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Abstract In numerical simulations of the in-situ combustion enhanced oil
recovery process, a major task is the integration of the stiff systems of
differential-algebraic equations describing chemical reactions and phase equi-
librium. It is therefore of great importance to identify suitable integration
methods and to design efficient and robust solvers that are tailored to the
specific application. Using a time-stepping methodology based on operator
splitting we propose the use of implicit one-step methods of the ESDIRK
class for integration of reactions. To facilitate the algorithmic development
we construct a kinetic cell model. The model serves both as a tool for the de-
velopment and testing of tailored solvers as well as a testbed for studying the
interactions between chemical kinetics and phase behavior. Through bench-
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mark studies the new ESDIRK solvers are shown to improve computational
speed when compared to off-the-shelf stiff ODE solvers.

Fluid phase changes are known to cause convergence problems for the in-
tegration method. We propose an algorithm for detecting and locating phase
changes based on discrete event system theory. Experiments show that the
algorithm improves the robustness of the integration process when near phase
boundaries by significantly reducing the number convergence and error test
failures.

Keywords Enhanced oil recovery · in-situ combustion · multi-scale
methods · reservoir simulation · operator splitting · differential-algebraic
equations · ESDIRK methods · discrete event systems

1 Introduction

The world continues to rely substantially on petroleum fossil fuels as a pri-
mary energy source. No economical substitute for crude oil is yet available or
is likely to become available in the next couple of decades. While the num-
ber of new discoveries of petroleum reservoirs decreases, the need to produce
the known reservoirs more effectively increases. So far, only the easiest to
produce petroleum accumulations have been utilized. Maintaining the sup-
ply of oil to support economic growth in industrial and developing countries
requires new and innovative methods in order to unlock the remaining crude
oil reserves. A large part of the remaining reserves (numbers?) exist in the
form of so-called heavy crudes (10 to 20 ◦API). The development of such
reserves by traditional methods (pressure depletion, water flooding) is often
inefficient due to the high viscosity of the oil. Thermal recovery processes,
which rely on viscosity reduction of the oil through heat injected (steam or
hot water) or in-situ generated, are well suited to unlock heavy oils in an
environmentally sound manner. The thermal recovery process known as in-
situ combustion has been a source of interest and effort for several decades.
In-situ combustion is the process of injecting air (or air enriched with oxy-
gen) into oil reservoirs to oxidize a portion of the crude oil and enhance
recovery through the heat and pressure produced. Contrary to other thermal
recovery processes the main part of the energy required to displace the oil
in in-situ combustion is generated inside the reservoir from the heat released
by chemical reactions between oxygen and fractions of the crude oil. In-situ
combustion is technically and economically an attractive process, particu-
larly since the portion of the crude burned is likely to be the heaviest and
least valuable. Whereas it is generally classified as a technique that is ap-
plicable for heavy oils because of the dramatic reduction in oil viscosity with
temperature, in-situ combustion also promotes production through thermal
expansion and gas drive caused by combustion gases.

The purpose of our research is the development of accurate, efficient and
reliable mathematical models and computational tools for performance eval-
uation of in-situ combustion processes. In this paper we focus on models
and algorithms for integration of chemical reactions in in-situ combustion
simulations.
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1.1 In-Situ Combustion
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Fig. 1 Schematic representation of characteristic temperature and saturation dis-
tributions in forward in-situ combustion (adapted from Prats (1986), not to scale).

In the forward in-situ combustion process oil is ignited at the injection
well and the combustion front is propagated towards the production well by
continuous injection of air. As the combustion front progresses into the reser-
voir, several zones can be found between the injector and the producer. A
common misconception of the combustion front propagation is that of an un-
derground fire. Instead, the front is more of a glow passing slowly through the
reservoir. Figure 1 gives a schematic representation of characteristic temper-
ature and saturation zones in in-situ combustion. Starting from the injection
well the burned zone is the volume already swept by the combustion zone.
The burned zone contains the injected air and possibly a residue of burned
fuel. The combustion zone has the highest temperature and this is where most
of the energy is generated. Injected oxygen reacts with residual hydrocarbons
generating carbon oxides and water. Hydrocarbons contacted by the leading
edge of the high temperature zone undergo thermal cracking and vaporiza-
tion. Mobilized light components are transported downstream where they
mix with the original crude. The heavy residue, which is normally referred
to as coke, is deposited on the core matrix and is the main fuel source for
the combustion process. Downstream of the vaporization zone is the steam
plateau which is formed from water of combustion and vaporization of forma-
tion water. Further downstream the steam condenses into a hot water bank
when the temperature drops below the steam saturation temperature. The
leading edge of the hot water bank is the primary area of oil mobilization
where the oil is banked by the hot water. A more detailed description may
be found in Prats (1986) and Castanier and Brigham (2004).

The actual mechanisms responsible for oil displacement in in-situ com-
bustion vary with the type of oil. For heavy oils the increase in oil mobility
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with elevated temperatures is the primary mechanism assisted by gas flood
effects and hot and cold water drive. In the case of lighter oils, the flue gas
mixture resulting from combustion provides the primary mobilizing force for
the oil downstream of the combustion zone (Moore et al., 2002a). The gas-oil
mixture may be immiscible, or partly or completely miscible.

1.2 A Complex Multi-Scale Process

In-situ combustion is one of the most physically complex enhanced oil re-
covery processes currently in use. Driven by complex chemical reactions the
oil mobility is increased with the elevated temperatures and the fluids are
displaced by a combination of steam, water and gas drive. The spatial as
well as temporal scales in in-situ combustion vary over many orders of mag-
nitude. The bulk of the chemical reactions take place in the narrow reaction
zone that may be less than a meter in thickness compared to reservoir scales
of hundreds or thousands of meters. Moreover, combustion reactions often
occur in fractions of a second, whereas the temporal scales associated with
convective transport may be running to days or years. Accurate prediction of
field performance in such a multiscale process is an immense challenge requir-
ing a hierarchical approach, in which both spatial and temporal resolution is
adapted in order to capture the crucial input from all levels of activity.

The overall performance of an in-situ combustion process in governed in
a complex way by reservoir heterogeneity, well configurations, injection rates
and composition, initial oil saturation and distribution and both thermody-
namic and chemical properties of the rock and fluids. Reliable prediction of
field performance requires a fully integrated approach in which the impor-
tant contributions from all levels are taken into account. In-situ combustion
is indeed a multiphysics process bringing together multiphase porous media
flow, chemical kinetics and phase equilibria.

The spatial scales affecting in-situ combustion span from large geological
features such as faults of the size of the reservoir to the very small scale at
which chemical reactions happen in the combustion zone. Faults, fractures
and the placement of wells determine global flow patterns, but local dis-
placement efficiency is governed by small scale heterogeneity in porosity and
permeability of the reservoir and by the chemical and thermodynamic behav-
ior of the fluids. Permeability fields are often obtained from high-resolution
geocellular models having gridblock sizes on the order of a meter. Reservoir
simulations, however, are carried out using gridblocks that are 1–2 orders
of magnitude larger due to computational constraints. Upscaling of the per-
meability or transmissibility field, in which local flow behavior is taken into
account, is routinely done. As mentioned above, the bulk of the chemical
reactions happen in a narrow combustion zone being less than a meter in
thickness compared to standard gridblock sizes of, say, 50 meters. Thus, the
spatial scale for chemical reactions is smaller than the smallest scale normally
resolved in reservoir simulations. Consequently, the temperature profile on
the simulation grid will be too smooth, and important phenomena such as
ignition/extinction or quenching may not be predicted correctly.
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Relating to temporal scale, a number of different processes may be iden-
tified in in-situ combustion, each having its own characteristic scale. Most
of the existing in-situ combustion models include convective mass transfer,
convective and conductive heat transfer, kinetically controlled chemical reac-
tions and fluid phases in thermodynamic equilibrium (Crookston et al., 1979;
Grabowski et al., 1979; Coats, 1980). The phase equilibrium assumption im-
plicitly states that the timescales for the interphase mass transfer processes
occurring when phases come to an equilibrium state, are much faster than
all other timescales. Of the remaining processes, the chemical reactions are
likely to occur on timescales that are again much faster than the scales for
mass and heat transport.

