
A Kernel Version of Spatial Factor Analysis

Nielsen, Allan A.
Technical University of Denmark, DTU Space – National Space Institute
Presently located at DTU Informatics – Department of Informatics and Mathematical Modelling,
Richard Petersens Plads, Building 321
DK-2800 Kgs. Lyngby, Denmark
E-mail: aa@space.dtu.dk, http://www.imm.dtu.dk/∼aa

Keywords

Orthogonal transformations, dual formulation, Q-mode analysis, kernel substitution, kernel
trick.

1 Introduction

Based on work by Pearson [1] in 1901, Hotelling [2] in 1933 introduced principal component analysis
(PCA). PCA is often used for general feature generation and linear orthogonalization or compression by
dimensionality reduction of correlated multivariate data, see Jolliffe [3] for a comprehensive description
of PCA and related techniques. An interesting dilemma in reduction of dimensionality of data is the
desire to obtain simplicity for better understanding, visualization and interpretation of the data on
the one hand, and the desire to retain sufficient detail for adequate representation on the other hand.
Schölkopf et al. [4] introduce kernel PCA. Shawe-Taylor and Cristianini [5] is an excellent reference
for kernel methods in general. Bishop [6] and Press et al. [7] describe kernel methods among many
other subjects. [10] use kernel PCA to detect change in univariate airborne digital camera images.
The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even
infinite) dimensional feature space via the kernel function and then performing a linear analysis in
that space.
In this paper we shall apply kernel versions of PCA, maximum autocorrelation factor (MAF) [8]
analysis to irregularly sampled stream sediment geochemistry data from South Greenland. The 2,097
samples each covering on average 5 km2 are analyzed chemically for the content of 41 elements.

2 Principal Component Analysis

Let us consider a data set (for example an image) with n observations (or pixels) and p variables
(or spectral bands) organized as a matrix X with n rows and p columns; each column contains
measurements over all observations from one variable and each row consists of a vector of measurements
xT

i from p variables for a particular observation

X =




xT
1

xT
2
...

xT
n




.(1)

The superscript T denotes the transpose. X is sometimes called the data matrix or the design matrix.
Without loss of generality we assume that the variables in the columns of X have mean value zero.



2.1 Primal Formulation

In ordinary (primal also known as R-mode) PCA we analyze the variance-covariance matrix S =
XT X/(n − 1) = 1/(n − 1)

∑n
i=1 xix

T
i which is p by p. If XT X is full rank r = min(n, p) this will

lead to r non-zero eigenvalues λi and r orthogonal or mutually conjugate unit length eigenvectors ui

(uT
i ui = 1) from the eigenvalue problem

1
n− 1

XT Xui = λiui.(2)

We see that the sign of ui is arbitrary. To find the principal component scores for an observation x we
project x onto the eigenvectors, xT ui. The variance of these scores is uT

i Sui = λiu
T
i ui = λi which is

maximized by solving the eigenvalue problem, see appendix with matrix B there equal to the identity
matrix.

2.2 Dual Formulation

In the dual formulation (also known as Q-mode analysis) we analyze XXT /(n − 1) which is n by n

and which in image applications can be very large. Multiply both sides of Equation 2 from the left
with X

1
n− 1

XXT (Xui) = λi(Xui)(3)

or
1

n− 1
XXT vi = λivi(4)

with vi proportional to Xui, vi ∝ Xui, which is normally not normed to unit length if ui is. Now
multiply both sides of Equation 4 from the left with XT

1
n− 1

XT X(XT vi) = λi(XT vi)(5)

to show that ui ∝ XT vi is an eigenvector of S with eigenvalue λi. We scale these eigenvectors to unit
length assuming that vi are unit vectors (1 = vT

i vi ∝ uT
i XT Xui = (n− 1)λiu

T
i ui = 1)

ui =
1√

(n− 1)λi
XT vi.(6)

We see that if XT X is full rank r = min(n, p), XT X/(n − 1) and XXT /(n − 1) have the same
r non-zero eigenvalues λi and that their eigenvectors are related by ui = XT vi/

√
(n− 1)λi and

vi = Xui/
√

(n− 1)λi. This result is closely related to the Eckart-Young [11, 12] theorem.
An obvious advantage of the dual formulation is the case where n < p. Another advantage even for
n À p is due to the fact that the elements of the matrix G = XXT , which is known as the Gram1

matrix, consist of inner products of the multivariate observations in the rows of X, xT
i xj .

