
Kernel principal component analysis for change detection

Allan A. Nielsena and Morton J. Cantyb

aTechnical University of Denmark
DTU Space – National Space Institute

DK-2800 Kgs. Lyngby, Denmark

bResearch Center Juelich
Institute of Chemistry and Dynamics of the Geosphere

D-52425 Juelich, Germany

ABSTRACT

Principal component analysis (PCA) is often used to detect change over time in remotely sensed images. A
commonly used technique consists of finding the projections along the two eigenvectors for data consisting of two
variables which represent the same spectral band covering the same geographical region acquired at two different
time points. If change over time does not dominate the scene, the projection of the original two bands onto the
second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the
analysis. Unlike ordinary PCA, kernel PCA with a Gaussian kernel successfully finds the change observations in
a case where nonlinearities are introduced artificially.
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1. INTRODUCTION

Based on work by Pearson1 in 1901, Hotelling2 in 1933 introduced principal component analysis (PCA). PCA
is often used for linear orthogonalization or compression by dimensionality reduction of correlated multivariate
data, see Jolliffe3 for a comprehensive description of PCA and related techniques. An interesting dilemma in
reduction of dimensionality of data is the desire to obtain simplicity for better understanding, visualization and
interpretation of the data on the one hand, and the desire to retain sufficient detail for adequate representation
on the other hand.

Wiemker et al.4 describe iterated PCA to change detection in data consisting of two variables which represent
the same spectral band covering the same geographical region acquired at two different time points. Schölkopf et
al.5 introduce kernel PCA. Shawe-Taylor and Cristianini6 is an excellent reference for kernel methods in general.
Bishop7 and Press et al.8 describe kernel methods among many other subjects.

The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite)
dimensional feature space via the kernel function and then performing a linear analysis in that space.

In this paper we shall apply kernel PCA to detect change over time in remotely sensed images by finding
the projections along the eigenvectors for data consisting of two variables which represent the same spectral
band covering the same geographical region acquired at two different time points. If change over time does not
dominate the scene, the projection of the original two bands onto the second eigenvector from an ordinary PCA
will show change over time. For kernel PCA change may be depicted by (a) higher order component(s).
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2. PRINCIPAL COMPONENT ANALYSIS

Let us consider an image with n observations or pixels and p spectral bands organized as a matrix X with n
rows and p columns; each column contains measurements over all pixels from one spectral band and each row
consists of a vector of measurements xT

i from p spectral bands for a particular observation

X =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
n

⎤
⎥⎥⎥⎦ . (1)

The superscript T denotes the transpose. X is sometimes called the data matrix or the design matrix. Without
loss of generality we assume that the spectral bands in the columns of X have mean value zero.

2.1 Primal Formulation
In ordinary (primal also known as R-mode) PCA we analyze the variance-covariance matrix S = XT X/(n−1) =
1/(n − 1)

∑n
i=1 xix

T
i which is p by p. If XT X is full rank r = min(n, p) this will lead to r non-zero eigenvalues

λi and r orthogonal or mutually conjugate unit length eigenvectors ui (uT
i ui = 1) from the eigenvalue problem

1
n − 1

XT Xui = λiui. (2)

We see that the sign of ui is arbitrary. To find the principal component scores for an observation x we project x
onto the eigenvectors, xT ui. The variance of these scores is uT

i Sui = λiu
T
i ui = λi which is maximized by solving

the eigenvalue problem.

2.2 Dual Formulation
In the dual formulation (also known as Q-mode analysis) we analyze XXT /(n − 1) which is n by n and which
in image applications can be very large. Multiply both sides of Equation 2 from the left with X

1
n − 1

XXT (Xui) = λi(Xui) (3)

or

1
n − 1

XXT vi = λivi (4)

with vi proportional to Xui, vi ∝ Xui, which is normally not normed to unit length if ui is. Now multiply both
sides of Equation 4 from the left with XT

1
n − 1

XT X(XT vi) = λi(XT vi) (5)

to show that ui ∝ XT vi is an eigenvector of S with eigenvalue λi. We scale these eigenvectors to unit length
assuming that vi are unit vectors (1 = vT

i vi ∝ uT
i XT Xui = (n − 1)λiu

T
i ui = 1)

ui =
1√

(n − 1)λi

XT vi. (6)

We see that if XT X is full rank r = min(n, p), XT X/(n − 1) and XXT /(n − 1) have the same r non-zero
eigenvalues λi and that their eigenvectors are related by ui = XT vi/

√
(n − 1)λi and vi = Xui/

√
(n − 1)λi.

This result is closely related to the Eckart-Young9, 10 theorem.