Although being multiscale in nature, the question remains whether all
the processes in in-situ combustion represent essential physics that needs to
be resolved in a simulation. The goal of in-situ combustion simulation is to
provide reliable predictions of performance, typically in terms of production,
for a given in-situ combustion project. The production certainly depends on
large scale features such as well placement, but the small scale behavior, spa-
tial as well as temporal, in the combustion zone may be equally important.
In-situ combustion processes are driven by chemical reactions. Chemical ki-
netics depends strongly on temperature, thus failing to capture temperature
peaks and, in general, smoothing out temperature profiles on too coarse a
grid will lead to inaccurate prediction of reaction, which in turn will affect
the amount of heat released and combustion gases evolved, ultimately result-
ing in wrong predictions of oil displacement. Ahead of the combustion front
(see Figure 1) the oil is mobilized by a combination of steam, water and
gas drive. Lighter oil components will vaporize easily and be transported
downstream. The compositional behavior in this region will determine the
amount and composition of the oil left behind as fuel for the combustion.
Therefore, accurate prediction of phase behavior as well as flow is likely to
impact overall performance. Errors at this small scale will feed into overall
production calculations, thereby rendering the results unreliable. Hence, the
important processes in in-situ combustion are indeed multiscale with strong
nonlinear interactions between different scales and efficient computational
methods must be developed that handle this multi-scale nature.

1.3 A Time-Stepping Methodology

The multiscale challenge may be approached computationally by either at-
tempting to resolve all relevant scales or by making use of appropriate subgrid
scale models to represent the small scale processes. Subgrid scale modeling
is not addressed in this paper, but instead we concentrate on how to resolve
different scales. In particular we focus on the temporal scales of chemical
reactions. For discussions on spatial resolution in ISC simulation, see for ex-
ample Gerritsen et al. (2004) and Nilsson et al. (2005) where Adaptive Mesh
Refinement (AMR) techniques are employed.

In order to capture the essential process dynamics in a numerical sim-
ulation, the reaction kinetics must be integrated using timesteps that are
much smaller than those necessary for capturing the effects of convection
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and conduction. Applying the same integration method to all processes is
often very inefficient. An intuitive way of approaching the problem numeri-
cally is, instead, by using so-called splitting methods where convective and
conductive terms in the equations are separated from reaction terms. Each
global timestep then consists of a series of substeps, in which the individ-
ual physical processes (convection, conduction, reaction, etc.) are integrated
separately, the advantage being that efficient, tailored integration methods
can be applied to each sub-process. For example, stiff chemical kinetics is
best treated by implicit methods, whereas convective transport can often
be integrated explicitly. The separation of scales in the problem is thereby
exploited numerically, the cost being a numerical error introduced by the
splitting, since in each substep only one process is taken into account and
the interaction with the other processes neglected.

Using an operator splitting framework, the main challenge becomes the
design of specialized integration methods for the individual substeps. For
example, in a reaction substep each gridblock is then effectively treated as
a small kinetic cell with homogeneous pressure and temperature and well
mixed fluids. Depending on the number of gridblocks and the number of
global timesteps, several million solves of the reaction substep may easily
be needed during a full scale in-situ combustion simulation. Hence, highly
efficient numerical algorithms are needed for this substep.

Recently, Younis and Gerritsen (2006) presented a novel operator split-
ting method for thermally reactive, compositional reservoir simulation. We
will review the method in Section 4.1 and present the tailored methods for
reaction integration within this framework.

1.4 Main Objectives and Key Contributions

This paper addresses the issues in in-situ combustion simulation related to
chemical kinetics and phase behavior and the interaction of the two. Needless
to say, being at the very core of an in-situ combustion simulator, efficient
computation of kinetics and phase behavior is crucial to overall performance.
The goal of this effort is therefore to develop a model that allows the isolated
study of in-situ combustion kinetics and phase behavior. We will use the
model as a tool for designing efficient numerical methods for integration of
kinetics and phase behavior in ISC simulations. Moreover, we will address
the important question of how to handle phase changes during simulation.

We propose a kinetic cell model in this paper. In addition to being an
important substep when solving the in-situ combustion equations using an
operator splitting approach, the kinetic cell model provides in its own right
a testbed for studying the interaction of kinetics and phase behavior and the
implications for the numerical solver.

The long-term goal of this research effort is the development of efficient,
physically accurate and reliable simulation tools for performance prediction
of in-situ combustion projects. The kinetic cell model and the numerical
methods proposed in this work represent an important step in that direction.

The key contributions of this paper are:
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1. A kinetic cell model that (i) facilitates construction of efficient, tailored
integration methods for in-situ combustion kinetics, and (ii) enables iso-
lated sensitivity studies of the kinetics / phase behavior interaction.

2. Efficient numerical integrators based on specialized Runge-Kutta methods
tailored for operator splitting integration of in-situ combustion kinetics
and phase behavior.

3. An algorithm for robust detection and location of phase changes based
on discrete event system theory.

1.5 Paper Outline

The paper is organized as follows. Section 2 provides a review of physical
models for in-situ combustion reactions and serves to motivate the develop-
ment of the kinetic cell model. Section 3 introduces the kinetic cell model
equations. The integration methods for the kinetic cell are presented in Sec-
tion 4 in the framework of an operator splitting method and important imple-
mentational aspects are discussed including an algorithm for robust detection
and location of phase changes. Finally, Section 5 presents the results from
performance comparisons between the new solver and state-of-the-art stiff
ODE solvers.

2 Physical Modeling

Before developing the equations for the kinetic cell model we take a brief
look at the underlying physical assumptions and the current state of reaction
models for ISC reactions.

Apart from chemical reactions, ISC models typically include convective
mass transport and convective and conductive heat transport. A condition
generally assumed to prevail in ISC, as well as in all other reservoir processes,
is that the fluids are in thermodynamic equilibrium at every point within the
reservoir (Prats, 1986). This equilibrium assumption implicitly states that the
timescales for the interphase mass transfer processes occurring when phases
come to an equilibrium state, are much faster than all other timescales. A
simple order of magnitude estimate shows that, for non-reacting systems, this
assumption is reasonable. The validity of the assumption for reactive systems
is, however, unclear, but in lack of better alternatives we shall assume that
components transfer between phases under equilibrium conditions. In addi-
tion to thermodynamic equilibrium it is commonly assumed that the fluids
and reservoir rock are in thermal equilibrium implying that the resistance to
heat transfer between fluids and rock is negligible.

2.1 Chemical Reactions

A typical crude oil is a complex mixture of hundreds of different chemical
species. Hence, the chemical reactions that happen in the presence of oxygen



8 M.R. Kristensen et al.

are equally complex and numerous. In the field of computational combus-
tion increasingly large reaction models are being used often involving several
hundred different intermediary components and thousands of elementary re-
actions (Westbrook et al., 2005). Reaction pathways and rate coefficients can
be derived theoretically from quantum chemical calculations. However, the
fuels being studied are pure light hydrocarbon components or very simple
mixtures, and even for such simple fuels the reaction pathways become enor-
mously complex. Deriving detailed reaction pathways for crude oil oxidation
in porous media is far beyond current capabilities. Determining reactions
and reaction rates in in-situ combustion is therefore approached in a much
more empirical way. The current state of reaction models is reviewed in this
section.

Among the first researchers to group the in-situ combustion reactions into
different classes according to the temperature range, in which they occur,
were Bousaid and Ramey Jr. (1968) and Burger and Sahuquet (1972). They
observed distinct variations in the oxygen uptake rate with temperature when
air was cycled through an oil sample. Today it is generally accepted that
three classes of reactions dominate in in-situ combustion: (1) low temperature
oxidation reactions (LTO), (2) medium temperature reactions and (3) high
temperature oxidation reactions (HTO) (Castanier and Brigham, 2004). The
temperature ranges associated with each group of reactions are roughly 150
to 300◦C for LTO, 300 to 450◦C for medium temperature reactions and above
450◦C for HTO.