2.3 Kernel Formulation

We now replace x by φ(x) which maps x nonlinearly into a typically higher dimensional feature space.
As an example consider a two-dimensional vector [z1 z2]T being mapped into [z1 z2 z2

1 z2
2 z1z2]T . This

maps the original two-dimensional vector into a five-dimensional feature space so that for example a
linear decision rule becomes general enough to differentiate between all linear and quadratic forms
including ellipsoids.

1named after Danish mathematician Jørgen Pedersen Gram (1850-1916)



The mapping by φ takes X into Φ which is an n by q (q ≥ p) matrix

Φ =




φ(x1)T

φ(x2)T

...
φ(xn)T




.(7)

For the moment we assume that the mappings in the columns of Φ have zero mean. In this higher
dimensional feature space C = ΦT Φ/(n− 1) = 1/(n− 1)

∑n
i=1 φ(xi)φ(xi)T is the variance-covariance

matrix and for PCA we get the primal formulation

1
n− 1

ΦT Φui = λiui(8)

where we have re-used the symbols λi and ui from above.
For the corresponding dual formulation we get

1
n− 1

ΦΦT vi = λivi(9)

where we have re-used the symbol vi from above. As above the non-zero eigenvalues for the primal
and the dual formulations are the same and the eigenvectors are related by

ui =
1√

(n− 1)λi
ΦT vi(10)

and vi = Φui/
√

(n− 1)λi.
Here ΦΦT plays the same role as the Gram matrix above and has the same size, namely n by n (so
introducing the nonlinear mappings in φ does not make the eigenvalue problem in Equation 9 bigger).

2.3.1 Kernel Substitution

Applying kernel substitution also known as the kernel trick we replace the inner products φ(xi)T φ(xj)
in ΦΦT with a kernel function κ(xi, xj) = κij which could have come from some unspecified mapping
φ. In this way we avoid the explicit mapping φ of the original variables. We obtain

Kvi = (n− 1)λivi(11)

where K = ΦΦT is an n by n matrix with elements κ(xi, xj). K is symmetric and must be positive
semi-definite, i.e., its eigenvalues are non-negative. Normally the eigenvalue problem is formulated
without the factor n− 1

Kvi = λivi.(12)

This gives the same eigenvectors vi and eigenvalues n − 1 times greater. In this case ui = ΦT vi/
√

λi

and vi = Φui/
√

λi.

2.3.2 Basic Properties

Several basic properties including the norm in feature space, the distance between observations in
feature space, the norm of the mean in feature space, centering to zero mean in feature space, and
standardization to unit variance in feature space, may all be expressed in terms of the kernel function
without using the mapping by φ explicitly. Also the scores calculated by projecting the mapped data
onto the primary eigenvectors and the variance of these scores may be be expressed by the kernel
elements, see [5, 6, 19].



2.3.3 Some Popular Kernels

Popular choices for the kernel function are stationary kernels that depend on the vector difference
xi − xj only (they are therefore invariant under translation in feature space), κ(xi, xj) = κ(xi − xj),
and homogeneous kernels also known as radial basis functions (RBFs) that depend on the Euclidean
distance between xi and xj only, κ(xi, xj) = κ(‖xi − xj‖). Some of the most often used RBFs are
(h = ‖xi − xj‖)

• multiquadric: κ(h) = (h2 + h2
0)

1/2,

• inverse multiquadric: κ(h) = (h2 + h2
0)
−1/2,

• Gaussian: κ(h) = exp(−1
2(h/h0)2),

where h0 is a scale parameter to be chosen. Generally, h0 should be chosen larger than a typical
distance between samples and smaller than the size of the study area.