An obvious advantage of the dual formulation is the case where n < p. Another advantage even for n � p
is due to the fact that the elements of the matrix G = XXT , which is known as the Gram∗ matrix, consist of
inner products of the multivariate observations in the rows of X , xT

i xj .
∗named after Danish mathematician Jørgen Pedersen Gram (1850-1916)
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2.3 Regularization
If XT X is singular or near singular we often replace it by (1− k)XT X + kIp where k is a small positive number
and Ip is the p by p unit matrix. It is easily seen that regularization in the primal and dual formulations with the
same k leads to the same non-zero eigenvalues for (1− k)XTX + kIp and (1− k)XXT + kIn, and to eigenvectors
related as above. In the latter case In of course is the n by n unit matrix.

2.4 Kernel Formulation
We now replace x by φ(x) which maps x nonlinearly into a typically higher dimensional feature space. As an
example consider a two-dimensional vector [z1 z2]T being mapped into [z1 z2 z2

1 z2
2 z1z2]T . This maps the original

two-dimensional vector into a five-dimensional feature space so that for example a linear decision rule becomes
general enough to differentiate between all linear and quadratic forms including ellipsoids.

The mapping by φ takes X into Φ which is an n by q (q ≥ p) matrix

Φ =

⎡
⎢⎢⎢⎣

φ(x1)T

φ(x2)T

...
φ(xn)T

⎤
⎥⎥⎥⎦ . (7)

For the moment we assume that the mappings in the columns of Φ have zero mean. In this higher dimensional
feature space C = ΦT Φ/(n− 1) = 1/(n− 1)

∑n
i=1 φ(xi)φ(xi)T is the variance-covariance matrix and for PCA we

get the primal formulation

1
n − 1

ΦT Φui = λiui (8)

where we have re-used the symbols λi and ui from above.

For the corresponding dual formulation we get

1
n − 1

ΦΦT vi = λivi (9)

where we have re-used the symbol vi from above. As above the non-zero eigenvalues for the primal and the dual
formulations are the same and the eigenvectors are related by

ui =
1√

(n − 1)λi

ΦT vi (10)

and vi = Φ ui/
√

(n − 1)λi.

Here ΦΦT plays the same role as the Gram matrix above and has the same size, namely n by n (so introducing
the nonlinear mappings in φ does not make the eigenvalue problem in Equation 9 bigger).

2.4.1 Kernel Substitution

Applying kernel substitution also known as the kernel trick we replace the inner products φ(xi)T φ(xj) in ΦΦT

with a kernel function κ(xi, xj) = κij which could have come from some unspecified mapping φ. In this way we
avoid the explicit mapping φ of the original variables. We obtain

Kvi = (n − 1)λivi (11)

where K = ΦΦT is an n by n matrix with elements κ(xi, xj). To be a valid kernel K must be symmetric
and positive semi-definite, i.e., its eigenvalues are non-negative. Normally the eigenvalue problem is formulated
without the factor n − 1

Kvi = λivi. (12)

This gives the same eigenvectors vi and eigenvalues n − 1 times greater. In this case ui = ΦT vi/
√

λi and
vi = Φui/

√
λi.
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2.4.2 Basic Properties

Several basic properties including the norm in feature space, the distance between observations in feature space,
the norm of the mean in feature space, centering to zero mean in feature space, and standardization to unit
variance in feature space, may all be expressed in terms of the kernel function without using the mapping by φ
explicitly.6, 7

2.4.3 Projections onto Eigenvectors

To find the kernel principal component scores from the eigenvalue problem in Equation 12 we project a mapped
x onto the primal eigenvector ui

φ(x)T ui = φ(x)T ΦT vi/
√

λi (13)

= φ(x)T
[

φ(x1) φ(x2) · · · φ(xn)
]
vi/

√
λi (14)

=
[

φ(x)T φ(x1) φ(x)T φ(x2) · · · φ(x)T φ(xn)
]
vi/

√
λi (15)

=
[

κ(x, x1) κ(x, x2) · · · κ(x, xn)
]
vi/

√
λi, (16)

or in matrix notation ΦU = KV Λ−1/2 (U is a matrix with ui in the columns, V is a matrix with vi in the
columns and Λ−1/2 is a diagonal matrix with elements 1/

√
λi), i.e., also the projections may be expressed in

terms of the kernel function without using φ explicitly.