The nature of the reactions taking place in each regime depends on the
type of oil. For heavy oils the LTO reactions are oxygen addition reactions
producing partially oxygenated compounds (alcohols, ketones, aldehydes,
etc.) and only few carbon oxides. Lighter oils undergo full H/C bond breaking
combustion reactions in the LTO regime but may undergo oxygen addition
reactions at lower temperatures. Oxygen addition increases oil viscosity, and
thus operating in this regime is inefficient. In a forward combustion process
LTO reactions may take place when oxygen is available downstream of the
combustion front due to either channeling around the front or insufficient con-
sumption in the front (Fassihi et al., 1984a). The effects of LTO on in-situ
combustion performance have been studied by several researchers (Dabbous
and Fulton, 1974; Adegbesan et al., 1987; Freitag and Verkoczy, 2005).

At intermediate temperatures after the LTO reactions a series of cracking
or pyrolysis reactions take place. These reactions are the primary source of
coke formation for the HTO reactions. Coke formation dictates the quantity
of fuel available for combustion. Excessive fuel deposition retards the rate
of advance of the combustion front whereas insufficient fuel deposition may
not provide enough heat for self-sustained combustion. Finally, in the HTO
reactions the coke is burned generating carbon oxides and water.

Both LTO and HTO reactions are believed to be heterogeneous gas/liquid
or gas/solid reactions (Fassihi et al., 1984b; Castanier and Brigham, 2004),
in which oxygen from the gas stream diffuses to the surface of the oil/coke,
adsorps on the surface, reacts with a hydrocarbon component, and finally
combustion products desorp and diffuse back into the gas stream. For surface
reactions in general each of these processes can be rate limiting. Only few



Efficient Reaction Integration for In-Situ Combustion Simulation 9

researchers comment on this, the majority assuming that the overall process
is kinetically controlled, which seems widely accepted (Islam et al., 1989).
In disagreement with the assumption of heterogeneous reactions Adegbesan
et al. (1987) claim that LTO reactions occur with oxygen dissolved in the oil
phase, and hence argue for the importance of accurate description of oxygen
solubility.

Most researchers seem to agree that the overall oxidation mechanism of
crude oil in porous media is an overlap of three consecutive reactions: LTO,
cracking/pyrolysis and HTO. Both light and heavy oils undergo these reac-
tions but in different temperature ranges. LTO reactions are by far the least
understood. Although generally recognized as being important to prediction
of in-situ combustion performance, no reliable LTO reaction models exist to-
day. Recently Freitag and Verkoczy (2005) observed a shift in reaction order
for oxygen partial pressure with temperature and concluded that at least two
different reaction mechanisms govern LTO. The negative effects of LTO are
mainly an increase in oil viscosity and enhanced trapping of oil due to gas
phase shrinkage caused by the oxygen removed from the gas phase in oxygen
addition reactions (Moore et al., 2002b). The role of LTO in controlling fuel
availability is, however, still a topic for further research.

Only little attention has been given to the development of reaction mod-
els based on the compositional analysis of the oil. The use of SARA frac-
tions (saturates, aromatics, resins and asphaltenes) represents one such ef-
fort (Freitag and Verkoczy, 2005; Kok and Karacan, 1997). In the SARA
approach both chemical reactivity and phase behavior is taken into account
when grouping the components. The SARA fractions are chromatographi-
cally separated according to polarity of the compounds. Saturates are sat-
urated hydrocarbons with straight or branched chains, little ring-structure,
and only little nitrogen, sulfer and oxygen content. Aromatics contain one
or more aromatic rings. Resins are the second heaviest fraction having high
polarity due to considerable nitrogen, sulfer and oxygen content. Finally,
asphaltenes are normally defined as the fraction of the crude insoluble in
n-heptane. The presence of different functional groups in each fraction will
determine overall chemical reactivity. Thus, the SARA approach groups ac-
cording to reactivity. Each fraction may still have a large boiling range, and
a further subdivision based on boiling point may be used to obtain a better
phase behavior representation. The SARA based approach seems to be the
best and most promising method currently available for in-situ combustion
oil characterization.

Summarizing this section the essential components of physical reaction
models for in-situ combustion are: (1) a separation in reaction regimes be-
tween LTO, cracking/pyrolysis and HTO, (3) formation of a solid phase act-
ing as the main fuel in the combustion zone, (3) heterogeneous gas/liquid
and gas/solid reactions with the surface reactions being the rate controlling
step over adsorption/desorption and diffusion to/from the surface, and (4)
a possible shift from LTO to HTO depending on oxygen flowrate and other
critical parameters.



10 M.R. Kristensen et al.

Qext

P,V,T,nF in F out

kinetics / phase
equilibria

P,V,T,n

gridblock i,j,k

Fig. 2 Using an operator splitting approach for the ISC equations each gridblock
is effectively treated as a small chemical reactor.

3 Mathematical Modeling

The governing equations for ISC, considering the physical processes discussed
above, can be found in e.g. Younis and Gerritsen (2006). In this section we
present the kinetic cell model.

3.1 A Virtual Kinetic Cell (VKC)

As illustrated conceptually in Figure 2 each gridblock in a reaction substep
is treated as a small chemical reactor or kinetic cell in which only chemical
kinetics and phase behavior are taken into account. The governing equations
for this substep are obtained by ignoring convective and conductive terms in
the overall ISC equations. The kinetic cell model is proposed here in a slightly
more generalized form including in-/outflow terms for mass and energy along
with external heating/cooling to allow a more flexible framework for studying
the kinetics/phase behavior interactions.

We model a closed system consisting of 3 fluid phases (oil, water and gas),
an immobile solid phase and the porous medium. Temperature, pressure and
component concentrations are assumed uniform in the cell. For convenience,
we introduce the molar concentration of a component in a phase, cij , and
the overall molar concentration of a component in the system, Ci:

cij = ϕfxijρjSj (1)

Ci =
∑

j∈{o,w,g}

cij (2)

in which Sj, j ∈ {o, w, g}, is the phase saturation, ρj the molar phase density
and xij the mole fraction of component i in phase j. ϕf is the fluid porosity
which varies with solid fuel concentration in the pore space:

ϕf = ϕv −
Cs

ρs
(3)



Efficient Reaction Integration for In-Situ Combustion Simulation 11

in which Cs and ρs are the density and concentration of solid component,
respectively. Solid concentration is defined with respect to total volume. The
mass conservation of each chemical component is written as:

dCi

dt
=

nr
∑

k=1

Aikrk +
F in

i − F out
i

V
, i = 1, . . . , nc (4)

in which F in
i and F out

i are the molar flowrates of component i in and out
of the cell, respectively. V is the cell volume. rk is the kinetic expression
for the kth (k = 1, . . . , nr) chemical reaction and Aik is the stoichiometric
coefficient for component i in reaction k (negative for reactants and positive
for products).

The energy conservation equation is:

dU

dt
=

nr
∑

k=1

(−∆Hk)rk +
Hin − Hout + Qext

V
(5)

in which Hin and Hout are the fluxes of enthalpy in and out of the cell, and
Qext is a heat source/sink term due to external heating or cooling. Finally,
U is the total internal energy of the system per unit volume expressed as:

U = (1 − ϕv)ρrUr + (ϕv − ϕf )ρsUs + ϕf

∑

j∈{o,w,g}

UjρjSj (6)

The energy source/sink is modelled as:

Qext = UA(Tr − T ) (7)

in which Tr is the heating/cooling temperature and UA is an overall heat
transfer coefficient. Since the cell volume is assumed constant, gases are al-
lowed to leak out of the cell when volume changes occur due to chemical
reactions and temperature changes. When only components in the gas phase
can leave the cell, the molar flowrates in (4) may be expressed as:

F out
i = Qoutρgxig (8)

where ρg is the gas density and Qout is the volumetric flowrate, which is
taken proportional to the difference between the cell pressure and the external
pressure:

Qout = kv

(

P − P ext
)

(9)

in which kv denotes a valve coefficient. Since pressure and temperature varia-
tions and chemical reactions cause volume changes, a constraint is needed in
order for the fluid and solid volumes, Vf and Vs, to match the void volume,
Vv:

Vv = Vf + Vs (10)

The chemical reactions occurring are assumed to be kinetically driven.
They are modeled using Arrhenius rate relations:

kk = αk exp

(

−
Ek

RT

)

