
A Secure Simplification of the PKMv2 Protocol
in IEEE 802.16e-2005

Ender Yüksel1, Hanne Riis Nielson2, Christoffer Rosenkilde Nielsen2, and
Mehmet Bülent Örencik1

1 Department of Computer Engineering, Istanbul Technical University, 34469
Istanbul, Turkey

2 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark

yuksele@itu.edu.tr riis@imm.dtu.dk crn@imm.dtu.dk

bulent.orencik@bte.mam.gov.tr

Abstract. Static analysis is successfully used for automatically validat-
ing security properties of classical cryptographic protocols. In this pa-
per, we shall employ the same technique to a modern security protocol
for wireless networks, namely the latest version of the Privacy and Key
Management protocol for IEEE 802.16e, PKMv2. This protocol seems
to have an exaggerated mixture of security features. Thus, we iteratively
investigate which components are necessary for upholding the security
properties and which can be omitted safely. This approach is based on
the LySa process calculus and employs the corresponding automated
analysis tool, the LySaTool.

Keywords: Protocol Validation, Process Calculi, Static Analysis, Authenti-
cation, IEEE 802.16e

1 Introduction

Security in wireless networks is of great concern as the wireless medium faces
different threats from wired networks. Thus, in order to provide secure com-
munication, these threats must be taken into account in the design of security
protocols for wireless networks. However the standard for wireless metropoli-
tan area networks, IEEE 802.16, incorporated a pre-existing standard called
Data Over Cable Service Interface Specifications, designed for wired networks.
Therefore the standard failed to protect the IEEE 802.16 link [1] and significant
changes in its Privacy and Key Management protocol (PKMv1) were required.

The latest standard, IEEE 802.16e-2005 [2], includes a new version (PKMv2)
of the protocol that caters for the shortcomings of the first version. Derivation
of the authorization key is now derived by the contribution of both parties using
well known standards such as RSA and EAP, where it initially was done only by
the base station (BS). Additionally, BS is extended with a certificate, allowing
for mutual authentication with the mobile station (MS), which was missing in

2

PKMv1. Finally, nonces are incorporated in order to avoid replay attacks. These
corrections, though thought to benefit the security of the protocol, have also
intensively complicated it. This motivates an investigation of which extensions
that are really necessary and which that can be omitted without compromising
the protocol.

Formal analysis of cryptographic protocols is normally concerned with whether
a given protocol satisfies a number of security criteria such as correct establish-
ment of a secret shared key or authentication the principals involved. This has
been a very active area of research over the last decades, and the tools, that
have been constructed based on the theoretical development, have successfully
located many hitherto unknown flaws. One of the most well-known example
is the Lowe’s attack [3, 4] of the Needham Schroeder public key protocol [5]
using the process algebra Communicating Sequential Processes (CSP) and the
Failures-Divergences Refinement which is the model checker for CSP [6]. Similar
examples are obtained by Shmatikov and Stern [7] using Murphi, and Corin et
al. [8] using symbolic traces and Pure-past Security - Linear Temporal Logic
successfully.

This paper builds on this development, but with a different focus of interest.
Relying on a well-established verification tool, the LySaTool, we shall itera-
tively attempt to remove components of the PKMv2 protocol and investigate
the influence it has on the security properties. Our analysis shows that not only
is the PKMv2 SA-TEK 3-Way Handshake secure, but that it can even be sim-
plified by removal of some redundant fields without compromising the overall
security protocol.

2 PKMv2 in IEEE 802.16e-2005

The second version of the Privacy and Key Management (PKMv2) protocol of
IEEE 802.16 is described in IEEE 802.16e-2005 and aims to fix the bugs in the
former version. In the first part of the protocol, an Authorization Key (AK)
is generated using RSA or EAP or both. After that, each party generates a
Key Encryption Key (KEK) using their AKs. KEKs are used in encrypting and
distributing Traffic Encryption Keys (TEK), TEKs can be taken as session keys,
while AK/KEK are long term keys. Then comes the second part, SA-TEK 3-
Way Handshake, which lets MS to gather TEKs from BS. In the handshake,
TEKs are encrypted by KEKs. The process can be seen in Fig. 1.

The important part of PKMv2 is the SA-TEK 3-Way Handshake. It is based
on the second part of the former protocol, but now it has more security features.
The original specification has three messages with H-MACs and in total twenty-
one fields. The main fields are described in Table 1.