The variance of this projection is

Var{uT
i φ(x)} = uT

i Cui (17)
= uT

i ΦT Φui/(n − 1) (18)
= vT

i ΦΦT ΦΦT vi/((n − 1)λi) (19)
= vT

i KKvi/((n − 1)λi) (20)
= λi/(n − 1). (21)

If the mapping by φ is not column centered the variance of the projection uT
i φ(x) must be adjusted by subtraction

of n/(n − 1) times the squared mean of the projection, i.e., we must subtract n/(n − 1) times (1n here is an n
by 1 vector of ones divided by n)

(E{uT
i φ(x)})2 = (uT

i φ̄)2 (22)
= (uT

i ΦT 1n)2 (23)
= (vT

i ΦΦT 1n)2/λi (24)
= (vT

i K1n)2/λi (25)
= λi(vT

i 1n)2 (26)

from the variance in Equation 21. vT
i 1n is the mean value of the elements in vector vi.

Kernel PCA is a so-called memory-based method: from Equation 16 we see that if x is a new data point
that didn’t go into building the model, i.e., finding the eigenvectors and -values, we need the original data
x1, x2, . . . , xn as well as the eigenvectors and -values to find scores for the new observations. This is not the case
for ordinary PCA where we don’t need the training data to project new observations.

2.4.4 Some Popular Kernels

Popular choices for the kernel function are stationary kernels that depend on the vector difference xi − xj

only (they are therefore invariant under translation in feature space), κ(xi, xj) = κ(xi − xj), and homogeneous
kernels also known as radial basis functions (RBFs) that depend on the Euclidean distance between xi and xj

only, κ(xi, xj) = κ(‖xi − xj‖). Some of the most often used RBFs are (h = ‖xi − xj‖)

• multiquadric: κ(h) = (h2 + h2
0)

1/2,
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• inverse multiquadric: κ(h) = (h2 + h2
0)

−1/2,

• thin-plate spline: κ(h) = h2 log(h/h0) (which tends to 0 for h tending to 0), or

• Gaussian: κ(h) = exp(− 1
2 (h/h0)2),

where h0 is a scale parameter to be chosen. Generally, h0 should be chosen larger than a typical distance between
samples and smaller than the size of the study area. Other kernels often used (which are not RBFs) are

• linear: κ(xi, xj) = xT
i xj ,

• power: κ(xi, xj) = (xT
i xj)p,

• polynomial: κ(xi, xj) = (xT
i xj + h0)p.

As an example consider the polynomial kernel function κ(x, x′) = (xT x′+h0)2 with two-dimensional x = [z1 z2]T

and x′ = [z′1 z′2]
T . We obtain

κ(x, x′) = (xT x′ + h0)2 (27)
= (z1z

′
1 + z2z

′
2 + h0)2 (28)

= z2
1z′1

2 + z2
2z′2

2 + h2
0 + 2z1z

′
1z2z

′
2 + 2z1z

′
1h0 + 2z2z

′
2h0 (29)

= [h0

√
2h0z1

√
2h0z2 z2

1 z2
2

√
2z1z2][h0

√
2h0z

′
1

√
2h0z

′
2 z′1

2 z′2
2
√

2z′1z
′
2]

T (30)
= φ(x)T φ(x′). (31)

We see that the kernel function maps the two-dimensional vector into six dimensions which (apart from the
constant in the first dimension and the specific weighting) corresponds to the mapping mentioned in Section 2.4.
For many kernels this decomposition back into φ(x)T φ(x′) is not possible.

Its important to realize that the information content in the original data is conveyed to a kernel method
through the choice of kernel only (and possibly through a labeling of the data; this is not relevant for kernel PCA).
For example, since kernel methods are implicitly based on inner products, any rotation by an orthogonal matrix
Q of the original coordinate system will not influence the result of the analysis, (Qxi)T Qxj = xT

i QT Qxj = xT
i xj .

3. DATA

The images used were recorded with the airborne DLR 3K-camera system11, 12 from the German Aerospace
Center, DLR. This system consists of three commercially available 16 megapixel cameras arranged on a mount
and a navigation unit with which it is possible to record time series of images covering large areas at frequencies
up to 3 Hz. The 600 by 600 pixel sub-images acquired 0.7 seconds apart cover a busy motorway near Munich in
Bavaria, Germany. Figure 1 (left) shows the the image at time point 1 as red and at time point 2 as cyan.

A nonlinear version of the data is constructed by raising the data at time point 2 to the power of three and
normalizing its variance to that of the data at time point 1.

For both real data and data with the artificial nonlinearity the only real change on the ground is very likely
to be the movements of the vehicles on the motorway.

