in visualizations
and analysis across studies one needs to remem-
ber that the study results may have arisen in quite
different ways. In standard meta-analysis the only
variations between studies that are usually mod-
eled is the number of subjects and the standard
deviation of the data in the individual studies. In
neuroimaging meta-analysis and visualization these
variables are not usually modeled, for exceptions
see Fox et al. (1997) and Laird et al., this issue. Be-
sides there are several other variables that neither
are considered: The varying thresholds applied,
e.g., corrected and uncorrected P-values (Nielsen
et al., 2006b), the difference in field of view be-
tween studies, the reporting style of coordinates
(e.g., ‘extent threshold’, ‘number of maxima per
cluster’) as well as the variation from the different
pre-processing and analysis choices that have been
made. Furthermore, the different CBMA model

Figure 7: Corner cube visualization on the Web
page of the Brede Database with results from a non-
negative matrix factorization of experiments in the
database.

may produce different results on the same material.
Salimi-Khorshidi et al. (2009) compared different
CBMA models and their application of a threshold
makes a ‘blob’ appear and disappear depending on
the type of CBMA.

6 Internet-based visualization

Quite a few tools exist for interactive neuroimaging
visualization across the Internet. Often these tools
are based on a client-server model with the client
implementing the visualization and graphical user
interface in Java. Among these tools are JIV that
renders multiple volume data by orthogonal slice
views implemented as a Java applet (Cocosco and
Evans, 2001). iiV implements a similar functional-
ity (Lee et al., 2008), and MindSeer can also render
in 3D remotely (Moore et al., 2007). NeuroTer-
rain implements 3D visualization and has demon-
strated its use in connection with a Mouse atlas
(Gustafson et al., 2007). The Talairach Applet ren-
ders a digital representation of the Talairach Atlas
and combines it with neuroanatomical labeling of
coordinates via the Talairach Daemon described by
Lancaster et al. (2000). Also in connection with the
BrainMap database the Java client-program Sleuth
plots 3D points in orthogonal 2D slices based on
user query to the BrainMap server (Laird et al.,
2005).

The Internet Brain Volume Database (IBVD)
records published values for brain region volumes
across variables such as gender and diagnosis
(Kennedy et al., 2003). Since the neuroimaging
data analysis arrives at one single value—the brain
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volume in cubic centimeters—the visualization of
the data is relatively simple compared to other neu-
roinformatics visualizations: From Web-based user
queries IBVD generates on-the-fly PNG image-files
with the brain volumes from the different studies
plotted as a function of age with color-coding and
the variability indicated. Interactive visualization
systems for neuroimages with server-side 3D ren-
dering have been described by Poliakov et al. (2005)
and a public system is available with the WebCaret
Web service, see Figure 4.

With the Brede Toolbox we construct 3D visual-
izations browsable on the Web by using the Virtual
Reality Modeling Language (VRML) (ISO/IEC,
1997; Nielsen and Hansen, 2000a), see the VRML
examples in Figure 6. When defined in the middle
of 1990s VRML held great promise to get wide-
spread use for 3D interactive and hyperlinked visu-
alizations, but since then it has had limited growth:
VRML lacks good browser implementations and
there has been erratic adoption of a scripting lan-
guage. Nevertheless, it is one of the few means for
Web distribution of 3D content in free standard-
ized form. An alternative format is the Univer-
sal 3D File Format (U3D) that can be embedded
in newer versions of the PDF format. Apart from
the Brede Toolbox ImageSurfer described by Feng
et al. (2007) implements VRML export.

For the Web presentation of the Brede Database
we generate 3D corner cube visualizations of the

“(Talmm 3 [14-1416
Atlas: Page: Show marks (mm) 16.0

Axial s O Talairach  14.14-15.21
LUT: center[  width[ (MND 16.67

i Talairach
Volume:?:lTOWg”d Show labels T (grig)

LUT: center width Talairach
(plate)
Ventral lateral (vl)
(2.03 mm)

Talairach  14.0-14.0

081817
a-b,E2,7

Submit HELP

[Page loaded.