The PKMv2 SA-TEK 3-Way handshake sequence proceeds as shown in Table
2.

We had simplified the protocol, making use of the work of John Mitchell [14]
(that was used in his security review together with IETF EAP Work Group),
made the necessary changes that are necessary for LySa and obtained the follow-

3

Fig. 1. The PKMv2 Process

Table 1. The PKMv2 SA-TEK 3-Way Handshake Protocol Fields

Attribute Content
MS Random Random number received from MS
BS Random Random number included in SA-TEK-Challenge or SA-Challenge
KeySeqNo AK Sequence Number
AKID Id of the AK that was used for protecting this message
SA-TEK-Update TEKs encrypted by KEKs, optionalonhandoveretc.
FrameNo The frame number that old PMKs and AKs should be discarded
SA Descriptors Descriptors of the SA, only for initial entry
SecNegParam Confirms messages security capabilities
HMAC/CMAC Message Authentication Codes

Table 2. The PKMv2 SA-TEK 3-Way Handshake Protocol Narration

1. SA-TEK-Challenge
BS → MS: BS Random, KeySeqNo, AKID, [KeyLifeT ime], H − C/MAC
2. SA-TEK-Request
MS → BS: MS Random, BS Random, KeySeqNo, AKID, SecurityCapabilities,

SecNegParam, PKMConfSettings, H − C/MAC
3. SA-TEK-Response
BS → MS: MS Random, BS Random, KeySeqNo, AKID, [SA− TEKUpdate],

F rameNo, [SADescriptors], SecNegParam, H − C/MAC

ing protocol narration in Table 3. A, B, id, na, nb, S, T , K stands for BS, MS,
AKID, BS Random, MS Random, SecurityCapabilities + SecNegParam +PKM-
ConfSettings, SA-TEKUpdate and AK, respectively.

The first message, named as PKMv2 SA-TEK-Challenge, includes a random
number generated by A (na) and the id of the authorization key (id) and pro-
tected by the message authentication code (MAC).

The second message is the PKMv2 SA-TEK-Request which includes na and
id received in the first message in addition to the random number generated by
B, nb, security configuration details S and the message authentication code for
the remaining fields.

4

Table 3. PKMv2 SA-TEK 3-Way Handshake Simplified Protocol Narration

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: na, nb, id, T, MAC{na, nb, id, T}K

Upon reception A checks the id, MAC and the na of and if any of these
values are invalid, it discards the message. Otherwise, it checks the security
capabilities provided by the B and if the properties does not match it reports
this inconsistency to the higher layers.

If the second message is successfully validated by A then message 3 which
is named as the PKMv2 SATEK-Response is sent to B. This message has the
TEKs T .

If the last message is successfully verified by B using the MAC, the received
TEKs and associated parameters will be installed by the B. The security ne-
gotiation parameters of A should also be verified by B but the failure of this
verification may not cause halt of the protocol since B may continue by adopting
the security negotiation parameters encoded in SA-TEK Response message.

This simplification of the protocol is verified using Murphi model checker in
[14].

3 LySa Calculus

To analyze the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol we
need to formalize it in LySa calculus. LySa [10] is a process calculus based on
the π-calculus [16] and incorporates cryptographic operations using ideas from
the Spi-calculus [13]. However, there are two main differences between LySa and
spi/pi calculus. First difference is that, LySa does not have channels but one
global ether. That is because in usual implementations like ethernet-based or
wireless, anyone can eavesdrop or act as an active attacker and that is definitely
not the channel based communication. The second difference is about the usage
of pattern matching in the expression of the tests associated with input and
decryption.

LySa consists of terms and processes; terms consist of names (keys, nonces,
messages, etc.), variables, public/private keys and the compositions of them
using symmetric/asymmetric encryptions. The syntax of terms E is shown in
Table 4.

The tuples of terms E1, . . . , Ek are encrypted under a term E0 represent-
ing a key in the cases of symmetric or asymmetric encryption. An assumption
of perfect cryptography is adopted, meaning that the only inverse function of
encryption is to use decryptions with the correct key.

The syntax of processes P which is mostly familiar to the polyadic Spi-
calculus [13] is shown in Table 5.

