Reduction of non-stationary noise using a non-negative latent variable decomposition

Mikkel M. Schmidt and Jan Larsen
DTU Informatics
Technical University of Denmark
www.imm.dtu.dk
Noise Reduction

- Single channel recording
- Unknown speaker / signal of interest
- Focus on modeling noise

Noise Reduction System
Single channel source separation is hard

- The is no spatial information hence
 - beamforming
 - independent component analysis
 are not feasible

- Maybe higher-level cognitive capabilities such as context detection could help

- We will use a data-driven approach to learn a good noise representation
The spectrum of alternative methods

- Wiener filter (Wiener, 1949)
- Spectral subtraction (Boll 1979; Berouti et al. 1979)
- AR codebook-based spectral subtraction (Kuropatwinski & Kleijn 2001)
- Masking techniques (Wang; Weiss & Ellis 2006)
- Factorial models (Roweis 2000, 2003)

Several methods require a VAD

Largely fail for fast changing non-stationary noise
Our approach in brief

Learning phase

Signal representation → Latent variable model → Noise rep.

Signal representation

Signal representation

Latent variable model

Signal reconstruction → Extracted signal of interest

not in focus in this work

Signal representation

Signal representation

Latent variable model

Signal reconstruction

Extracted signal of interest
Signal Representation

- Exponentiated magnitude spectrogram

\[X = |\text{STFT}\{x(t)\}|^\gamma \]

\(\gamma = 2\) Power spectrogram
\(\gamma = 1\) Magnitude spectrogram
\(\gamma = 0.67\) Cube root compression

(Steven’s power law - perceived intensity)

- Any other representation could be used – wavelets, perceptually weighted etc.
- Ignores phase information. Reconstruct by re-filtering
Non-negative latent variable model

\[s(i) = a(i) \sum_{k=1}^{K_s} \sigma_k b_k^{(i)} \]

\[n(i) = \sum_{k=1}^{K_n} \nu_k c_k^{(i)} \]

\[x(i) = s(i) + n(i) + r(i) \]

- Speech
- Noise
- Noisy speech

Binary activation
Non-negative basis
Weights
Residual
Non-negative latent variable model

\[X = SBA + NC + R, \]

- Use a probabilistic Bayesian setting
- Exponential priors (sparsity) on \(B \) and \(C \)
- Gaussian residual \(R \)

Goals:
- Posterior of all parameters \(A, B, C, S, N \) and noise variance
- Marginalized mean estimate of signal component
A three-step simple approximate learning procedure for speech

1. Compute speech activation using state-of-the-art voice activity detector (Qualcomm-ICSI-OGI)
2. Compute noise basis representation using non-speech signal frames
3. Jointly compute noise weights, speech basis, and speech weights and reconstruct speech signal
Experimental setup

- Four different noise types: machine gun, string quartet, restaurant noise, traffic noise
- Mixed by 100 sentences from the TIMIT database with SNR in the range -9dB to 6dB
- Signal represented by SFTF using 64ms 50% overlapping Hann windowed frames and mapped onto 32 MEL frequency bins [20Hz; 4kHz]
- 256 bases for signal and noise
- Optimal sparsity (hyper-parameters): $\lambda_B=0.1$, $\lambda_C=0$
- Qualcomm-ICSI-OGI voice activity detector (VAD)
Quality Measure

• Signal to noise ratio
 – Simple measure, has only indirect relation to perceived quality
• Representation-based metrics
 – In systems based on time-frequency masking, evaluate the masks
• Perceptual models
 – Promising to use PEAQ or PESQ
• High-level Attributes
 – For example word error rate in a speech recognition setup
• Listening-tests
 – Expensive, time-consuming, aspects (comfort, intelligibility)
Example: Bursts of machine gun shots
Results

- Highly non-stationary noise
 - Spectral subtraction breaks down due to stationarity assumption

- Almost stationary noise
 - Proposed method works equally well or better than spectral subtraction

More sound examples at www.mikkelschmidt.dk
Potential ways ahead

- Prior model speech activity pattern, e.g. using HMM
- Harmonic prior for speech basis
- Full Bayesian inference in the model (working on Gibbs sampling approach)
- Better residual models by including phase uncertainty (Rayleigh distribution) (Parry and Essa 2007)
- Advanced post-processing (weighted, thresholded spectral subtraction, and smoothing) can help
Conclusion

• A probabilistic non-negative latent variable decomposition method was presented
• A full Bayesian inference is possible, we resorted to simple a step-wise procedure
• The method has potential over classical methods for handling very non-stationary strong noise conditions
• As an essential output of the method is a good noise estimate, it can also be used as an integral part of other methods we are based on noise estimation.

Thank you for your attention!