Figure 9: The Web-based INC Interactive Talairach
Atlas queried with a coordinate from the Brede
Wiki.

coordinates in the database with an offline Mat-
lab batch script, — both as image files embedded
on the Web page as well as VRML files, see Fig-
ure 8. Matlab is not well suited to work as a Web
script, and for the interactive Web scripts associ-
ated with the Brede Database there are presently
no visualization implemented. The INC Interactive
Talairach Atlas renders 2D orthogonal slices from
the Talairach and the MNI single subject atlases.
This Web service can merge a user-given coordi-
nate with the visualization, and as such we use it
for visualization of individual coordinates from the
Brede Database and the Brede Wiki.

Besides Java, VRML and standard image files
such as PNG the Scalable Vector Graphics (SVG)
format may prove useful for Internet-based visual-
izations, see Figure 3 for an example. These files
may contain hyperlinks and JavaScript. However,
Web browsers do not yet consistently implement
the standard.

7 Information visualization

Data mining results from neuroimaging analysis are
not the only type of information for visualization.
Information about the background, design, scan-
ning, analysis procedure, and interpretation sur-
rounds the data mining results of a typical neu-
roimaging study. In scientific articles the body text
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Figure 10: A so-called ‘cluster bush’ visualization
of the text mining results of the abstracts in the
Brede Database. Each yellow dot is a cluster of
articles and words in the article. The four words
with highest load on each cluster are listed.

mostly carries this ‘context’ information, though
sometimes authors also use tables to describe, e.g.,
subject information. Authors rarely apply visual-
izations for this kind of information except in sit-
uations with explanation of the experimental de-
sign and scanning. The experimental design has
a natural temporal evolution and as such the vi-
sualization often displays the design as a function
of time. Users of the behavioral experiment soft-
ware from Psychology Software Tools is familiar
with the graphical programming environment of E-
Prime which has this kind of visualization as an
integral part of the development of the experiment.
Other parts of the neuroimaging study may be vi-
sualized with what is usually referred to as infor-
mation visualization.

In a demonstration visualization we employed a
torus topology for the an entire neuroimaging study
process constructing 3D icons for ‘funding’, the ex-
perimental design, authors, experimental subjects
etc. (Nielsen and Hansen, 1997). The usefulness of
such a visualization depends on how effective it con-
veys information compared to standard text, and
if the visualization format requires specialized and
limited distributed programs for rendering and in-
teraction the impact may be small. Manual cre-
ation of these visualizations is infeasible, — the
visualization should be constructed automatically
from description of the study, e.g., the so-called
‘provenance’ (Fissell, 2007). In related visualiza-
tions some workflow management systems display

10

Figure 11: Corner cube visualization of a ‘func-
tional” atlas generated from a combined data min-
ing of text and brain coordinates.

the processing flow graphically (Dinov et al., 2008).

When neuroimaging studies get reported in ar-
ticles the relationships between the articles can be
turned in to visualizations. Many types of visual-
izations exist and many relationships may be re-
vealed: Between terms, concepts, citations to and
from articles as well as between authors, cited au-
thors and cited journals. The visualizations are of
course not limited to articles only in neuroimag-
ing, see, e.g., Card et al. (1999); Chen (1999). For
an example in neuroscience Naud et al. (2007) use
a spherical embedding algorithm to display a bi-
partite graph in 3D space with two spheres. One
of their illustrations visualized the relationship be-
tween poster sessions in the Society for Neuro-
science 2006 meeting together with words from the
abstracts in the sessions. Another example of text
mining result visualization is what we termed a
‘cluster bush’, that describe the clusters in a hier-
archical multivariate analysis (Nielsen et al., 2005):
Clusters are indicated with dots and thick lines
indicate a large similarity between two clusters.
Given a set of abstracts the automated workflow
for generating a plot like Figure 10 involves the
conversion of the texts to a bag-of-words matrix,
the exclusion of a large number of words (stop
words), hierarchical non-negative matrix factoriza-
tion and lastly the ’cluster bush’ visualization all
implemented with the functions of the Brede Tool-
box.