5

Table 4. LySa Terms

E ::= x variable
n name
k+/k− public and private keys

{E1, . . . , Ek}`
E0 [destL] symmetric encryption

{|E1, . . . , Ek|}`
E0

[destL] asymmetric encryption

Table 5. LySa Processes

P ::= 0 nil
P1 | P2 parallel
!P replication
(ν n) P restriction (name)
(ν± m) P restriction (key pair)
〈E1, . . . , Ek〉P output
(E1, . . . , Ej ; xj+1, . . . , xk).P input

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`
E0 [origL] in P symmetric decrypt.

decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}`
E0

[origL] in P asymmetric decrypt.

The input operation with pattern matching will only succeed if the prefix of
the message matches the terms specified before semi-colon in the input operation.
The input process (E1, . . . , Ej ; xj+1, . . . , xk).P means that a k-tuple of values
(E′

1, . . . , E
′
k) is taken as the input and if the first 1 ≤ i ≤ j values E′

i are
pairwise matched to the values Ei, the remaining k-j values of the input will be
bound to the variables xj+1, . . . , xk. In other words, the values before the semi-
colon are to matched to the beginning part of the input and if the matching
is successful the remaining part of the input will be assigned to variables after
the semi-colon. This pattern matching is also used in decryptions as shown in
Table 5. If no matching will be performed, then nothing is written before the
semi-colon. Similarly, if no binding will be performed, then nothing is written
after the semi-colon. For example,

P = decrypt {y}K as {x; }KP
′

means that the decryption in P succeeds only if x = y whereas

Q = decrypt {y}K as {; x}KQ
′

means that the decryption in Q always succeeds, binding x to y. In both ex-
amples, the remainder processes P ′ and Q′ are only executed if the decryptions
succeed and of course P and Q have the implicit check that the length of the
tuples are the same.

LySa syntax also have annotations for origin and destination in order to de-
scribe the intentions of the protocols. Encryptions can be annotated with fixed

6

labels, called crypto-points defining its position in the process, and with asser-
tions specifying the origin and destination of encrypted messages. Crypto-points
` are from some enumerable set C and added to state where the encryptions and
decryptions occur. The LySa term for encryption:

{E1, . . . , Ek}`
E0

[destL]

means that the encryption is created at crypto-points ` and specifies the intended
crypto-points L ⊆ C for decryption of the encrypted value in the assertion [dest
L]. Similarly, in the LySa term for decryption:

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`
E0

[origL] inP

[orig L] specifies the crypto-points L ⊆ C that E is allowed to have been en-
crypted.

The actual semantics have been omitted for lack of space, but are present in
[10].

A LySa process may generate a large number of names which would cause
infinite sets of names to be recorded. These sets are partitioned into finitely
many equivalence classes for the efficiency of the analysis. A canonical value is
a representative for each of these equivalence classes. For each name n, there is
a canonical representative bnc and extended homomorphically to terms, bEc is
the term where all names and variables are replaced by their canonical versions.
Since it allows us to analyze an infinite number of principals, canonical value is
an important analysis element [15].

3.1 LySa Model of IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake

We are now ready to model the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake
protocol in LySa. We have the protocol narration in Table 3. We extend the
narration to distinguish between inputs and corresponding outputs and also
make clear which checks must be performed [10]. Then we translate the narration
into LySa by dividing the narration into two processes, one for each principal.
Notice that the checks to be performed are represented by the pattern matchings
on input and decryption. In the LySa specification we add annotations to all
cryptographic operations as described before in this section. The LySa model
of the PKMv2 SA-TEK 3-Way Handshake is given in Table 6.

In PKMv2, a keyed MAC is used to verify the integrity of messages. The
message is hashed along with the key and then encrypted with the MAC key.
Since the hash functions are one way functions, they can be modelled by using a
public name for the encryption key and with no corresponding key for decryption.
Therefore, the message is encrypted by asymmetric encryption first. After that
symmetric encryption is applied. More details about LySa implementation can
be found on [17] and [18].

7

Table 6. PKMv2 LySa Model

(ν K) (ν id) (
! (ν na) 〈id ,na, {{|id ,na|}Hash}K [at a1 dest {b1}]〉.