(11)
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in which αk and Ek are the pre-exponential factor and activation energy for
reaction k, respectively, and R is the universal gas constant. Three types of
reactions occur (LTO, cracking/pyrolysis and HTO). We will assume that
the reactions are first order in all reactants. Oxidation reactions for oil phase
components are modelled as:

rk = kk · PxO2

g · Ci (12a)

in which index i refers to an oil component. For solid components the rate
expression is:

rk = kk · PxO2

g · Cs (12b)

Finally, for cracking/pyrolysis reactions:

rk = kk · Ci (12c)

In the treatment of phase equilibrium we assume that components parti-
tion into at most two phases. Components in the solid phase exist exclusively
in this phase. Moreover, we assume that the water phase consists of water
only and that the equilibrium between hydrocarbon components in the gas
and oil phases can be described by a simple equilibrium constant correlation:

Ki =
xig

xio
(13)

in which the equilibrium factors are assumed to vary only with pressure and
temperature. Using this simplified phase equilibrium description the flash
calculation reduces to solving the Rachford-Rice equation for the molar gas
phase fraction, β:

∑

i∈{hc}

(xig − xio) =
∑

i∈{hc}

Ci(Ki − 1)

1 − β + βKi
(14)

We choose as primary variables temperature, pressure and the nc overall
component concentrations. The VKC equations, (4), (5) and (10), comprise
a set of differential-algebraic equations (DAEs). Including the total internal
energy as a variable and Eq. (6) as an extra constraint allows us to write
the DAE in semi-explicit form where temperature is aligned with the energy
constraint (6) and pressure is aligned with the volume constraint (10). In
multiphase regions Eq. (14) is appended to the equation system and aligned
with the gas phase fraction. Detection of phase changes is discussed later in
Section 4.4.

Apart from being a useful tool for developing tailored integration methods
for ISC reactions, the VKC provides a testbed for studying the kinetics /
phase equilibrium interplay in ISC. Interaction with the reservoir can be
mimicked through the boundary conditions, thus allowing us to study, for
example, the sensitivity to oxygen availability by varying oxygen inflow rate
or the effects of heat losses due to external cooling. Kinetic cell experiments
are routinely carried out in the laboratory to determine burning character-
istics of a particular oil. Using data from these experiments the VKC could
be applied in inverse problems to determine reaction kinetic parameters – a
topic for future work.
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3.2 Test Cases

Two ISC reaction models are used in this paper as test examples and for
benchmarking the numerical solvers developed in the next section.

3.2.1 The Minimal Model

This model includes a minimal realistic set of components and reactions to
represent ISC behavior. The components are: light oil (LO), heavy oil (HO),
coke (C), oxygen (O2), water (W ) and inert gas (IG). The reactions are:

LO + O2 → IG + W

HO + O2 → IG + W

HO → LO + C + IG

C + O2 → IG + W

The reactions account for cracking of heavy oil and complete oxidation of
coke and the two oil components.

3.2.2 The SARA Based Model

This model has 14 (pseudo) components and 14 reactions. It is based on
SARA grouping of the oil. The reactions are listed below and the components
involved are listed in Table 1. The reactions include pyrolysis, LTO and HTO
of the SARA fractions along with HTO of pyrolysis coke and the partially
oxidized LTO residue. The LTO residues of resins/aromatics and saturates
are non-volatile oil components whereas the LTO residue of asphaltenes is
solid. The model and associated parameters were generously made available
to us by Norman Freitag, Saskatchewan Research Council, Canada. Details
can be found in the references: Freitag and Verkoczy (2005), Freitag and
Exelby (2006) and Ren et al. (2005).

crac./pyr.
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PyrCoke + O2 → H2O + CO2

OxdAsph + O2 → H2O + CO2

OxdResAr + O2 → H2O + CO2

OxdSat + O2 → H2O + CO2

Asph + O2 → H2O + CO2

Resins + O2 → H2O + CO2

Arom + O2 → H2O + CO2
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Component Name Abbreviation Phase(s)

Water H2O water
Inert oil InertOil oil
Oxidized resins/aromatics OxdResAr oil
Oxidized saturates OxdSat oil
Asphaltenes Asph oil
Resins Resins oil
Aromatics Arom oil/gas
Saturates Sat oil/gas
Light oil Lites oil/gas
Carbon dioxide CO2 oil/gas
Nitrogen N2 gas
Oxygen O2 gas
Oxidized asphaltenes OxdAsph solid
Pyrolysis coke PyrCoke solid

Table 1 List of (pseudo) components for the SARA based model. The components
can exist in the phase(s) listed in the last column.

4 Numerical Modeling

4.1 Operator Splitting

As mentioned in the introduction, numerical time-integration of the multi-
scale ISC process can be accomplished by use of operator splitting methods.
These methods break down the problem into independent sub-problems, typ-
ically by regarding each physical process (convection, conduction, reaction)
as a separate operation. The main advantage of splitting methods is that tai-
lored integration methods can be applied to each sub-problem. For example,
the stiff reaction kinetics can be integrated with methods designed for stiff
ODEs whereas convective transport can be integrated with high-resolution
explicit methods. The solutions to the sub-problems are subsequently tied
back together to form an approximation to the full equation. This type of
splitting is often referred to as additive splitting (ADS). Each sub-problem
only involves one physical process or a subset of processes and the solutions
to the sub-problems do not represent consistent solutions to the full problem.
For IMEX-type splittings, on the other hand, the equations are not decoupled
and each intermediate stage of an IMEX scheme honors the full equation.
Instead, for IMEX schemes, a single integration method is chosen for the full
set of equations and the individual variables are then treated either explic-
itly or implicitly. A well-known example of an IMEX scheme in petroleum
engineering is the IMPES (IMplicit Pressure Explicit Saturation) scheme in
which pressure is treated implicitly and saturation explicitly. ADS methods
can be applied to additively separable operators, like convection and reac-
tion in the ISC problem. They are desirable because they allow sub-problem
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Fig. 3 Illustration of the IAFS scheme for thermally reactive, compositional reser-
voir simulation (Younis and Gerritsen, 2006). Pressure and temperature are solved
using a cascaded IMEX approach and aligned with the pressure and heat equations,
respectively. The reaction and transport parts are separated using a symmetric ADS
(Strang splitting). Initial conditions for each substep are indicated in the figure.

integration by tailored methods. However, some operators are not additively
separable, an example being the flow-transport coupling in multiphase porous
media flow problems in which the saturation and pressure dependent parts
of convection are non-separable.

The mixed nature of the ISC problem with both additively separable
and non-separable operators inspired Younis and Gerritsen (2006) to pro-
pose a hybrid IMEX-ADS method – the IMEX-ADS Fractional-Step (IAFS)
method. The IAFS method combines the traditional IMPEC (IMplicit Pres-
sure Explicit Composition) approach with an explicit temperature treatment
with a symmetric ADS for the convection and reaction operators.

To outline the computational steps in the IAFS scheme we cast the overall
ISC equations in simplified form:

dA

dt
= −Fm

T
+ Rm

T
(15a)

dU

dt
= −F e

T
+ Re

T
(15b)

dC

dt
= −Fm + Rm (15c)

in which Eq. (15a) is the pressure equation (sum of component conservation
equations), Eq. (15b) is the heat equation and Eq. (15c) is the set of compo-
nent conservation equations. F denotes discretized advection and R denotes
the reaction term. Heat conduction is neglected in this formulation allowing
explicit treatment of temperature. The sequence of steps in the IAFS scheme
is illustrated in Figure 3. First, pressure is solved aligned with the pressure
equation using explicit temperature and concentrations. Second, temperature
is solved using the new pressure and explicit concentrations. Finally, concen-
trations are updated using a symmetric ADS (in this case Strang splitting)
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to separate the transport and reaction operators:

dC(1)

dt
= Rm(C(1)), C(1)(tn) = Cn on [tn, tn + ∆t/2]

dC(2)

dt
= −Fm(C(2)), C(2)(tn) = C(1)(tn + ∆t/2) on [tn, tn+1]

dC(3)

dt
= Rm(C(3)), C(3)(tn + ∆t/2) = C(2)(tn+1) on [tn + ∆t/2, tn+1]

In the next section we will develop tailored integration methods for the re-
action substeps in the Strang splitting scheme.