4. RESULTS AND DISCUSSION

To be able to carry out kernel PCA on the large amounts of pixels typically present in Earth observation data,
we sub-sample the image and use a small portion termed the training data only. We typically use in the order
103 training pixels (here ∼2,000) to find the eigenvectors onto which we then project the entire image termed the
test data kernelized with the training data. This sub-sampling potentially avoids problems that may arise from
the spatial autocorrelation inherent to image data. Figure 1 (right) shows the positions of the training pixels. A
Gaussian kernel κ(xi, xj) = exp(−‖xi − xj‖2/2σ2) with σ equal to three times the mean distance between the
observations in feature space is used.

Proc. of SPIE Vol. 7109  71090T-5



'I'

Figure 1. Image from time point 1 as red and time point 2 as cyan (left), ∼2,000 samples used to solve the eigenvalue
problem (right).
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Figure 2. Eigenvalues for kernel PCA of original data.
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For the ordinary PCA there are two eigenvalues only; these are 3731.86 and 84.37. Figure 2 shows eigenvalues
for kernel PCA of the original data, logarithms of the first 100 eigenvalues (left) and the 10 first eigenvalues
(right). For the artificial nonlinear data the eigenvalues are very similar. Although the dimensionality of the
implicitly mapped data is in principle infinite, the data seem to reside in a sub-space with dimensionality around
45.

Figure 3 shows scatterplots of the ∼2,000 training pixels at times 1 and 2 on backgrounds of contours for
projections onto PCs 2 for the original data (left) and for the data with an artificial nonlinearity (right).

Figure 4 shows scatterplots of the ∼2,000 training pixels at times 1 and 2 on backgrounds of contours for
projections onto kernel PCs 1 (left), 2 (middle), and 3 (right) for the original data.

Figure 5 shows scatterplots of the ∼2,000 training pixels at times 1 and 2 on backgrounds of contours for
projections onto kernel PCs 1 (left), 2 (middle), and 3 (right) for the data with an artificial nonlinearity.

We see that the change for the original data is nicely depicted by PC 2, Figure 3 (left). With kernel PCA
change is depicted by PC 3, Figures 4 and 5, right. The contours for kernel PC 3 for the original data are nearly
linear, Figure 4 right. In Figure 5 (right) the no-change pixels nicely follow the contours of kernel PC 3. This is
not the case for the (non-kernel) PC 2 in Figure 3 (right).

Figure 6 shows scores for kernel PCs 3 for the original data (left) and the artificially nonlinear data (right).
Although some details in the no-change background (middle-gray pixels) differ, the over-all impression is that
the same good discrimination between change (very dark and very bright pixels) and no-change is obtained for
both cases.

The results will depend on the choice of kernel, the choice of the scale parameter, and the actual training
samples used to build the kernel change detector.

5. CONCLUSIONS AND FUTURE

In the dual formulation of PCA the data enter into the problem as inner products between the observations.
These inner products may be replaced by inner products between mappings of the measured variables into higher
order feature space. The idea in kernel PCA is to express the inner products between the mappings in terms of
a kernel function to avoid the explicit use of the mappings. Both the eigenvalue problem, the centering to zero
mean and the projections onto eigenvectors to find kernel PC scores may be expressed by means of the kernel
function. Kernel PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional
feature space via the kernel function and then performing a linear analysis in that space.

Kernel PCA with a Gaussian kernel κ(xi, xj) = exp(−‖xi − xj‖2/2σ2) is used for detecting change in data
consisting of two variables which represent the same spectral band covering the same geographical region acquired
at two different time points. Unlike ordinary PCA kernel PCA successfully finds the change observations in a
case where nonlinearities are introduced artificially.

Kernel PCA is a so-called memory-based method: where ordinary PCA handles new observations by pro-
jecting them onto the eigenvectors found based on the training data, because of the kernelization of the new
observations with the training observations, kernel PCA needs the original data as well as the eigenvectors and
-values to handle new data.

Inspired by the success of ordinary canonical correlation analysis (CCA) to multivariate change detection13–15

and normalization over time16, 17 the application of kernel CCA to these subjects should be investigated.

Inspired by Wiemker et al.4 an iterative scheme may be built into the kernel PCA change detector.
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C—14934, C, 19

Figure 3. Scatterplots of training data from time points 1 and 2 on contours of projections onto principal components 2
for original data (left) and for data with artificial nonlinearity (right).

Figure 4. Scatterplots of training data from time points 1 and 2 on contours of projections onto kernel principal components
1 (left), 2 (middle) and 3 (right) for original data.

Figure 5. Scatterplots of training data from time points 1 and 2 on contours of projections onto kernel principal components
1 (left), 2 (middle) and 3 (right) for data with artificial nonlinearity.
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Kernel PC 3, λ = 3.3152 Kernel PC 3, λ = 2.6525

Figure 6. Kernel principal component 3 from original data (left), and for data with artificial nonlinearity (right).
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