(na, id ; xnb, xS , xmac).
decrypt xmac as {{|na, id , xnb, xS |}Hash ; }K [at a2 orig {b2}] in
(ν T) 〈na,nb, id , T, {{|na,nb, id , T |}Hash}K [at a3 dest {b3}]〉.0

|
! (id ; yna, ymac).

decrypt ymac as {{|id , yna|}Hash ; }K [at b1 orig {a1}] in
(ν nb) (ν S) 〈yna, id ,nb, S, {{|yna, id ,nb, S|}Hash}K [at b2 dest {a2}]〉.
(na,nb, id ; yT , ymac).
decrypt ymac as {{|na,nb, id , yT |}Hash ; }K [at b3 orig {a3}] in 0

)

4 Static Analysis

Static Analysis is a formal method which enables the security analysis of LySa
processes. The analysis is based on tracking messages communicated on the net-
work along with the possible values of the variables in the protocol and recording
the potential violations of the destination/origin annotations.

A LySa process describes a set of possible operations, the analysis uses an
over-approximation of this set, therefore the analysis could investigate a trace
which is impossible at all. But this is needed to do a safe approximation because
under-approximation could miss some traces.

The main components of the analysis are:

The variable environment ρ, an over-approximation of the potential values of
each variable that may be bound to.

The network component κ, an over-approximation of the set of messages that
can be communicated over the network

The error component ψ, the set of error messages of the form (`, `′) indicating
that something encrypted at ` was unexpectedly decrypted at `′.

The details of the analysis and the proofs of the soundness of the analysis
can be found in [11, 12].

In practice, the protocols - especially the ones in wireless networks - are
executed in medium with malicious attackers. In this study, LySa processes are
analyzed in parallel with Dolev-Yao attacker [9] which can perform operations
like sending/receiving messages and encryption/decryption same as a legitimate
principal.

We have new canonical name and variables (see section 3 on page 6) for the
attacker: all the canonical names of the attacker are mapped to n• and all the
canonical variables of the attacker are mapped to z•. We also have `• which is

8

a crypto-point in the attacker, and we have the set C which is the set of crypto-
points in the original process P in parallel with the attacker. Finally, there exists
a public/private key-pair belonging to the attacker m+

• , m−
• .

The descriptions of the Dolev-Yao conditions are:

– The attacker initially has the knowledge of the canonical name n• and all free
names of the process P but he can improve his knowledge by eavesdropping
all messages sent on the network.

– The attacker can improve his knowledge by decrypting messages with the
keys he already knows. Unless the intended recipient of the message was
attacker, an error (`,`•) should be added to the error component ψ which
means that something encrypted at ` was actually decrypted by the attacker
at `•.

– The attacker can construct new encryptions using the keys he already knows.
If this message is received and decrypted by a principal, then an error (`•,`)
should be added to the error component ψ which means that something
encrypted at the attacker was decrypted by the attacker by a process P at
`.

– The attacker can send messages on the network using his knowledge and
thus forge new communications.

This conditions enable the attacker to establish the attack scenarios including
eavesdropping, modification and replay. The soundness of Dolev-Yao condition
is proved in [10].

The flow of the analysis is shown in the Fig.2. First of all, we have a protocol
narration as we had in section 2. Then we extend the narration and convert into
LySa model, as we did in section 3. We also have our attacker model which is
covered in this section. The LySa model is analyzed in parallel with the attacker
model and is processed by the LySa-tool which implements the analysis. The
results of the analysis are used to validate destination/origin authentication and
confidentiality properties of the protocols. If no violation is detected, namely
the error component ψ is empty, than it is guaranteed that the protocol satisfies
the destination/origin authentication properties. Besides, the potential values
that are learned by the attacker (ρ(z•)) helps us in validating the confidentiality
properties. Since the analysis is an over-approximation there may occur false
positives.

Fig. 2. The flow of the analysis

9

4.1 Scenarios

We shall analyze the PKMv2 SA-TEK 3-Way Handshake in scenarios with a
number n of As, A1, . . . , An, and Bs, B1, . . . , Bn. As mentioned previously, A is
the abbreviation for the base station and B for the mobile station.