4.2 Choice of Integration Method for Reactions

The kinetic cell equations consist of coupled differential and algebraic equa-
tions. We will consider the following general form of the DAE system:

M
du

dt
= f(t,u), u(t0) = u0 (16)

in which u ∈ R
n is a vector of state variables depending on t, and f is a

vector function mapping R × R
n into R

n. For the kinetic cell model the
mass matrix, M ∈ R

n × R
n, is simply a diagonal matrix with ones in the

diagonal indicating a differential equations and zeroes indicating an algebraic
equations. The initial conditions are assumed consistent with the algebraic
constraints.

The characteristics of the kinetic cell model and of the application in a
splitting method are:

– Coupled system of ODEs and AEs
– Stiff chemical kinetics
– Discontinuities in right-hand-side functions arising due to phase changes
– Short integration intervals due to splitting
– Typical dimension of the state vector: 10 − 20

The kinetic cell equations must be integrated in small intervals governed by
the global time step of the splitting scheme (c.f. Figure 3). Thus, the solver
must be capable of solving efficiently the DAE with frequent interruptions
due to exchange of information with other levels of the scheme. Moreover,
the solver must be able to handle discontinuities due to phase changes. The
relative accuracy range of interest, considering the accuracy of inputs and the
accuracy to which other steps in the scheme are computed, is 10−2 − 10−4,
i.e. approximately 2–4 significant correct digits in the results.

The short integration intervals and the stiff reaction kinetics are the pri-
mary characteristics guiding our choice of integration method. When inte-
grating from tn to tn+1 one-step methods only use state information from
tn whereas multi-step methods use information from several previous inte-
gration steps, tn−j , j = 0, 1, . . . , s. Since multi-step methods rely on several
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Fig. 4 Structure of the A matrix in the Butcher tableau for different classes of
RK methods.

previous integration steps, they are often implemented in a variable order for-
mulation, in which they start out at low order and slowly build up higher or-
der as more information becomes available. In the initial phase of integration,
when working at low order, multi-step methods therefore need short time
steps in order to meet a certain tolerance. At a later stage, when higher or-
der information becomes available, multi-step methods will often outperform
one-step methods. The different nature of one-step and multi-step methods
suggest that multi-step methods will be advantageous for problems with long
and smooth integration intervals, whereas one-step methods will benefit on
shorter intervals and on problems with frequent discontinuities in the solu-
tion. Hence, we will focus here on one-step methods. Of the one-step methods,
only the family of Runge-Kutta (RK) methods (Runge, 1895; Kutta, 1901)
will be considered. For stability reasons we shall further limit our search to
implicit RK methods that allow efficient integration of the stiff kinetics.

A general s-stage Runge-Kutta scheme for solving the DAE system (16)
may be expressed as:

MUi = Mun + ∆tn

s
∑

j=1

aijf(tn + cj∆tn,Uj) (17a)

Mun+1 = Mun + ∆tn

s
∑

i=1

bif(tn + ci∆tn,Ui) (17b)

in which Ui denotes the solution at the ith, (i = 1, . . . , s), internal stage of
integration step n and ∆tn denotes the time step length. The coefficients of
RK schemes are often represented in a Butcher tableau:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...
cs as1 as2 . . . ass

un+1 b1 b2 . . . bs

=
c A

bT (18)

Runge-Kutta methods are classified according to the structure of their
Butcher tableau as illustrated in Figure 4. For explicit methods (ERK), ma-
trix A is strictly lower triangular, implying that all the internal stages (17a)
can be calculated explicitly, making these methods computationally fast and
straightforward to implement. However, in general, ERK methods have poor
stability properties, which make them unsuited for stiff problems (Hairer
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et al., 1996). The four remaining subclasses of Runge-Kutta methods in Fig-
ure 4 are all implicit. The values of the internal stages can no longer be
calculated explicitly from the values of the previous stages. Each integration
step of an implicit method requires the solution of a system of ns nonlin-
ear equations. Normally, an iterative method, such as Newton’s method, is
applied. For diagonally implicit methods (DIRK) the stage values can be
calculated sequentially, thereby lowering the computational cost compared
to fully implicit methods (FIRK), for which all ns equations must be solved
simultaneously. If all diagonal elements of A are identical and upper diag-
onal elements are zero, the method is said to be singly diagonally implicit
(SDIRK). Finally, if the first stage of an SDIRK method is explicit, the
method is said to be explicit singly diagonally implicit (ESDIRK).

We have chosen the class of ESDIRK methods for the VKC solver. The
diagonal structure of these methods allows sequential evaluation of the in-
ternal stages, the cost of each stage being relatively low. Since the diagonal
elements are equal, the iteration matrix for solving the nonlinear stage equa-
tions (17a) need only be evaluated and factorized once per integration step.
The methods are both A- and L-stable as well as stiffly accurate (Hairer and
Wanner, 1996). Stiffly accurate methods avoid the order reduction phenom-
enon observed by Prothero and Robinson (1974) when applied to stiff ODEs.
Finally, the explicit first stage of ESDIRK methods ensures high stage order
(≥ 2) which is important for the order of accuracy in the algebraic compo-
nents of the DAE (Hairer and Wanner, 1996). An additional advantage of
having high stage order is that it allows the construction of high order in-
terpolants to be used for generating output between mesh-points. We will
exploit these interpolants when constructing an algorithm for locating the
discontinuities that occur due to phase changes.

ESDIRK methods satisfying the stiffly accurate condition have the fol-
lowing form:

0 0 0
c2 a21 γ 0
c3 a31 a32 γ 0
...

...
...

. . .
. . .

. . .
cs−1 as−1,1 as−1,2 as−1,3 · · · γ 0

1 b1 b2 b3 · · · bs−1 γ
un+1 b1 b2 b3 · · · bs−1 γ

(19)

Only recently has the focus shifted to ESDIRK methods, but the DIRK and
SDIRK methods have been around for more than 30 years. According to
Kværnø et al. (1996) the first mention of diagonally implicit RK methods
was by Butcher (1964) who noted that these methods would be well suited for
practical use. However, dedicated research into the properties of the methods
did not start until the early seventies. In the mid seventies several researchers
published papers and theses devoted to the subject. Most notably are the
works of Nørsett (1974) and Crouzeix (1975). Butcher and Chen (2000) were
among the first to recognize the advantage of including an explicit stage in
SDIRK methods. They proposed ESDIRK-like extensions to several classes
of implicit RK methods. Alexander (2003) proposed a four stage ESDIRK
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method of order 3 with an embedded error estimator of order 4 and further
showed that the method was uniquely determined by the order and stability
conditions. Thus, for a four stage method the optimal embedded ESDIRK
pair has orders 3 and 4 if the A- and L-stability conditions are imposed on
the lowest order method. Williams et al. (2002) also published a four stage
ESDIRK method suited for index 2 DAEs, but with orders 2 and 3 for the
error estimator and advancing method, respectively. Finally, Kværnø (2004)
recently published a range of ESDIRK methods of orders 3 to 5 emphasizing
strong stability properties of both the error estimator and the advancing
method. ESDIRK methods have been applied as time integrators in fully
implicit fluid dynamics simulations (Bijl et al., 2002) as well as in operator
splitting methods for integrating the reaction part of convection-diffusion-
reaction equations (Kennedy and Carpenter, 2003).

4.3 Efficient Implementation

Five ESDIRK methods of orders 2-5 have been implemented. The lowest or-
der method is simply the trapezoidal rule. When combined with the implicit
Euler method we have an embedded pair of methods of orders 1 and 2 which
we will denote ESDIRK12. In general, we will use ESDIRKp− 1/p to de-
note an embedded pair of orders p − 1 and p. The major task in an ESDIRK
method is the solution of the nonlinear algebraic equations arising in each
internal stage. Efficient control of the iterative scheme applied to these equa-
tions along with control of discretization error by step size adjustments are
the two most important aspects of implementation.

4.3.1 Error and Convergence Control

Modern ODE solvers adapt the step size during integration to meet a spec-
ified accuracy requirement for the solution. The step size is adapted based
on an estimate of the local error. This estimate is obtained, as indicated
above, using embedded formulas in which two solutions of different orders, p
and p − 1, are subtracted to generate an error estimate for the lowest order
method. The error estimate is essentially free, since it involves no additional
function evaluations or solutions of implicit systems.