Coordinate-based meta-analysis and text mining
can be combined to form visualizations, see Fig-
ure 11 and Nielsen et al. (2004). The workflow
for constructing the visualization in the figure in-
volves the setup of a matrix describing the words in
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Figure 12: Visualization of data mining result of journal co-citation analysis with singular value decom-

position on citation data from Neurolmage.

the abstract of papers and the construction of an-
other matrix from kernel density estimation with
the coordinates in each paper. After non-negative
matrix factorization each individual factor may be
rendered in 3D and associated with words from the
abstract, e.g., the blue area in Figure 11 in the oc-
cipital lobe is associated with words such as ‘visual’
and ‘eye’.

Based on a corpus of articles published between
1997 and 2000 in the journal NeurolImage we could
plot cited authors and cited journals in 2D. The
data mining with visualization would for exam-
ple reveal a dichotomy between PET and fMRI
(Nielsen, 2002), see Figure 12. Here the workflow
involves specialized algorithms that extract cita-
tions and the use of matrix computations, particu-
larly singular value decomposition, for multidimen-
sional scaling-like projection of the data onto 2D.
For the Brede Database we automatically construct
what we have termed ‘bullseye plots’ to display the
network of coauthors for each recorded author. Fig-
ure 13 shows a larger bullseye plot on coauthors

in the Neurolmage corpus. Authors near the cen-
ter, such as Friston and Dolan, have high network
degrees, which here corresponds to the number of
authored articles (Nielsen, 2002).

The well-tested and widely used GraphViz pack-
age provides spatial graph layout for a given net-
work (Gansner and North, 2000). At one point the
PubGene Web service used GraphViz in a large-
scale application for displaying relations between
genes based on literature in PubMed (Jenssen et al.,
2001). GraphViz layouts graphs for the Web pre-
sentation of the Brede Database. These graphs dis-
play the brain function and brain region ontolo-
gies, e.g., indicating that ‘vision’ has ‘perception’
as taxonomic parent or that the cingulate area is
a parent for the posterior cingulate, see Figure 14.
Our workflow with the Brede Toolbox involves ex-
traction of the ontology from Brede Database XML
files, construction of a file with the graph that
GraphViz reads, invoking GraphViz for generation
of an image file, and then finally construction of the
Web page with the image file embedded. GraphViz

11
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Figure 13: Coauthor bullseye plot (target diagram) with data from Neurolmage 1997-2000.
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between two authors indicates that they co-wrote a paper. The concentric circles indicate the number

of articles written by the author in the corpus.

can construct HTML image maps so the nodes in
the graph image are associated with clickable hy-
perlinks. On the final Web page a reader may nav-
igate the brain region and brain function ontolo-
gies by clicking on the nodes in the graph. The
Brede Toolbox can also use GraphViz for layout
of other types of data that can be described as a
network, e.g., from structural equation modeling
of regional neuroimaging data. A number of jour-
nal Web sites use plots called Citation map in the
style of GraphViz for visualizing in- and out-going
citations of each article, see, e.g., BMJ and The
Journal of Neuroscience Web sites.

Another type of graph visualization within neu-
roimaging is the interactive graph visualization
with a hyperbolic browser that features in tools
from the Laboratory of Neuro Imaging (LONI):
LOVE and iTools (Dinov et al., 2006, 2008). IST
Web of Knowledge provides a Java applet to render

their citation information with a similar topology.

8 Conclusion

Numerous visualization tools exist for display of
neuroimages, and several Web directories record
these tools. There are different types of results from
neuroimaging analysis that can be visualized, and
one should be aware of the problems that a naive
reader faces when viewing such results.

With the Brede Toolbox we are able to build a
workflow with extraction of data from the Brede
Database, automated data mining and visualiza-
tions. The automated procedures generate pub-
licly accessible Web pages with interactive visual-
izations. An advantage of the automated procedure
is that little human intervention is required to up-
date the visualizations as new data is added to the

12



WOROI: 7
Right pesterior cingulate gyrs

WORDI: 332
Brodmann area 23

WOROI: 339
Brodmann ares 31
WOROI: 310
Retrospenial cortex

Figure 14: For presenting the Brede Database brain
region ontology on the Web the workflow with
the Brede Toolbox invokes the GraphViz program
which generates hyperlinked plot of the brain region
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database. The visualizations can display not only
spatial neuroimages, but for example also results
from text mining, and visualization can take place
across the Internet with data originating on one
server and displayed on another.
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