We use the pair (i, j)) to refer to the instance of the protocol where Ai is
communicating with the Bj . Thus we add the two indices i, j to all variables,
constants and crypto-points of the model of the protocol in Table 6 and obtain
the LySa code that allows the analysis to distinguish between the various in-
stances. We then introduce the index 0 to refer to the attacker and the resulting
analysis scenario takes the form

|ni=1||nj=0PAi,j
| |ni=0|nj=1PBi,j

Here we use PAi,j
and PBi,j

to denote the processes needed at the Ai and the
Bj principals, respectively, in order to perform a mutual handshake. Notice that
the scenario describes that not only are all principals ready to interact with all
other honest principals, but the attacker is also allowed to act as a legitimate
principal. The analysis is carried out for n = 2 which models two groups of As
and Bs.

4.2 Validating the Protocol

In order to improve the PKMv2 SA-TEK 3-Way Handshake, first we have to
verify the base protocol which is given in Table 3. The result of our static analysis
is: no violations possible. This means that the protocol is secure and the attacker
could not violate the authentication properties. This result is similar to the work
in [14] which is established using model checking using Murphi. Now, we can
make our modifications convenient with our experiment logic.

5 Simplifying the Protocol

Our approach is based on checking the limits of robustness in IEEE 802.16
PKMv2 by removing enhancements in PKMv2 one by one, and in different com-
binations. Thus, we can see if some improvements are unnecessary and the result
may lead us to a simplified by still strong and secure protocol. Our experiments
are accomplished using the LySa-tool which runs with our LySa code.

We based our model on the simplified version of the IEEE 802.16 PKMv2 SA-
TEK 3-Way Handshake . After that we developed our LySa model in section 3.1.
We start with our base protocol model and try to simplify the model by removing
components and analyzing with attacker to find flaws.

We made the experiments systematically, and the road map of the experiment
can be seen in Fig. 3. First, we start with the base protocol and show that it has
no flaws. After that, we have three major paths: Removing the Nonces, Removing
the Ids and Removing both Nonces and Ids. The shaded nodes in the figure shows
the experiments with violations.

10

Fig. 3. Experiment Road Map

In the first path, we start by removing the outermost nonces, namely the
nonces in the last message. We remove one nonce at a time, and both nonces
also. Therefore, we have three experiments about the nonces in the last message.
In the second path, we remove the key ids. We start with the key id in the last
message. Then we remove another key id which is actually in the second message.

In the last path, we join the successful experiments, in other words the mod-
ification of the base model where no flaws could be found. There are two suc-
cessful experiments in the first path and one in the second, therefore we have
two experiments in the last path.

5.1 Experiment 1.1

This experiment is the first part of the first path, removing the nonces. We re-
move nb in the last message. The protocol narration of this modification is given
in Table 7 in the appendix section. The result of the analysis is: no violations
possible. This means that the protocol is still secure and the attacker still could
not violate the authentication properties even though we did not use the nonce
of principal B in the last message. This is an interesting result because now the
na in message two seems to be meaningless because there is no response for it.
MAC’s seem to save the protocol to verify the security properties. In addition,
this is also an important result because it supports our assertion But we have
to try the other combinations to conclude about the analysis.

11

5.2 Experiment 1.2

In this experiment, we remove the other nonce, na from the base protocol. The
protocol narration of this modification is given in Table 8 in the appendix section.
The result of the analysis is: no violations possible. This means that the protocol
is still secure and the attacker still could not violate the authentication properties
even though we did not use the nonce of principal A in the last message. Actually,
this result supports our assertion and this is an optimized alternative to the
protocol.

5.3 Experiment 1.3

In the last part of the first path, we remove both nonces from the last message of
the base protocol. The protocol narration of this modification is given in Table 9
in the appendix section. This time we find violation of authentication properties.
The result is given as:
ψ = (a111, b311), (a311, b111), (a121, b321), (a321, b121), (a112, b312),
(a312, b112), (a122, b322), (a322, b122)
Sample trace for (a111, b311) can be shown as:

1. A1 → B1 : id11, na11, MAC{ id11, na11}K11

1’. A1 → M(B1) : id11, na11, MAC{ id11, na11}K11

2. B1 → A1 : na11, id11, nb11, S11, MAC{ na11, id11, nb11, S11}K11

3. M(A1) → B1 : id11, T0, MAC{ id11, T0}K11

The results show that some encrypted values are decrypted in wrong places
and some decrypted values were actually encrypted in the wrong places. The
crypto-points are all from legitimate principals so there can be a replay attack.
A possible trace of this error can be summarized as: the attacker eavesdropped
the first message and he used the encrypted value in the first message, which is
actually the MAC of the message, that he could not decrypt in a reply attack. In
the third message, he replayed the MAC’s, namely he used the MAC of message
one in message-3. This is a flaw so we found a level that the protocol lost its
robustness property.