Adjusting the step size to meet an accuracy requirement is basically a
control problem. We have implemented a predictive controller as suggested
by Gustafsson (1992) leading to the following control law for selecting the
step size:

∆tn =
∆tn−1

∆tn−2

(

ε

rn

)k2/(p+1) (

rn−1

rn

)k1/(p+1)

∆tn−1 (20)

k1 and k2 are the gain parameters for the controller, while ε is the desired
tolerance (including a safety factor). Gustafsson (1992) suggests using k1 =
k2 = 1. The aggressiveness of the controller can be tuned by tuning these
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parameters. rn is the norm of the estimated local error:

r =

√

√

√

√

1

n

n
∑

i=1

(

erri

atoli + rtoli · |ui|

)2

(21)

in which atol and rtol are (componentwise) absolute and relative error toler-
ances specified by the user. Experiments have shown that the controller (20)
gives a small reduction in the number of failed integration steps along with
a smoother variation of step sizes compared to the conventional control law:

∆tn =

(

ε

rn

)1/(p+1)

∆tn−1 (22)

as implemented in many ODE solvers.

4.3.2 Stage Value Predictions

The nonlinear equations arising in each internal stage of the ESDIRK methods
are solved using a modified Newton’s method:

[

M − ∆tγ
∂f

∂u

]

∆Ui = Mun + h

i−1
∑

j=1

aijf(tn + cj∆t,U
(k)
j ) − MU

(k)
i (23a)

U
(k+1)
i = U

(k)
i + ∆Ui (23b)

In order to optimize this process, we need efficient strategies for

– evaluating the Jacobian and factorizing the iteration matrix, M − hγ∂f/∂u.
– generating initial guesses for the iterations.
– terminating the iterations.

The iteration matrix is evaluated and factorized once per integration step.
Implementations tailored for large-scale applications will often benefit from
a strategy in which the Jacobian and its factorization are reused over several
consecutive steps. For the kinetic cell, the typical state dimension is 10–
20 and Jacobian evaluations, function evaluations and LU-factorizations are
all comparable with respect to computational cost. Hence, we evaluate the
iteration matrix and perform a factorization in each step.

The convergence rates in the Newton iterations may be substantially im-
proved and the convergence failures minimized if good starting values are
chosen. The most primitive approach to obtaining a guess for the next stage
is to use the most recent stage values. A better approach is to construct a
predictor (a polynomial) based on information from the previous integration
step and use it to extrapolate the stage values in the current step. The pre-
dictor can be constructed in several ways. From the function values and the
derivatives at tn−1 and tn we can construct a Hermite polynomial and use
it to extrapolate stage values between tn and tn+1. We exploit instead the
continuous extension of the method (Enright et al., 1986):

u(tn + θ∆tn) = un + ∆tn

s
∑

i=1

b∗i (θ)f(tn + ci∆tn,Ui) (24)
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in which the quadrature weights, b∗i , depend in θ:

b∗i (θ) = b∗i,1θ + b∗i,2θ
2 + . . . + b∗i,pθ

p (25)

The coefficients for the continuous extension can be determined by requiring
the same set of order conditions satisfied that was used to determine the
coefficients of the actual method. A prediction of the stage value at the ith
internal stage is then obtained by substituting θi = 1 + cihn+1/hn in (24).

The strategy for the non-linear solutions is inherently coupled to the
outer control of integration error and selection of step sizes. The termination
accuracy for the Newton iterations affects the accuracy of the overall solution.
The termination criterion for the iterations should be related to the accuracy
required in the solution. Houbak et al. (1985) showed that for stiff problems
the termination criterion should be based on the residual, R, of the nonlinear
equations, rather than the displacement, ∆U. The iterations are terminated
when:

‖R(k)‖ ≤ κ · rtol (26)

in which ‖·‖ denotes a 2-norm and R is the (scaled) vector of residuals. rtol
is the relative error tolerance for the local discretization error. κ is normally
chosen between 0.5 and 0.01. For reasons of robustness we chose κ = 0.01.
During iterations the convergence rate is estimated as:

αk =
‖R(k)‖

‖R(k−1)‖
(27)

If for some k during iterations αk > 1, the iterations are terminated and the
step size decreased. The estimated convergence rate is also used by the step
size controller to limit the step size if convergence in the previous step was
too slow. A target minimum convergence rate of 0.3 is used as suggested by
Gustafsson (1992).

4.4 Discontinuities Due to Phase Changes

In the kinetic cell the reaction rates depend on component concentrations
in a specific phase, the most common type of reaction being oxygen in the
gas phase reacting with a hydrocarbon component in the oil phase. Pure gas
phase reactions, in which oxygen reacts with a hydrocarbon gas component,
are often neglected. The phase dependence of the reactions introduces certain
difficulties in the solution of the kinetic cell equations. Phase changes in
the cell cause discontinuities in the right-hand-side functions of the model.
Straightforward integration across these discontinuities may lead to poor
convergence and repeated step failures.

We propose in this section an algorithm for robust detection and location
of phase changes by considering the kinetic cell as a discrete event problem.
The appearance or disappearance of a fluid phase mark the occurrence of
a “discrete event”, e.g. a change from a single phase region to a two-phase
region. The time of the phase change is not known in advance, but depends on
the model solution. Thus, the solution must be advanced until the condition
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Fig. 5 Possible variation of the gas phase fraction over one integration step. At
t = t∗, β = 1 and the oil phase vanishes.

that triggers a phase change becomes satisfied. The detection of the phase
change and subsequent location of the exact time when the change occurred
are the main components of the proposed discrete event algorithm.

Consider the situation depicted in Figure 5. β denotes the gas phase
fraction. In general, the phase change will occur somewhere between the
natural steps of the solver. In this case, the condition for a change to the single
phase region (β = 1) is satisfied about three quarters into the integration
step. The exact time for the change is labelled t∗. The simplest approach for
dealing with this situation would be to accept tn+1 as the time of change.
However, accepting a solution well beyond the phase boundary results in a
negative phase amount for the vanishing phase.

4.4.1 Discrete Event Systems

We will represent the discrete event DAE system in the following form:

du

dt
= f(t,u,v), u(t0) = u0 (28a)

0 = g(t,u,v), v(t0) = v0 (28b)

0 < qj(t,u,v), j = 1, . . . , nev (28c)

where the DAE system has been reformulated in semi-explicit form. u ∈ R
nd

is the vector of ‘differential’ variables and v ∈ R
na is the vector of ‘alge-

braic’ variables. f and g are vector functions mapping R × R
nd × R

na into
R

nd and R
na , respectively. We will assume that ∂g/∂v is non-singular (index

one DAE). The qj ’s are event functions associated with the current system
state and nev denotes the number of event functions. In general, the sys-
tem may change between many different states. If the attainable states are
indexed as m ∈ Istate then each state is represented in the form (28) with
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{nd, na, nev}m. Thus, the number of equations and event functions may differ
between individual states. If one of the event functions becomes satisfied, a
change occurs to the system state associated with this event function.

To illustrate the concepts we consider the discrete event formulation of
the VKC. We neglect changes associated with the water phase and, hence,
consider only the two-phase equilibrium between hydrocarbon components
in the oil and gas phases. Three attainable states exist for this system: (1)
single phase oil, (2) single phase gas and (3) two-phase oil-gas. When in the
two-phase region the ‘active’ equations for the VKC are Eq. (4), (5), (6), (10)
and (14):

dCi

dt
=

nr
∑

k=1

Aikrk +
F in

i − F out
i

V
, i = 1, . . . , nc (29a)

dU

dt
=

nr
∑

k=1

(−∆Hk)rk +
Hin − Hout + Qext

V
(29b)

0 = U − (1 − ϕv)ρrUr + (ϕv − ϕf )ρsUs + ϕf

∑

j

UjρjSj (29c)

0 = Vv − Vf − Vs (29d)

0 =
∑

i∈{hc}

Ci(Ki − 1)

1 − β + βKi
(29e)

For this system state we have nd = nc + 1, na = 3 and nev = 2. The two
event functions associated with the two-phase region are:

0 <
∑

i∈{hc}

Ci(1 − Ki) (29f)

0 <
∑

i∈{hc}

Ci

(

1 −
1

Ki

)

(29g)

corresponding to disappearance of either the gas phase or the oil phase,
respectively. When a change to a single phase region occurs, Eq. (29e) is
omitted from the formulation. Each single phase state then has one associated
event function defining the criterion for a switch back to the two-phase region.