3 Maximum Autocorrelation Factor Analysis

In maximum autocorrelation factor (MAF) analysis first suggested by Switzer and Green [8], we
maximize the autocorrelation of linear combinations, aT x(r), of zero-mean original (spatial) variables,
x(r), see also Switzer and Ingebritsen [13], Green et al. [9], Nielsen [14] and Nielsen et al. [15]. x(r)
is a multivariate observation at location r and x(r + ∆) is an observation of the same variables at
location r + ∆; ∆ is a spatial displacement vector.

3.1 Primal Formulation

The autocovariance R of a linear combination aT x(r) of multivariate x(r) is

R = Cov{aT x(r), aT x(r + ∆)} = aT Cov{x(r), x(r + ∆)}a = aT C∆a(13)

where C∆ is the covariance between x(r) and x(r + ∆). Introduce the multivariate difference x∆ =
x(r) − x(r + ∆) with variance-covariance matrix S∆ = 2 S − (C∆ + CT

∆) where S is the variance-
covariance matrix of x defined in Section 2. Since

aT C∆a = (aT C∆a)T = aT CT
∆a = aT (C∆ + CT

∆)a/2(14)

we obtain

R = aT (S − S∆/2)a.(15)

To get the autocorrelation ρ of the linear combination we divide the covariance by its variance aT Sa

ρ = 1− 1
2

aT S∆a

aT Sa
= 1− 1

2
aT XT

∆X∆a

aT XT Xa
(16)

where X is defined in Section 2 and X∆ is a similar matrix for x∆ with zero-mean columns. C∆ above
equals XT X∆/(n−1). To maximize ρ we must minimize the Rayleigh coefficient aT XT

∆X∆a/(aT XT Xa)
or maximize its inverse. This is done by solving a symmetric generalized eigenvalue problem, see ap-
pendix.



3.1.1 Regular and Irregular Spatial Sampling

For regularly sampled spatial data, i.e., ordinary digital image data, often a one-pixel horizontal shift,
∆h, to obtain x(r+∆h) is used to estimate S∆h

and a one-pixel vertical shift, ∆v, to obtain x(r+∆v)
is used to estimate S∆v . S∆ is then a pool of the two. Alternatively, the two one-pixel shifts may be
used to estimate x∆ = x(r)− [x(r + ∆h) + x(r + ∆v)]/2.
For irregularly sampled spatial data, the difference to the nearest neighbor irrespective of direction
may be used. Of course one could include some directional constraint.
For both regularly and irregularly sampled data other possibilities exist [14, 16, 17, 18].

3.2 Dual Formulation and Kernelization

As with the kernel principal component analysis we use the combination of the dual formulation and
the kernel trick to obtain an implicit non-linear mapping for the MAF transform. A detailed account
of this is given in [19].

4 Case Study: Stream Sediment Geochemistry in South Greenland

In 1979-80 the GGU, the Geological Survey of Greenland (now GEUS, the Geological Survey of
Denmark and Greenland), in the so-called Syduran project collected stream sediment samples from
a 10,000 km2 area in South Greenland. Sample sites were small active streams with catchment areas
of 1-10 km2. Samples were sieved at 100 mesh and the undersize was analysed. The present study is
based on a dataset with 41 variables and 2,097 samples. Two analytical techniques have been used.
The concentrations of Ca, Cu, Fe, Ga, K, Mn, Nb, Ni, Pb, Rb, Sr, Ti, Y, Zn and Zr have been
determined by energy-dispersive isotope excited x-ray fluorescence and the concentrations of Au, Ag,
As, Ba, Br, Co, Cr, Cs, Hf, Mo, Na, Sb, Sc, Se, Ta, Th, U, W, La, Ce, Nd, Sm, Eu, Tb, Yb and Lu
have been determined by instrumental neutron activation analysis. These analyses of the samples are
identical to the the ones used in [18] but different from the ones reported in [14, 17].