This results show that in the implementation, the length of the fields are
important. If somehow the lengths of the na value and the T value are the same,
then there exists the security flaw.

5.4 Experiment 2.1

This experiment is the first part of the second path, removing the key ids. We
start with removing the id only in the last message. The protocol narration of
this modification is given in Table 10 in the appendix section. The result of the
analysis is: no violations possible. This means that the protocol is still secure and
the attacker still could not violate the authentication properties even though we
did not use the key id in the last message.

12

5.5 Experiment 2.2

In this experiment we remove the id fields in both the last and the second
message. The protocol narration of this modification is given in Table 11 in the
appendix section. Now we have found violation of authentication properties. The
result is given as:
ψ = (b211, b311), (a311, a211), (b221, b321), (a321, a221), (b212, b312), (a312, a212),
(b222, b322), (a322, a222), (a310, a210), (a320, a220), (b202, b302), (b201, b301)
We found traces for specific types of violation. Sample trace for (b211, b311) can
be shown as:

1. A1 → B1 : id11, na11, MAC{ id11, na11}K11

2. B1 → A1 : na11, nb11, S11, MAC{ na11, nb11, S11}K11

2’. B1 → M(A1) : na11, nb11, S11, MAC{ na11, nb11, S11}K11

3. M(A1) → B1 : na11, nb11, S11, MAC{ na11, nb11, S11}K11

This result shows that we cannot remove both ids in the protocol.

5.6 Experiment 3.1

Now we construct the third path of the experiments by taking the successfully
validated experiments of the first two path. Therefore, this path is called remov-
ing the nonces and the key ids. In this first experiment of this path, we combine
the experiment 1.1 and 2.1 so we remove the key id and nb in the last message.
The protocol narration of this modification is given in Table 12 in the appendix
section. The result of the analysis is: no violations possible. This means that the
protocol is still secure and the attacker still could not violate the authentication
properties even though we did not use the key id and nb in the last message.
Definitely, this is a better result and better optimization. But now nb in the
second message is useless, therefore this result is not practical.

5.7 Experiment 3.2

In this experiment of this path, we combine the experiment 1.2 and 2.1 so we
remove the key id and nb in the last message. The protocol narration of this
modification is given in Table 13 in the appendix section. The result of the
analysis is: no violations possible. This means that the protocol is still secure and
the attacker still could not violate the authentication properties even though we
did not use neither the key id nor nb in the last message.

Finally, this point is the best point of optimization since it is still secure
and also practical. Namely, this version makes use of both nonces of A and B
(actually BS and MS), and also key ids. Now we have seen the limits of the
protocol and removed the redundant fields.

13

5.8 Further Experiments

The experiments above present enough evidence to support our proposal but
we went further to see if we could fix the flaws that appeared when we removed
fields from the base protocol. The problems occur in the MAC part, and we claim
that this can be fixed by adding sequence numbers inside the MACs. Therefore,
we applied sequence number revision to the experiments with erroneous results
which can be seen as shaded in Fig. 3. The results have empty error components
which mean that we have fixed the flaws. After that we took another way and
decided to test the affect of the order of the fields in the messages. As can be seen
in Fig. 4, we just swapped the appropriate fields in the last message in order to
get the same order with the second message. The result is very interesting, now
we have violations in the base code. Besides, we can easily find traces for those
violations which means that the results are not false positive, but real flaws. We
fixed this situation with the sequence numbers and had no violations afterwards.

Fig. 4. Further Experiments

6 Conclusion

The contribution of this paper is two-fold. First, we establish the security of
the Privacy and Key Management protocol PKMv2 of the latest version of the
WiMAX standard, the IEEE 802.16e-2005. Second, we show how the protocol
can be simplified without violating the security properties.

The PKMv2 SA-TEK 3-Way Handshake protocol was developed as a re-
sponse to the identification of various flaws in the earlier version. Several secu-
rity elements were added, not only to fix known flaws, but also to cater for other

14

possible flaws. Our analysis shows that the resulting protocol is indeed secure,
but also that it was over-secured by introducing redundant fields.