4.4.2 Discrete Event Algorithm

The requirements for the event detection algorithm are to (i) detect all phase
changes by monitoring sign changes in the event functions, and (ii) to locate
the exact time for the changes that occur. Several general purpose event
detection algorithms have been suggested in the literature, a good reference
being the paper by Park and Barton (1996). The event detection algorithm
is based on the principle of discontinuity locking (Park and Barton, 1996).
Within each integration step the system is locked in its current state, even if
one or more event functions are satisfied. The event functions are evaluated
at the end of each step, and if any of them are satisfied, the exact time of
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occurrence is then located. The approach is based on the assumption that the
system of equations is mathematically well behaved in a small neighborhood
of the change. The solution may be unphysical (negative phase fractions),
but we will exploit the fact that the solution trajectories vary smoothly in
the neighborhood of the change (c.f. the smooth continuation of the phase
fraction curve after t∗ in Figure 5).

Since the changes often occur between mesh points, we need to interpolate
the differential and algebraic variables of the DAE in order to evaluate the
event functions. For differential variables we use the continuous extension
(24) provided by the ESDIRK methods. The algebraic variables could, in
principle, also be interpolated by a suitable polynomial. However, to avoid
discontinuity sticking problems (Park and Barton, 1996), we locate the phase
changes by solving the following system of equations:

g(t∗,up(t∗),v(t∗)) = 0 (30a)

q∗(t∗,up(t∗),v(t∗)) = 0 (30b)

whenever a change has been detected. The unknowns are the algebraic vari-
ables, v, and the time of change, t∗. up(t) denotes the interpolating polyno-
mial for the differential variables and q∗ is the event function that became
satisfied between tn and tn+1. The structure of the ESDIRK integration al-
gorithm with discrete event detection is outlined below:

Require: tinitial, tfinal, u(tinitial), initial system state
while t ≤ tfinal do

Advance solution from tn to tn+1 using the ESDIRK scheme
Compute error estimate
if integration error acceptable then

Evaluate event functions
if sign change occurred then

Locate time of change by solving (30)
Set time equal to t∗

Initialize in new system state
end if

else

Recompute time step with reduced ∆t
end if

end while

5 Results

5.1 VKC Simulations

As a first example we illustrate the VKC by simulating a ramped temperature
experiment using the minimal reaction model presented in Section 3.2.1.
Ramped temperature experiments are often carried out in the laboratory to
determine burning characteristics for different oils.

The simulated setup consists of an oil sample placed in the kinetic cell
which is heated externally from 100◦C to 600◦C over a period of 10 hours
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Initial conditions

Water 0.
Light oil 0.
Heavy oil 0.55moles
Oxygen 0.
Inert gas 0.45moles
Coke 0.
Temperature 373K
Pressure 137atm

Total cell volume 1.4L
Air feed rate 10L/hr
Rock porosity 0.4
Heat transfer coefficient 60kJ/(mole · K)
Valve coefficient 10L/(hr · atm)

Table 2 Initial and operational conditions for simulating the ramped temperature
experiment using the VKC.

with a constant feed of air of 10L/hr. Initial and operational conditions are
summarized in Table 2. The fluid phases are assumed ideal and the equilib-
rium K-factors are assumed to depend only on pressure and temperature.
Figure 6 shows the cell temperature, oxygen consumption rate and concen-
trations of light oil, heavy oil, coke and oxygen at 3 different concentrations
of oxygen in the feed.

The minimal reaction model used in this experiment does not include
LTO reactions in the traditional sense of oxygen addition reactions, but we
still observe two peaks in oxygen consumption rate originating from direct
oxidation of the oil based components and oxidation of coke which occurs at
a higher temperature. The variation with oxygen feed concentration shows
that, as expected, a low oxygen concentration promotes cracking of heavy
oil whereas a high oxygen concentration favours the direct oxidation which
leads to a significant increase in temperature above the heating temperature.

5.2 Phase Changes

To illustrate the importance of proper handling of phase changes we consider
again the ramped temperature experiment. For the case with 20% oxygen
in the feed, a change from single phase oil to two-phase oil-gas occurs at
t = 3.15hrs. Attempting to integrate directly across the phase change results
in repeated step failures in the solver as illustrated in Figure 7. The figure
shows the step size sequence as selected by the controller (20) for a section of
the integration interval near the phase change. Each time the solver attempts
a step across the phase boundary, a convergence or error test failure results
forcing the the solver to reduce the step size. The solver fails 8 times and
reduces the step size by two orders of magnitude before finally stepping
across successfully. Using the phase change detection algorithm, the change
is detected and consistently located without failed steps. Initializing in the
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Fig. 6 Simulation results from a ramped temperature experiment using the mini-
mal reaction model. The temperature is raised from 100◦C to 600◦C over a period
of 10 hours. Cell temperature, oxygen consumption rate and component concen-
trations are shown for 3 different oxygen feed concentrations.

new two-phase region, however, results in 4 step failures before settling at
the new level. Completely avoiding step failures is difficult since a change
into the two-phase region changes the dynamics of the problem.

In general, we have observed that the algorithm for phase change detec-
tion and location improves the robustness near phase changes by significantly
lowering the number of integration step failures. Our observations also indi-
cate that a solver not equipped with a phase change algorithm will, in most
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(b) With phase change detection.

Fig. 7 Step size sequences for the ESDIRK23 solver near a phase change when
simulating the ramped temperature experiment. The phase change algorithm im-
proves the integration robustness when crossing phase boundaries.

cases, successfully integrate across the change after repeated step size reduc-
tions caused by convergence and error test failures. Thus, the phase change
algorithm is mainly needed to avoid unnecessary step failures when cross-
ing phase boundaries. Overall efficiency gains from using the phase change
algorithm when measured over a long integration interval with only one or
two phase changes occurring are modest, but we emphasize the improved
robustness near phase boundaries.

5.3 Performance Comparison

To evaluate the performance of the new, tailored ESDIRK implementations
we have compared them to two widely used off-the-shelf, general purpose,
stiff ODE solvers: DASSL (Petzold, 1982) and LSODE (Hindmarsh, 1983).
Both DASSL and and LSODE are variable order, variable step size imple-
mentations of the backward differentiation formulas (BDF). The codes are
fully documented elsewhere and will not be discussed in further detail here.
Among the ESDIRK methods implemented we show results for the following
methods:

ESDIRK12: Two stage, second order trapezoidal rule with implicit Euler as
error estimator.

ESDIRK23: Three stage method by Kværnø (2004)
ESDIRK34: Four stage method by Alexander (2003).
ESDIRK45: Seven stage method by Kværnø (2004).

Coefficients for the methods can be found in the respective papers.

5.3.1 Setup of Experiments

To mimic the application within the IAFS splitting environment as closely as
possible, we modify the VKC equations slightly assuming fixed temperature
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Fig. 8 The temperatures for the integration subintervals in the performance com-
parison are obtained by sampling the characteristic ISC temperature profile. The
continuous temperature profile is shown along with a zero-order parametrization
corresponding to N = 25 equidistant subintervals.

and pressure in each splitting interval and solve only for component concen-
trations. The VKC equations thus reduce to the set of ODEs represented
by Eq. (4) along with the phase equilibrium constraint (14). We split the
total integration interval into N subintervals. For each subinterval we then
input a new temperature and pressure and restart the solvers. For DASSL
and LSODE, which are not equipped with functionality for handling discon-
tinuities due to phase changes, we solve the implicit equation (14) whenever
the ODE right-hand-side functions are evaluated. The temperature input for
each subinterval is obtained by sampling the characteristic ISC temperature
profile as shown in Figure 8. In this way, the temperature variation corre-
sponds, roughly, to the variation that a single gridblock in an ISC simulation
would “experience”. Pressures are assumed constant during all subintervals.