4.1 Geological Setting

The study area is underlain by a Palaeoproterozoic orogen, the Ketilidian orogen, which consists of
three major tectono-stratigraphic units: (1) a northern Border zone of tectonically reworked Archaean
gneissic basement overlain by Palaeoproterozoic metasediments and metavolcanics in the north-east,
(2) a central zone occupied by a calc-alkaline granitic batholith, and (3) a southern migmatite com-
plex of predominantly Palaeoproterozoic metasediments and metavolcanics intruded by post-tectonic
rapakivi type granites, see Figure 1 (left) and [20]. The plate-tectonic setting of the orogen has re-
cently been interpreted in [21]. In Mesoproterozoic times the boundary region between the border and
the granite zones was subjected to rifting and intrusions of numerous dykes of basaltic to trachytic
compositions as well as of felsic alkaline complexes including carbonatites. The region affected by the
alkaline magmas is termed the Gardar province, [22].

5 Results and Discussion

Figure 1 (right) shows the 2,097 sample sites in Southern Greenland in red. The study area is
approximately 320 km east-west and 210 km north-south. The Delaunay triangulation is shown in
blue.
Figure 2 shows the first three linear PCs (left) and linear MAFs (right) as RGB. Autocorrelations for
the first three MAFs are 0.8379, 0.7585 and 0.7279. The linear PCA is correlation matrix based and



−1.5 −1 −0.5 0 0.5 1 1.5

x 10
5

0

2

4

6

8

10

12

14

16

18

x 10
4

Figure 1: Simplified geological map of South Greenland (left). All 2,097 sample sites and the Delaunay
triangulation (right).

Figure 2: Linear PCs 1, 2 and 3 (left) and linear MAFs 1, 2 and 3 (right) as RGB.

unlike the analyses carried out on the logarithms of the element concentrations in [14, 17, 18], here it
is done on the un-transformed data.
Histograms and scatter plots for the 2,097 samples of the 41 elements (not shown) indicate non-
Gaussianity and complex correlation patterns. Nonlinear analysis is therefore potentially useful.
For the kernel orthogonalizations a Gaussian kernel κ(xi, xj) = exp(−‖xi−xj‖2/2σ2) with σ equal to
the mean distance between the observations in feature space is used.
Figure 3 shows 1,850 eigenvalues for kernel PCA (left) and 159 for kernel MAF analysis (right).
The 159 largest eigenvalues for kernel MAF analysis correspond to autocorrelations larger than –1.
Autocorrelations for the first three kernel MAFs are 0.9999, 0.9997 and 0.9996, all much higher than
achieved by the linear analysis.
Figure 4 shows the first three kernel PCs (left) and kernel MAFs (right) as RGB. Figure 5 shows
correlations between original elements and the first three kernel MAFs.
The linear MAF transformation nicely depicts the three major geological units named “Border Zone”,
“Granite Zone” and “Migmatite Complex” in the geological map in Figure 1. Also the major alkaline
intrusions occurring mainly in the granite zone are clearly depicted. The kernel MAF transformation
focusses on the extreme outliers associated with the intrusions and adapts neatly to an even strongly
varying background. This behaviour is seen in other application areas also including hyperspectral
image data for food quality inspection and change detection studies in both airborne ordinary RGB
camera images and hyperspectral scanner Earth observation data.
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Figure 3: Eigenvalues for kernel PCA (left) and kernel MAF analysis (right).

Figure 4: Kernel PCs 1, 2 and 3 (left) and kernel MAFs 1, 2 and 3 (right) as RGB.
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Figure 5: Correlations between original elements and kernel MAFs 1, 2 and 3.
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