Our approach is based on the LySa calculus and the corresponding analysis
tool, the LySaTool. The LySa framework provides an intuitive protocol de-
scription and an automated verification of the security properties authentication
and confidentiality. Therefore LySa is a suitable choice for investigating proto-
cols such as the classical security protocols [15], large-scale systems [18] and even
voting protocols [12].

As we mentioned in the static analysis section, an error found by analysis
does not always imply that the protocol actually has a flaw. A successful run
on the analysis on the other hand, guarantees that the protocol does not violate
the security properties. Thus, our experiments that yielded no violations are
versions of the protocol that are guaranteed secure, whereas the experiments
that returned violations would require further investigation to determine if these
actually corresponded to an attack.

The success of our approach shows that is a viable method for iteratively
simplifying a secure protocol. Only alterations that does not introduce possible
attacks are kept and tested in combinations with other safe alterations. During
development, we carried out many experiments, but only the ones we found
of most interest were included in the paper. The result is a simplified version
of PKMv2 SA-TEK 3-Way Handshake protocol, guaranteed to be secure, but
without various redundant fields.

References

1. Johnston, D., Walker, J.: Overview of IEEE 802.16 Security. IEEE Security &
Privacy Magazine Vol. 2, Issue: 3, (2004) 40–48

2. IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan area networks
Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers for Combined Fixed
and Mobile Operation in Licensed Bands and Corrigendum 1

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
CSP and FDR. International Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Springer-Verlag (1996) 147–166

4. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters 56(3) (1995) 131–133

5. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM. 21(12) (1978) 993–999

6. Mitchell, J. C., Mitchell, M., Stern, U.: Automated Analysis of Cryptographic
Protocols Using Murphi. IEEE Symposium on Security and Privacy. (1997) 141–
151

7. Shmatikov, V., Stern, U.: Efficient finite-state analysis for large security protocols.
Communications of the ACM. (1998) 106–115

8. Corin, R., Saptawijaya, A., Etalle, S.: A logic for constraint-based security protocol
analysis. IEEE Symposium on Security and Privacy. (2006) 155–168

9. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory. 29(12) (1983) 198–208

15

10. Bodei, C., Buchholtz, M., Degano, P., Nielson, H.R., Nielson, F.: Static Validation
of Security Protocols. Journal of Computer Security. (2004) 347–390

11. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Automatic valida-
tion of protocol narration. Proceedings of the 16th Computer Security Foundations
Workshop. (2003) 126–140

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag

13. Abadi, M., Gordon, A. D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation. 148(1) (1999) 1–70

14. Datta, A., He, C., Mitchell, J. C., Roy, A., Sundararajan, M.: 802.16e Notes. IETF
Liasons. (2005)

15. Buchholtz, M., Nielson, H.R., Nielson, F.: A calculus for control flow analysis of
security protocols. International Journal on Information Security. 2(3-4) (2004)
145–167

16. Milner, R.: Communicating and mobile systems: the pi-calculus. Cambridge Uni-
versity Press, fifth edition.

17. Nielsen, C.R., Andersen, E.H., Nielson, H.R.: Static Validation of a Voting Proto-
col. Nordic Journal of Computing . (2006) 98–116

18. Hansen, S.M., Skriver, J., Nielson, H.R.: Using Static Analysis to Validate the
SAML Single Sign-On Protocol. Proceedings of the 2005 Workshop on Issues in
the theory of Security . (2005) 27–40

A Protocol Narrations

Table 7. PKMv2 without nb in message 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: na, id, T, MAC{na, id, T}K

Table 8. PKMv2 without na in message 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: nb, id, T, MAC{nb, id, T}K

16

Table 9. PKMv2 without na and nb in message 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: id, T, MAC{id, T}K

Table 10. PKMv2 without id in message 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: na, nb, T, MAC{na, nb, T}K

Table 11. PKMv2 without ids in message 2 and 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, nb, S, MAC{na, nb, S}K

3. A → B: na, nb, T, MAC{na, nb, T}K

Table 12. PKMv2 without id and nb in message 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: na, T, MAC{na, T}K

Table 13. PKMv2 without id and na in message 3

1. A → B: id, na, MAC{id, na}K

2. B → A: na, id, nb, S, MAC{na, id, nb, S}K

3. A → B: nb, T, MAC{nb, T}K