As a benchmark example we use the SARA based reaction model pre-
sented in Section 3.2.2. In terms of number of components and reactions we
think that this model represents best the requirements in realistic ISC simu-
lations. With respect to component and mixture properties we assume ideal
fluid phases and use a pressure and temperature correlation for the equi-
librium K-factors. Initial compositions are listed in Table 3. A pressure of
20atm is used in all subintervals . Air is cycled through the cell at a constant
rate. The total simulation time is 100hrs and two experiments are carried
out using N = 25 and N = 100 subintervals, respectively.

The numerical results are compared to a very accurate reference solution
computed by ESDIRK34 using atol = rtol = 10−14. The measure of accuracy
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Component Mole fraction

Water 0.
Inert oil 0.0005
Oxidized resins/aromatics 0.
Oxidized saturates 0.
Asphaltenes 0.0229
Resins 0.0914
Aromatics 0.2680
Saturates 0.5625
Light oil 0.0547
Carbon dioxide 0.
Nitrogen 0.
Oxygen 0.
Oxidized asphaltenes 0.
Pyrolysis coke 0.

Table 3 Initial overall oil composition for the SARA based model.

is based on the max-norm of the relative error at the end of the integration
interval. The accuracy is represented as the minimum number of significant
correct digits, SCD, in the solution defined as:

SCD := − log10

[

max
i

∣

∣

∣

∣

∣

ui(tend) − uref
i (tend)

uref
i (tend)

∣

∣

∣

∣

∣

]

(31)

It was verified that all concentrations are greater than zero at tend. The
results of the solver comparisons are presented as work-precision diagrams
where efficiency is measured by CPU time. Thus, to produce the diagrams
the problem is solved using a range of input tolerances for each of the solvers
tested. In addition, the following conditions apply to the experiments:

– All codes are compiled using the Compaq Visual Fortran compiler.
– The runs are made on a Pentium 4, 3GHz PC with 512MB RAM.
– The CPU time is taken as the mean over 25 runs. The CPU time is,

of course, machine dependent, but the relative magnitudes shown here
should be applicable to scalar computers in general.

– The input tolerances are chosen as: atol = rtol = 10−(1+j/3), j = 0, . . . , 21.
– The initial integration step size is computed internally by the solvers1.

Between subintervals the last step of the current interval is passed as a
guess for the first step in the next interval.

– All solvers require the Jacobian of the ODE right-hand-side functions.
These are approximated internally by finite differences.

– All solvers use dense linear algebra techniques.

5.3.2 Work–Precision Diagrams

Figure 9 shows the work-precision diagrams when solving the SARA based
reaction model using 25 and 100 subintervals. First of all we note that the

1 For this purpose, the ESDIRK solvers use the algorithm suggested by Hairer
and Wanner (1996).
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Fig. 9 Work-precision diagrams for the SARA based ISC reaction model. The
tailored ESDIRK implementations are compared to the widely used DASSL and
LSODE codes. Comparisons are made for 25 and 100 subintervals

resulting accuracies in the solution are, of course, different from the local
tolerances provided as input to the solvers. The tolerances merely govern
the local error and step size control. Several general observations are made.
In the high accuracy range (4–6 significant correct digits) the methods per-
form according to their order, and asymptotically the high order methods
(DASSL, LSODE and ESDIRK45) will outperform the lower order methods
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(e.g. ESDIRK12 and ESDIRK23). However, we are mainly interested in the
accuracy range corresponding to 2–4 significant correct digits. For this range,
the low and intermediate order methods perform best. For example, with 100
subintervals and 3 significant correct digits the ESDIRK23 solver is two times
faster than LSODE and 3-4 times faster than DASSL.

The work-precision curves for the ESDIRK solvers all seem to settle at
a constant level when working at very loose tolerances instead of continuing
the linear trend from the high accuracy end of the interval. Moreover, the
behavior in the low accuracy end seems more erratic for all solvers. This
can be partly attributed to the error and convergence controller. Consider
for example ESDIRK45. An input tolerance level of atol = rtol = 10−1 still
produces 2 SCD. Inspection shows that the step size is limited by convergence
in the nonlinear solver and not by teh local error. Thus, the large step sizes
allowed by the error controller when working at loose tolerances lead to
convergence failures in the nonlinear solver which then forces a step size
reduction. Hence, the resulting accuracy is higher than requested, but at the
cost of increased computation time. The change of slope in the ESDIRK
curves is therefore due to a change in the mechanism governing step size
selection. ODE error control devices perform best when operating at tight
tolerance levels.

Comparing N = 25 and N = 100 shows that all solvers need more time
when the integration is interrupted frequently. The overhead associated with
restarts is, however, larger for the BDF methods. When the BDF methods
are restarted they revert to first order and slowly build up higher order
information. Thus, for the initial phase after a restart they need small time
steps whereas the one-step ESDIRK methods recommence at high order and,
hence, do not suffer as much from the frequent restarts.

In line with our comments in the previous section regarding the phase
change algorithm, we note that both DASSL and LSODE manage to integrate
across the phase changes. Inspection of the process shows, however, that both
methods experience step failures and lower their order before successfully
stepping across. The loss in efficiency associated with these step failures
alone is difficult to isolate but is reflected in the results in Figure 9.

Overall, the differences in performance are small when using only 25
subintervals. The advantage of one-step methods over multi-step methods
is, however, clearly observed when the number of subintervals is increased,
the difference between DASSL and the ESDIRK solvers being the most no-
table.

6 Conclusion

The work presented in this paper addresses time integration of the multi-
scale in-situ combustion process. In particular, we have focused on developing
specialized solvers for integration of the stiff chemical kinetics subject to
phase equilibrium constraints. To facilitate the algorithmic development we
constructed a kinetic cell model that allows us to study the kinetics and phase
behavior part of in-situ combustion in an isolated setting. Based on analysis
of in-situ combustion kinetics characteristics we chose as stiff integrator the
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class of ESDIRK methods. We extended the methods with algorithms for
handling the discontinuities that arise due to phase changes. In addition,
we outlined important aspects for efficient implementation of the ESDIRK
methods.

Performance comparisons between the ESDIRK solvers and off-the-shelf,
dedicated stiff ODE solvers showed that the new solvers are comparable
or better in terms of computational speed, especially over short integration
intervals as required when implemented in an operator splitting environment.
The proposed method for handling phase changes during simulation proved
robust in detecting and locating changes by significantly reducing the number
of convergence and error test failures when crossing phase boundaries.

6.1 Future Research

The results of this paper represent one step towards a full time-stepping
methodology that uses specialized time integrators for the various physical
sub-processes. Coupling of the methods for the reaction substep with other
steps in the splitting scheme and establishing and testing the full framework
is forthcoming.

For the reaction and phase equilibrium part of in-situ combustion alone,
the directions for future research include:

– Extension to full equation-of-state based phase equilibrium including ex-
tension of the algorithm for detecting phase changes. This may be non-
trivial for several reasons. For example, in a rigorous flash algorithm the
phase state depends on the outcome of a stability analysis which cannot
be expressed in closed form and, hence, does not fit into the framework
of event functions as introduced in Section 4.4.

– Test of other classes of integration methods. Our results indicate that im-
plicit one-step methods are well suited for integrating in-situ combustion
kinetics. Other classes, besides the ESDIRK methods, could be of inter-
est. For example, results from operator splitting integration of kinetics in
large atmospheric chemistry models show that the Rosenbrock methods
are good candidates as well (Sandu, Verwer, Loon, Carmichael, Potra,
Dabdub and Seinfeld, 1997; Sandu, Verwer, Bloom, Spee, Carmichael
and Potra, 1997).

– Use of efficient proxies for kinetics. Many repeated integrations are needed
in the operator splitting approach. Often the conditions change only little
from gridblock to gridblock and from time-step to time-step which sug-
gests using a tabulation approach instead of repeating the integrations.
The ISAT (In-Situ Adaptive Tabulation) method (Pope, 1997) has been
used in computational combustion problems with significant savings in
computation time compared to direct integration.

– Use of the VKC model for parametric sensitivity studies and for inverse
problems in connection with laboratory experiments to determine reac-
tion kinetic parameters. The VKC could be used both as a post-processing
tool when analyzing experimental data and estimating parameters and in
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the experimental design phase for determining optimal experimental con-
ditions.
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